

DEPARTMENT OF MECHANICAL ENGINEERING

SUBJECT WISE COURSE OUTCOMES (2022 – 2023)

I – SEMESTER

T101 - Mathe	matics - I Yr/Sem: I/I
CO 1	Apply knowledge of mathematics to solve functions of several variables.
CO 2	Identify, formulate and solve engineering problems like multiple integrals and their
	usage.
CO 3	To solve differential equations that model physical processes using effective
	mathematical tools
CO 4	Able to find equation of straight line of shortest distance, equation of plane, angle
	between straight lines.
CO 5	Gain the knowledge to solve first order differential equation arising in engineering.

T102 - Physic	rs Yr/Sem: I/I
	Apply knowledge of science and engineering to understand physics and its significant
CO 1	contribution in the advancement of technology and invention of new products that
	dramatically transform modern day society.
CO 2	Identify different areas of physics which have direct relevance and applications to
0.0 2	different engineering disciplines
	Apply fundamental knowledge to understand applications of ultrasonics, optics and
CO 3	some optical devices, lasers and fiber optics, nuclear energy sources and wave
	mechanics.
CO 4	Understand the basic operating principles of laser, its applications, optical fiber, and
0.04	its types, transmission characteristics, applications of optical fibers.
CO 5	Understand the basic operating principles of laser, its applications, optical fiber, and
	its types, transmission characteristics, applications of optical fibers.

T103 - Chem	istry Yr/Sem: I/I
CO 1	Apply knowledge of science and engineering to understand the importance of chemistry in engineering domain.
CO 2	Identify different electrochemical cells and their usage for industrial process.
CO 3	Apply fundamental knowledge of chemistry and build an interface of theoretical concepts with industrial applications/engineering applications.
CO 4	Guide the students to gain the knowledge about the cooling curves , phase diagrams, alloys and their practical importance.
CO 5	Strengthen the fundamentals of chemistry and then build an interface of theoretical concepts with their industrial/engineering applications.

T104 – Basic Electrical and Electronics Engineering Yr/s		Yr/Sem: I/II
CO 1	Will learn the fundamentals of rotational and stationary machine of	peration, single-

	phase and three-phase power measurement, magnetic and electrical circuits, and these topics.
	Will learn the fundamentals of measuring devices, communication systems, and
CO 2	•
	network models.
CO 3	Knowledge about non-conventional energy systems will be available to students.
CO 4	The varieties of metal joining will be known by the students.
CO 5	Students will learn about numerous engines, energies, and joints as well as
05	construction and building components offered with diverse principles.

T105 – Engine	eering Thermodynamics Yr/Sem: I/II
CO 1	Familiar with the fundamental thermodynamic concepts and understand the basic
001	laws
CO 2	Apply first law of thermodynamics concepts to calculate the system work for closed
	and open systems
CO 3	Apply Second Law of Thermodynamics and entropy concepts to evaluate the
0.05	performance of heat engine, heat pump and refrigerator.
CO 4	Analyze and design gas power cycles by calculating thermal efficiencies
CO 5	Understand the basic working principle of refrigeration systems

T106 – Computer Programming Yr/Sem: 1	
CO 1	Know concepts in problem solving.
CO 2	To do programming in C language.
CO 3	To write diversified solutions using the C language.
CO 4	To know about structures, pointers and its manipulation.
CO 5	To know about the evaluation of computers, components and its applications. Basic knowledge on the internet, information technology, word processing and worksheets.

P101 - Compu	uter Programming Laboratory Yr/Sem:	I/II
CO 1	Students can work with command line interface OS's, like MS-DOS.	
CO 2	Students can solve most of the real time problems with C program.	
CO 3	Students can interact with computer using C program, through various input and output functions.	
CO 4	Students can make a use of various keywords, constants, variables, data types, operators, type conversion in C program.	
CO 5	Students will have knowledge about arrays, functions, structures and pointers in program.	С

P102 – Engine	eering Graphics Yr/Sem: I/II
CO 1	Perform freehand sketching of basic geometrical constructions and multiple views of objects.
CO 2	Project orthographic projections of lines and plane surfaces.
CO 3	Draw projections and solids and development of surfaces.
CO 4	Visualize and to project isometric and perspective sections of simple solids.
CO 5	Students will be able to draw orthographic projections and isometric projections.

P103 - Basic F	lectrical and Electronics Laboratory Yr/Sem: I/II
CO 1	Know about basic electrical tools, applications and precautions
CO 2	Perform different types of wiring used in domestic and industrial applications.
CO 3	Measurements of voltage and phase using CRO, basic operation and applications of
	devices such as PN junction diode and transistors.
CO 4	Understand the function and applications of basic logic gates and flip flops.
CO 5	Gain knowledge in domestic wiring and application of electronics device in the field

of electrical engineering.

