
Data Structures/Dept Of CSE/SVCET

1

DATA:

CST35 – DATA STRUCTURES

UNIT – 1

INTRODUCTION TO DATA STRUCTURES

 It is a collection of facts or some known information, from which a conclusion can be drawn.

DATA STRUCTURES:

 Data Structure is a method of organizing large amount of data more efficiently, such that any operation

on that data becomes easy

(or)

 Data structure is the structural representation of logical relationships between elements of data.

 Data structures are the building blocks of a program

 Algorithm is a step by step procedure to solve a problem.

 Before developing a program for an algorithm, first we should select data structures.

ALGORITHM:

 Algorithm is a sequence of unambiguous instructions to solve a problem.

 Algorithm is called as a solution for a given problem.

 A problem may have many solutions/algorithm. We need to select the best algorithm which is

suitable for a given problem.

 After the algorithm for the problem is chosen, it is converted to program.

PROGRAM:

 Algorithm + Data Structure = Program

 The program may take zero or more input, process the instructions and produce a single output.

Characteristic of an Algorithm:

1. Input: Algorithm may take zero or more input

2. Output: Algorithm always produces a single output

3. Definiteness: Every instruction in an algorithm must be clear and unambiguous

4. Finiteness : For all possible inputs, algorithm must produce result in finite steps

5. Effectiveness: The algorithm must be feasible

Parameters considered to chose a best algorithm:

 Execution speed => Time taken to execute the algorithm for a specific input

 Memory => The memory required to store program and data.

 Easy to understand

 Easy to implement

 Correctness

Data Structures/Dept Of CSE/SVCET

2

Types of Data Structures:

Data Structures(DS)

Primary DS Secondary DS

Constant Pointers Static DS Dynamic DS

Arrays Structures Linear DS Non-linear DS

Stack Queue Linked list Trees Graph

Primary Data structure:

 These are data structures which operates on machine instructions

Types:

Constants: The value of the constant doesn’t change

Pointers: It stores the address of other variables which helps in direct access of that variable

Secondary Data structures:

i) Static Data structures:

 It is also called as fixed size data structure where the memory allocation of this type of data structure

is fixed

 Types: Arrays, Structures

 Arrays: It is a collection of elements of same data type which is stored in contiguous memory

location

 Structures: It is a collection of elements of different data type

ii) Dynamic Data structures:

 It is also called as dynamic size data structure where the memory allocation of this type of data

structure varies at run time

 Types: Linear data structures, Non-linear data structures

 Linear data structures: They have a linear relation with their adjacent elements

o Stack => Elements are inserted and deleted based on Last In First Out(LIFO) method

o Queue => Elements are inserted and deleted based on Fast In First Out(FIFO) method

o Linked list => One node is linked with another node by storing the address of the next node.

 Non-Linear data structures: They have a non-linear relation with other elements

o Trees

o Graph

Data Structures/Dept Of CSE/SVCET

3

ALGORITHMIC NOTATIONS:

Name of the algorithm : Each algorithm is given by its name

Data required for the algorithm: Data required for executing an algorithm is given as arguments to the

algorithm

Comments : It describes the data passed to the algorithm or the steps of an algorithm

Steps of the algorithm: The sequence of steps which is performed by the algorithm

Read => Used to read the values

Write => Used to display the values

Example 1: Algorithm to add two numbers

Add(a,b)

c = a + b

write c

In this example, add is a algorithm name, a and b are the data required to perform addition operation and the

c= a+b and write c are the sequence of steps to perform addition operation.

Example 2: Algorithm to find greatest of two numbers

Great(a,b)

if(a > b)

then

write(“ a is greatest”)

else

write(“b is greatest”)

end if

Example 3: Algorithm to display n elements

Display(n)

for i = 1 to n

write i

end for

Example 4: Algorithm to perform sum of n elements

sum(n)

sum =0

for i = 1 to n

sum = sum + i

end for

write sum

Data Structures/Dept Of CSE/SVCET

4

Example 5: Algorithm to find maximum element in a given array

maxarray(a, n)

// a is an array of n elements

max = a[1]

for i = 2 to n

if (a[i] > max)

max = a[i]

end if

end for

write max

 In the above algorithm, At the initial step, a[1] is assigned as max. In for loop, Each of the next

element starting from second element is compared with max. If the element is greater than max, value

of max changes. After comparing all the elements in array, value in max is displayed.

CREATING PROGRAMS

We consider five phases: requirements, design, analysis, coding, and verification.

(i) Requirements:

 Define and understand the objective/scope of the problem given.

 Based on objective, identify all the requirements to solve the problem.

 (i.e) What are the possible inputs for a given problem. What will be the output for a various inputs.

(ii) Design :

 Perform the design based on the requirements.

 The design which is developed should be simple and should specify entire aspects of the given

problem.

(iii) Analysis:

 Analysis is performed to check whether the design which is developed is based on the specifications

of the problem.

 If there is any deviations in the design, it is corrected and design is modified based on the problem

specification.

(iv) Refinement and coding:

 After the design is made, the appropriate best algorithm is chosen for the problem.

 Select the programming language which is best suited for solving the problem. After selecting a

programming language, coding is done for the chosen algorithm.

(v) Verification.

 Verification consists of three distinct aspects: Program proving, Testing and Debugging.

 Pr og r am pr ov i ng: Before executing your program you should attempt to prove it is correct.

 Testing: The program is tested for all possible inputs, to find whether any faults/bug is available in a program

or the program is giving wrong output. If the program fails to respond correctly then debugging is needed to

determine what went wrong and how to correct it.

 Debugging: Correction of bug in a program, if found. After the bug is identified, steps need to be performed to

correct the bug in order to produce the required output.

vi) Documentation:

 After the program is successfully developed, the entire description about the working of program is

given in documentation for easy understanding.

Data Structures/Dept Of CSE/SVCET

5

ANALYZING PROGRAMS:

Several criteria to analyze the programs are

i) Does it do what we want it to do ? Results obtained according to the specification of the program

ii) Whether Documentation is present ? To describe how it works or how to use it

iii) Modularity exists ? Does the larger problem is divided into logically related sub-modules which will

improve efficiency

iv) Is the program readable? Readability

There are other criteria for analyzing the programs which will have direct relationship with performance(i.e)

based on the computation time and storage requirements of the algorithm.

