

DEPARTMENT OF ELECTRONICS AND

COMMUNICATION ENGINEERING

EC T45 DIGITAL CIRCUITS

NOTES

II YEAR/ IV SEM

UNIT- I

Number System: Review of Binary, Octal and Hexadecimal Number Systems – Conversion

methods. Number Representations – Signed Numbers and Complements, Unsigned, Fixed point,

and Floating point numbers. Addition and subtraction with 1’s and 2’s complements.

Codes: Binary code for decimal numbers- Gray code-Codes for detecting and correcting errors:

Even and Odd parity codes, Hamming Codes, Checksum codes, m-out–of-n-codes,

NUMBER SYSTEM

Introduction to Number Systems

 The number system we generally use in our everyday lives is a decimal place value

system; that is, it is based on powers of ten: 1, 10, 100, 1000, etc.

 In the field of computer science, however, it is often useful to represent numbers in

binary, octal, or hexadecimal notation.

 Table 1 below compares how the numbers from 0 through 24 are expressed in each of

these number systems. Notice that, in decimal notation, we use ten different digits to

express numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

 In binary notation, we use just two different digits: 0 and 1.

 In octal notation, we use eight digits: 0, 1, 2, 3, 4, 5, 6, and 7; and in

 hexadecimal notation, we must come up with sixteen different digits to use: 0, 1, 2, 3, 4,

5, 6, 7, 8, 9, A, B, C, D, E, and F.

Decimal Number System

 The decimal number system is a radix-10 number system and therefore has 10 different

digits or symbols. These are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9

 The place values of different digits in a mixed decimal number, starting from the decimal

point, are 10
0
, 10

1
, 10

2
 and so on (for the integer part) and 10−

1
, 10−

2
, 10−

3
 and so on (for

the fractional part). As an illustration, in the case of the decimal number 3586.265, the

integer part (i.e. 3586) can be expressed as

3586 = 6×10
0
 +8×10

1
+5×10

2
 +3×10

3
 = 6+80+500+3000 = 3586

 and the fractional part can be expressed as

265 = 2×10
-1

+6×10−
2
 +5×10−

3
 = 0.2+0.06+0.005 = 0.265

Binary Number System

 The binary number system is a radix-2 number system with ‘0’ and ‘1’ as the two

independent digits.

 All larger binary numbers are represented in terms of ‘0’ and ‘1’.

Octal Number System

 The octal number system has a radix of 8 and therefore has eight distinct digits. All

higher-order numbers are expressed as a combination of these on the same pattern as the

one followed in the case of the binary and decimal number systems

 The place values for the different digits in the octal number system are 8
0
, 8

1
, 8

2
 and so

on (for the integer part) and 8−
1
, 8−

2
, 8−

3
 and so on (for the fractional part).

Hexadecimal Number System

 The hexadecimal number system is a radix-16 number system and its 16 basic digits are

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F.

 The place values or weights of different digits in a mixed hexadecimal number are 16
0
,

16
1
, 16

2
 and so on (for the integer part) and 16−, 16−

2
, 16−

3
 and so on (for the fractional

part).

 The decimal equivalent of A, B, C, D, E and F are 10, 11, 12, 13, 14 and 15 respectively,

for obvious reasons.

Octal and Hexadecimal Number Systems

 The conversion from and to binary. octal. and hexadecimal plays an important role in

digital computers. Since 2
3
 = 8 and 2

4
 = 16, each octal digit corresponds to three binary

digits and each hexadecimal digit corresponds to four binary digits.

 The first 16 numbers in the decimal, binary. octal, and hexadecimal number systems are

listed in The conversion from binary to octal is easily accomplished by partitioning the

binary number into groups of three digit s each. starting from the binary point and

proceeding to the left and to the rig ht. The corresponding octal digit is then assigned to

each group.

 The following example illustrates the procedure.
(10 110 00 1 101 011 . 111 100 000 110)2 = (26 153.7406)8

2 6 1 5 3 7 4 0 6

Table1

Numbers with Different Bases

Decimal
(base 10)

Binary

(base 2)

Octal

(base 8)

Hexadecimal

(base 16)

00 0000 00 0

01 0001 01 1

02 0010 02 2

03 0011 03 3

04 0100 04 4

05 0101 05 5

06 0 110 06 6

07 0 111 07 7

08 1000 10 8

09 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

I5 1111 17 F

Conversion from binary to hexadecimal is similar, except that the binary number is divided into

groups of four digits :
(10 1100 0110 1011 .1111 0010)2 =(2C6B.F2)16

2 C 6 B F

and

 The corresponding hexadecimal (or Octal) digit for each group of binary digits is easily
remembered from the values listed in Table.

 Conversion from octal or hexadecimal to binary is done by reversing the preceding

procedure Each octal digit is convened to its three-digit binary equivalent. Similarly, each

hexadecimal digit is converted to its four-digit binary equivalent. The procedure is illus

treated in the following examples;
(673.12.)8 =(110 111 011 . 001 010 100)2

6 7 3 1 2 4

(306. D)16 = (0001 0000 0110 .1101)2

Binary-to-Decimal Conversion

 The decimal equivalent of the binary number (1001.0101)2 is determined as follows:

 The integer part = 1001

 The decimal equivalent = 1 × 2
0
 + 0 × 2

1
 + 0 × 2

2
 + 1 × 2

3
 = 1 + 0 + 0 + 8 = 9

 The fractional part = .0101

 Therefore, the decimal equivalent = 0 × 2−
1
 + 1 × 2−

2
 + 0 × 2−

3
 + 1 × 2−4

4
=

0 + 0.25 + 0 + 0.0625 = 0.3125

 Therefore, the decimal equivalent of (1001.0101)2 = 9.3125

Octal-to-Decimal Conversion

 The decimal equivalent of the octal number (137.21)8 is determined as follows

 The integer part = 137

 The decimal equivalent = 7 × 8
0
 + 3 × 8

1
 + 1 × 8

2
 = 7 + 24 + 64 = 95

 The fractional part = .21

 The decimal equivalent = 2 × 8−
1
 + 1 × 8−

2
 = 0.265

 Therefore, the decimal equivalent of (137.21)8 = (95.265)10

Hexadecimal-to-Decimal Conversion

The decimal equivalent of the hexadecimal number (1E0.2A)16 is determined as follows

 The integer part = 1E0 The decimal equivalent = 0 × 16
0
 + 14 × 16

1
 + 1 × 16

2
 = 0 + 224

+ 256 = 480
 The fractional part = .2A

 The decimal equivalent = 2 × 16−
1
 + 10 × 16−

2
 = 0.164

 Therefore, the decimal equivalent of (1E0.2A)16 = (480.164)10

Decimal-to-Binary Conversion

 This method of decimal–binary conversion is popularly known as the double-dabble
method.

 We will find the binary equivalent of (13.375)10.

Solution

The integer part = 13
Divisor Dividend Remainder

2 13 —

2 6 1

2 3 0

2 1 1
— 0 1

 The binary equivalent of (13)10 is therefore (1101)2

The fractional part = .375

0.375 × 2 = 0.75 with a carry of 0

0.75 × 2 = 0.5 with a carry of 1

0.5 × 2 = 0 with a carry of 1

The binary equivalent of (0.375)10 = (.011)2
Therefore, the binary equivalent of (13.375)10 = (1101.011)2

Decimal-to-Octal Conversion

 The process of decimal-to-octal conversion is similar to that of decimal-to-binary
conversion.

 The progressive division in the case of the integer part and the progressive multiplication

while working on the fractional part here are by ‘8’ which is the radix of the octal number
system.

Example

We will find the octal equivalent of (73.75)10

Solution

• The integer part = 73

Divisor Dividend Remainder
8 73 —

8 9 1

8 1 1
— 0 1

• The octal equivalent of (73)10 = (111)8

• The fractional part = 0.75

• 0.75 × 8 = 0 with a carry of 6

• The octal equivalent of (0.75)10 = (.6)8

• Therefore, the octal equivalent of (73.75)10 = (111.6)8

Decimal-to-Hexadecimal Conversion

 The process of decimal-to-hexadecimal conversion is also similar. Since the hexadecimal

number system has a base of 16, the progressive division and multiplication factor in this

case is 16.

Example
Let us determine the hexadecimal equivalent of (82.25)10

Solution

The integer part = 82
Divisor Dividend Remainder

16 82 —

16 5 2

— 0 5

The hexadecimal equivalent of (82)10= (52)16

The fractional part = 0.25

0.25 × 16 = 0 with a carry of 4
Therefore, the hexadecimal equivalent of (82.25)10 = (52.4)16

Binary–Octal and Octal–Binary Conversions

 An octal number can be converted into its binary equivalent by replacing each octal digit
with its three-bit binary equivalent.

 We take the three-bit equivalent because the base of the octal number system is 8 and it is

the third power of the base of the binary number system is 2.

Example

Let us find the binary equivalent of (374.26)8 and the octal equivalent of (1110100.0100111)2

 Solution
The given octal number = (374.26)8

The binary equivalent = (011 111 100.010 110)2 = (011111100.010110)2

• Any 0s on the extreme left of the integer part and extreme right of the fractional

part of the equivalent binary number should be omitted.

• Therefore, (011111100.010110)2 = (11111100.01011)2

• The given binary number = (1110100.0100111)2

• (1110100.0100111)2 = (1 110 100.010 011 1)2 = (001 110 100.010 011 100)2=
(164.234)8

Hex–Binary and Binary–Hex Conversions

 A hexadecimal number can be converted into its binary equivalent by replacing each hex
digit with its four-bit binary equivalent.

 We take the four-bit equivalent because the base of the hexadecimal number system is 16
and it is the fourth power of the base of the binary number system.

Example

Let us find the binary equivalent of (17E.F6)16 and the hex equivalent of

(1011001110.011011101)2.
Solution

• The given hex number = (17E.F6)16

• The binary equivalent = (0001 0111 1110.1111 0110)2

= (000101111110.11110110)2

= (101111110.1111011)2

The 0s on the extreme left of the integer part and on the extreme right of the fractional part have

been omitted.
The given binary number = (1011001110.011011101)2

= (10 1100 1110.0110 1110 1)2

The hex equivalent = (0010 1100 1110.0110 1110 1000)2 = (2CE.6E8)16

Hex–Octal and Octal–Hex Conversions
 For hexadecimal–octal conversion, the given hex number is firstly converted into its

binary equivalent which is further converted into its octal equivalent.

Example
Let us find the octal equivalent of (2F.C4)16 and the hex equivalent of (762.013)8.

Solution

The given hex number = (2F.C4)16.
The binary equivalent = (0010 1111.1100 0100)2 = (00101111.11000100)2

= (101111.110001)2= (101 111.110 001)2 = (57.61)8.
The given octal number = (762.013)8.
The octal number = (762.013)8 = (111 110 010.000 001 011)2

= (111110010.000001011)2

= (0001 1111 0010.0000 0101 1000)2= (1F2.058)16.

Number Representation in Binary:

Different formats used for binary representation of both positive and negative decimal

numbers include the sign-bit magnitude method, the 1’s complement method and the 2’s

complement method.

Sign-Bit Magnitude:

In the sign-bit magnitude representation of positive and negative decimal numbers, the

MSB represents the ‘sign’, with a ‘0’ denoting a plus sign and a ‘1’ denoting a minus sign. The

remaining bits represent the magnitude. In eight-bit representation, while MSB represents the

sign, the remaining seven bits represent the magnitude. For example, the eight-bit representation

of +9 would be 00001001, and that for −9 would be 10001001. An n−bit binary representation

can be used to represent decimal numbers in the range of −(2n−1−1) to +(2n−1−1). That is,

eight-bit representation can be used to represent decimal numbers in the range from −127 to

+127 using the sign-bit magnitude format.

BINARY CODE:

Binary codes are codes which are represented in binary system with modification from the
original ones. Below we will be seeing the following:

 Weighted Binary Systems

 Non Weighted Codes

Weighted Binary system:

Weighted binary codes are those which obey the positional weighting principles, each

position of the number represents a specific weight. The binary counting sequence is an

example

Decimal 8421 2421 5211 Excess-3

0 0000 0000 0000 0011

1 0001 0001 0001 0100

2 0010 0010 0011 0101

3 0011 0011 0101 0110

4 0100 0100 0111 0111

5 0101 1011 1000 1000

6 0110 1100 1010 1001

7 0111 1101 1100 1010

8 1000 1110 1110 1011

9 1001 1111 1111 1100

8421 Code/BCD Code:

 The BCD (Binary Coded Decimal) is a straight assignment of the binary equivalent. It is

possible to assign weights to the binary bits according to their positions. The weights in

the BCD code are 8,4,2,1. In BCD, a digit is usually represented by four bits which, in

general, represent the values/digits/characters 0–9. Other bit combinations are sometimes

used for a sign or other indications.

 Its main virtue is that it allows easy conversion to decimal digits for printing or display,

and allows faster decimal calculations. Its drawbacks are a small increase in the

complexity of circuits needed to implement mathematical operations. Uncompressed

BCD is also a relatively inefficient encoding—it occupies more space than a purely

binary representation.

Example: The bit assignment 1001, can be seen by its weights to represent the decimal 9

because: 1x8+0x4+0x2+1x1 = 9

Non Weighted Codes:

 Non weighted codes are codes that are not positionally weighted. That is, each position

within the binary number is not assigned a fixed value

Excess-3 Code:

 Excess-3 is a non weighted code used to express decimal numbers. The code derives its

name from the fact that each binary code is the corresponding 8421 code plus 0011(3).

 Excess-3 binary-coded decimal (XS-3), also called biased representation or Excess-N, is

a numeral system used on some older computers that uses a pre-specified number N as a

biasing value.

 It is a way to represent values with a balanced number of positive and negative numbers.

In XS-3, numbers are represented as decimal digits, and each digit is represented by four

bits as the BCD value plus 3 (the "excess" amount):

 The smallest binary number represents the smallest value. (i.e. 0 − Excess Value) The

greatest binary number represents the largest value. (i.e. 2N − Excess Value − 1) The

primary advantage of XS-3 coding over BCD coding is that a decimal number can

benines' complemented (for subtraction) as easily as a binary number can be ones'

complemented; just invert all bits.

 Adding Excess-3 works on a different algorithm than BCD coding or regular binary

numbers. When you add two XS-3 numbers together, the result is not an XS-3 number.

For instance, when you add 1 and 0 in XS-3 the answer seems to be 4 instead of 1. In

order to correct this problem, when you are finished adding each digit, you have to

subtract 3 (binary 11) if the digit is less than decimal 10 and add three if the number is

greater than or equal to decimal 10.

Example: 1000 of 8421 = 1011 in Excess-3

Gray Code:

The gray code belongs to a class of codes called minimum change codes, in which only

one bit in the code changes when moving from one code to the next. The Gray code is non-

weighted code, as the position of bit does not contain any weight. The gray code is a reflective

digital code which has the special property that any two subsequent numbers codes differ by only

one bit. This is also called a unit-distance code. In digital Gray code has got a special place.