T 107 – Mathe	ematics - II Yr/Sem: I/II
CO 1	Apply knowledge of mathematics to solve matrix algebra technique for practical
	applications and Curl, divergence and integration of vectors in vector calculus.
CO 2	Identify, formulate and solve engineering problems like Laplace transform and to
02	solve differential and integral equations.
CO 3	Apply formulae and analyze problems of Fourier transform techniques.
CO 4	Determine the Fourier transform, Fourier cosine and sine transform of elementary
	functions, properties of transforms and its application in engineering
CO 5	Acquire knowledge of matrix algebra technique, vector calculus, Laplace and Fourier
	Transform.

II – SEMESTER

T108 – Mater	T108 – Material Science Yr/Sem: I/I	
CO 1	Apply core concepts in material science to solve engineering problems.	
CO 2	Knowledgeable of contemporary issues relevant to material science and engineering	
CO 3	Understand about the ferrites and its application to magnetic materials.	
CO 4	Select materials for design and construction.	
CO 5	Understand the importance and properties of materials.	

T109 – Enviro	T109 – Environmental Science Yr/Sem: I/I	
CO 1	Apply fundamental knowledge to understand about the environment.	
CO 2	Identify environmental pollution through science.	
CO 3	Apply basic knowledge to solve various environmental issues and problems.	
CO 4	Ability to consider issues of environment and sustainable development in his personal and professional undertakings.	
CO 5	Provides a comprehensive knowledge in environmental science, environmental issues and the management from an interdisciplinary perspective.	

T110 - Basic (T110 - Basic Civil and Mechanical Engineering Yr/Sem: I/I	
CO 1	Understand the building classification as per National building code.	
CO 2	Get the idea about construction procedure for various components of the building.	
CO 3	Students understand the principles of surveying, construction procedure for roads, bridges and dams.	
CO 4	Student will be able know about the working of Internal and external combustion systems	
CO 5	Student will be able know about Non-Conventional Energy Systems	
CO 6	Student will be able to know about manufacturing process.	

T111- Engineering Mechanics Yr/Sem	
CO 1	Understand the basic laws of mechanics and resolution of forces using different methods.
CO 2	Learn and apply the knowledge on analysis of forces acting on the trusses and effect

	of friction force on bodies.
CO 3	Learn about the centroid and moment of inertia for plane and solid figures.
CO 4	Understand the three laws of motion, principles of dynamics for particles.
CO 5	The student will able to analyse the laws of motion for rigid bodies.

T112- Commu	inicative English Yr/Sem: I/I
CO 1	Learnt about the definition of communication, importance, concept. Sender, Ideation, the levels in communication, channels, oral and written way of communication, body language and non verbal communication, Accuracy, Brevity and Clarity, different barriers for Communication, techniques in making effective communication, listening importance and types of listening.
CO 2	Students learnt about the types of letters, report writing, notices and memo and also developed their skill in writing.
CO 3	Understands the comprehension, identifies the difference between Skimming and scanning, guess the meaning of the words, Identify to make notes.
CO 4	Students learnt the writing skills, how to write a paragraph in a proper manner, four modes of writing and how to make bibliographical entries.
CO 5	Students were able to develop their spoken skills by making them to involve in many activities related to it.

P 104 – Physics Lab Yr/Sem:	
CO 1	Able to understand how to find the thickness of the specimen and also to find the radius of curvature of glass using the phenomenon of interference of light
CO 2	Able to understand the specific rotatory power of an optical active solution using the principle of polarization.
CO 3	To understand about the thermal conductivity of bad conductor and rubber tube.
CO 4	Ability to understand about the optical properties like dispersive power, Resolving power by applying the knowledge of optics
CO 5	To acquire knowledge about the magnetometer due to current coil and jolly method of determining the pressure coefficient of air at constant volume.
CO 6	Ability to understand the basic knowledge of inference ,polarization ,Magnetic materials ,thermal conductivity that correlates the theory and practical

P 105 – Chemistry Lab Yr/Sem: I/	
CO 1	Students will become well acquainted to test amount of hardness present in sample of water for their engineering needs.
CO 2	Students will be efficient in estimating acidity/alkalinity in given samples.
CO 3	Students will have knowledge about estimating amount of dissolved oxygen in water.
CO 4	Students will become well acquainted to estimate copper in brass.
CO 5	Students will have knowledge about determination of viscosity of sucrose using Ostwald ^{**} s viscometer.
CO 6	To develop an understanding of basic titration setup and methodologies for determining strength, hardness and alkalinity of various unknown solutions

P 106 – Work	P 106 – Workshop Practice Yr/Sem: I/I	
CO 1	Understand and comply with workshop safety regulations.	
CO 2	Student will be able to make various joints in the given object with the available work material.	
CO 3	Student will be able to know how much a joint will take for the assessment of time.	
CO 4	Students can able to Identify the hand tools and instruments.	
CO 5	Students can able to gain knowledge about various operations carried out in sheet metal.	
CO 6	Students can able to gain skills about various tools used in welding to make simple joints.	