Time complexity:

It is the amount of time required to execute the algorithm for the specific input.

Space complexity:

It is the amount of memory taken by the algorithm for execution.

Performance analysis (or) Asymptotic analysis:

The following information must be known to determine, how much time it takes to execute any command.

i) The machine executing on

ii) The machine language instruction set

ii) Time required by each machine instruction

Consider three examples

Asymptotic notations:

 It allows us to analyze an algorithm’s running time by identifying its behavior, as the input size for

the algorithm increases. This is also known as an algorithm’s growth rate.

i) Big Oh(O):

Big Oh is defined as

The function f(n) = O(g(n)) if and only if there exists constants c and n0, such that

f(n) ≤ c * g(n) for all n ≥ n0. Here f(n) and g(n) are computation time of the algorithm

……………..

……………..

x = x + 1

……………..

……………...

for i = 1 to n

x = x +1

end for

for i = 1 to n

for j = 1 to n

x = x +1

end for

end for

In this example, the statement

x=x+1 is not inside any loop.

Hence,

Number of time the statement

executed is 1

Frequency count = 1

In this example, the statement

x=x+1 is inside for loop. Hence,

Number of time the statement

executed is n

Frequency count = n

In nested for loop, Number of

times statement executed is equal

to the number of times the

innermost loop is executed.

In this example, the number of

times the statement x=x+1

executed is n
2

Frequency count = n2

Data Structures/Dept Of CSE/SVCET

6

Example:

f(n) = 3n +2 ≤ 4*n for all n ≥ 2, where f(n) = 3n+2, c = 4 , g(n) =n and n0 = 2

f(n) = O(1) represents computing time is constant

f(n) = O(n) represents computing time is linear

f(n) = O(n
2
) represents computing time is quadratic

f(n) = O(n
3
) represents computing time is cubic

f(n) = O(2
n
) represents computing time is exponential

f(n) = O(logn) represents computing time is logarithmic

Note:

O(1)<O(logn)<O(n)<O(n
2
)

Here, Time taken to execute the algorithm having constant time O(1) is least. Time taken to execute the

algorithm having quadratic time O(n
2
)is high.

ii) Omega(Ω):

Omega is defined as

The function f(n) = Ω(g(n)) if and only if there exists constants c and n0, such that

f(n) ≥ c * g(n) for all n ≥ n0. Here f(n) and g(n) are computation time of the algorithm

Example:

f(n) = 3n +2 ≥ 3*n for all n ≥ 1, where f(n) = 3n+2, c = 3 , g(n) =n and n0 = 1

iii) Theta(Ө)

Theta is defined as

The function f(n) = Ө(g(n)) if and only if there exists constants c1, c2 and n0, such that

c1 * g(n) ≤ f(n) ≤ c2 * g(n) for all n ≥ n0. Here f(n) and g(n) are computation time of the algorithm

Example:

3*n ≤ 3n +2 ≤ 4*n for all n ≥ 2, where c1=3, c2=4, g(n) =n, f(n) = 3n+2, n0 = 2

ARRAY:

 Array is a collection of elements of same data type that are stored under a common name.

Characteristics of array:

 The elements of array are stored in contiguous memory location.

 Individual element of array can be accessed by using array name followed by a integer enclosed with

a square bracket which is called as subscript or index. Example: Second element in array is accessed

by a[1].

Operations performed in an array:

i) Traversing => Used to visit all the elements in an array

ii) Sorting => Used to sort the elements of an array in ascending or descending order

iii) Searching => Used to search a given element from an array

iv) Insertion => Used to insert the element in the specified location in an array provided that array is not full

v) Deletion => Used to delete the particular element from array

vi) Merging => Used to merge the elements of two arrays into a single array

Data Structures/Dept Of CSE/SVCET

7

Algorithms for operations of array:

i) Traversing:

for i = 1 to n

visit(a[i]) (or) display(a[i])

end for

ii) Sorting:

Write any sorting algorithm

iii) Searching:

Write any searching algorithm

iv) Insertion:

if a[high] ! = NULL To Insert 10 at location 2

Write “Array is full, cant insert element”

else

i=high

while i>Location a[1]

a[i] = a[i – 1]

i - - ;

end while

a[Location] = key

end if

vi) Deletion:

Get the key element which is to be deleted

Initialize i=0

i = searcharray(a,key) // i gives the position of the key element

if i = = 0

write “ key not found” To delete the element 1

else

while i < high

a[i] = a [i+1]

i + +

end while

end if

a[high] = NULL

high = high -1

vi) Merging

write the merge algorithm in merge sort

a[5] a[2]

7 5 1 8

7 5 1 8 2

Data Structures/Dept Of CSE/SVCET

8

Types of array:

Depending on the number of subscripts used, arrays are classified into

 One dimensional array

 Multidimensional array

1. One dimensional array:

 An array with only one subscript is called one dimensional array.

Declaration of an one dimensional array :

 Array must be declared before used in program. When the array is declared, the array is allocated with

multiple blocks of empty memory of given size.

Syntax for declaration of an one dimensional array :

data_type arrayname[size] ; (or) data_type arrayname[subscript] ; where data type specifies the type of

data which is to be stored in array, size specifies the maximum number of elements that can be stored in array.

Example:

1) int rollno[5]; where rollno is a integer array which can store roll number of 5 students.

rollno[0] rollno[1] rollno[2] rollno[3] rollno[4]

Initialization of one dimensional array:

 After declaration, array must be initialized, otherwise it hold garbage values.

Compile time initialization:

 Fixed values are assigned to the array.

Example:

1) int rollno[5]={1,2,3,4,5}; where rollno is a integer array which can store roll number of 5 students.

1 2 3 4 5

rollno[0] rollno[1] rollno[2] rollno[3] rollno[4]

Run time initialization:

 Values are assigned to the array at run time.(i.e,)values are assigned during the execution of program

Example1:

int rollno[5];

for(i=0 ; i<5; i++)

{

scanf(“%d”,&rollno[i]);

}

i) Algorithm to display the array

Displayarray(a, n)

//a is an array of n elements

for i = 1 to n

write a[i]

end for

 In the above algorithm, the entire elements of the array a is displayed

Data Structures/Dept Of CSE/SVCET

9

ii) Algorithm to find sum of the elements in array

Sumarray(a, n)

//a is an array of n elements

sum=0

for i = 1 to n

sum = sum + a[i]

end for

write sum

 In the above algorithm, each element in the array is added and the result is stored in sum

iii) Algorithm to find maximum element in a given array

maxarray(a, n)

// a is an array of n elements

max = a[1]

for i = 2 to n

if (a[i] > max)

max = a[i]

end if

end for

write max

 In the above algorithm, At the initial step, a[1] is assigned as max. In for loop, Each of the next

element starting from second element is compared with max. If the element is greater than max, value

of max changes. After comparing all the elements in array, value in max is displayed.