4-bit Gray code

0000

0001

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000

3-bit Gray code

000

001

011

010

110

111

101

100

2-bit Gray code

00

01

11

10

USES:

 A typical use of Gray code counters is building a FIFO (first-in, first-out) data buffer that

has read and write ports that exist in different clock domains.

 Gray codes are used in position encoders (linear encoders and rotary encoders), in

preference to straightforward binary encoding. This avoids the possibility that, when

several bits change in the binary representation of an angle, a misread could result from

some of the bits changing before others. Rotary encoders benefit from the cyclic nature of

Gray codes, because the first and last values of the sequence differ by only one bit.

 Gray codes are widely used to facilitate error correction in digital communications such
as digital terrestrial television and some cable TV systems.

http://en.wikipedia.org/wiki/Linear_encoder
http://en.wikipedia.org/wiki/Rotary_encoder
http://en.wikipedia.org/wiki/Error_correction
http://en.wikipedia.org/wiki/Digital_terrestrial_television
http://en.wikipedia.org/wiki/DOCSIS

Decimal Number Binary Code Gray Code

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

Excess 3 Gray code:

 In many applications, it is desirable to have a code that is BCD as well as unit distance.
A unit distance code derives its name from the fact that there is only one bit change
between two consecutive numbers.

 The excess 3 gray code is such a code, the values for zero and nine differ in only 1 bit,
and so do all values for successive numbers. Outputs from linear devices or angular

encoders may be coded in excess 3 gray code to obtain multi-digit BCD numbers.

Decimal Gray

0 0010

1 0110

2 0111

3 0101

4 0100

5 1100

6 1101

7 1111

8 1110

9 1010

BCD TO EXCESS 3 CODE CONVERSION:

TRUTH TABLE

Input (BCD) Output (Excess-3)

A B C D W X Y Z

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

SIGNED NUMBERS:

 In real life we have to represent signed numbers (like: -12, -45, 78).

 The difference between signed and unsigned numbers is the sign.

 A scheme is needed to represent the sign as part of the binary representation.

 There are a number of schemes for representing signed numbers in binary format.

sign-magnitude representation

The two's-complement representation.

SIGN-MAGNITUDE REPRESENTATION:

 In this representation, the leftmost bit of a binary code represents the sign of

the value:

0 for positive,

1 for negative;

the remaining bits represent the numeric value.

 To Compute negative values using Sign/Magnitude (signmag)

representation.

 Begin with the binary representation of the positive value, then flip the

leftmost zero bit.

Ex 1. Find the signmag representation of -610

Step1: find binary representation using 8 bits

610 = 000001102

Step2: if the number is a negative number flip left most bit

10000110

So: -610 = 100001102 (in 8-bit sign/magnitude form)

Ex 2. Find the signmag representation of -3610

Step 1: find binary representation using 8 bits

3610 = 001001002

Step 2: if the number is a negative number flip left most bit

10100100

So: -3610 = 101001002 (in 8-bit sign/magnitude form)

Ex 3. Find the signmag representation of 7010

Step 1: find binary representation using 8 bits

7010 = 010001102

Step 2: if the number is a negative number flip left most bit

01000110 (no flipping, since it is +ve)

So: 7010 = 010001102 (in 8-bit sign/magnitude form)

TWO’S COMPLEMENT REPRESENTATION:

 Another scheme to represent negative numbers

 The leftmost bit serves as a sign bit:

0 for positive numbers,

1 for negative numbers.

 To Compute negative values using two’s Complement representation, begin with the

binary representation of the positive value, complement (flip each bit if it is 0 make it 1

and visa versa) the entire positive number, and then add one.

Ex. Find the two’s complement representation of –610

Step1: find binary representation in 8 bits

610 = 000001102

Step 2: Complement the entire positive number, and then add one

00000110

(complemented) -> 11111001

(add one) -> + 1

11111010

So: -610 = 111110102 (in 2's complement form, using any of above methods)

ALTERNATIVE METHOD FOR STEP 2

 Scan binary representation from right too left, find first one bit, from low-order (right)

end, and complement the remaining pattern to the left.

00000110

(left complemented) --> 11111010

Ex 2: Find the Two’s Complement of -7610

Step 1: Find the 8 bit binary representation of the positive value.

7610 = 010011002

Step 2: Find first one bit, from low-order (right) end, and complement the pattern to the left.

01001100

(left complemented) -> 10110100

So: -7610 = 101101002 (in 2's complement form, using any of above methods)

EVEN/ODD PARITY:

 Computers can sometimes make errors when they transmit data.
EVEN/ODD PARITY:

 is basic method for detecting if an odd number of bits has been switched by accident.

ODD PARITY:

 The number of 1-bit must add up to an odd number

EVEN PARITY:

 The number of 1-bit must add up to an even number

UNIT – II

Boolean Algebra: Basic theorems- Postulates- Duality – Canonical form.

Simplification of Boolean Function: Karnaugh map method – Incompletely specified functions.

Realization of logic functions - NAND gate realization - NOR gate realization - Multilevel

synthesis

Boolean Algebra:

 Boolean algebra. like any other deductive mathematical system. may be defined with a
Set of elements. a set of operators. and a number of unproved axioms or postulates.

 A set of elements is any collection of object s. usually having a common property. If S is

a set, and x and y are certain objects. then x € S means that x is a member of the set S and

y ₡ S means that Y is not an element of S.

 A set with a denumerable number of elements is specified by braces:

 A = {1, 2, 3, 4 } indicates that the elements of set A are the numbers 1, 2, 3, and 4.

 A binary operator defined on a set S of elements is a rule that assigns, to each pair of

elements from S,

 a unique element from S. As an example, consider the relation a * b = c. We say that is a

binary operator if it specifies a rule for finding c from the pair (a , b) and also if a, b, C €

S. However,* is not a binary operator if a , b € , if C ₡ S.

Boolean Postulates

 A Boolean algebra is an algebra consisting of a set B (which consists of at least two
values 0 and 1) together with three operations, the AND (Boolean product) operation•,

the OR (Boolean sum) operation +, and NOT (Complement) operation defined on the set,

such that for any objects/elements x, y and z of B, x ∈ B denotes that x is an element of

the set B, and y /∈ B denotes that y is not an element of B.

AND operator x • y (the product of x and y)

OR operator x + y (the sum of x and y)

NOT operator x
'
 or x

'
 (the complement of x)

 Here + and • are binary operators and (not) is a unary operators the postulates of

mathematical system form the assumptions from which it is possible to deduce the rules,

theorems and properties of the system. For Boolean algebra, the following

postulates/axioms are used.

Postulate 1: Closure

 A set B is closed with respect to a binary operator, if for every pair of elements of

 B, the binary operator specifies a rule for obtaining a unique element of B.

For example:

 the set of natural numbers N = {1,2,3,4, · · ·} is closed with respect to the binary operator
plus (+) by the rules of arithmetic addition, since

 for any a , b ∈ N we obtain a unique c ∈ N by the operation a+b = c.

Postulate 2: Associative Law

 A binary operator * (or •) and + on a set B are said to be associative whenever
(x•y)•z = x•(y •z) :law for multiplication

(x+y)+z = x+(y+z) :law for addition

Postulate 3: Commutative Law

 The binary operator + and• on a set B are said to be commutative whenever

x • y = y • x : law for multiplication

x+y = y+x : law for addition

Postulate 4: Identity element

 A set B is said to have an identity element with respect to binary operator + and ∗ on B if

there exists an element c ∈ B with the property

c ∗ x = x ∗ c = x for every c ∈ B

Postulate 5: Inverse

 A set B having the identity element e with respect to a binary operator is said to have an

inverse whenever for every x ∈ B, there exists an element y ∈ B such that,

x • y = e

Postulate 6: Distributive Law

 A Binary operator • in a set B, is said to be distributive over + whenever

x • (y+z) = x • y+x • z for x, y, z ∈ B

x+(y • z) = (x+y) • (x+z)

Postulate 7: Absorptive Law

 The binary operators • and + on a set B are said to be absorptive whenever

x • (x+y) = x

x+(x • y) = x

Postulate 8: Union Law

 Zero (null, smallest) and one (universal, largest) elements: there exists a unique elements

(the one element) 1 ∈ B such that for each element x ∈ B

x • 1 = 1 • x = x

 There exists a unique element (the zero) 0 ∈ B such that for each element x ∈ B

X +0 = 0+x = x

Postulate 9: complementary

 For each x ∈ B there exists a unique element x ∈ B called the complement of x such that

x • x
'
 = 0

x+x' = 1

Postulate 7: Absorptive Law

 The binary operators • and + on a set B are said to be absorptive whenever

x • (x+y) = x

x+(x • y) = x

Postulate 8: Union Law
 Zero (null, smallest) and one (universal, largest) elements: there exists a unique elements

(the one element) 1 ∈ B such that for each element x ∈ B

x • 1 = 1 • x = x

 There exists a unique element (the zero) 0 ∈ B such that for each element x ∈ B

X +0 = 0+x = x

Postulate 9: complementary
 For each x ∈ B there exists a unique element x ∈ B called the complement of x such that

x • x
'
 = 0

x+x' = 1

Huntington Postulates
 E.V Huntington has formulated the following postulates for Boolean algebra which is set

B elements a,b,c and has two operators + and • .

(a) Closure with respect to the operator +

(b) Closure with respect to the operator•

 Identity element with respect to + , designated by 0 :
x+0 = 0+x = x

 (b) Identity element with respect to • , designated by 1:
x • 1 = 1 • x = x

 (a) commutative with respect to operator +
x+y = y+x

(b) Commutative with respect to operator •

x • y = y • x

 (a) • is distributive over +

x • (y+z) = (x • y)+(x • z)

 (b) + is distributive over •

x+(y • z) = (x+y) • (x+z)

 For every element x ∈ B, there exists an element x ∈ B (complement of x)

 such that

x+x
'
 = 1

x • x' = 0

 There exist at least two elements x, y ∈ B such that x ≠ y.

Two - Valued Boolean algebra

 The two - valued Boolean algebra is defined on a set of two elements B = {0,1}, with

rules for the two binary operators + and • (OR, AND logic function) and

inversion shown in the following table 1.1

Validation of Huntington postulate for two-valued set B = {0,1} are

1. Closure is obvious form tables since the result of each operation is either 1 or 0 and 1,

0 ∈ B.

2. Form tables, we can see that

(a) 0+0 = 0

0+1 = 1+ = 1 0→identity

(b) 1 • 1 = 1

1• 0 = 0 • 1 = 0 1→identity

Which establish the two identity elements, 0 for + and 1 for ., as defined by

postulate 2.

The commutative and distributive laws are proved as shown in the

Complement operation is

1. x+x
'
 = 1 since 0+0' = 0+1 = 1

 1+1' = 1+0 = 1

2. x • x' = 0 since 0 • 0' = 0 • 1 = 0
 1 • 1' = 1 • 0 = 0

Basic Theorems and Properties of Boolean

Algebra Duality theorem
 The duality theorem states that starting with a Boolean relation we can derive

another Boolean relation by

 Changing OR (operation) i.e., +(plus) sign to an and (operation) i.e., •(dot)

and vice - versa

 Complement any 0 or 1 appearing in the expression i.e., replacing contains

0 and 1 by 1 and 0 respectively

 Any expression has this property called dual and some dual identity are given
below.

S.No Given Expression Dual

1 0
'
 = 1 1' = 0

2 A.0 = 0 A+1 = 1

3 A.(B.C)=(A.B).C A+ (B +C) = (A+B)+C

4 A.(A.B)= A.B A+ A+B = A+B
5 A(A+B) = A A + AB = A

Basic Theorems
 The theorems and postulates listed in table 1.3 are most basic relationships in Boolean

algebra.

 The postulates are basic axioms of the algebraic structure and need no proof. The

theorems must be proven from the postulates.

Proof of theorem - 1(a): x+x = x

Proof of theorem 1(b): x . x = x

x+x = (x+x) • 1

= (x+x) • (x+x') [x+x
'
 = 1]

= x • x+x' • x+x • x+x • x'

= x+0+x+0 ∵ x • x = x, x • x' = 0

= x+x
= x

x • x = xx+0

= xx+xx'

(addition of zero does

not change the equation)

Proof of theorem 2(a): x+1 = 1

= x(x+x') [x+x' = 1]

= x(1)

= x

x+1 = 1 • (x+1) [∵ 1+x = 1]

= (x+x)(x+1) [x+x = 1]
= x x+x + x'x+x'

= x+x+0+x [x+x' = x]

= x+0+x'

= 1+0 [x+x = 1]

= 1

Proof of theorem 6(a): x+xy = x
x+xy = x+xy

= x(1+y) [1+y = 1]

= x • 1

= x

DeMorgan’s Theorems
 The DeMorgan’s theorems provide mathematical verification as follows.

Theorem 1

 It states that the complement of a product of variables is equal to the sum of the
complements of the variables.

A'•B' = A'+B'

Theorem 2

 It states that the complement of a sum of variables is equal to the product of the
complements of the variables.

A'+B' = A'•B'

Proof of theorem 1:

 From the above table, we can observe that the column A'.B' and column A'+B' are same.

Proof of theorem 2:

From the above table, we can observe that the column A'+B' and column A'.B' are same.

Applications of DeMorgan’s Theorem

 The De Morgan theorems change +(plus) sign to •(dot) sign and vice-versa i.e., AND
operation to OR operation and vice-versa

 2. These theorems are used to convert Boolean expression of SOP form to POS form and
vice-versa.

CANONICAL FORM

 The Quine–McCluskey algorithm (or the method of prime implicants) is a method
used for minimization of boolean functions which was developed by W.V. Quine and

Edward J. McCluskey.

 It is functionally identical to Karnaugh mapping, but the tabular form makes it more

efficient for use in computer algorithms, and it also gives a deterministic way to check

that the minimal form of a Boolean function has been reached. It is sometimes referred to

as the tabulation method.

The method involves two steps:

 Finding all prime implicants of the function.

 Use those prime implicants in a prime implicant chart to find the essential prime

implicants of the function, as well as other prime implicants that are necessary to

cover the function.

Step 1: finding prime implicants:

Minimizing an arbitrary function:

 One can easily form the canonical sum of products expression from this table,

simply by summing the minterms (leaving out don't-care terms) where the

function evaluates to one:

 fA,B,C,D = A'BC'D' + AB'C'D' + AB'CD' + AB'CD + ABC'D' + ABCD.