P107 – NSS/NCC Yr/Sem: I/II	
CO 1	to create awareness in social and environmental issues.
CO 2	to participate in relief and rehabilitation work during natural calamities.
CO 3	to develop some proposals for local slum area development and waste disposal.
CO 4	to create team works among students and produce efficient results.
CO 5	to operate scientific instruments or advanced software.

III – SEMESTER

MA T31 – Ma	MA T31 – Mathematics – III Yr/Sem: II/III	
CO 1	Ability to know the complex variable techniques and to know the properties of	
	analytic andharmonic functions.	
CO 2	Ability to know the conformal mapping and transforms play a major role in	
	several areas of engineering	
CO 3	To understand analytic function of a complex variable and able to apply Cauchy	
0.05	integral theorem and residue theorem to solve contour integrations	
CO 4	To introduce the basics of analytic functions and the basics in complex integration	
	which is used to evaluate complicated real integrals	
CO 5	Find the Fourier series representation of a function of one variable, find the solution	
	of the wave, diffusion and Laplace equations using the Fourier series.	

MET31 – Mechanics of Solids Yr/Sem: II/I	
	Understand the fundamentals and concepts of stress and strain at a point as well as
CO 1	the stress-strainrelationships for homogenous, isotropic materials and to
	construct the shear force and bending moment diagrams in beams of various types
	with various loading condition.
CO 2	Evaluate the bending stress, shear stress and the combination of the stresses in
CO 2	a beam when subjected to loading.
CO 2	Understanding the concept of deflection and slope in a beam member subjected
CO 3	to combined loading and apply the theories of failure for static loading.
CO 4	Evaluate the effect of torsion in shaft and spring.
CO 5	Calculate the stresses and strains associated with thin-wall spherical and
	cylindrical pressure vessels and to emphasize on buckling of Columns with various
	end configurations.

MET32– Mecl	nanics of Fluids	Yr/Sem: II/III
CO 1	An understanding of fluid mechanics fundamentals,	including concepts of mass

	and momentum conservation.	
CO 2	An ability to apply the Bernoulli equation and potential flow theory to solve	
	problems in fluid mechanics.	
CO 3	Ability to solve for internal flow in pipes and channels through simple solutions	
	of the Navier-Stokes equations and the head-loss equation.	
CO 4	An ability to perform dimensional analysis for problems in fluid mechanics.	
CO 5	Knowledge of boundary layer separation, laminar and turbulent boundary layer	
	fundamentals	

MET33- Appl	ied Thermodynamics Yr/Sem: II/III	
CO 1	To explain the theoretical concepts of thermodynamics and how it applies to energy	
	conversion intechnological application and biological systems. Apply mathematical	
	fundamentals to study the properties of steam, gas and gas mixtures	
CO 2	The students can able to apply the thermodynamic I and II law to Mechanical	
	Engineering application	
	The students will understand the concept of Energy, the maximum energy that can	
CO 3	be converted into useful work, the availability and unavailability in a	
	thermodynamic system.	
CO 4	The students acquire the knowledge about thermodynamic relations regarding	
	entropy change in a system and heat transfer.	
CO 5	Students will be able to analyze the chemical reaction in combustion	

MET34–Mai	nufacturing Processes Yr/Sem: II/III	
CO 1	To understand the concepts in casting process and to know about the types of	
	casting processes suited for the production of different shaped component using	
	specific materials.	
CO 2	Explain the working principle of various welding and joining processes	
CO 3	Understand basic concept and operations in bulk deformation process and to	
	enumerate the principle of sheet metal and various forming processes.	
CO 4	Understand basic concept and operations involved in super finishing process and	
	to study the principle and operations of various grinding process.	
CO 5	To gain a wide knowledge about the types of plastics and the process involved	
	for welding, casting and forming of plastics.	

MET35-Elec	ctrical and Electronics Engineering Yr/Sem: II/I	III
CO 1	Distinguish the different types of transformers and analysis its performance characteristics underdifferent load conditions	
CO 2	Understand the construction and working of different induction motors employed in various industries	
CO 3	Understand the construction, working and synchronization methods employed in alternator	
CO 4	Develop the required circuit using IC 741 for required applications	
CO 5	Develop and use the IC555 in timer circuit application	

MEP31-Ma	terial Testing and Metallurgy Lab	Yr/Sem: II/III
CO 1	Students will be able to understand the procedures for evaluating	ng the mechanical
	behavior of materials	

CO 2	Students will be able to recognize the process of specimen preparation for testing of
	materials and microstructures
CO 3	Students will be able to understand the experimental procedures in carrying out heat
	treatment operations

MEP32–Mar	nufacturing Processes Lab - I Yr/Sem: II/II	
CO 1	1 Students can perform turning and facing operations using a lathe.	
CO 2	Students will be ready to machine and produce a required component using a lathe, milling and shaping machine	
CO 3	CO 3 Students can perform thread cutting operation using lathe.	