2. Multi dimensional array:

 An array with more than one subscript is called multi dimensional array.

 Multidimensional arrays are slower in execution than one dimensional arrays.

Syntax:

datatype arrayname[size 1][size 2][size 3]……[size n];

Example:

 int a[3][3] ; where a is a two dimensional array of integer type and can hold 9 elements.

 float b[4][4][4] ; where b is a three dimensional array of float type and can hold 64 elements.

Two dimensional array

 An array with two subscript is called two dimensional array

 Two dimensional array is used to store the data in tabular form (i.e) rows and columns.

Declaration of two dimensional array:

data_type arrayname[row size] [column size] ; where row size specifies the number of rows and column

size specifies the number of columns.

Example:

int a[2][2] ; where a is the two dimensional array of integer type with 2 rows and 2 columns and have 2*2

elements.

int a[3][3] ; where a is the two dimensional array of integer type with 3 rows and 3 columns and have 3*3

elements.

Data Structures/Dept Of CSE/SVCET

10

datatype *pointervariable ;

pointervariable = & variable ;

p = &a ;

Algorithm to read and display the two dimensional array:

for i = 1 to 2

for j = 1 to 2

read a[i] [j]

for i = 1 to 2

for j = 1 to 2
write a[i] [j]

POINTERS:

 A pointer is a variable which stores the address of other variables.

 Since pointer knows the address, it can directly access those variables.

 Integer pointer can store only address of integer variable , floating pointer can store only address of

float variables, character pointer can store only address of character variables.

Declaration of pointer:

Syntax

Example:

int *p ; where p is a integer pointer variable which stores the address of integer variable.

float *p ; where p is a float pointer variable which stores the address of float variable.

char *p ; where p is a char pointer variable which stores the address of character variable.

Initialization of pointer variable:

Syntax

Here address of the normal variable is stored in a pointer variable.

Example:

int *p ;

int a=5 ;

p a

Address:100

 Here the address of the variable a is stored in the pointer variable p. Since pointer p knows the address

of a, p can directly access the variable a.

 *p represents the value pointed by the pointer variable. (or) value at the pointer p

5 100

Data Structures/Dept Of CSE/SVCET

11

Example program:

#include<stdio.h>

int main()

{

int *p ;

int a=5 ;

p=&a ;

printf(“%d”, p); // Here p represents the address stored in the pointer. Hence 100 is printed

printf(“%d”, *p); // Here *p represents the value at pointer p. Hence value 5 is printed

return 0;

}

POINTERS AND ARRAYS:

 An array is a collection of elements of same data type.

 A pointer can be made to point to any of the element in an array.

Consider an integer pointer and an integer array.

int *p ;

int a[5]={1,2,3,4,5};

1 2 3 4 5

a[1] a[2] a[3] a[4] a[5]

p

 p = &a[1];

 The integer pointer p points to 1
st
 element in the array. (i.e) p points to a[1].

 If we increment a pointer, p points to the second element in the array(i.e) p points to a[2].

1 2 3 4 5

a[1] a[2] a[3] a[4] a[5]

p

Program:

#include<stdio.h>

int main()
{
int *p ;

int a[5] = {1,2,3,4,5} , i ;

p = &a[1];

for(i=1 ; i<=5 ; i++)

{

printf(“%d”, *p);

p++;

}

return 0;

}

Output:

1 2 3 4 5

Output:

100 5

Data Structures/Dept Of CSE/SVCET

12

POINTER ARRAY (or) ARRAY OF POINTERS

 Pointer array is an array containing pointers as its elements.

 Each pointer in the array points to any variable/array by storing the address of variable/array in

pointer.

 The Advantage of a pointer array is that, the pointers can be reordered in any manner without

moving the data items.

Example1:

#include<stdio.h>

int main()

{

int *p[3] ;

int a[3] = {1,2,3} , i ;

for(i=1 ; i<=3 ; i++)

{

p[i] = &a[i];

}

for(i=1 ; i<=3 ; i++)

{

printf(“Values in array is %d”, *p[i]);

}

return 0;

}

Example 2:

#include<stdio.h>

int main()

{

int *p[3] ;

int a=1, b=2, c=3 ;

p[1]=&a;

p[2]=&b;

p[3]=&c;

for(i=1 ; i<=3 ; i++)

{

printf(“Value of variables a b and c are %d”, *p[i]);

}

return 0;
}

Output:

1 2 3

Output:

1 2 3

Data Structures/Dept Of CSE/SVCET

13

SEARCHING:

 Searching is a processing of finding a given element from a set of elements.

 Searching is successful if the element is found or else it is unsuccessful

i) LINEAR SEARCH:

 Linear search is performed either in sorted or unsorted list.

 It is a process of searching a given element from the array linearly one by one until the nth element in

array.

 If the element is found, the position of that element is returned.

 If the element is not found in array, searching becomes unsuccessful.

ALGORITHM:

Linearsearch(A,n,x)

//A is an array which contains n elements

// x is a search element

flag=0

for i=1 to n

if x= = a[i]
write the position of x

flag = 1

break

end if

end for

if flag = = 0

Write element is not found

Example:

4 7 10 8 3

a[1] a[2] a[3] a[4] a[5]

Here n = 5, x = 10(search element)

Comparison 1:

i = 1 , 1 < = 5 => True

x = = a[i] => 10 = = a[1]

10 = = 4 => False

Comparison 2:

i = 2 , 2 < = 5 => True

x = = a[i] => 10 = = a[2]

10 = = 7 => False

Comparison 1:

i = 3 , 3 < = 5 => True

x = = a[i] => 10 = = a[3]

10 = = 10 => True

Position of the search element 10 is displayed. (i.e) The position 3 is displayed

Data Structures/Dept Of CSE/SVCET

14

𝑖=1

Complexity analysis for linear search:

Best case:

Search element matches with the first element

Number of comparisons: 1

Asymptotic complexity : T(n) = O(1)

Worst case:

Search element doesn’t exist

Number of comparisons: n

Asymptotic complexity : T(n) = O(n)

Average case:

Search element may be present at any position in array

Expected number of comparisons T(n) = ∑𝑛 𝑃𝑖 . 𝑖
1

Pi =
𝑛

T(n) =
1
∗
𝑛(𝑛+1)

𝑛 2

𝑛+1
T(n) =

2
T(n) = O(n)

ii) BINARY SEARCH:

 Binary search algorithm is the fast searching algorithm. It works on the principle of divide and

conquer.