 Of course, that's certainly not minimal. So to optimize, all minterms that evaluate

to one are first placed in a minterm table. Don't-care terms are also added into this
table, so they can be combined with minterms:

Number of 1s Minterm Binary Representation

1 m4 0100

 m8 1000

2 m9 1001

 m10 1010

 m12 1100

3 m11 1011

 m14 1110

4 m15 1111

 A B C D f

m0 0 0 0 0 0

m1 0 0 0 1 0

m2 0 0 1 0 0

m3 0 0 1 1 0

m4 0 1 0 0 1

m5 0 1 0 1 0

m6 0 1 1 0 0

m7 0 1 1 1 0

m8 1 0 0 0 1

m9 1 0 0 1 x

m10 1 0 1 0 1

m11 1 0 1 1 1

m12 1 1 0 0 1

m13 1 1 0 1 0

m14 1 1 1 0 x

m15 1 1 1 1 1

 At this point, one can start combining minterms with other minterms. If two terms

vary by only a single digit changing, that digit can be replaced with a dash

indicating that the digit doesn't matter. Terms that can't be combined any more are

marked with a "*". When going from Size 2 to Size 4, treat '-' as a third bit value.

Ex: -110 and -100 or -11- can be combined, but not -110 and 011-. (Trick: Match

up the '-' first.)

Number of 1s Minterm 0-Cube Size 2 Implicants Size 4 Implicants

1 m4 0100 m(4,12) -100* m(8,9,10,11) 10--*

 m8 1000 m(8,9) 100- m(8,10,12,14) 1--0*

-- -- -- m(8,10) 10-0 --

2 m9 1001 m(8,12) 1-00 m(10,11,14,15) 1-1-*

 m10 1010 -- --

 m12 1100 m(9,11) 10-1 --

-- -- -- m(10,11) 101- --

3 m11 1011 m(10,14) 1-10 --

 m14 1110 m(12,14) 11-0 --

4 m15 1111 m(11,15) 1-11 --

 m(14,15) 111-

Note: In this example, none of the terms in the size 4 implicants table can be combined any

further. Be aware that this processing should be continued otherwise (size 8 etc).

Step 2: prime implicant chart:

 None of the terms can be combined any further than this, so at this point we

construct an essential prime implicant table. Along the side goes the prime

implicants that have just been generated, and along the top go the minterms

specified earlier. The don't care terms are not placed on top - they are omitted

from this section because they are not necessary inputs.

 Here, each of the essential prime implicants has been starred - the second prime
implicant can be 'covered' by the third and fourth, and the third prime implicant

can be 'covered' by the second and first, and neither is thus essential.

 If a prime implicant is essential then, as would be expected, it is necessary to

include it in the minimized boolean equation. In some cases, the essential prime

implicants do not cover all minterms, in which case additional procedures for

chart reduction can be employed.

 The simplest "additional procedure" is trial and error, but a more systematic way

is Petrick's Method. In the current example, the essential prime implicants do not

handle all of the minterms, so, in this case, one can combine the essential

implicants with one of the two non-essential ones to yield one of these two

equations

Both of those final equations are functionally equivalent to the original, verbose

equation:

solve another example : f(a,b,c,d)=sum(0,1,2,5,8,14)+sum d(4,10,13) by the quine McClusky

method.

Realization of logic functions - NAND gate realization - NOR gate realization

NAND gate

– F(ABC)=(ABC)’=A’+B’+C’

NOR gate

F(ABC)=(A+B+C)’=A’B’C’

 Any logic function can be implemented using only NAND or NOR gates.

 If we can use NAND or NOR gates to implement AND, OR, and inverter, then we

can prove that any logic function can be expressed using only NAND or NO

gates.

 A set of logic operations is said to be functionally complete if any Boolean

function can be expressed in terms of this set of operations.

 The set AND, OR, and NOT is obviously functionally complete.

X’=X nand X

AB=(A nand B) nand (A nand B)

A+B=(A nand A) nand (B nand B)

 Actually, as long as we could show NAND can express OR and NOT (AND and

NOT), we can show NAND is functionally complete.

– XY=(X’+Y’)’

– X+Y=(X’Y’)’

 Can you prove that NOR is functionally complete?

Design of Two-Level Circuits Using NAND and NOR Gates

 The conversion from circuits composed of AND and OR gates to circuits

composed of NAND or NOR gates is carried out by using F=(F’)’ and then
applying

 DeMorgan’s laws:

– (X1+X2+…+Xn)’=X1’X2’…Xn’

– (X1X2…Xn)’= X1’+X2’+…+Xn’

 F=A+BC’+B’CD

 =[(A+BC’+B’CD)’]’ (F’)’

 =[A’(BC’)’(B’CD)’]’ NAND-NAND

 =[A’(B’+C)(B+C’+D’)]’ OR-NAND

 =A+(B’+C)’+(B+C’+D’)’ NOR-OR

We started with the minimum sum-of-products expression.

Procedure for designing a minimum two-level NAND-NAND circuit

 Find a minimum sum-of-products expression for F: Karnaugh maps, Quinne-

McCluskey and Petrick methods

 Draw the corresponding two-level AND-OR circuit

 Replace all gates with NAND gates leaving the gate

 interconnections unchanged.

 If the output gate has any single literals as inputs, complement these literals.

F=(A+B+C)(A+B’+C’)(A+C’+D)

• ={[(A+B+C)(A+B’+C’)(A+C’+D)]’}’ (F’)’

• =[(A+B+C)’+(A+B’+C’)’+(A+C’+D)’]’ NOR-NOR

• =(A’B’C’+A’BC+A’CD)’ AND-NOR

• =(A’B’C’)’(A’BC)’(A’CD)’ NAND-AND

• We started with the minimum product-of-sums expression.

Procedure for designing a minimum twolevel NOR-NOR circuit

 Find a minimum product-of-sums expression for F

 Draw the corresponding two-level OR-AND for F

 Replace all gates with NOR gates leaving the gate interconnections unchanged.

 If the output gate has any single literals as inputs, complement these literals.

 Given a logic function, we can simplify it using some methods.

 But if we need to design a circuit to implement several functions, it may not be

enough to simplify each function separately.

 Example:
– F1(A,B,C,D)=sum[m(11,12,13,14,15)]
– F2(A,B,C,D)=sum[m(3,7,11,12,13,15)]

– F3(A,B,C,D)=sum[m(3,7,12,13,14,15)]

F1=AB+ACD F2=ABC’+CD F3=A’CD+AB

Design of Two-Level, Multiple-Output Circuits

Design of Two-Level, Multiple- Output Circuits

QUINE-MCCLUSKY MINIMIZATION PROCEDURE:

Step 1: List the minterms grouped according to the number of 1’s in their binary representation

in the decimal format.

Step 2: Compare each minterm with larger minterms in the next group down. If they differ by a

power of 2 then they pair-off. Check both minterms and form a second table by the

minterms paired and substitute the decimal difference of the corresponding minterms in

the bracket, i.e. mx, my (y-x).

Step 3: Compare each element of the group in the new table with elements of the next lower

group and select numbers that have the same numbers in parenthesis. If the lowest

minterm number of the table formed in the lower group is greater than the corresponding

number by a power of 2 then they combine; on the right of both elements.

Step 4: Form a second table by all four minterms followed by both powers of 2 in parentheses,

i.e. the previous value (the difference) and the power of 2 that is greater.

Step 5: Select the common literals from each prime implicant by comparison.

Step 6: Write the minimal SOP from the prime implicant that are not checked .

Example 1.

 Minimize the function f given below by Quine-McClusky method using
decimal notation. f (A,B,C,D) ABCD ABCD ABCD ABCD ABCD ABCD

ABCD ABCD ABCD.

Solution Step 1: Organize minterm as follows: f (A,B,C,D) ∑ m(0,5,6,7,9,10,13,14,15)

Consider the function: Z = f (A,B,C) = + C + A + A C

To make things easier, change the function into binary notation with index value and

decimal value.

Tabulate the index groups in a colunm and insert the decimal value alongside.

 From the first list, we combine terms that differ by 1 digit only from one index group to

the next. These terms from the first list are then seperated into groups in the second list.

Note that the ticks are just there to show that one term has been combined with another

term. From the second list we can see that the expression is now reduced to:

Z = + + C + A

 From the second list note that the term having an index of 0 can be combined with the

terms of index 1. Bear in mind that the dash indicates a missing variable and must line

up in order to get a third list. The final simplified expression is: Z =

 Bear in mind that any unticked terms in any list must be included in the final expression

(none occured here except from the last list).

 Note that the only prime implicant here is Z = .

 The tabular method reduces the function to a set of prime implicants.

Note that the above solution can be derived algebraically. Attempt this in your notes.

Example 2:

Consider the function f(A, B, C, D) = (0,1,2,3,5,7,8,10,12,13,15), note that this is in decimal

form.

http://www.ee.surrey.ac.uk/Projects/Labview/common/glossary.html#pi

The prime implicants are: + + D + BD + A + AB

 The chart is used to remove redundant prime implicants. A grid is prepared having all the

prime implicants listed at the left and all the minterms of the function along the top. Each
minterm covered by a given prime implicant is marked in the appropriate position.

 From the above chart, BD is an essential prime implicant. It is the only prime implicant

that covers the minterm decimal 15 and it also includes 5, 7 and 13. is also an

essential prime implicant.

http://www.ee.surrey.ac.uk/Projects/Labview/common/glossary.html#pi
http://www.ee.surrey.ac.uk/Projects/Labview/common/glossary.html#Mint

 It is the only prime implicant that covers the minterm denoted by decimal 10 and it

also includes the terms 0, 2 and 8. The other minterms of the function are 1, 3 and

12. Minterm 1 is present in and D. Similarly for minterm 3. We can therefore

use either of these prime implicants for these minterms. Minterm 12 is present in A

 and AB , so again either can be used.

Thus, one minimal solution is: Z = + BD + + A

UNIT - III

Combinational Logic Design: Half adder - Full adder- Full- subtractor – Parallel Adder- Carry Look

Ahead Adder – BCD Adder – Magnitude Comparator – Encoders and Decoders – Multiplexers – Code

converters – Parity generator, Parity checker- Combinational circuit implementation using multiplexers

and decoders.

Programmable Logic Devices: PROM – EPROM – EEPROM- Programmable Logic Array (PLA) –

Programmable Array Logic (PAL) -Realization of combinational circuits using PLDs.

Adder

Definition:

Half adder:
 The circuit that will add two bits and produce a sum and a carry bit.

Full adder:
 The circuit that will add three bits and produce a sum and a carry bit.

 Adder is a combinational logic circuit, which performs the addition of two binary bits.

For, any adder produces two outputs; sum and carry. Adder circuits can be classified into

two types depending on the number of bits in the input variable.

1. Half adder

2. Full adder

Half Adder

 A logic circuit which performs the addition of two bits is called a half adder. The half adder needs

two inputs augend and addend bits; and two binary output: sum and carry.

 Fig.1.13 shows the block diagram of half adder and Table 1.12 shows the truth table of

half adder. The next step is determining the expression for output variables (sum and

 carry) by using K-map. The two variables map is used to determine the expression
because the half adder is having two input variables.

Logic diagram
Obtain the logic circuit shown in Fig.1.14 by using the above sum and carry expression

Full adder

 A half adder has only two inputs and there is no provision to add a carry coming from the

lower order bits when multi addition is performed. For this purpose, a full adder is

designed.

 A full adder is a combinational logic circuit that performs the arithmetical sum of three

inputs bits. It consists of three inputs and two outputs.

 Two of the input variables denoted by A and B represent the two significant bits to be

added. The third input Cin represents the carry from the previous lower significant
position.

 Fig. 1.15 shows the block diagram of a full adder and Table 1.13 shows the truth table for
a full adder.

Logic diagram

 The logic diagram is constructed by using logic gates for the sum and carry of a full
adder circuit. Fig.1.16 shows the logic diagram of a full adder.

 From this simplified expression, we obtain the simplified full adder logic circuit as shown

in Fig.1.17

 The full adder can also implemented with two half adders shown in Fig.1.18. The sum
output from the second half adder is the exclusive OR of Cin and the output of first half

adder

SUBTRACTOR:

Definition:

Half Subtractor:

 The circuit that will subtract two bits and produce a barrow and difference.

Full subtractor:

 The circuit that will subtract three bits and produce a barrow and difference.

 Subtractor is a combinational logic circuit. It perform the subtraction operation. For, any

subtractor will produce a difference and borrow. Subtractor is classified based on the number of

bits performed.

1. Half subtractor 2. Full subtractor.

Half Subtractor:

 A half subtractor is a combinational logic circuit that subtracts two bits and produce their
difference and barrow.

 The half subtractor needs two inputs: minuend and subtrahend bits and two output:
barrow and difference. Fig.1.19 shows the block diagram of half subtractor and Table

1.14 shows the truth table of half subtractor.

Logic Diagram:

 The logic diagram is constructed for the above expression by using logic gate and it is

shown in Fig.1.20

Full Subtractor

 A full subtractor is a combinational logic circuit that performs subtraction involving three
bits, namely minuend bit, subtrahend bit and the barrow from the previous stage.

 Fig.1.21 shows the block diagram of a full subtractor and table 1.15 shows the truth table

for a full subtractor.

Logic Diagram

 Logic diagram is constructed for the above two expressions by using basic gates, as
shown in Fig.1.22.

 The Boolean function for D (difference) can be further simplified of a full subtractor.

 With this simplified Boolean function circuit (Fig.1.24), a full subtractor can be

implemented. The full subtractor can also be implemented with two half subtractors and

one OR gate, as shown in Fig.1.23.

 The difference in output from the second half subtractor is the exclusive OR of Bin and

the output of the first half-subtractor, is same as the difference in the output of a full
subtractor.

Fig 1.23 Simplified logic diagram for full subtractor

Fig 1.24 Implementation of full subtractor using two half subtractor.

4 bit Binary Parallel adder:

Definition:

Parallel binary adder:

 A circuit, consisting of n full adders, that will add two n bit binary numbers. The output

consists of n sum bits and a carry bit.

Cascade:

 To connect an output of one device to an input of another device, often for the purpose of
expanding the number of bits available for a particular function.

 In most logic circuits, addition of more than one bit is carried out. The addition of multibit

numbers can be accomplishedly using several full adders. The 4 - bit adder using full adder

circuits, is capable of adding two 4 - bit numbers resulting in a 4 - bit sumand a carry output as

shown in Fig.1.25.

 The addend and augend (4 bits) are fed into the 4 bit adder circuits simultaneously and

the additions in each position take place at the same time. This circuit is known as
parallel adder.

Fig: 4 Bit parallel binary adder

 Let the 4 bit words to are augend be represented by A3 A2 A1 A0 = 1111 and
addend B3 B2 B1 B0 = 0011.

Input carry 1 1 1 0

Augend = 1 1 1 1

Addend = 0 0 1 1

1 0 0 1 0

↑

carry out 4 bit sum

 In a 4 - bit parallel binary adder circuit, the input to each full adder will be Ai, Bi and Ci,

and the output will be Si and Ci+1, where ‘i’ varies from 0 to 3.

 Also the carry output of the lower stage is connected to the carry input of next higher

order stage. Hence this type of adder is called ripple-carry adder.

 The least significant stage, A0, B0 and C0 (C0 must 0) are added resulting in sum S0 and

carry C1. This carry C1 becomes the carry input of second stage.