MEP33– Elec	trical and Electronics Lab	Yr/Sem: II/III
CO 1	Select the range of apparatus based on the ratings of tra	ansformer and induction motor
CO 2	CO 2 Evaluate the efficiency of the electrical machines by analyzing test results	
CO 3	Design the techniques of DC power supply suitable to	electronic circuits.

IV – SEMESTER

MAT41 – Mat	thematics – IV Yr/Sem: II/IV
CO 1	Able to apply the concept of partial differential equation and the method of their
	solution and also able to solve the problems related to Engineering fields.
CO 2	Understand the concept of initial and boundary value problems like wave equations
	and will also able to find the solutions of wave equations.
CO 3	Ability to differentiate heat and wave equations and find their different types of
	solution.
CO 4	Understand the concept of curve fitting and by using hypothetical testing able
	to solve the problems related to large samples.
CO 5	Ability to differentiate large samples and small samples and also find the solution of
	small samples by using various methods.

MET41– Engi	neering Metallurgy Yr/Sem: II/IV
CO 1	To analyze the Structure of materials at different levels, basic concepts of crystalline
	materials like unit cell, FCC, BCC, HCP, APF. To understand the principle of
	Electron microscopes.
CO 2	Understand the operational features and dynamics of three phase induction motor.
0.2	Explain the operation of a Induction Generator.
CO 3	Explain principle and operations of Synchronous generator. Analyze Voltage
	regulation and characteristics.
CO 4	Explain the principle and operations of Synchronous motor, Analyze phasor
	diagrams and characteristics.
CO 5	To Understand concept of mechanical testing of materials by fatigue and creep. To
	understand the various factor affect fatigue and creep. To study elastic and plastic
	deformations of materials.

MET42– Fluid	I Machinery Yr/Sem: II/IV
CO 1	To understand the basic fluid property and law with their application. Explain

	the theoretical concepts of impact of fluid jet and force exerted on stationary and moving vane through impulsementum equation and velocity diagrams.	
CO 2	The students can able to understand the working of hydraulic turbines and types. Calculation of performance parameters of turbines. The performance, efficiency and characteristics of turbine. Draft tubes and specific speed of turbines, Governing of turbine.	
CO 3	To understand the working of Hydraulic pumps and types. Calculation of performance parameters of centrifugal and reciprocating	
CO 4	To understand the working of air machines compressors and types. Calculation of performance parameters of centrifugal and reciprocating compressor. Performance characteristics of compressor.	
CO 5	Acquire knowledge and application of special purpose fluid pumps and machines like submersible pump, gear pump, vane, hydraulic .air lift, jet pumps and power transmitting fluid machines likehydraulic lift, crane, coupling and torque converter.	

MET43–Kin	nematics of Machinery Yr/Sem: II/IV
CO 1	Students will be able to visualize simple mechanism involved in various machines
CO 2	Students will be able to visualize simple mechanism involved in various machines
CO 3	Students will gain knowledge about graphical and analytical two point and three point
	synthesis of mechanisms
CO 4	Students will gain knowledge about different types of specified contour and derived
	contour cams and its kinematic analysis
CO 5	Students will gain knowledge about kinematics advantages, problems and how
	these problems are avoided for involute profiled gear

MET44– Ma	chine Drawing Yr/Sem: II/IV
CO 1	Recall basic concepts of machine drawing.
CO 2	Explain various types of fits, tolerances machining symbols and Roughness.
CO 3	Develop sectional views of fasteners, joints and couplings.
CO 4	Draw assembly of machine parts
CO 5	To learn about dimensioning various components in an assembly

MET45 – Ma	achining Processes Yr/Sem: II/IV
CO 1	Students will be able to visualize lathe machine and its operations.
CO 2	Students will gain knowledge about drilling machines and its operations
CO 3	Students will gain knowledge about shaper, planner and slotter machines and its
	importance
CO 4	Students will gain knowledge about different types of specified contour and
	derived contour producing machines and its applications
CO 5	Students will gain knowledge about importance of tool geometry, tool material and
	mechanism in machining.

MEP41– Flui	d Mechanics and Machinery Lab	Yr/Sem: II/IV
CO 1	To provide the students with a solid foundation in fluid flow principle	es
CO 2	Students will be able to measurement of flow through the orifice met Venturimeter.	er and
CO 3	Students will be able to knowledge in calculating performance analysis	sis in turbines and

pump.