 To perform binary search, the input elements should be in sorted order.

Binary Search algorithm:

BinarySearch(A,x,low,high)

// A is an array of n elements
// low =1 and high= n

while(low < = high)

mid = (low + high) / 2

if(x = = a[mid])

return mid

else if(x > a[mid])

low = mid +1

else
high = mid -1

end while

 Step1: In binary search, Initially our search range is the entire array. Hence, low points to 1
st
 position

and high points to n
th

 position.

 Step2: While the low < = high, find the position of the middle element. Compare of search element

with the middle element. If it matches, its position is returned.

 Step3: If the search element is greater than the middle element, Search range will become right side

of the middle element. Hence low is changed to mid+1. Goto step2

 Step4: If the search element is less than the middle element, Search range will become left side of the

middle element. Hence high is changed to mid-1. Goto step2

Data Structures/Dept Of CSE/SVCET

15

Example:

2 4 6 8 10

a[1] a[2] a[3] a[4] a[5]

Here n = 5, x = 8(search element)

low = 1, high =5

while (1<=5)

mid = (1+5)/2 => mid =3

2 4 6 8 10

a[1] a[2] a[3] a[4] a[5]

low mid high

if x = = a[mid] => if 8 = = a[3] => (i.e) 8 = = 6 =>False

else if x > a[mid] => 8 > a[3] => (i.e) 8 > 6 => True

Since search element 8 > middle element 6, search range will be on right side of middle element.

Hence, low = mid +1

2 4 6 8 10

a[1] a[2] a[3] a[4] a[5]

mid low high

Now low = 4 and high =5

While 4 < =5

mid = (4+5) / 2 => mid = 4

2 4 6 8 10

a[1] a[2] a[3] a[4] a[5]

mid low high

if x = = a[mid] => 8 = = a[4] => 8 = = 8 => True

Since the element is found, the position of the search element is returned and displayed.

Complexity analysis for binary search:

Best case:

If the search element is present in the middle position, Number of comparison = 1

Asymptotic complexity : T(n) = O(1)

Worst case:

Number of comparisons = log2n

Asymptotic complexity : T(n) = O(logn)

Average case:

Number of comparisons = log2n

Asymptotic complexity : T(n) = O(logn)

Data Structures/Dept Of CSE/SVCET

16

iii) FIBONACCI SEARCH

 The Fibonacci search technique is a method of searching a sorted array using divide and conquer

algorithm that narrows down possible locations with the aid of Fibonacci numbers .

 Fibonacci search divides the array into two unequal parts that have sizes that are consecutive Fibonacci

numbers

Algorithm:

Let a[1..n] be the input array and element to be searched be x.

1. Find the smallest Fibonacci Number greater than or equal n. Let this number be Fn. Let the two

Fibonacci numbers preceding it be Fn-1 and Fn-2 respectively.
2. While the array has elements to be inspected:

a. The position of the element which is to be compared is found by i = min(offset +Fn-2 , n).

Initially offset value is set to zero. In subsequent executions, offset is the difference between values

of old Fn and new Fn.

b. Compare x with the element which is at position i. If x = = element, return that position.
c. Else if x > element, the value of Fn will be the previous Fibonacci value from the current value.

The corresponding Fn-1 and Fn-2 values are changed accordingly and value of i is found. The

value in that position is compared. If it matches return that position.

d. Else if x < element, the value of Fn will be the 2
nd

 previous Fibonacci value from the current

value. The corresponding Fn-1 and Fn-2 values are changed accordingly and value of i is found.

The value in that position is compared. If it matches return that position.

e. When there is a single element remaining for comparison, (i.e.,) if Fn-1 = 1, compare x with that

remaining element. If match, return that position.

f. Goto step c

Example:

2 4 6 8 10 12

a[1] a[2] a[3] a[4] a[5] a[6]

Fibonacci series is 0, 1, 1, 2, 3,5,8,13,21,34……

Fibonacci number Fn = Fn-1 + Fn-2

Here n = 6, x = 8(search element)

The smallest Fibonacci number which is greater than n=6 is 8. Fn =8

Fn-1 = 5

Fn-2 = 3

Fn-2 Fn-1 Fn Offset i=min(offset+Fn-2, n) a[i] Comparison

3 5 8 0 i = min(0+3, 6)

i=3

a[3] =6 8> 6 => Fn changed to prev

Fibonacci value in next step

2 3 5 3 i = min(3+2, 6)

i = 5

a[5]=10 8<10 => Fn changed to 2
nd

prev Fibonacci value in

next step

1 1 2 3 i = min(3+1, 6)

i = 4

a[4] =8 8 = = 8 => The position of

search element 8 is

returned.

Data Structures/Dept Of CSE/SVCET

17

SORTING:

 Sorting is a process of arranging the set of elements either in ascending or descending order.

i) BUBBLE SORT:

 In bubble sort, for n elements, there will be a maximum of n-1 passes to make a sorted list of

elements. In each pass, each element is compared with its adjacent element in the array. If the k
th

element is greater than k+1
th

 element, Swapping is performed on those two elements. By this way all

the elements are compared.

 k is the number of comparison in each pass. In pass 1, Number of comparison =n-1, In pass 2,

number of comparison = n-2 and so on. After the end of each pass, the largest element will be settled
at the actual position in array. Hence, number of comparisons is reduced by 1 after each pass.