 Similarly, in the second stage, A1, B1 and C1 are added resulting in S2 and C2; in third

stage, A2, B2 and C2 are added resulting in S2 and C3 in the fourth stage, A3, B3 and C3

are added resulting in S3 and C4 which is the output carry. Thus, the circuit results in a

sum (S3 S2 S1 S0) and a carry output C4.

 In the parallel adder, each full adder carry input depends on the previous stage output.

The propagation delay (tp) of a full-adder is the time difference between the instant at
which the inputs (Ai, Bi & Ci) are applied and the outputs (Si and Ci+1) are generated.

First stage of FA produced after 1tp

Second stage of FA produced after 2tp

Third stage of FA produced after 3tp

Fourth stage of FA produced after 4tp

 If a full adder is having the propagation delay of 50 ns, the output in the fourth stage will
be generated only after 4tp (4×50 = 200 ns)

Fig 1.26 Function symbol of 4-bit parallel adder

 One of the methods of speeding up this process is to look ahead for carry addition which
eliminates the ripple - carry delay.

 Fig.1.26 shows function symbol for the parallel adder. The inputs to this IC are two 4 bit
numbers, A3, A2, A1, A0 and B3, B2, B1, B0 and carry Cin into LSB position. The

outputs are the sum bits S3 S2 S1 S0 and the carry Cout,Cout of the MSB position.

Ripple carry adder

 A full adder is a combinational circuit that forms the arithmetic sum of three bits. It
consists of three inputs (Ai, Bi; and Cin) and two outputs (Si and Cout) as illustrated in

Fig.1.27 and the gate implementation of full adder is shown in Fig.1.27.

Fig 1.27 Block diagram of full adder

 A ripple carry adder is a digital circuit that produces the arithmetic sum of two binary

numbers. It is also called as a Parallel adder.

 It can be constructed with full adders connected in cascade with the carry output from

each full adder connected to the carry input of the next full adder in the chain. Fig.1.28

shows the interconnection of four full adder (FA) circuits to provide a 4-bit ripple carry

adder.

 Notice from Fig.1.28 that the input is from the right side because the first cell

traditionally represents the least significant bit (LSB). Bits A0 and B0 in the figure

represent the least significant bits of the numbers to be added. The sum output is

represented by the bits S3− S0.

Fig 1.28 Gate implementation of full adder

 Thus, the sum of the most significant bit is only available after the carry signal has

rippled through the adder from the least significant stage to the most significant stage.

 This can be easily understood if one considers the addition of the two 4-bit words:

11112+00012

Fig 1.29 Block diagram of parallel adder

 In this case, the addition of (1+1 = 102) in the least significant stage causes a carry bit to
be generated. This carry bit will consequently generate another carry bit in the next stage,

and so on, until the final carry-out bit appears at the output.

 This requires the signal to travel (ripple) through all the stages of the adder as illustrated
in Fig.1.29.

 As a result, the final Sum and Carry bits will be valid after a considerable delay. The
carry-out bit of the first stage will be valid after 3 gate delays (1 associated with the XOR

gate and 1 each associated with the AND and OR gates).

 From the schematic of Fig.1.29, one finds that the next carry-out (C2) will be valid after

an additional 3 gate delays (associated with the AND and OR gates) for a total of 6 gate

delays. In general the carry-out of a N-bit adder will be valid after 2N+2 gate delays. The

sum bit will be valid after an additional 2 gate delays after the carry-in signal.

 Thus the sum of the most significant bit 2N-1 will be valid after 2(N-1) + 2 +2 = 2N +2

gate delays. This delay may be in addition to any delays associated with the

interconnections.

Fig 1.30 Logic diagram for 4 bit Ripple carry adder

 The disadvantage of the ripple-carry adder is that it can get very slow when we
needs to add many bits. For fast applications, a better design is required.

Carry look ahead carry adder:

Fig 1.31 Full adder at stage i with Pi and Gi shown

 The carry-look-ahead adder solves this problem by calculating the carry signals in
advance, based on the input signals.

 It is based on the fact that a carry signal will be generated in two cases:

1. when both bits Ai and Bi are 1, or
2. when one of the two bits is 1 and the carry-in (carry of the previous stage) is 1.

Thus, we can write, from Fig.1.31

Cout =Ci+1 = Ai.Bi +(Ai⊕Bi).Ci. (1)

Si = (Ai⊕Bi)⊕Ci. (2)

The “⊕” stands for exclusive OR or XOR. We can write this expression also as

Ci+1 = Gi+Pi.Ci

in which

Gi = Ai.Bi

Pi = (Ai⊕Bi)

 are called the carry generate and carry propagate term, respectively. Let us assume that

the delay through an AND gate is one gate delay and through an XOR gate is two gate

delays. Notice that the Propagate and Generate terms only depend on the input bits and

thus will be valid after two and one gate delays, respectively.

 If we uses the above expression to calculate the carry signals, we need not wait for the

carry to ripple through all the previous stages to find its proper value. Let’s apply this to a

4-bit adder to make it clear.

C1 = G0+P0.C0 (3)
C2 = G1+P1.C1 = G1+P1.G0+P1.P0.C0 (4)

C3 = G2+P2.G1+P2.P1.G0+P2.P1.P0.C0 (5)

C4 = G3+P3.G2+P3.P2.G1+P3 P2.P1.G0+P3 P2.P1.P0.C0 (6)

The Sum signal can be calculated as follows,

Si = Ai⊕Bi⊕Ci = Pi⊕Ci. (7)

 The carry-look ahead adder can be broken up in two modules: (1) the Partial Full Adder,

PFA, which generates Si, Pi and Gi as defined by the above equations and the Carry

Look-ahead Logic, which generates the carry-out bits according to equations 3 to 6.

 The 4-bit adder can then be built by using 4 FAs and the Carry Look-ahead logic block as

shown in Fig.1.32

Fig 1.32 Logic diagram of Carry look ahead carry adder

Fig 1.33 Block diagram of a 16-bit CLA Adder

 The disadvantage of the carry-look ahead adder is that the carry logic is getting

quite complicated for more than 4 bits. For that reason, carry-look-ahead adders

are usually implemented as 4-bit modules and are used in a hierarchical structure

to realize adders that have multiples of 4 bits.

 Fig.1.33 shows the block diagram for a 16-bit CLA adder. The circuit makes use

of the same CLA Logic block as the one used in the 4-bit adder. Notice that each

4-bit adder provides a group Propagate and Generate Signal, which is used by the

BCD

Adder

Definition:

CLA Logic block. The group Propagate PG of a 4-bit adder will have the

following expressions,

PG = P3.P2.P1.P0

GG = G3+P3 G2+P3.P2.G1.+P3.P2.P1.G0

BCD adder:

A BCD adder is a combinational logical circuit which adds two BCD numbers.

 A BCD adder is a circuit that adds two BCD digits in parallel and produces sum

which is also BCD. BCD number uses 10 symbols (group of 4 bits 0000 to 1001).

BCD adder circuit must be able to do the following and it is shown in Fig.1.41.

Add two 4 bit BCD numbers using straight binary addition.

 If 4 bit sum is equal to or less than 9, the sum is valid BCD number and no

correction needed. If the 4 bit sum is greater than 9, or if a carry is generated from

the sum, the sum an invalid BCD number. Then, the digit 6 (0110) should be

added to the sum to produce the valid BCD symbols.

 Table 1.17 shows the truth table. In this table, the inputs are sum bit from the two BCD
additions and the output Y is indicating the required correction place.

 If Y = 0 (no correction needed) for 0000 to 1001 and Y = 1 (correction needed) for

 1010 to 1111. From this truth table we get the simplified expression by using 4 variable
K- map.

Expression for Y

Logic Circuit

Fig 1.41 Logic diagram of BCD adder

MAGNITUDE COMPARATOR

 The basic function of a comparator is to compare the magnitudes of two quantities to

determine the relationship of those quantities.

 The XNOR gate can be used as a basic comparator because its output is a 1 when two

inputs are equal. If the two input bits are not equal it is 0 if the input bits are equal.

One bit magnitude comparator

 Magnitude comparator is to compare the three results: equal to, less than and greater than.

Fig.1.44 shows the logic diagram for 2 bit comparator.

Number of required inputs = 2 (A,B)

Number of required outputs = 3 (A=B, A<B, A>B)

(w, x, y)

Fig 1.44 Logic diagram for 1 - bit comparator

2 - Bit Magnitude Comparator

 A two bit comparator compares the magnitude of two bits and the logic diagram

design is as follows. It is shown in Fig.1.45.

 Number of required inputs = 4 (A1 B1 A0 B0)

 Number of required outputs = 3 (w, x, y)

 when w is equal magnitude representation A1 A0 = B1 B0

 x is less than magnitude representation A1 A0 < B1 B0

 y is greater magnitude representation A1 A0 > B1B0

Logic diagram

Fig 1.45 Logic diagram for 4-bit magnitude comparator

DECODER

Definition:

 A digital circuit designed to detect the presence of a particular digital state. It is a

combinational logic circuit that converts binary information from n input lines to a

maximum 2n unique output lines. Discrete quantities of information are represented in

digital system by binary codes.

 A binary code of n bits is capable of representing upto 2n distinct elements of coded

information. A decoder is a combinational logic circuit that converts binary information

from n input lines to a maximum of 2n unique output lines.

 If the n-bit code information has unused combinations, the decoder may have fewer than
2n outputs. Fig.1.47 shows the block diagram of decoder.

2 to 4 Binary decoder

Fig 1.47 Block diagram of decoder

 Fig.1.48 shows the 2 to 4 decoder. Here 2 represent the input lines and 4 represent output

lines.

 The table 1.20 shows the truth table for a 2 to 4 decoder. If Enable is 1, one and only of

the outputs Y0 to Y3 is active for a given input.

 The Y0 is active when inputs AB = 00, the output Y1 is active when the inputs AB = 01,
similarly the outputs Y2 and Y3 are active when the input AB is 10 and 11 respectively.

If Enable is 0 then all the outputs are 0.

 In general, a decoder may operate with complemented (or uncomplemented outputs. The

enable input may be activated with 0 or with a 1 signal. Some decoders have two (or)

more enable inputs that must satisfy a given logic condition in order to enable the circuit.

A decoder with enable input can function as a demultiplexer.

Table 1.20 Truth table for

Fig 1.48 logic diagram for 2 to 4 decoder

3 to 8 Decoder

 In the 3 to 8 decoder circuit, the 3 inputs are decoded into eight outputs represent the

minterms of the 3 input variables.

 The three inverters provide the complement of the inputs and each one of the eight AND
gates generates one of the minterms.

 The inputs are A, B, C. Fig.1.49 shows the logic diagram and the truth table of 3 to 8

decoder is shown in the Table 1.21 for active low output.

Fig 1.49 Logic diagram os 3 to 8 decoder

ENCODER

Definition of Encoder

 A circuit that generates a binary code at its outputs in response to one or more active

input lines An encoder is a combinational logic circuit, it is a reverse decoder function. It

has 2n (or fever) input lines and n output lines.

 In encoder accepts an active 1.80 Digital Logic Circuits level on one of its inputs

representing a digit such as a decimal (on octal digit and comments it to a coded output).

Fig.1.55 shows the block diagram of a encoder.

Octal to Binary Encoder
 In the octal to binary encoder has eight inputs, one for each octal digit and outputs that generates

the corresponding binary code.

 In encoders it is assumed that only one input has a value of 1 at any given time. Table 1.23 shows

the truth table of octal to binary encoder and Fig.1.56 shows the octal to binary encoder circuit.

From truth table out put A having 1 when the inputs 4, 5, 6 and 7 are appear

so that the equations are written as follows.

A = D4+D5+D6+D7

Similarly, the Boolean expressions for output B and C are written as follows

B = D2+D3+D6+D7

C = D1+D3+D5+D7

Fig 1.56 Logic diagram of octal to binary encoder

Decimal to BCD encoder

 This type of encoder has ten inputs - one for each decimal digit and four outputs corresponding to

the BCD code

 Table 1.24 shown the relation between the decimal and BCD code. A3 is most significant

bit of the BCD code. A3 is always 1 for decimal digit 8 or 9. The expression for bit A3

minterms of the decimal digits can written as.

A3 = 8+9

Bit A2 is always 1 for decimal digit 4,5,6 or 7 can be expressed as on OR function as

follows. A2 = 4+5+6+7

Bit A1 is always 1 for decimal digit 2, 3, 6 or 7 and can be expressed as

A1 = 2+3+6+7

Bit A0 is always 1 for decimal digit 1, 3, 5, 7 or 9 the expression for A0 is

A0 = 1+3+5+7+9

Now, we can draw the decimal to BCD encoder by using the above four expression

Fig.1.57 shows the decimal to BCD encoder.

Fig 1.57 Logic diagram for decimal to BCD encoder

 When a HIGH is appears on one of the decimal digit input lines, the appropriate levels
occur on the four BCD output lines.

CODE CONVERTER:

 Code converter is a combinational logic circuit to convert one form of code to another form of

code. Some of these codes are binary coded decimal, Excess -3 code, Gray code and so on. Many

times it is required to convert one code to another.

Binary to BCD Converter

 A code converter combinational circuit is designed to convert binary to BCD code.

Fig.1.60 shows the logic diagram of Binary to BCD code converter.

 The input code of code converter is binary. The output code of code converter is BCD

code.

Logic Diagram

Fig 1.60 Logic diagram of Binary to BCD code converter

BCD TO EXCESS -3 CODE CONVERTER

 A code converter combinational circuit is designed to convert BCD code to Excess 3

code. The input code of code converter is BCD code.

 The output code of code converter is Excess-3 code. Fig.1.62 shows the logic diagram of

BCD t excess-3 code converter The unused states are 1010, 1011, 1100, 1101, 1110 and

1111. So place X (Don’t Care Condition) for the corresponding cells.

Logic Diagram

Fig 1.61 Logic diagram of BCD to Excess-3 code converter

EXCESS-3 CODE TO BCD CODE CONVERTER
 A code converter combinational circuit is designed to convert Excess - 3 code to BCD code. The

input code of code converter is Excess - 3. The output code of code converter is BCD code.

Fig.1.61 shows the logic diagram of excess -3 code to BCD code converter.

 The unused states are 0000, 0001, 0010, 1101, 1110 and 1111. So place X (Don’t Care

Condition) for the corresponding above cells.

Logic Diagram

Fig 1.62 Logic diagram of Excess-3 to BCD code converter

BINARY CODE TO GRAY CODE CONVERTER:

 A code converter combinational circuit is designed to convert binary to gray code.
Fig.1.63 shows the logic diagram of binary to gray code converter.

 The input code of code converter is binary and the output code of code converter
is gray code.

 We get the simplified boolean expression for the code convertor of Binary to Gray code.

G0 = B_A+BA_ = B⊕A

G1 =CB_+C_B =C⊕B

G2 = D_C+DC_ =C⊕D

G3 = D

 By using the above expression we can construct the binary to gray code convertor as shown in

Fig.1.63.