MEP42– Manufacturing Processes Lab – II Yr/Sem: I		Yr/Sem: II/IV
CO 1	Classify and understand the principle and constructional features of lat	he.
CO 2	Classify and understand the principle and constructional features of drimilling machine and grinding machine	lling machine,
CO 3	students can perform basic metal cutting operations using lathe, shapin milling machine and grinding machine	g machine,

MEP43– Cor	nputer Aided Machine Drawing Lab	Yr/Sem: II/IV
CO 1	Students will be able to understand production drawings.	
CO 2	Students can interpret the dimensions and the associated tolerances, so of the given drawings.	ome annotations
CO 3	Students can prepare 2D drafts for the given components and assembl	y models

MEP44 – Phy	sical Education Yr/Sem: II/IV	V
CO 1	Understanding the opportunities of students' physical, cognitive, social and emotional	
	development.	
CO 2	Understanding of individual and group motivation and behavior.	
CO 3	To create teamwork among students and produce efficient results.	
CO 4	The students were taught to operate advanced playing kits.	
CO 5	to motivate the students to prepare the professional and scientific reports	

V – SEMESTER

MET51– Dyn	namics of Machinery Yr/Sem: III/V
CO 1	To make the students conversant with force analysis
CO 2	Students are able analyze the balancing of rotating and reciprocating masses by using
	static and dynamic balance.
CO 3	Students can analyze gyroscopic effect on aero-plane, ship and any other auto motive
	vehicle
CO 4	Students are aware of the effect of free and forced vibration on a mechanical system
CO 5	Students will be able to perform balancing, vibration and critical speeds with respect to
	machine dynamics

MET52–Des	ign of Machine Elements Yr/Sem: III/V
CO 1	Students will be able to formulate and analyze stresses and strains in machine elements
	and structures in 3-D subjected to various loads
CO 2	Students will be able to formulate and analyze stresses and strains in machine elements
	and structures in 3-D subjected to various loads
CO 3	Students will be able to apply multidimensional static failure criteria in the analysis and
003	design of mechanical components couplings, brakes and clutches
CO 4	Students will be able to apply multidimensional fatigue failure criteria in the analysis
	and design of mechanical components like mechanical joints and springs
CO 5	Students will be acquainted with standards, safety, reliability, importance of
	dimensional parameters and manufacturing aspects in Mechanical design considering
	the failure theories

MET53–Me	trology and Quality Control Yr/Sem: III/V
CO 1	Students shall demonstrate the knowledge associated with various Standards of length,
	Use of slip gauges, and System of limits, fits and tolerance and Design of Gauges.
	Students shall demonstrate the knowledge associated with Comparators (Mech, Optical,
CO 2	and Electrical& Pneumatic), Use of Sine bar, Interferometer, and measurement of Screw
	threads &Gear tooth parameters.
CO 3	Students will be able to work in Quality control and quality assurances divisions in
0.05	industries
CO 4	Students are well aware of various basic and advanced Measuring
	instruments and their appropriate usage.
CO 5	Students will be able to maintain quality in engineering products

MET54– Hea	at and Mass Transfer Yr/Sem: III/V
CO 1	Student will be able to distinguish between various heat transfer methods. Ability to
	solveproblems involving steady and unsteady heat conduction in simple geometries,
	develop solutions for transient heat conduction in simple geometries.
	Enables the students to understand the fundamentals of convective heat transfer
	process, evaluate heat transfer coefficients for natural convection, evaluate heat
CO 2	transfer coefficients for forced convection inside ducts, and evaluate heat transfer
	coefficients for forced convection over exterior surfaces. Students will be able to apply
	analytical techniques for optimizing heat transfer rates.
	Calculate radiation heat transfer between black body surfaces; calculate radiation heat
CO 3	exchangebetween gray body surfaces. Analyze and calculate heat transfer in
	complex systems involving several heat transfer mechanisms.
	Analyze heat exchanger performance by using the method of log mean temperature
CO 4	difference; analyze heat exchanger performance by using the method of heat
0.4	exchanger, effectiveness. Student will be able to estimate heat transfer rates by all
	the three modes of heat transfer in heat exchangers.
CO 5	Apply principles of heat and mass transfer to basic engineering systems and enables
	them to solve problems involving mass transfer due to diffusion, chemical reaction, and
	convection

MET55-Mee	chanical Measurements Yr/Sem: II	II/V
CO 1	To learn about the basic transducer, terminating devices and methods, calibration principles	
CO 2	To learn get knowledge about the strain measurements and force measurement and	
	torque measurement.	
CO 3	To learn get knowledge about pressure measurement , temperature measurement , f	low
	measurement	
CO 4	To learn get knowledge about the displacement measurement and motion measurem	nent
CO 5	To learn get knowledge about the digital techniques in mechanical measurement	

MEE54–Ind	lustrial Casting Technology Yr/Sem: III/V
CO 1	Students will be able to know in detail about casting process and testing methods.
CO 2	To make students aware of working of various Melting Furnaces and refractories used in castingprocess.
CO 3	To know the concept of types of gates and risers, gate/riser design and methods of achieving good casting.