Algorithm:

Bubblesort(a, n)

// a is an array of n elements

for j = 1 to n-1

for k= 1 to n – j

if (a[k] > a[k+1])

swap (a[k] , a[k+1])

end if

end for

end for

write the array a

Example:

Pass 1: j=1

a[1] a[2] a[3] a[4] a[5]

6 4 8 5 2

a[1] > a[2] => 6 > 4 => True => Swap done

4 6 8 5 2

a[2] > a[3] => 6>8 => False

a[3] > a[4] => 8>5 => True => Swap done

4 6 5 8 2

a[4] > a[5] => 8>2=> True => Swap done

4 6 5 2 8

Pass 2: j=2

a[1] a[2] a[3] a[4] a[5]

4 6 5 2 8

a[1] > a[2] => 4>6 => False

4 6 5 2 8

a[2] > a[3] => 6>5 = True => Swap done

4 5 6 2 8

a[3] > a[4] => 6>2 => True => Swap done

4 5 2 6 8

Data Structures/Dept Of CSE/SVCET

18

Pass 3: j=3

a[1] a[2] a[3] a[4] a[5]

4 5 2 6 8

a[1] > a[2] => 4>5 => False

4 5 2 6 8

a[2] > a[3] => 5>2 = True => Swap done

4 2 5 6 8

Pass 4: j=4

a[1] a[2] a[3] a[4] a[5]

4 2 5 6 8

a[1] > a[2] => 4>2 => True=> Swap done

2 4 5 6 8

Elements in sorted order:

a[1] a[2] a[3] a[4] a[5]

2 4 5 6 8

ii) Selection sort:

 Selection sort algorithm selects the smallest element in array and exchange it with the 1
st
 element.

From the remaining set of elements, selects the smallest element and exchange it with 2
nd

 element and

so on.

 Initially k is the position of the minimum element. The kth element is compared with the remaining

elements in array and the position of actual minimum element is found. If that position is not equal to

k, then swapping of those two elements is done. This process is continued from k = 1 to n-1. By this

way, entire array is sorted.

Algorithm:

SELECTIONSORT(A,N)

// a is an array of n elements

for k = 1 to n - 1

min = k

for j = k +1 to n

if(a[j] < a[min])

min =j

end if

end for

if(min ! = k)

Swap (a[k] , a[min])

end if
end for

Data Structures/Dept Of CSE/SVCET

19

Example:

k=1, min = 1

6 4 8 5 2

a[1] a[2] a[3] a[4] a[5]

min

j=2 , a[2] < a[1] => 4 < 6 => True

min = 2

j=3, a[3] < a[2] => 8<4 => False

j=4, a[4] < a[2] => 5<4 => False

j=5 , a[5] < a[2] => 2<4 => True

min =5

since 1 ! = 5

swap a[1] and a[5]

2 4 8 5 6

a[1] a[2] a[3] a[4] a[5]

k=2, min =2

2 4 8 5 6

a[1] a[2] a[3] a[4] a[5]

min

j=3, a[3] < a[2] => 8 < 4 => False

j=4, a[4] < a[2] => 5 < 4 => False

j=5, a[5] < a[2] => 6 < 4 => False

Since 2 = = 2 , Swap not performed

2 4 8 5 6

a[1] a[2] a[3] a[4] a[5]

k=3, min =3

2 4 8 5 6

a[1] a[2] a[3] a[4] a[5]

min

j=4, a[4] < a[3] => 5< 8 => True

min = 4

j=5, a[5[< a[4] => 6 < 5 => False

since 4 ! = 3

swap a[3] and a[4]

2 4 5 8 6

a[1] a[2] a[3] a[4] a[5]

k=4, min =4

2 4 5 8 6

a[1] a[2] a[3] a[4] a[5]

min

Data Structures/Dept Of CSE/SVCET

20

j=5, a[5] < a[4] => 6< 8 => True

min = 5

since 5 ! = 4

swap a[4] and a[5]

2 4 5 6 8

a[1] a[2] a[3] a[4] a[5]

iii) INSERTION SORT:

 In insertion sort, the key element is chosen and that key element will be inserted at the appropriate

position by comparing all the elements to left of a key element.

 The first key element chosen will be 2
nd

 element, next is 3
rd

 element and it goes on upto n.(i.e) chosing

a key element ranges from 2 to n.

Algorithm:

Insertionsort(a,n)

// A is an array of n elements

for j= 2 to n // j represents the position of key element

key = a[j]

i = j – 1

while (i> 0 and key < a[i])

a[i + 1] = a[i]

i = i – 1

end while

a[i + 1] = key

end for

write a

Example:

j=2, key = 4

i = 1

6 4 8 5

a[1] a[2] a[3] a[4]

i

while 1>0 and 4<6 => True

a[2]=a[1] => a[2] = 6

i=0

6 6 8 5

0 a[1] a[2] a[3] a[4]

i

while 0 > 0 => False

a[0+1] = 4.

4 6 8 5

a[1] a[2] a[3] a[4]

Data Structures/Dept Of CSE/SVCET

21

j=3, key =8

i=2

while 2>0 and 8<6 => False

a[i+1] = key => a[3] = 8 => No changes here

j=4, key =5

i=3

4 6 8 5

a[1] a[2] a[3] a[4]

i

while 3>0 and key < a[3] => 5 < 8 => True

a[3+1]=a[3] => a[4]=8

4 6 8 8

a[1] a[2] a[3] a[4]

i=2,

4 6 8 8

a[1] a[2] a[3] a[4]

i

while 2> 0 and 5 < a[2] => 5 < 6 => True

a[2+1] = a[2] => a[3]=6

 4 6 6 8

a[1]

i=1,

a[2] a[3] a[4]

 4 6 6 8

 a[1]

i

a[2] a[3] a[4]

while 1>0 and 5< a[1] => 5< 4 => False

a[2] = key => a[2] = 5

4 5 6 8

a[1] a[2] a[3] a[4]

Data Structures/Dept Of CSE/SVCET

22

iv) SHELL SORT:

Step1: The current element element is compared with the another element which is at certain distance and

swapping is performed, if necessary.

Step 2: If swapping is not performed with a current distance, distance is reduced by half and step 1 continues

until distance becomes zero.