Logic diagram

Fig 1.63 Logic diagram of Binary to gray code converter

GRAY CODE TO BINARY CODE CONVERTER:

 A code converter combinational circuit is designed to convert gray code to binary code.

The input code of code converter is gray. The output code of code converter is binary

code. Fig.1.64 shows the logic diagram of gray to binary code converter.

Logic Diagram

Fig 1.64 Logic diagram of Gray code to Binary code converter

MULTIPLEXER:

Definition of Multiplexer

 A circuit that directs one of several digital signals to a single output depending upon the state of

several select inputs. Boolean Algebra and Combinational Circuits 1.95

 Data inputs The multiplexer inputs that feed a digital signal to the output when selected.

(Maximum of inputs is 2n)

 Select inputs The multiplexer inputs that selects the digital input (Maximum “n” select lines).

Fig 1.65 Block diagram of Multiplexer

 ‘Multiplex’ means many to one. Multiplexing is the process of transmitting a

large number of information over a single line. A digital multiplexer (MUX) is a
combinational logic circuit that selected information on a single output.

 A multiplexer is also called a data selector. Fig.1.65 shows the block diagram of

multiplexer. Normally, there are 2n input lines and n selection lines and one

output line. The selection of a particular input line is controlled by the set of select

lines. The size of the multiplexer is specified by number 2n input lines and the

single output line.

4 to 1 Multiplexer

 The 4 to 1 multiplexer, the 4 represent the number of inputs and one represent the

output line. The two select lines (2n = 4;n = 2) S1 and S0 to select one of the four

inputs. Table 1.31 shows the truth table of 4 to 1 multiplexer.

 From the truth table, the logical expression for the output in term of data input (I0,

I1, I2, I3) and select lines can be derived as follows and Fig.1.66 shows the logic

diagram of 4 : 1 MUX.

Logic Diagram

PLA (PROGRAMMABLE LOGIC ARRAY):
 In PLAs, instead of using a decoder as in PROMs, a number (k) of AND gates is used

n

where k < 2 , (n is the number of inputs).

 Each of the AND gates can be programmed to generate a product term of the input

variables and does not generate all the minterms as in the ROM.

 The AND and OR gates inside the PLA are initially fabricated with the links (fuses)

among them. The specific Boolean functions are implemented in sum of products form

by opening appropriate links and leaving the desired connections.

 A block diagram of the PLA is shown in the figure. It consists of n inputs, m outputs, and

k product terms.

The product terms constitute a group of k AND gates each of 2n inputs.

 Links are inserted between all n inputs and their complement values to each of the AND
gates. Links are also provided between the outputs of the AND gates and the inputs of the

OR gates.

 Since PLA has m-outputs, the number of OR gates is m.

 The output of each OR gate goes to an XOR gate, where the other input has two sets of

links, one connected to logic 0 and other to logic 1. It allows the output function to be

generated either in the true form or in the complement form.
/

 The output is inverted when the XOR input is connected to 1 (since X ⊕ 1 = X).

 The output does not change when the XOR input is connected to 0 (since X ⊕ 0 = X).

 Thus, the total number of programmable links is 2n x k + k x m + 2m.

 The size of the PLA is specified by the number of inputs (n), the number of product terms

(k), and the number of outputs (m), (the number of sum terms is equal to the number of

outputs).

Example:
 Implement the combinational circuit having the shown truth table, using PLA.

 Each product term in the expression requires an AND gate. To minimize the cost, it is

necessary to simplify the function to a minimum number of product terms.

The combination that gives a minimum number of product terms is:
’

F1 = AB + AC + BC or F1 = (AB + AC + BC)’

F2 = AB + AC + A’B’C’

This gives only 4 distinct product terms: AB, AC, BC, and A’B’C’.

PAL (PROGRAMMABLE ARRAY LOGIC):

 The PAL device is a PLD with a fixed OR array and a programmable AND array.

 As only AND gates are programmable, the PAL device is easier to program but it is not

as flexible as the PLA.

 The device shown in the figure has 4 inputs and 4 outputs. Each input has a buffer-
inverter gate, and each output is generated by a fixed OR gate.

 The device has 4 sections, each composed of a 3-wide AND-OR array, meaning that

there are 3 programmable AND gates in each section.

 Each AND gate has 10 programmable input connections indicating by 10 vertical lines

intersecting each horizontal line. The horizontal line symbolizes the multiple input
configuration of an AND gate.

 One of the outputs F1 is connected to a buffer-inverter gate and is fed back into the inputs

of the AND gates through programmed connections.

Example:

Implement the following Boolean functions using the PAL device as shown above:

W(A, B, C, D) = Σm(2, 12, 13)

X(A, B, C, D) = Σm(7, 8, 9, 10, 11, 12, 13, 14, 15)

Y(A, B, C, D) = Σm(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)

Z(A, B, C, D) = Σm(1, 2, 8, 12, 13)

Simplifying the 4 functions to a minimum number of terms results in the following Boolean

functions:

W = ABC’ + A’B’CD’ X =

A + BCD

Y = A’B + CD + B’D’

Z = ABC’ + A’B’CD + AC’D’ + A’B’C’D =W +AC’D’ + A’B’C’D

UNIT – IV

Sequential Circuits: General model of sequential circuits –latches – Master-slave

Configuration- Flip-Flops - Concept of State – State diagram – State Table. Synchronous

Sequential Circuits – Binary ripple counters-Design of Synchronous counters- binary counters-

Arbitrary sequence counter - BCD counter – Shift Registers – Ring Counter – Johnson Counter –

Timing diagram – Serial Adder – PN sequence generator.

Sequential PLDs - Introduction to CPLD and Field programmable Gate Array (FPGA).

Sequential Circuits

 Combinational circuits and systems produce an output based on input variables

only.

 Sequential circuits use current input variables and previous input variables by

storing the information and putting back into the circuit on the next clock

(activation) cycle.

 The figure above shows a theoretical view of how sequential circuits are made up

from combinational logic and some storage elements.

 There are two types of input to the combinational logic; External inputs which

come from outside the circuit design and are not controlled by the circuit; Internal

inputs which are a function of a previous output states.

 The internal inputs and outputs are refered to as "secondaries" in the course notes.

Secondary inputs are state variables produced by the storage elements, where as

secondary outputs are excitations for the storage elements.

Types of Sequential Circuits

 A sequential circuit is specified by a time sequence of inputs, outputs and internal states.

The sequential circuits can be classified in two ways depending on the timing of their

signals; There are:

Synchronous sequential circuits.

Asynchronous sequential circuits.

 A synchronous sequential circuit is a system whose behavior can be defined from the

knowledge of its signals at discrete instants of time, i.e., signals can affect the memory

elements only at discrete instants of time. These are also called as “clocked sequential

circuits”. Fig.2.2 shows the block diagram of synchronous clocked sequential circuit.

 In asynchronous sequential circuit, change in input signals can affect memory element at

any instant of time, i.e., the behaviour of an asynchronous sequential circuit depends

upon the order in which its input signals change and can be affect at any instant of time.

These are also called as unclocked sequential circuits.

 The memory elements used in both cases are flip-flops which are capable of storing 1-bit

binary information. A flip-flop circuit has two outputs one for the normal value and other

for the complement value of the bit stored in it.

Latches

 A flip-flop can maintain a binary state (either 0 or 1) as long as power is delivered to the
flip-flop. The most basic types of flip-flops operate with signal levels and are referred to
as latches.

 The latches are the basic circuits from which all flip-flops are constructed. Also latches

are useful for storing binary information and for the design of asynchronous sequential
circuits, they are not practical for use in synchronous sequential circuits.

 The basic difference between latches and flip-flops.

 Latches Flip-flops

1 A latch checks all its inputs continuously

and change its output
accordingly at any time

1 Flip-flops samples its inputs and

changes its outputs only at a time

as determined by a clock signal

2 No clock is used 2 A clock is used.

3 It is used in asynchronous sequential
logic circuit

3 It is used in synchronous sequential
circuit

RS Latch

 The simplest latch is the Reset-Set latch (RS - latch). It can be constructed from either

two NOR gates or two NAND gates.

RS latch using NOR gates

 Fig.2.3 shows the RS latch using two NOR gates. The two NOR gates are cross coupled

so that output of NOR gate 1 is connected to one of the inputs of NOR gate 2 and vice-

versa.

 The latch has two outputs Q and Q and two inputs, set (S) and Reset (R). As we know

that, logic 1 at any input of a NOR gate forces its output to a logic 0 immediately.

Operation of RS latch

 Let us see the operation of this circuit for various input possibilities

Case (i) R = 0 and S = 1

 In this case, S input of NOR gate 2 is at logic 1, hence its output Q is at logic 0 which

indicates that both inputs of NOR gate 1 are at logic 0. So that its output, Q is at logic 1

as shown in Fig.2.4(a).

Case (ii) R = 1 and S = 0
 In this case, R input of the NOR gate 1 is at logic 1, hence its output Q is at logic 0.

 This indicates that both inputs of NOR gate 2 are now at logic 0, so its output Q s at logic
1 as shown in Fig.2.4(b).

Case (iii) R = 0 and S = 0
 Let us assume that initially Q = 1 and Q = 0. With Q = 0, both inputs to NOR gate 1 are

at logic 0. So its output, Q is at logic 1.

 With Q = 1, NOR gate 2 output Q is at logic 0. Thus the output is same as initial value.

This same for Q = 0 and Q = 1 also. The diagram is shown in Fig.2.4(c).

Case (iv) R = 1 and S = 1
 When both inputs are at logic 1, they force the outputs of both NOR gates to logic 0 i.e.,

Q = 0 and Q = 0. Since we know that Q is a logic binary variable and Q is its
complement, then Q _= Q for any condition.

 So we call this condition or state as an “indeterminate state or prohibited state”. Thus in

normal operation, this condition must be avoided.

 This is shown in Fig.2.4(d). The symbol of RS latch is shown in Fig.2.5 and its truth table
is shown in Table 2.1.

RS latch using NAND gates or Latch

 The active-LOW RS latch can be constructed using two cross-coupled NAND gates.

Fig.2.6 shows the logic diagram of RS latch using NAND gates.

We know that a logic - 0 on any input to a NAND gate forces its output logic - 1.

Operation

Flip-Flops

 A flip-flop is a bistable multivibrator. The circuit can be made to change state by signals
applied to one or more control inputs and will have one or two outputs.

 It is the basic storage element in sequential logic. Flip-flops and latches are a

fundamental building block of digital electronics systems used in computers,
communications, and many other types of systems.The types of flip-flops are:

RS flip-flop

JK flip-flop

D flip-flop

T flip-flop.

Clocked RS flip-flop

 An RS flip-flop is shown in Fig.2.7(a). It consists of basic NOR latch circuit and two

AND gates at the input.

 The AND gates remain ‘0’ as long as the clock pulse CLK is ‘0’ regardless of the R and

S inputs. When the clock pulse goes to 1, information from R and S inputs is allowed to

reach the basic RS latch. The basic symbol is also shown in Fig.2.7(b).

https://en.wikipedia.org/wiki/Bistable_multivibrator
https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Digital_electronics

Operation
 When clock is absent or CLK =0, the circuit will retain same state.

 When clock is present or CLK =1, the RS flip-flop work as basic RS Latch.

Case (i) If R = 0 and S = 0 and assume that Q = 1

 The output of both AND gates are ‘0’ which are given as one of inputs to the

NOR gate. If Q =1 and Q
'
 =0, the output of NOR gate 1=1 and NOR gate 2=0 i.e.,

same as the previous values. This state is called “no change” state.

Case (ii) If R = 1 and S = 0

 The output of AND gate 1 = 1 and AND gate 2 is ‘0’. With thes inputs, the NOR

gate 1 output = 0 and NOR gate 2 output is 1. The state is called “reset” state.

Case (iii) If R = 0 and S = 1

 The output of AND gate 1 = 0 and AND gate 2 is 1. With these inputs the NOR

gate 1 output =1 and NOR gate 2 output is 0.

 This state is called “set” state. Case (iv) If R = 1 and S = 1 The output of both

AND gates is 1. With these inputs, irrespective of other input, the output of both

NOR gates is ‘0’ i.e., Q=0 and Q
'
=0 which is an invalid output. This state is called

“indeterminate state”.

 Table 2.3 shows the truth table of RS flip-fop

D Flip-Flop:

Definition of Transparent Latch (D Flip-flop)

 A flip-flop whose output follows it data input when the clock is active. As shown in

Fig.2.8, D input goes directly to the S input, and its complement is applied to the R input,
through NOT.

 Therefore, only two input conditions exist, either S = 0 and R = 1 or S = 1 and R = 0.

When D = 1, S = 1 and R = 0 and when D = 0, S = 0 and R = 1. Therefore, during the

occurrence of clock pulse if Synchronous Sequential Circuits 2.9 D = 1, the Q output is

set and if D = 0, the output is reset. Table 2.4 shows the truth table of D flip flop

 The output does not exist when the clock pulse absent. Qn is the binary state (present
state) of the flip flop before the occurrence of a clock pulse.

 It is known as present state. Qn+1 is the state of the flip flop after the occurrence of a clock
pulse which is known as next state.

JK Flip Flop:

Definition:

 JK Flip-flop A JK Flip-flop is a refinement of the RS flip-flop. In JK flip-flop the

unpredictable state in the RS flip-flop is defined. Toggle Alternate between opposite

binary states with each applied clock pulse.

 A JK flip flop is a refinement of the RS Flip flop. In JK flip flop the unpredictable state in

the RS flip flop is defined inputs J and K behave like inputs S and R to set and reset the
flip flop respectively as shown in Fig. 2.9.

Case (i): J = K =0

 When J and K are both low, both AND gates are disabled. Therefore, clock pulses have
no effect and, Q and Q' retain their last values. The truth table of JK FF as shown in

Table 2.5.

Case (ii): J = 0, K =1

 When J is low and K is high. The lower AND gate is disabled. So there is no way to set

the flip flop. The only possibility is reset. When K is high the upper gate passes a RESET
trigger as the next possible clock pulse arrives. This forces Q to become low.

 Therefore J = 0 and K = 1 means that the next positive clock pulse resets the flip flop
unless Q is already reset.

Case (iv): J = 1, K =0

 When J is high and K is low, the upper gate is disabled, so there is no way to reset
the flip flop.

 The only possibility is to set the flip flop if it is not previously set with Q = 0, J is
high and hence the lower gate passes a SET trigger on the next positive clock

pulse.

 This drives Q into the high state. Therefore, J = 1 and K = 0 means that the next
positive clock pulse set the flip flop unless Q is already set.

Case (v): J = K =1

 When J and K are both high (Recall that this is an indeterminate condition with an
RS flip flop) it’s possible to set or reset the flip flop. If Q is high, the upper gate
passes a RESET trigger on the next positive clock edge.

 On the other hand, when Q is low, the lower gate passes a SET trigger on the next

positive clock edge. Either way, Q changes to the complement of the last state.