CO 4	Students will learn about the various Special moulding Process that are employed to manufacturemetal and non-metal cast products.
CO 5	Student will be able to know about casting defects and foundry mechanization.

MEP51– Ma	MEP51– Manufacturing Process Lab – III Yr/Sem: III/		
CO 1	Students gain knowledge about casting methodologies in foundry shop		
CO 2	Student gain the knowledge about CNC Machine and CNC programmin operation	g for machining	
CO 3	Students gain knowledge in ability to do the jobs as per the requiring dinusing conventional milling machine, Grinding Machine.	mensions by	

MEP52– Mechanical Measurement and Metrology Lab Yr/Sen		Yr/Sem: III/V
CO 1	Students will be able to work in Quality control and quality assurances	divisions in
	industries	
CO 2	Students will be able to design a sensors and transducers used for stress	analysis
CO 3	Students will be able to design any measuring equipments for the measuring	urement of
	temperature and flow.	

MEP53– Con	nputational Methods Lab Yr/Sem: III/V
CO 1	Students can apply numerical methods to solve modern scientific problems
CO 2	Apply numerical methods to obtain approximate solutions to mathematical problems.
CO 3	Students can create a program to solve any complex design problems using programming language

MEP54–G	MEP54– General Proficiency – I Yr/Sem: III/	
CO 1	Student can interact with technical and business communities at international forums.	
CO 2	Student shall be able to demonstrate skills of leadership and team building.	
CO 3	Student shall be able to present appropriate etiquettes, style, manners and graceful	
	personality.	

VI – SEMESTER

MET61 – Op	erations Research Yr/Sem: III/VI
CO 1	To provide students the knowledge of formulating mathematical models for quantitative analysis of managerial problems in industry.
CO 2	To enable the students apply mathematical ,computational and communication skills needed for the practical utility of operations research for transportation and assignment
CO 3	To teach students about inventory, decision and replacement models
CO 4	To provide students the mathematical models for analysis of real problems in operations research using network and probabilities consideration
CO 5	To introduce students to research methods and current trends in operations research using simulation and queuing models

MET62 –Desig	MET62 –Design of Transmission Systems Yr/Sem: III/VI	
CO 1	Student can select suitable bearing like journal and ball bearing for applications.	given
CO 2	Can select suitable belt, chain drives for given applications using data	ata book.
CO 3	Can design spur and helical gears for the transmitting required pow	er.
CO 4	Design bevel and worm gears for power transmission.	
CO 5	Decide the layout and design the gear box and speed reducer.	

٦

Г

MET63 – The	rmal Engineering Yr/Sem: III/VI
CO 1	The students will be able to understand the basic concepts of fuel air combustion in
	IC engines, working of SI and CI engines
CO 2	Students will understand the importance of fuels and its properties which are
02	sustainable and emission free in engine
CO 3	Students will gain knowledge in the basic concepts compressible flow fundamentals.
CO 4	Students will gain knowledge about the compressible flow with friction and heat
04	transfer and to know the application of normal shock & their governing equations.
CO 5	Students will gain an understanding of the principles involved in jet propulsion and
	rocket engine.

MET64 - Con	MET64 – Computer Integrated Manufacturing Yr/Sem: III/V	
CO 1	Identify the main elements in computer integrated manufacturing systems	
CO 2	Student gained knowledge of automated processes in a modern manufacturing environment.	
CO 3	An understanding of contemporary manufacturing/production strategies.	
CO 4	Apply knowledge of computer aided process planning, feature and group technology, and data exchange in manufacturing processes.	
CO 5	Apply the concepts/components of computer integrated manufacturing and integrate them in a coordinated fashion	

MET65 – Con	trol System Engineering Yr/Sem: III/VI
CO 1	proficient to know the importance of control engineering in day to day life, basic components to construct control system and different tools used for analysis, efficient usage of mathematical modeling to derive transfer function of any typical system.
CO 2	Ability to arrive mathematical model for any physical system using differential equations, deduction of transfer function from a complex system using block diagram approach, in depthstudy of standard test signals for output response of the closed loop control system.
CO 3	Able to acquire adequate or basic knowledge to obtain the output response of first and second order system using standard test signals, static and dynamic error constants. Design of controllers for a closed loop systems.
CO 4	Able to understand the concept of stability of control system which is applied in case of dc-dc converters during transient and steady state conditions
CO 5	Able to acquire adequate knowledge in frequency response of closed loop system using graphicalplots and in depth knowledge about state variable method which can be used to apply for mechanical rotational systems

MEE61 – Auto	omobile Engineering Yr/Sem: III/VI
CO 1	To enable students identify the different parts of the automobile.
CO 2	To learn working of various parts like engine, transmission, clutch, brakes.
CO 3	To study how the steering and the suspension systems operate.
CO 4	Students will know the working of various parts like brakes and chassis.
CO 5	Students will have good knowledge of battery, ignition system and electronics in automobile.