Algorithm:

Shellsort(a , n)

// a is an array of n elements

dist=n/2

repeat

repeat
swap=0

for i=1 to n-dist

if(a[i]>a[i+dist])

swap(a[i] , a[i+dist])

swap=1

end if

write a

end for

until swap=1

dist = dist/2

until dist!=0

Example:

6 4 8 5 2

a[1] a[2] a[3] a[4] a[5]

dist = 5/2 => dist = 2

swap=0

i =1

6 4 8 5 2

a[1] a[2] a[3] a[4] a[5]

i =2

i=3

a[1] > a[3] => False

6 4 8 5 2

a[1] a[2] a[3] a[4] a[5]

a[2] > a[4] => False

6 4 8 5 2

a[1] a[2] a[3] a[4] a[5]

a[3] > a[5] => True => Swap a[3] and a[5] , swap =1

6 4 2 5 8

a[1] a[2] a[3] a[4] a[5]

Data Structures/Dept Of CSE/SVCET

23

while(swap) => while(1)

Set swap =0

i =1

6 4 2 5 8

a[1] a[2] a[3] a[4] a[5]

a[1] > a[3] => True => Swap a[1] and a[3], swap=1

2 4 6 5 8

a[1] a[2] a[3] a[4] a[5]

i=2 and i=3

2 4 6 5 8

a[1] a[2] a[3] a[4] a[5]

a[2] > a[4] => False a[3]> a[5] => False

While(swap) => while(1)

Set swap=0

i =1, i=2 and i=3

2 4 6 5 8

a[1] a[2] a[3] a[4] a[5]

a[1]> a[3]=>F
a[2] > a[4] => F a[3]> a[5] => F

while(swap) => while(0)

dist= 2/2 => dist = 1

while(distance) => while(1)

swap=0

i=1,i=2, i=3

2 4 6 5 8

a[1] a[2] a[3] a[4] a[5]

a[1]>a[2] =>F a[2]>a[3] =>F a[3]> a[4] => True => Swap a[3] and a[4] , swap =1

2 4 5 6 8

a[1] a[2] a[3] a[4] a[5]

while(swap) => while(1)

swap =0

i=1, i=2, i=3, i=4

2 4 5 6 8

a[1] a[2] a[3] a[4] a[5]

a[1]>a[2]=>F a[2]>a[3]=>F a[3]>a[4]=>F a[4] > a[5] => F

Data Structures/Dept Of CSE/SVCET

24

while(swap) => while(0) => False

dist = 1/2 => dist = 0

while(dist) => while(0) => False

Sorted elements:

2 4 5 6 8

a[1] a[2] a[3] a[4] a[5]

v) QUICK SORT:

 Quick sort is otherwise called as partition exchange sorting

 It uses divide and conquer method.

Principle:

1. Choose any number in the array and name it as partition element or pivot element (P). For simplicity

we take the first number as the pivot element P.

2. With respect to P, divide the array into two partitions i.e., left, right partition. The numbers which are

less than P are placed in the left side of P. And the numbers which are greater than P are placed in the

right side of P, for eg., If the position of P is J, then it satisfies the following conditions.

i) Each number in the position from 1 to J-1 are less than or equal to P.

ii) Each number in the position from J+1 to n are greater than or equal to P.

iii) The Pivot element is placed in its proper position.

3. We can repeat the steps 1 and 2 for the left and right partition.

Algorithm:

qsort(left,right)

// left points to 1
st
 element in array and right points to n

th
 element in array

if(left<right)

j=partition(a,left,right);

qsort(left,j-1);

qsort(j+1,right);

end if

partition(a, left, right)

if(left<right)

pivot=a[left];

i=left;

j=right+1;

repeat

repeat

i++

until a[i]<pivot and i<=right

repeat

j--

until a[j]>pivot and j>=left

if(i<j)

interchange(a,i,j)

end if

until i<j

interchange(a,left,j);

return j;

Data Structures/Dept Of CSE/SVCET

25

Example:

6 4 8 5 2

a[1] a[2] a[3] a[4] a[5]

left =1 and right =5

qsort(1,5)

1<5

j = partition(a,1,5)

partition(1,5)

1<5

Pivot = a[1] => PIVOT = 6

a[1] a[2] a[3] a[4] a[5] 6

i j

Incrementing i

i=2, check a[2] < pivot => 4 < 6 => True => increment i

i=3, check a[3] < pivot => 8 < 6 => False => Stop incrementing i

Decrement j

j=5, check a[5]>pivot => 2>6 => False => stop decrementing j

6 4 8 5 2

a[1] a[2] a[3] a[4] a[5]

i j

if 3 < 5 => True

interchange a[3] and a[5]

6 4 2 5 8

a[1] a[2] a[3] a[4] a[5]

i j

Incrementing i, we get

i=4, check a[4] < pivot => 5<6 => True => increment i

i=5, check a[5] < pivot => 8 < 6 => False => Stop incrementing i

Decrementing j, we get

j=4, check a[4] > pivot => 5>6 => False => Stop decrementing j

6 4 2 5 8

a[1] a[2] a[3] a[4] a[5]

j i

if 5 < 4 => False

Interchange a[left] and a[j] and then return the position of j. Here left =1, so a[1] and a[4] is interchanged and

this function partition(1,5) returns 4.

5 4 2 6 8

a[1] a[2] a[3] a[4] a[5]

j i

6 4 8 5 2

Data Structures/Dept Of CSE/SVCET

26

j = 4
qsort(1, 3) , qsort(5,5)

We take,

qsort(1,3)

5 4 2 6 8

a[1] a[2] a[3] a[4] a[5]
1<3

j= partition(a,1,3)
partition(a,1,3) // left =1, right =3
pivot = a[1] => PIVOT = 5

5 4 2 6 8

a[1] a[2] a[3] a[4] a[5]

i j

Incrementing i, we get

i=2, check 4 < 5 => True => increment i

i=3, check 2 < 5 => True => increment i

i=4, check 6 < 5 => False => Stop incrementing i

Decrement j

j=3, check 2>5 => False => stop decrementing j

5 4 2 6 8

a[1] a[2] a[3] a[4] a[5]

j i

if 4< 3 => False

interchange a[left] and a[j]. (i.e) interchange a[1] and a[3] and the position of j is returned.

2 4 5 6 8

a[1] a[2] a[3] a[4] a[5]

j

j = 3
qsort(1, 2) and qsort(4,3)
we take

qsort(1,2)

1<2

j= partition(a,1,2)

partition(a,1,2) // Here left=1 and right =2

1<2

Pivot =a[1] => PIVOT = 2

2 4 5 6 8

a[1] a[2] a[3] a[4] a[5]

i j

Incrementing i, we get

i=2, check 4 < 2 => False => Stop incrementing i

Data Structures/Dept Of CSE/SVCET

27

Decrementing j, we get,

j=2, check 4>2 => True => Decrement j

j=1, check 2>2 => False => Stop decrementing j

2 4 5 6 8

a[1] a[2] a[3] a[4] a[5]

j i

if 2<1 => False

interchange a[first] and a[j]. Here both are a[1]. Hence no change occurs.