 Therefore, J = K = 1 means output of the flip flop will toggle on the next positive

clock edge. When the inputs J and K are short circuited, the JK flip flop is act as a

T flip flop. When Input T = 1, it complement the present input. When input T = 0,

it maintain the present state.

JK Flip-flop

 The truth table and excitation table for JK flip-flop are shown in Table
2.11(a) and (b) respectively. Let us examine of excitation table in each cas

 When both present state (Qn) and next state (Qn+1) are 0, the J input must
be 0 and the K input can be either 0 or 1, which is represented by X in the

excitation table

 A JK flip-flop is a refinement of the SR flip-flop in that the indeterminate state of the SR

type is defined in the JK type. Inputs J and K behave like inputs S and R to set and clear
the flip-flop (note that in a JK flip-flop, the letter J is for set and the letter K is for clear).

 A clocked JK flip-flop is shown in Figure. Output Q is ANDed with K and CP inputs so

that the flip-flop is cleared during a clock pulse only if Q was previously 1. Similarly,

ouput Q' is ANDed with J and CP inputs so that the flip-flop is set with a clock pulse only

if Q' was previously 1.

 Note that because of the feedback connection in the JK flip-flop, a CP signal which

remains a 1 (while J=K=1) after the outputs have been complemented once will cause

repeated and continuous transitions of the outputs.

 To avoid this, the clock pulses must have a time duration less than the propagation delay

through the flip-flop. The restriction on the pulse width can be eliminated with a master-

slave or edge-triggered construction. The same reasoning also applies to the T flip-flop

presented next.

(a) Logic diagram

(b) Graphical symbol (c) Transition table

T Flip-Flop

Figure:Clocked JK flip-flop

 The T flip-flop is a single input version of the JK flip-flop. As shown in Figure, the T

flip-flop is obtained from the JK type if both inputs are tied together. The output of the T

flip-flop "toggles" with each clock pulse.

(a) Logic diagram

(b) Graphical symbol (c) Transition table

Figure : Clocked T flip-flop

Clocked Sequential Circuits:

 Sequential circuits that use identical clock pulses in the inputs of all the flip-flops are

called clocked sequential circuits.

 When a clock pulse is not active, the feedback loop is broken because the flip-flop

outputs cannot change even if the combinational logic driving their inputs change in

value.

Analysis of Clocked Sequential Circuits

 This consists of obtaining a table or a diagram for the time sequence of inputs,
outputs and internal states. Boolean expressions can also be written.

State Equations
 A state equation specifies the next state as a function of the present state and

inputs. Consider the sequential circuit given below. Since the D input of a flip-
flop determines the value of the next state, the equations for the next state are:

A(t+1) = A(t)x(t) +B(t)x(t)

B(t+1) = A’(t)x(t)

 The left-side of each equation denotes the next state of the flip-flop and the right-

side specifies the present state and the conditions that make the next state equal to

1. These can be expressed in a more compact form by omitting the

(t): A(t+1) = Ax+Bx

B(t+1) = A’x

 The present state value of the output can be expressed as:

y(t) = [A(t) + B(t)]x′(t)

 The above output equation can be expressed in a more compact form as:

y = (A + B)x′

State Table
 The time sequence of inputs, outputs, and flip-flop states can be enumerated in a

state table.

 This can be generated from the logic diagram or the state equations. Two

alternative forms for the sequential circuit shown previously are as follows:

Present state input Next state output

A B X A B Y

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 1 1 0

1 0 0 0 0 1

1 0 1 1 0 0

1 1 0 0 0 1

1 1 1 1 0 0

PRESENT

STATE

NEXT STATE OUTPUT

X=0 X=1 X=0 X=1

AB AB AB Y Y

00 00 01 0 0

01 00 11 1 0

10 00 10 1 0

11 00 10 1 0

State Diagram

 The information available in a state table can be represented graphically in a form of a

state diagram. In this diagram, a state is represented by a circle, and the transitions

between states by directed lines connecting the circles:

 Each directed lines are labelled with two binary numbers separated by a slash. The input

value during the present state is labelled first, and the number after the slash gives the

output during the present state with the given input. A directed line connecting a circle

with itself indicates that no

Flip-Flop Input Equations

 These fully specify the combinational logic that drives the flip-flops and they imply the

type of flip-flop from the letter symbol.

 The input equations for the circuit analyzed before and shown below are:

 DA=Ax+Bx

 DB=A’x

 For a D flip-flop, the state equation is the same as the input equation. Input equations are

sometimes called excitation equations.

Design Procedure

The procedure for designing synchronous sequential circuits is summarized by a list of

recommended steps:

 1.From the word description and specifications of the desired operation, derive a state

diagram for the circuit.

 2. Reduce the number of states if necessary.

 3. Assign binary values to the states.

 4. Obtain the binary-coded state table.

 5. Choose the type of flip-flops to be used.

 6. Derive the simplified flip-flop input equations and output equations.

 7. Draw the logic diagram.

State Reduction & Assignment
 Sometimes certain properties of sequential circuits may be used to reduce the number of

gates and flip-flops during the design.

 The problem of state reduction is to find ways of reducing the number of states in a

sequential circuit, while keeping the external input-output relationships unchanged.

 For example, suppose a sequential circuit is specified by the following seven-state

diagram:

 There are an infinite number of input sequences that may be applied; each results in a
unique output sequence. Consider the input sequence 01010110100 starting from the
initial state a:

STATE a a b c d e f f g f g a

INPUT 0 1 0 1 0 1 1 0 1 0 0 0

OUTPUT 0 0 0 0 0 1 1 0 1 0 0 0

 An algorithm for the state reduction quotes that: “Two states are said to be equivalent if,

for each member of the set of inputs, they give exactly the same output and send the

circuit either to the same state or to an equivalent state.

Now apply this algorithm to the state table of the circuit:

Present state Next state Output

X=0 X=1 X=0 X=1

a a b 0 0

b c d 0 0

c a b 0 0

d e f 0 1

e a f 0 1

f g f 0 1

g a f 0 1

 States g and e both go to states a and f and have outputs of 0 and 1 for x = 0 and x = 1,

respectively. The procedure for removing a state and replacing it by its equivalent is
demonstrated in the following table :

Present state Next state Output

X=0 X=1 X=0 X=1

a a b 0 0

b c d 0 0

c a d 0 0

d e f 0 1
e a f 0 1

f e f 0 1

 Thus, the row with present state g is removed and stage g is replaced by state e each time
it occurs in the next state columns.

 Present state f now has next states e and f and outputs 0 and 1 for x = 0 and x = 1. The
same next states and outputs appear in the row with present state d. Therefore, states f

and d are equivalent and can be removed and replaced with d.

 The final reduced state table is:

Present state Next state Output

X=0 X=1 X=0 X=1

a a b 0 0

b c d 0 0

c a d 0 0

d e d 0 1

e a d 0 1

The state diagram for the above reduced table is:

 This state diagram satisfies the original input output specifications. Applying the input
sequence previously used, the following list is obtained:

STATE a a b c d e d d e d e a

INPUT 0 1 0 1 0 1 1 0 1 0 0 0

OUTPUT 0 0 0 0 0 1 1 0 1 0 0 0

 Note that the same output sequence results, although the state sequence is different.

 To design a sequential circuit with real devices, it is necessary to assign coded binary

values to the states. For a circuit with m states, the codes must contain n bits where 2n =

≥ m. For the reduced state table derived previously, only five states need binary

assignment; three unused states are treated as don’t care conditions.

 Three possible binary state assignments are:

state Assignment 1

binary

Assignment 2

Gray code

Assignment 3

One shot

a 000 000 00001

b 001 001 00010

c 010 011 00100

d 011 010 01000

e 100 110 10000

The reduced table with binary assignment 1 is:

Present state Next state output

X=0 X=1 X=0 X=1

000 000 001 0 0

001 010 011 0 0

010 000 011 0 0

011 100 011 0 1

100 000 011 0 1

Sometimes, the name transition table is used for a state table with binary assignment

SHIFT REGISTERS:

 The Shift Register is another type of sequential logic circuit that can be used for the

storage or the transfer of data in the form of binary numbers. This sequential device loads

the data present on its inputs and then moves or “shifts” it to its output once every clock

cycle, hence the name “shift register”.

Serial-in, serial-out (SISO):

 These are the simplest kind of shift registers. The data string is presented at 'Data In', and

is shifted right one stage each time 'Data Advance' is brought high.

 At each advance, the bit on the far left (i.e. 'Data In') is shifted into the first flip-flop's

output. The bit on the far right (i.e. 'Data Out') is shifted out and lost.

http://en.wikipedia.org/wiki/Flip-flop_%28electronics%29

0 0 0 0

1 0 0 0

0 1 0 0

1 0 1 0

1 1 0 1

0 1 1 0

0 0 1 1

0 0 0 1

0 0 0 0

 The data are stored after each flip-flop on the 'Q' output, so there are four storage 'slots'

available in this arrangement, hence it is a 4-Bit Register. To give an idea of the shifting

pattern, imagine that the register holds 0000 (so all storage slots are empty).

 As 'Data In' presents 1,0,1,1,0,0,0,0 (in that order, with a pulse at 'Data Advance' each

time. This is called clocking or strobing) to the register, this is the result. The left hand
column corresponds to the left-most flip-flop's output pin, and so on.

Serial-in, parallel-out (SIPO):

 This configuration allows conversion from serial to parallel format. Data is input serially,
as described in the SISO section above.

 Once the data has been input, it may be either read off at each output simultaneously, or it

can be shifted out and replaced.

4-Bit SIPO Shift Register

http://en.wikipedia.org/wiki/Flip-flop_%28electronics%29

Parallel-in, serial-out (PISO):

 This configuration has the data input on lines D1 through D4 in parallel format. To write

the data to the register, the Write/Shift control line must be held LOW.

 To shift the data, the W/S control line is brought HIGH and the registers are clocked. The

arrangement now acts as a PISO shift register, with D1 as the Data Input.

 However, as long as the number of clock cycles is not more than the length of the data-
string, the Data Output, Q, will be the parallel data read off in order.

4-Bit PISO Shift Register

 The animation below shows the write/shift sequence, including the internal state of the

shift register.

Parallel in parallel out register:

 For parallel in - parallel out shift registers, all data bits appear on the parallel outputs

immediately following the simultaneous entry of the data bits.

 The following circuit is a four-bit parallel in - parallel out shift register constructed by D

flip-flops.

 The D's are the parallel inputs and the Q's are the parallel outputs. Once the register is

clocked, all the data at the D inputs appear at the corresponding Q outputs

simultaneously.

Uses:

 One of the most common uses of a shift register is to convert between serial and parallel

interfaces. This is useful as many circuits work on groups of bits in parallel, but serial

interfaces are simpler to construct. Shift registers can be used as simple delay circuits.

Several bi-directional shift registers could also be connected in parallel for a hardware

implementation of a stack.

 In early computers, shift registers were used to handle data processing: two numbers to

be added were stored in two shift registers and clocked out into an arithmetic and logic

unit (ALU) with the result being fed back to the input of one of the shift registers (the

Accumulator) which was one bit longer since binary addition can only result in an answer

that is the same size or one bit longer.

 Many computer languages include instructions to 'shift right' and 'shift left' the data in a

register, effectively dividing by two or multiplying by two for each place shifted.

 Very large serial-in serial-out shift registers (thousands of bits in size) were used in a

similar manner to the earlier delay line memory in some devices built in the early 1970s.

THE MASTER-SLAVE JK FLIP-FLOP:

 The Master-Slave Flip-Flop is basically two gated SR flip-flops connected together in a

series configuration with the slave having an inverted clock pulse.

 The outputs from Q and Q from the “Slave” flip-flop are fed back to the inputs of the

“Master” with the outputs of the “Master” flip flop being connected to the two inputs of

the “Slave” flip flop.

 This feedback configuration from the slave’s output to the master’s input gives the

characteristic toggle of the JK flip flop as shown below.

The Master-Slave JK Flip Flop

http://en.wikipedia.org/wiki/Stack_%28data_structure%29
http://en.wikipedia.org/wiki/Arithmetic_logic_unit
http://en.wikipedia.org/wiki/Arithmetic_logic_unit
http://en.wikipedia.org/wiki/Delay_line_memory

 The input signals J and K are connected to the gated “master” SR flip flop which “locks”

the input condition while the clock (Clk) input is “HIGH” at logic level “1”. As the clock

input of the “slave” flip flop is the inverse (complement) of the “master” clock input, the

“slave” SR flip flop does not toggle. The outputs from the “master” flip flop are only

“seen” by the gated “slave” flip flop when the clock input goes “LOW” to logic level “0”.

 When the clock is “LOW”, the outputs from the “master” flip flop are latched and any
additional changes to its inputs are ignored. The gated “slave” flip flop now responds to
the state of its inputs passed over by the “master” section.

 Then on the “Low-to-High” transition of the clock pulse the inputs of the “master” flip

flop are fed through to the gated inputs of the “slave” flip flop and on the “High-to-Low”

transition the same inputs are reflected on the output of the “slave” making this type of

flip flop edge or pulse-triggered.

 Then, the circuit accepts input data when the clock signal is “HIGH”, and passes the data

to the output on the falling-edge of the clock signal. In other words, the Master-Slave JK

Flip flop is a “Synchronous” device as it only passes data with the timing of the clock

signal.

SYNCHRONOUS COUNTERS:

 A synchronous counter, in contrast to an asynchronous counter, is one whose output bits

change state simultaneously, with no ripple.

 The only way we can build such a counter circuit from J-K flip-flops is to connect all the
clock inputs together, so that each and every flip-flop receives the exact same clock pulse

at the exact same time:

 Now, the question is, what do we do with the J and K inputs? We know that we still have
to maintain the same divide-by-two frequency pattern in order to count in a binary

sequence, and that this pattern is best achieved utilizing the "toggle" mode of the flip-

flop, so the fact that the J and K inputs must both be (at times) "high" is clear.

 However, if we simply connect all the J and K inputs to the positive rail of the power
supply as we did in the asynchronous circuit, this would clearly not work because all the

flip-flops would toggle at the same time: with each and every clock pulse!

 Let's examine the four-bit binary counting sequence again, and see if there are any other

patterns that predict the toggling of a bit. Asynchronous counter circuit design is based on

the fact that each bit toggle happens at the same time that the preceding bit toggles from a

"high" to a "low" (from 1 to 0). Since we cannot clock the toggling of a bit based on the

toggling of a previous bit in a synchronous counter circuit (to do so would create a ripple

effect) we must find some other pattern in the counting sequence that can be used to

trigger a bit toggle:

 Examining the four-bit binary count sequence, another predictive pattern can be seen.
Notice that just before a bit toggles, all preceding bits are "high:"

 This pattern is also something we can exploit in designing a counter circuit. If we enable

each J-K flip-flop to toggle based on whether or not all preceding flip-flop outputs (Q)

are "high," we can obtain the same counting sequence as the asynchronous circuit without

the ripple effect, since each flip-flop in this circuit will be clocked at exactly the same

time:

 The result is a four-bit synchronous "up" counter. Each of the higher-order flip-flops are

made ready to toggle (both J and K inputs "high") if the Q outputs of all previous flip-

flops are "high."