MEP61 – The	MEP61 – Thermal Engineering Lab - I Yr/Sem: III/VI	
CO 1	Compute the various properties of fuels and lubricating oils using suitable tests.	
CO 2	Demonstrate conduction, convection and radiation heat transfer through experiments.	
CO 3	Interpret heat transfer enhancement mechanisms.	

MEP62 – Dyr	MEP62 – Dynamics of Machine Lab Yr/Sem: III/V	
CO 1	Ability to apply the principles of gyroscopic effects and stabilization on varied	ous
CO 2	transport vehicles and applications of various governors Ability to study the various principles of vibrations of different systems	
CO 3	Ability to apply the principles of balancing of masses to various links, mecha and engines	anisms

MEP63 – Cor	MEP63 – Computational Fluid Dynamics Lab Yr/Sem: III/V	
CO 1	Student can design, solve and optimize any real world fluid dynamic	es and heat
01	transfer applications using CAE Linux Package.	
CO 2	Student can optimize and solve any CFD Problem using simulations	s in CAE Package
CO 3	Students can work on any other commercial CFD Package with just	a little
003	introduction.	

MEP64 – G	MEP64 – General Proficiency - II Yr/Sem: III/VI	
CO 1	Students will be able to effectively use the English language, writing and speaking with clarity, coherence, and persuasiveness.	
CO 2	Students can attend and perform well in Group discussions, personal interview while appearing for a job interview.	
CO 3	Students are well equipped to face GRE and TOFEL exams.	

VII – SEMESTER

MET71 – Con	nputer Aided Design Yr/Sem: IV/VII
	The student gains knowledge about the architecture of a CAD software and about the
CO 1	various input, output and storage devices and working of display devices used in a
	Cad system.
CO 2	The student gains knowledge about the graphic functions of a cad software and
	various transformation features used in graphics.
	The student gains knowledge about different types of geometric modeling,
CO 3	representation of curves and surfaces, features of modeling packages and various
	solid modeling techniques.
CO 4	The student gains knowledge about the concept of visual realism and overview of
	various modeling packages

CO 5	Student gains knowledge about the various graphics and data exchange standards and
005	a brief knowledge about CAD Database.

MET72 – Indu	ustrial Engineering and Management Yr/Sem: IV/VII
CO 1	To familiarize the student about plant layout, plant location and material handling
	systems
CO 2	Various method study and work measurement techniques are analyzed in detail
CO 3	Different methods of forecasting techniques and inventory management concepts are
0.05	known
CO 4	Scientific Management methods and financial management techniques are studied in
04	detail.
CO 5	Important basics of marketing management and human resource management are
	studied

MET73 – Ref	rigeration, Air Conditioning and Cryogenic Engineering Yr/Sem: IV/VII
CO 1	Learning the simple vapour compression refrigeration and Understanding the P-h
	chart and T-S chart and various refrigerants and its properties and Discuss Alternative
	Refrigerants for the future.
	To study the vapour absorption refrigeration system and compare the performance of
CO 2	VAR system and VCR system and Study the various alternative refrigeration systems
	and its advantages and disadvantage
	Learn the basics of Psychometric and Study air-conditioning Processes with the help
CO 3	of psychometric chart and To understand the basics of human comfort and factors
	affecting it .
CO 4	To Study different types of loads on a building and performance of the cooling on
04	summer and winter air-conditioning
CO 5	Understanding the science of cryogenic, Working of liquefaction of the cryogenic and
	cryogenic refrigerator.

ME E74– Me	tal Forming Processes Yr/Sem: IV/VII
CO 1	Understand forming processes classification, flow curves, and their significance, considering the impact of temperature, speed, metallurgical structure, and friction; grasp basic yield criteria concepts and types.
CO 2	Gain knowledge of forging processes classifications, equipment, and die design; identify forging defects, calculate forging load, explore P/M forging, and examine applications.
CO 3	Learn about rolling mills, estimating rolling load and power, understanding rolling defects, and applications; explore direct extrusion equipment, hydrostatic extrusion, extrusion of tubes, and determination of extrusion stress; study extrusion defects and applications.
CO 4	Master drawing techniques for rods, wires, and tubes, including determination of drawing loads through conical dies; explore various sheet metal forming processes such as shearing, blanking, bending, punching, piercing, stretch forming, deep drawing, and rubber pad forming, along with their applications.
CO 5	Understand high rate energy forming processes, their effects on mechanical properties and microstructures; explore explosive forming, electro hydraulic forming, electromagnetic forming, and water hammer forming.