Position of j is returned which is 1.

j=1
qsort(1,0) => 1<0 => False

qsort(2,2) => 2<2 => False

Taking qsort(4,3) and qsort(5,5),

qsort(4,3) => 4<3 => False

qsort(5,5) => 5<5 => False

Elements in sorted order

2 4 5 6 8

a[1] a[2] a[3] a[4] a[5]

Data Structures/Dept Of CSE/SVCET

28

vi) MERGE SORT

 Merge sort follows divide and conquer method.

 It involves partitioning a set of elements based on middle element recursively until we get a single

element.

 After that, the partitions are merged by sorting the elements in each partition in recursive manner

thereby getting a sorted list of elements.

Algorithm:

// partition performed upto 1 or 2 elements

partition(low, high)

// low points to 1
st
 element in array and high points to n

th
 element in array

if(low<high)

mid=(low+high)/2;

partition(low,mid);

partition(mid+1,high);

msort(low,mid,high);

end if
// Performs sorting and merging

msort(low, mid, high)

m=low;

i=low;

j=mid+1;

// compare two partition

while(i<=mid && j<=high)

if(a[i]<a[j])

b[m]=a[i];

i=i+1

else
b[m]=a[j];

j=j+1;

m=m+1;

end while

//append remaining element

if(i<=mid)

for(k=i;k<=mid;k++)

b[m]=a[k];

m=m+1;

end for

else if(j<=high)

for(k=j;k<=high;k++)

b[m]=a[k];

m=m+1;

end if

// copy to a[]

for(k=low;k<=high;k++)

a[k]=b[k];

end for

Data Structures/Dept Of CSE/SVCET

29

8

6 4 8

5 2

6 4 8

5 2

6 4

6 4 8

5 2

8

6 4

Example:

6 4 8 5 2

a[1] a[2] a[3] a[4] a[5]

 Partition is performed until we get the single element.

partition(1,5)

low=1, high=5

1<5

mid = (1+5)/2 =>mid = 3

partition(1, 3) , partion(4, 5)

6 4 8 5 2

a[1] a[2] a[3] a[4] a[5]

a[1] a[2] a[3] a[4] a[5]

partition(1,3)

low=1, high=3

1<3

mid = (1+3)/2 => mid =2

partition(1,2) , partition(3,3)

6 4 8 5 2

a[1] a[2] a[3] a[4] a[5]

a[1] a[2] a[3] a[4] a[5]

a[1] a[2] a[3]
partition(1,2)

low = 1 , high =2

mid =(1+2)/2 => mid = 1

partition(1,1) and partition(2,2)

6 4 8 5 2

a[1] a[2] a[3] a[4] a[5]

a[1] a[2] a[3] a[4] a[5]

6 4

a[3]

a[1] a[2]

a[1] a[2]

Data Structures/Dept Of CSE/SVCET

30

4

partition(1,1) => 1< 1 => False, since there is only one element

partition(2,2) => 2< 2 => False

partition(3,3) => 3<3 => False

 Merging of partitions:

Taking partition(1,2)

In this low =1 , mid=1 and high =2

6 4

a[1] a[2]

i j

msort(1,1,2)

When comparing the two elements, 4<6, Hence, 4 is stored in b array and j moves to next position 3.

b[1] b[2]

m

Since there is no element at position 3, the remaining element is stored in b array.

4 6

b[1] b[2]

Copy the elements of b array to a array

4 6

a[1] a[2]
Taking, partition(1,3)

In this, low =1, mid=2 and high =3

 8

a[1]

i

a[2] a[3]

j

4 < 8 => True=> 4 is stored in 1
st
 position of b array. i incremented to 2.

6<8 => True => 6 is stored in 2
nd

 position of b array. i incremented to 3.

Since there is no element to compare further, the remaining element 8 is stored in 3
rd

 position in b array.

4 6 8

b[1] b[2] b[3]

Copy the elements of b array to a array

4 6 8

a[1] a[2] a[3]

Taking partition(4,5)

msort(4,4,5)

5 2

a[4] a[5]

i j

4 6

Data Structures/Dept Of CSE/SVCET

31

4 6 8

2 5

4 6 8

2 5

2

When comparing the two elements, 2<5, Hence, 2 is stored in b array and j moves to next position 6.

b[4] b[5]

m

Since there is no element at position 3, the remaining element is stored in b array.

2 5

b[4] b[5]

Copy the elements of b array to a array

2 5

a[4] a[5]

Taking partition(1,5)

msort(1,3,5)

a[1] a[2] a[3] a[4] a[5]

i j

When comparing the two elements a[1] and a[4], a[4]< a[1] => 2<4 and hence 2 is stored in 1
st
 position of b

array and j incremented to next position 5

a[1] a[2] a[3] a[4] a[5]

i j

When comparing the two elements a[1] and a[5], a[1]< a[5] => 4<5 and hence 4 is stored in 2nd position of b

array and i incremented to next position 2

a[1] a[2] a[3] a[4] a[5]

i j

When comparing the two elements a[2] and a[5], a[5]< a[2] => 5<6 and hence 5 is stored in 3
rd

 position of b

array and j incremented to next position 6

a[1] a[2] a[3] a[4] a[5] 6

i j

Since there is no elements at position 6, the remaining elements in 1
st
 partition is stored in 4

th
 and 5

th
 position

of b array respectively.

Finally the elements of b array is copied to a array

2 4 5 6 8

a[1] a[2] a[3] a[4] a[5]

2 5

4 6 8

4 6 8

2 5

Data Structures/Dept Of CSE/SVCET

32

vii) RADIX SORT

 Radix sort is an non-comparative sorting algorithm

 Radix sort is also called as bucket sort

Algorithm:

Find the maximum element in the array

Find the number of digits in that element, say w

for k = 1 to w // k represents the number of digits in that number

for i = 1 to n

L = (a[i] / pow(10, k-1)) % 10

Enqueue(Q[L] , a[i])

end for

set j =1

for i = 0 to 9

while(Q[i] !=empty)

a[j++] = dequeue(Q[i])

end while

end for

end for

Example:

Consider the array

150 213 002 041

a[1] a[2] a[3] a[4]

The maximum element in the array is 213.