 Otherwise, the J and K inputs for that flip-flop will both be "low," placing it into the

"latch" mode where it will maintain its present output state at the next clock pulse.

 Since the first (LSB) flip-flop needs to toggle at every clock pulse, its J and K inputs are

connected to Vcc or Vdd, where they will be "high" all the time.

 The next flip-flop need only "recognize" that the first flip-flop's Q output is high to be

made ready to toggle, so no AND gate is needed. However, the remaining flip-flops

should be made ready to toggle only when all lower-order output bits are "high," thus the

need for AND gates.

 Since each J-K flip-flop comes equipped with a Q' output as well as a Q output, we can
use the Q' outputs to enable the toggle mode on each succeeding flip-flop, being that each

Q' will be "high" every time that the respective Q is "low:"

 Taking this idea one step further, we can build a counter circuit with selectable between

"up" and "down" count modes by having dual lines of AND gates detecting the

appropriate bit conditions for an "up" and a "down" counting sequence, respectively, then

use OR gates to combine the AND gate outputs to the J and K inputs of each succeeding

flip-flop:

 This circuit isn't as complex as it might first appear. The Up/Down control input line

simply enables either the upper string or lower string of AND gates to pass the Q/Q'

outputs to the succeeding stages of flip-flops. If the Up/Down control line is "high," the

top AND gates become enabled, and the circuit functions exactly the same as the first

("up") synchronous counter circuit shown in this section.

 If the Up/Down control line is made "low," the bottom AND gates become enabled, and
the circuit functions identically to the second ("down" counter) circuit shown in this

section.

To illustrate, here is a diagram showing the circuit in the "up" counting mode (all disabled

circuitry shown in grey rather than black):

Here, shown in the "down" counting mode, with the same grey coloring representing disabled

circuitry:

 Up/down counter circuits are very useful devices. A common application is in machine

motion control, where devices called rotary shaft encoders convert mechanical rotation

into a series of electrical pulses, these pulses "clocking" a counter circuit to track total

motion.

Counters:

In digital logic and computing, a counter is a device which stores (and sometimes displays)

the number of times a particular event or process has occurred, often in relationship to a

clock signal. In practice, there are two types of counters:

 Up counters, which increase (increment) in value

 Down counters, which decrease (decrement) in value

http://en.wikipedia.org/wiki/Digital_logic
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Event_%28philosophy%29
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/Clock_signal
http://en.wikipedia.org/wiki/Increment
http://en.wikipedia.org/wiki/Decrement

In electronics:

In electronics, counters can be implemented quite easily using register-type circuits such as the

flip-flop, and a wide variety of designs exist, e.g:

 Asynchronous (ripple) counter – changing state bits are used as clocks to subsequent state

flip-flops

 Synchronous counter – all state bits change under control of a single clock

 Decade counter – counts through ten states per stage

 Up–down counter – counts both up and down, under command of a control input

 Ring counter – formed by a shift register with feedback connection in a ring

 Johnson counter – a twisted ring counter

 Cascaded counter

Asynchronous (ripple) counter:

Asynchronous counter created from two JK flip-flops

 An asynchronous (ripple) counter is a single D-type flip-flop, with its D (data) input fed

from its own inverted output. This circuit can store one bit, and hence can count from

zero to one before it overflows (starts over from 0).

 This counter will increment once for every clock cycle and takes two clock cycles to

overflow, so every cycle it will alternate between a transition from 0 to 1 and a transition

from 1 to 0. Notice that this creates a new clock with a 50% duty cycle at exactly half the

frequency of the input clock.

 If this output is then used as the clock signal for a similarly arranged D flip-flop

(remembering to invert the output to the input), you will get another 1 bit counter that

counts half as fast. Putting them together yields a two bit counter:

http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Flip-flop_%28electronics%29
http://en.wikipedia.org/wiki/JK_flip-flop
http://en.wikipedia.org/wiki/Flip-flop_%28electronics%29#D_flip-flop
http://en.wikipedia.org/wiki/Duty_cycle

Cycle Q1 Q0 (Q1:Q0)dec

0 0 0 0

1 0 1 1

2 1 0 2

3 1 1 3

4 0 0 0

 You can continue to add additional flip-flops, always inverting the output to its own

input, and using the output from the previous flip-flop as the clock signal. The result is

called a ripple counter, which can count to 2
n
-1 where n is the number of bits (flip-flop

stages) in the counter.

 Ripple counters suffer from unstable outputs as the overflows "ripple" from stage to

stage, but they do find frequent application as dividers for clock signals, where the

instantaneous count is unimportant, but the division ratio overall is. (To clarify this, a 1-

bit counter is exactly equivalent to a divide by two circuit; the output frequency is exactly

half that of the input when fed with a regular train of clock pulses).

 The use of flip-flop outputs as clocks leads to timing skew between the count data bits,

making this ripple technique incompatible with normal synchronous circuit design styles.

 A two-bit asynchronous counter is shown on the left. The external clock is connected to

the clock input of the first flip-flop (FF0) only. So, FF0 changes state at the falling edge

of each clock pulse, but FF1 changes only when triggered by the falling edge of the Q

http://en.wikipedia.org/wiki/Ratio
http://en.wikipedia.org/wiki/Synchronous_circuit

output of FF0.

 Because of the inherent propagation delay through a flip-flop, the transition of the input

clock pulse and a transition of the Q output of FF0 can never occur at exactly the same

time. Therefore, the flip-flops cannot be triggered simultaneously, producing an

asynchronous operation.

 A mod-n counter may also described as a divide-by-n counter. This is because the most

significant flip-flop (the furthest flip-flop from the original clock pulse) produces one

pulse for every n pulses at the clock input of the least significant flip-flop (the one

triggers by the clock pulse). Thus, the above counter is an example of a divide-by-4

counter.

 The following is a three-bit asynchronous binary counter 0 and its timing diagram for one

cycle. It works exactly the same way as a two-bit asynchronous binary counter

mentioned above, except it has eight states due to the third flip-flop.

Up Down counters:

 A circuit of a 3-bit synchronous up-down counter and a table of its sequence are shown

below. Similar to an asynchronous up-down counter, a synchronous up-down counter

also has an up-down control input. It is used to control the direction of the counter

through a certain sequence.

An examination of the sequence table shows:

 for both the UP and DOWN sequences, Q0 toggles on

each clock pulse.

 for the UP sequence, Q1 changes state on the next clock

pulse when Q0=1.

 for the DOWN sequence, Q1 changes state on the next

clock pulse when Q0=0.

 for the UP sequence, Q2 changes state on the next clock

pulse when Q0=Q1=1.

 for the DOWN sequence, Q2 changes state on the next

clock pulse when Q0=Q1=0.

 These characteristics are implemented with the AND, OR & NOT logic connected as

shown in the logic diagram above.

Ring counters:

 Ring counter is a sequential logic circuit that is constructed using shift register. Same

data recirculates in the counter depending on the clock pulse.

 The ring counter is a cascaded connection of flip flops, in which the output of last flip

flop is connected to input of first flip flop. In ring counter if the output of any stage is 1,

then its reminder is 0. The Ring counters transfers the same output throughout the circuit.

 That means if the output of the first flip flop is 1, then this is transferred to its next stage

i.e. 2nd flip flop. By transferring the output to its next stage, the output of first flip flop

becomes 0. And this process continues for all the stages of a ring counter. If we use n flip

flops in the ring counter, the ‘1’ is circulated for every n clock cycles.

 Here we design the ring counter by using D flip flop. This is a Mod 4 ring counter which

has 4 D flip flops connected in series. The clock signal is applied to clock input of each

flip flop, simultaneously and the RESET pulse is applied to the CLR inputs of all the flip

flops.

Operation of Ring Counter

 Initially, all the flip flops in ring counter are reset to 0 by applying CLEAR signal. Before

applying the clock pulse, we apply the PRESET pulse to the flip flops which assigns the

value ‘1’ to the ring counter circuit. For each clock signal, the data circulates among all

the 4 flip flop stages of ring counter.

 This 4 staged ring counter is called Mod 4 ring counter or 4 bit ring counter. To circulate

the data correctly in the ring counter, we must load the counter with required values like

all 0’s or all 1’s.

Truth table of ring counter

 When CLEAR input CLR = 0, then all flip flops are set to 1. When CLEAR input CLR =

1, the ring counter starts its operation.

 For one clock signal, the counter starts its operation. On next clock signal, the counter

again resets to 0000. Ring counter has 4 sequences: 0001, 0010, 0100, 1000, 000.

Timing diagram of Ring Counter

 The timing diagram of the Ring counter will explain that the clock signal changes the

output of every stage of the counter, so that CLK signal will help the data to circulate

from one flip flop to another.

 As the 4 bit ring counter (4 stages or 4 flip flops) circulates the preset digit within one

clock signal, the output frequency of each flip flop is ¼ th of the main clock frequency.

State diagram of ring counter

 The state diagram of the 4 bit ring counter is shown in above picture. It denotes that the

position of the preset digit (in this case preset digit is 1) is changing its position from

LSB to MSB, for one clock signal.

Advantages

 Can be implemented using D and JK flip-flops. It is a self-decoding circuit.

JOHNSON RING COUNTER:

 The Johnson Ring Counter or “Twisted Ring Counters”, is another shift register with

feedback exactly the same as the standard Ring Counter above, except that this time the

inverted output Qof the last flip-flop is now connected back to the input D of the first

flip-flop as shown below.

 The main advantage of this type of ring counter is that it only needs half the number of

flip-flops compared to the standard ring counter then its modulo number is halved. So a

“n-stage” Johnson counter will circulate a single data bit giving sequence of 2n different

states and can therefore be considered as a “mod-2n counter”.

4- bit Johnson Ring Counter

 This inversion of Q before it is fed back to input D causes the counter to “count” in a

different way. Instead of counting through a fixed set of patterns like the normal ring

counter such as for a 4-bit counter, “0001”(1), “0010”(2), “0100”(4), “1000”(8) and

repeat, the Johnson counter counts up and then down as the initial logic “1” passes

through it to the right replacing the preceding logic “0”.

 A 4-bit Johnson ring counter passes blocks of four logic “0” and then four logic “1”

thereby producing an 8-bit pattern. As the inverted output Q is connected to the

input D this 8-bit pattern continually repeats. For example, “1000”, “1100”, “1110”,

“1111”, “0111”, “0011”, “0001”, “0000” and this is demonstrated in the following table

below.

Truth Table for a 4-bit Johnson Ring Counter

Clock Pulse No FFA FFB FFC FFD

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

4 1 1 1 1

5 0 1 1 1

6 0 0 1 1

7 0 0 0 1

 As well as counting or rotating data around a continuous loop, ring counters can also be
used to detect or recognise various patterns or number values within a set of data.

 By connecting simple logic gates such as the AND or the OR gates to the outputs of the
flip-flops the circuit can be made to detect a set number or value.

 Standard 2, 3 or 4-stage Johnson Ring Counters can also be used to divide the

frequency of the clock signal by varying their feedback connections and divide-by-3 or

divide-by-5 outputs are also available

CPLDs and FPGAs

 Ideally, though, the hardware designer wanted something that gave him or her the
flexibility and complexity of an ASIC but with the shorter turn-around time of a

programmable device.

 The solution came in the form of two new devices - the Complex Programmable Logic

Device (CPLD) and the Field Programmable Gate Array. As can be seen in Figure 4,

CPLDs and FPGAs bridge the gap between PALs and Gate Arrays. CPLDs are as fast as

PALs but more complex. FPGAs approach the complexity of Gate Arrays but are still

http://www.electronics-tutorials.ws/logic/logic_2.html
http://www.electronics-tutorials.ws/logic/logic_3.html

Complex Programmable Logic Devices (CPLDs)

 Complex Programmable Logic Devices (CPLDs) are exactly what they claim to be.

Essentially they are designed to appear just like a large number of PALs in a single chip,

connected to each other through a crosspoint switch They use the same development

tools and programmers, and are based on the same technologies, but they can handle

much more complex logic and more of it.

CPLD Architectures

 The diagram in Figure 5 shows the internal architecture of a typical CPLD. While each

manufacturer has a different variation, in general they are all similar in that they consist

of function blocks, input/output block, and an interconnect matrix.

 The devices are programmed using programmable elements that, depending on the
technology of the manufacturer, can be EPROM cells, EEPROM cells, or Flash EPROM

cells.

 Function Blocks A typical function block is shown in Figure 6. The AND plane still

exists as shown by the crossing wires. The AND plane can accept inputs from the I/O

blocks, other function blocks, or feedback from the same function block. The terms and

then ORed together using a fixed number of OR gates, and terms are selected via a large

multiplexer.

 The outputs of the mux can then be sent straight out of the block, or through a clocked

flip-flop. This particular block includes additional logic such as a selectable exclusive OR

and a master reset signal, in addition to being able to program the polarity at different

stages.

 Usually, the function blocks are designed to be similar to existing PAL architectures,

such as the 22V10, so that the designer can use familiar tools or even older designs

without changing them.

FIELD PROGRAMMABLE GATE ARRAYS (FPGAS)

 Field Programmable Gate Arrays are called this because rather than having a structure

similar to a PAL or other programmable device, they are structured very much like a gate

array ASIC.

 This makes FPGAs very nice for use in prototyping ASICs, or in places where and ASIC

will eventually be used. For example, an FPGA maybe used in a design that need to get

to market quickly regardless of cost. Later an ASIC can be used in place of the FPGA

when the production volume increases, in order to reduce cost.

FPGA Architectures

 Each FPGA vendor has its own FPGA architecture, but in general terms they are all a

variation of that shown in Figure. The architecture consists of configurable logic blocks,

configurable I/O blocks, and programmable interconnect.

 Also, there will be clock circuitry for driving the clock signals to each logic block, and

additional logic resources such as ALUs, memory, and decoders may be available. The

two basic types of programmable elements for an FPGA are Static RAM and anti-fuses.

Configurable Logic Blocks

 Configurable Logic Blocks contain the logic for the FPGA. In a large grain architecture,

these CLBs will contain enough logic to create a small state machine. In a fine grain

architecture, more like a true gate array ASIC, the CLB will contain only very basic

logic.

 The diagram in Figure would be considered a large grain block. It contains RAM for

creating arbitrary combinatorial logic functions. It also contains flip-flops for clocked

storage elements, and multiplexers in order to route the logic within the block and to and

fromexternal resources. The muxes also allow polarity selection and reset and clear input

selection.

Configurable I/O Blocks

 A Configurable I/O Block, shown in Figure 10, is used to bring signals onto the chip and

send them back off again. It consists of an input buffer and an output buffer with three

state and open collector output controls.

 Typically there are pull up resistors on the outputs and sometimes pull down resistors.

The polarity of the output can usually be programmed for active high or active low output

and often the slew rate of the output can be programmed for fast or slow rise and fall

times. In addition, there is often a flip-flop on outputs so that clocked signals can be

output directly to the pins without encountering significant delay.