MEP71 – TI	MEP71 – Thermal Engineering Lab - II Yr/Sem: IV/VII	
CO 1	Demonstrate the performance of internal combustion engines and air compressors.	
CO 2	Students will be familiar with the working of boilers, steam turbine and take readings on thesesystems.	
CO 3	Calculate the cooling load of air conditioning systems and cooling towers	

MEP72 –Con	mputer Aided Engineering Lab	Yr/Sem: IV/VII
CO 1	Students will be able to design and draft various components u language	sing programming
CO 2	Students can model 3D components and visualize and present modeling package	using CATIA a
CO 3	Students can analyze and simulate any structural, Thermal and ANSYS an analysis Package.	Fluid Problems using

MEP73 – Con	prehensive Viva - Voce Yr/Sem: IV/VI
CO 1	Students will be ready to face interviews both at the academic and any core industry
01	sector
CO 2	The student will be able to exhibit his / her understanding of concepts and application
0.2	studied in various courses in the previous semesters
CO 3	The student will be able to deliver employability skills required by his / her target
03	enterprise

MEP74 – Inc	lustrial Visit/Training Report	Yr/Sem: IV/VII
CO 1	Students are exposed to the 'real' working environment and get acc	
	organization structure, business operations and administrative fund	ctions.
CO 2	To have hands-on experience in the students' related field so that	they can relate and
	reinforce what has been taught at the university	
CO 3	An ability to utilize technical resources	

MEPW7 – P	roject Work(Phase I) Yr/Sem: IV/VII
CO 1	The student should be able to apply the relevant knowledge and skills, which are
01	acquired within the technical area, to a given problem
CO 2	Be able to document and present one's own work, for a given target group, with strict
02	requirements on structure, format, and language usage.
CO 3	Be able to identify one's need for further knowledge and continuously develop one's
	own competencies

MET81 – Pow	ver Plant Engineering Yr/Sem: IV/VIII
CO 1	To Teach the students about the working of various steam power generation units
	with steam cycles and boiler working and its mounting
CO 2	To provide the students fuel, ash and draught system used for steam power plants.
CO 3	To provide the students about the steam nozzles and steam turbine and its
003	applications.
CO 4	To enable students understand in detail about nuclear, gas turbine which play an
04	important role in power generation
CO 5	To provide the students to knowledge about economics of power generations

VIII – SEMESTER

MET82 – Prot	fessional Ethics and Indian Constitution Yr/Sem: IV/VIII
CO 1	To help the students to know about the current global issues and its consequences
CO 2	The students will practice the ethical values of the society.
CO 3	The students will be efficient enough to handle the human resources.
CO 4	The students will know about the Indian Constitution, fundamental Rights and duties
0.0.4	and act accordingly
CO 5	The students will be able to understand the global issues and can take initiatives to
0.05	solve them.

MEE81 – Adv	vanced Welding Techniques Yr/Sem: IV/VIII
CO 1	Know the different types of welding processes and the principles guiding the operations;
CO 2	Understand the causes of welding defects and how it can be prevented
CO 3	Appreciate the effect of welding parameters on the structure and mechanical properties
CO 4	Welded parts describe soldering and brazing technique convincingly
CO 5	Can carry out any of the metal joining techniques (welding, brazing and soldering) conveniently

IEE810 -	Total Quality ManagementYr/Sem: IV/VIII
CO 1	Use seven QC tools for data collection and analysis
CO 2	Audit the quality system and take corrective actions when necessary
CO 3	Advise management for the TQM approach development.
CO 4	Implement the TQM approach in an organization for continuous quality improvement
CO 5	Assess where an organization stands on quality management with respect to various quality standards

MEPW8 – Pr Yr/Sem: IV/V	roject Work (Phase II) VIII
CO 1	The student should be able to apply the relevant knowledge and skills, which are acquired within the technical area, to a given problem
CO 2	Be able to document and present one's own work, for a given target group, with strict requirements on structure, format, and language usage.
CO 3	Be able to identify one's need for further knowledge and continuously develop one's own competencies

MEP81 – Seminar Yr/S IV/VIII	
CO 1	To expose students to the real working environment and get acquainted with the organization structure, business operation and administrative functions
CO 2	To promote and develop presentation skills and import a knowledgeable society
CO 3	To set the stage for future recruitment by potential employers