 It is done for inputs so that there is not much delay on a signal before reaching a flip-flop

which would increase the device hold time requirement.

Example FPGA Families

Examples of SRAM based FPGA families include the following:

 Altera FLEX family.

 Atmel AT6000 and AT40K families.

 Lucent Technologies ORCA family.

 Xilinx XC4000 and Virtex families.

Modulus counter:

 A counter which is reset at the fifth clock pulse is called Mod 5 counter or Divide by 5

counter. The circuit diagram of Mod 5 counter is shown in the figure. This counter

contains three JKMS flip-flop.

Logic Diagram:

Truth table:

Clock Qc QB QA

Reset 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 0 0 0

6 0 0 1

 A 3 bit binary counter is normally counting from 000 to 111. The actual

output of a 3 bit binary counter at the fifth clock pulse is 101.

 A two input NAND gate is used to make a Mod 5 counter.

 The outputs of the first and third flip flops (QA and QC) are connected to

the input of the give NAND gate, and its output is connected to the RESET

terminal of the counter,

 Hence the counter is reset at the fifth clock pulse, which produces the output QC,QB,QA as

000. It is called divide by 5
th

 counter or mod 5 counter.

UNIT – V

Memory

Classification of Memories

Memory Definitions

⚫ Collection of cells capable of storing binary information

⚫ Contains electronic circuits for storing & retrieve information

⚫ Used to provide temporary or permanent storage capability

Memory Basic Process

⚫ Info/content from memory is send to h/w (usually consist of registers &
combinational logic) to be processed

⚫ The processed info is then returned to the same or different memory address

⚫ Input and Output devices may also interact with memory

Types of Memories

⚫ Random Access Memory (RAM)

⚫ Write operation – stores new info

⚫ Read operation – transfer the stored info out of memory

⚫ Read Only Memory (ROM)

Memory data elements

⚫ Typical data elements are:

⚫ bit : a single binary digit

⚫ byte : a collection of eight (8) bits accessed together

⚫ word : a collection of binary bits whose size is a typical unit of access

for the memory. (e.g., 1 byte, 2 bytes, 4 bytes, 8 bytes, etc.)

⚫ Memory Data ─ a bit or a collection of bits to be stored into or accessed

from memory cells.

⚫ Memory Operations ─ operations on memory data supported by the memory

unit. Typically, read and write operations over some data element (bit, byte,

word, etc.).

Memory Organization

• Organized as an indexed array of words. Value of the index for each

word is the memory address.

• Often organized to fit the needs of a particular computer architecture.

Some historically significant computer architectures and their associated

memory organization.

Digital Equipment Corporation PDP-8 (DEC Alpha)

• used a 12-bit address to address 4096 12-bit words.

• IBM 360

• used a 24-bit address to address 16,777,216 8-bit (bytes), or 4,194,304 -

32-bit words.

• Intel 8080 (8-bit predecessor to the 8086 and the current Intel

processors)

• used a 16-bit address to address 65,536 8-bit (bytes).

Memory Block Diagram:

A basic memory system is shown here:

• k address lines are decoded to address 2
m
 words of memory.

• Each word is n bits.

• Read and Write are single control lines defining the simplest of memory

operations.

Memory Organization

Example of memory contents above:

• address bits = 3; m = 3

• data bits = 8; n = 8

• Therefore number of address lines = k = (2
m
); 2

3
 = 8

• Address range = 0 to 2
m
 -1; therefore 0 to 2

3
 – 1, Address range = 0

to 7

• 1 word is the size of the memory content; so the memory above

has 8 words of 8-bit data

Example:

• address bits = m = 10

• data bits =16; n = 16

• Address line = (2
m
)

• 2
10

 = 1024 or 1K, labeled 0 to 1023

• memory content = 16-bit
• so the memory has 1K words of 16-bit data or 1K x 16-bit memory

Memory operations require the following:

• Data

• Address

• An operation ─ Typical operations are READ and WRITE. (RAM)

Read Memory ─ an operation that reads a data value stored in memory: (takes

from memory)

• Place a valid address on the address lines

• Activate the Read input.

• Note : the content of the selected word are not changed by reading

them

Write Memory ─ an operation that writes a data value to memory:

• Place a valid address on the address lines

• Apply data on the data lines

• Activate the Write input

Other than Read/Write (R/W) Chip Select is used to enable a particular RAM. It is

sometimes called Memory Enable.

Memory Enable

RAM INTEGRATED CIRCUIT:

Types of random access memory (RAM)

⚫ Static – information stored in latches

⚫ Dynamic – information stored as electrical charges on capacitors

⚫ Charge “leaks” off

⚫ Periodic refresh of charge required

⚫ Dependence on Power Supply

⚫ Volatile – loses stored information when power turned off

(example : FPGA – Flex10K)

⚫ Non-volatile – retains information when power turned off

(example : CPLD – MAX)

DRAM OPERATION BASICS

 DRAM memory technology has MOS technology at the heart of the design,

fabrication and operation. The basic dynamic RAM or DRAM memory cell

uses a capacitor to store each bit of data and a transfer device - a MOSFET -

that acts as a switch.

 The level of charge on the memory cell capacitor determines whether that

particular bit is a logical "1" or "0" - the presence of charge in the capacitor

indicates a logic "1" and the absence of charge indicates a logical "0".

 The basic dynamic RAM memory cell has the format that is shown below. It

is very simple and as a result it can be densely packed on a silicon chip and

this makes it very cheap.

Dynamic RAM memory cell

 Two lines are connected to each dynamic RAM cell - the Word Line (W/L)

and the Bit Line (B/L) connect as shown so that the required cell within a

matrix can have data read or written to it.

 The basic memory cell shown would be one of many thousands or millions

of such cells in a complete memory chip. Memories may have capacities of

256 Mbit and more.

 To improve the write or read capabilities and speed, the overall dynamic

RAM memory may be split into sub-arrays. The presence of multiple sub-

arrays shortens the word and bit lines and this reduces the time to access the

individual cells. For example a 256 Mbit dynamic RAM, DRAM may be

split into 16 smaller 16Mbit arrays.

 The word lines control the gates of the transfer lines, while the bit bines are

connected to the FET channel and are ultimately connected to the sense

amplifiers.

There are two ways in which the bit lines can be organised:

 Folded Bit Lines: It is possible to consider a pair of adjacent bit lines as a

single bit line folded in half with the connection on the fold broken and

connected to a shared sense amplifier. This format provides additional noise

immunity, but at the expense of being less compact.

 Open Bit Lines: In this configuration the sense lines are placed between

two sub-arrays, thereby connecting each sense amplifier to one bit line in

each array. This offers a more compact solution than the folded bit lines, but

at the expense of noise immunity.

DYNAMIC RAM READ / WRITE:

One of the critical issues within the dynamic RAM is to ensure that the read and write

functions are carried out effectively. As voltages on the charge capacitors are small, noise

immunity is a key issue.

There are several lines that are used in the read and write operations:

 RAS, the Row Address Strobe: As the name implies, the /RAS line

strobes the row to be addressed. The address inputs are captured on the

falling edge of the /RAS line. The row is held open as long as /RAS remains

low.

 CAS, the Column Address Strobe: This line selects the column to be

addressed. The address inputs are captured on the falling edge of /CAS. It

enables a column to be selected from the open row for read or write

operations.

 WE, Write Enable: This signal determines whether a given falling edge of
/CAS is a read or write. Low enables the write action, while high enables a

read action. If low (write), the data inputs are also captured on the falling edge of /CAS.

 OE, Output Enable: The /OE signal is typically used when controlling

multiple memory chips in parallel. It controls the output to the data I/O pins.

The data pins are driven by the DRAM chip if /RAS and /CAS are low, /WE

is high, and /OE is low. In many applications, /OE can be permanently

connected low, i.e. output always enabled if not required for example of

chips are not wired in parallel.

DYNAMIC RAM REFRESH:

 One of the problems with this arrangement is that the capacitors do not hold

their charge indefinitely as there is some leakage across the capacitor. It

would not be acceptable for the memory to lose its data, and to overcome

this problem the data is refreshed periodically. The data is sensed and

written and this then ensures that any leakage is overcome, and the data is

re-instated.

 One of the key elements of DRAM memory is the fact that the data is

refreshed periodically to overcome the fact that charge on the storage

capacitor leaks away and the data would disappear after a short while.

Typically manufacturers specify that each row should be refreshed every 64

ms. This time interval falls in line with the JEDEC standards for dynamic

RAM refresh periods.

 There are a number of ways in which the refresh activity can be

accomplished. Some processor systems refresh every row together once

every 64 ms. Other systems refresh one row at a time, but this has the

disadvantage that for large memories the refresh rate becomes very fast.

Some other systems (especially real time systems where speed is of the

essence) adopt an approach whereby a portion of the semiconductor memory

at a time based on an external timer that governs the operation of the rest of

the system. In this way it does not interfere with the operation of the system.

 Whatever method is use, there is a necessity for a counter to be able to track

the next row in the DRAM memory is to be refreshed. Some DRAM chips

include a counter, otherwise it is necessary to include an additional counter

for this purpose.

 It may appear that the refresh circuitry required for DRAM memory would

over complicate the overall memory circuit making it more expensive.

However it is found that DRAM the additional circuitry is not a major

concern if it can be integrated into the memory chip itself. It is also found

that DRAM memory is much cheaper and has a much greater capacity than the other major

contender which might be Static RAM (SRAM).

DRAM ADVANTAGES AND DISADVANTAGES:

ADVANTAGES DISADVANTAGES

 Very dense

 Low cost per bit

 Simple memory

cell structure

 Complex manufacturing process

 Data requires refreshing

 More complex external circuitry

required (read and refresh

periodically)

 Volatile memory

 Relatively slow operational speed

SRAM BASICS

 The memory circuit is said to be static if the stored data can be retained

indefinitely, as long as the power supply is on, without any need for periodic

refresh operation.

 The data storage cell, i.e., the one-bit memory cell in the static RAM arrays,

invariably consists of a simple latch circuit with two stable operating points.

Depending on the preserved state of the two inverter latch circuit, the data

being held in the memory cell will be interpreted either as logic '0' or as

logic '1'.

 To access the data contained in the memory cell via a bit line, we need

atleast one switch, which is controlled by the corresponding word line as

shown in Figure

SRAM Cell

CMOS SRAM Cell:

 A low power SRAM cell may be designed by using cross-coupled CMOS

inverters. The most important advantage of this circuit topology is that the

static power dissipation is very small; essentially, it is limited by small

leakage current.

 Other advantages of this design are high noise immunity due to larger noise

margins, and the ability to operate at lower power supply voltage. The major

disadvantage of this topology is larger cell size.

 The circuit structure of the full CMOS static RAM cell is shown in Figure

The memory cell consists of simple CMOS inverters connected back to

back, and two access transistors. The access transistors are turned on

whenever a word line is activated for read or write operation, connecting the

cell to the complementary bit line columns.

Full CMOS RAM Cell

READ OPERATION:

 Consider a data read operation, shown in Figure, assuming that logic '0' is

stored in the cell. The transistors M2 and M5 are turned off, while the

transistors M1 and M6 operate in linear mode.

 Thus internal node voltages are V1 = 0 and V2 = VDD before the cell access

transistors are turned on. The active transistors at the beginning of data read

operation are shown in Figure

Read Operation

 After the pass transistors M3 and M4 are turned on by the row

selection circuitry, the voltage CBb of will not change any significant

variation since no current flows through M4.

 On the other hand M1 and M3 will conduct a nonzero current and the

voltage level of CB will begin to drop slightly.

 The node voltage V1 will increase from its initial value of '0'V. The

node voltage V1 may exceed the threshold voltage of M2 during this

process, forcing an unintended change of the stored state.

WRITE OPERATION:

 Consider the write '0' operation assuming that logic '1' is stored in the SRAM

cell initially. Figure shows the voltage levels in the CMOS SRAM cell at the

beginning of the data write operation.

 The transistors M1 and M6 are turned off, while M2 and M5 are operating in

the linear mode. Thus the internal node voltage V1 = VDD and V2 = 0

before the access transistors are turned on.

 The column voltage Vb is forced to '0' by the write circuitry. Once M3 and

M4 are turned on, we expect the nodal voltage V2 to remain below the

threshold voltage of M1, since M2 and M4 are designed according to

SRAM start of write '0'

 The voltage at node 2 would not be sufficient to turn on M1. To change the

stored information, i.e., to force V1 = 0 and V2 = VDD, the node voltage V1

must be reduced below the threshold voltage of M2, so that M2 turns off.

When the transistor M3 operates in linear region while M5 operates in

saturation region.

ADVANTAGES OF SRAM:

 Simplicity: SRAMs don't require external refresh circuitry or other work in

order for them to keep their data intact.

 Speed: SRAM is faster than DRAM.

DISADVATNGES OF SRAM:

 Cost: SRAM is, byte for byte, several times more expensive than DRAM.

 Size: SRAMs take up much more space than DRAMs.

EXPANDING MEMORY:

 When a given application requires a RAM or ROM with a capacity that is

larger than what is available on a single chip, more than one such chip can

be used to achieve the objective.

 The required enhancement in capacity could be either in terms of increasing

the word size or increasing the number of memory locations.

 How this can be achieved is illustrated in the following paragraphs with the

help of examples.

WORD SIZE EXPANSION:

 Let us take up the task of expanding the word size of an available 16×4

RAM chip from four bits to eight bits. Figure shows a diagram where two

such RAM chips have been used to achieve the desired effect.

 The arrangement is straightforward. Both chips are selected or deselected

together. Also, the input that determines whether it is a ‘read’ or ‘write’

operation is common to both chips.

 That is, both chips are selected for ‘read’ or ‘write’ operation together. The

address inputs to the two chips are also common.

 The memory locations corresponding to various address inputs store four

higher-order bits in the case of RAM-1 and four lower-order bits in the case

of RAM-2.

 In essence, each of the RAM chips stores half of the word. Since the address

inputs are common, the same location in each chip is accessed at the same

time.

Memory Location Expansion:

 Figure shows how more than one memory chip can be used to expand the

number of memory locations. Let us consider the use of two 16×8 chips to

get a 32×8 chip. A 32×8 chip would need five address input lines.

 Four of the five address inputs, other than the MSB address bit, are common

to both 16×8 chips. The MSB bit feeds the input of one chip directly and the

input of the other chip after inversion.

 The inputs to the two chips are common. Now, for first half of the memory

locations corresponding to address inputs 00000 to 01111 (a total of 16

locations), the MSB bit of the address is ‘0’, with the result that RAM-1 is

selected and RAM-2 is deselected.

 For the remaining address inputs of 10000 to 11111 (again, a total of 16

locations), RAM-1 is deselected while RAM-2 is selected. Thus, the overall

arrangement offers a total of 32 locations, 16 provided by RAM-1 and 16

provided by RAM-2. The overall capacity is thus 32×8.