Number of digits in this number is 3. (i.e) w=3

Q[0]

Q[1]

Q[2]

Q[3]

Q[4]

.

.

Q[9]

Traceout:

i) Storing the elements in array to the bucket based on the unit digit.

k=1, 1<=3

i =1

L = (a[1] / pow(10,0)) % 10

L = 150 % 10 => L =0

Q[0]=150

i =2
L = 213 % 10 => L =3
Q[3]=213

i =3

L = 002 % 10 => L =2

Q[2]=002

i =4
L = 041 % 10 => L =1

Q[1]=041

150

041

002

213

Data Structures/Dept Of CSE/SVCET

33

Removing elements from bucket and store in array

150 041 002 213

a[1] a[2] a[3] a[4]

ii) Storing the elements in array to the bucket based on the tenth digit.

Q[0]

Q[1]

Q[2]

Q[3]

Q[4]

Q[5]

.

.

Q[9]

k=2, 2<=3
i =1, a[1]=150

L = (a[1] / pow(10,1)) % 10

L = (150/10) % 10 => L = 15 % 10 => L=5

Q[5]=150

i =2, a[2]=041

L =4

Q[4]=041

i =3, a[3]=002

L = 0

Q[0]=002

i =4, a[4]=213

L =1

Q[1]=213

Removing elements from bucket and store in array

002 213 041 150

a[1] a[2] a[3] a[4]

iii) Storing the elements in array to the bucket based on the hundredth digit.

Q[0]

Q[1]

Q[2]

Q[3]

Q[4]

.

.

Q[9]

002

213

041

150

002 041

150

213

Data Structures/Dept Of CSE/SVCET

34

k=3, 3<=3
i =1, a[1]=002

L = (a[1] / pow(10,1)) % 10

L = (002/100) % 10 => L = 0 % 10 => L=0

Q[0]= 002

i =2, a[2]=213

L =2

Q[2]=213

i =3, a[3]=041

L = 0

Q[0]=041

i =4, a[4]=150

L =1

Q[1]=150

Removing elements from bucket and store in array

002 041 150 213

a[1] a[2] a[3] a[4]

viii) HEAP SORT:
// CREATES HEAP

heapify(a,n)
for i=n/2 to 1

adjust(a,i,n);

end for
// ADJUST THE HEAP TO SATISFY HEAP PROPERTY

adjust(a,i,n)

j=2*i;

key=a[i];

while(j<=n)

if((j<n)&&(a[j]<a[j+1]))

j=j+1

end if

if(key>a[j])

break

end if

a[j/2]=a[j]

j=2*j

end while

a[j/2]=key

// PERFORMS SORTING OPERATION

hsort(a, n)

heapify(a,n);

for i=n to 2

swap(a[i],a[1])

adjust(a,1,i-1)

end for

Data Structures/Dept Of CSE/SVCET

35

Example:
In max heap, the parent node must be larger than its child nodes.

6 4 8 5 2

a[1] a[2] a[3] a[4] a[5]

6

4 8

5 2

heapify(a,5)

i=2, 2>=1

adjust(a,2,5)

adjust(a,2,5)

j=2*2 => j=4

key = a[2] => key = 4

while(4<=5)

if 4<5 and a[4] < a[5] => False

if 4> 5 => False

a[2] = a[4] => a[2] = 5

j=2*j => j=8

while(8<=5) => False

a[4] =4

6 5 8 4 2

a[1] a[2] a[3] a[4] a[5]

6

5 8

4 2

i=1, 1>=1

adjust(a,1,5)

adjust(a,1,5)

j=2*1 => j=2

key = a[1] => key =6

while(2<=5)

if(2<5 and a[2]<a[3]) => True

j=3

if 6> a[3] => 6>8 => False

a[1]=a[3] => a[1]=8

j=2*3=> j=6,

while(6<=5) => False

a[3]=6

8 5 6 4 2

a[1] a[2] a[3] a[4] a[5]

Data Structures/Dept Of CSE/SVCET

36

Hence we created the heap such that, the parent node is higher than its child nodes.

8

5 6

4 2

Heap sort:

i=n => i = 5 , 5>=2

Swap(a[5], a[1])

Swap the last element in heap with the root element 8. Then, delete the last element in heap which is 8 and

then place it in array.

2 5 6 4 8

a[1] a[2] a[3] a[4] a[5]

Adjust remaining elements a[1] to a[4]

2 6

5 6 => 5 2

4 4

6 5 2 4 8

a[1] a[2] a[3] a[4] a[5]
i=4, 4>=2

Swap(a[4] , a[1])

Swap the last element in heap with the root element 6. Then, delete the last element in heap which is 6 and

then place it in array.

4 5 2 6 8

a[1] a[2] a[3] a[4] a[5]

Adjust remaining elements a[1] to a[3]

4 5

5 2 => 4 2

5 4 2 6 8

a[1] a[2] a[3] a[4] a[5]
i=3, 3>=2

Swap(a[3] , a[1])

Swap the last element in heap with the root element 5. Then, delete the last element in heap which is 5 and

then place it in array.

2 4 5 6 8

a[1] a[2] a[3] a[4] a[5]

Adjust remaining elements a[1] to a[2]

2 4

4 => 2

Data Structures/Dept Of CSE/SVCET

37

4 2 5 6 8

a[1] a[2] a[3] a[4] a[5]
i=2, 2>=2

Swap(a[2] , a[1])

Swap the last element in heap with the root element 4. Then, delete the last element in heap which is 4 and

then place it in array.

2 4 5 6 8

a[1] a[2] a[3] a[4] a[5]

i=1, 1>=2 => False

Sorted list of elements:

2 4 5 6 8

a[1] a[2] a[3] a[4] a[5]

TIME COMPLEXITY OF THE SEARCHING AND SORTING ALGORITHMS

Technique Best case Average case Worst case

Searching

1. Linear search Ω (1) θ (n) O(n)

2. Binary search Ω (1) θ (logn) O (logn)

Sorting

1. Merge sort Ω (nlogn) θ (nlogn) O(nlogn)

2. Quick sort Ω (nlogn) θ (nlogn) O(n
2
)

3. Heap sort Ω (nlogn) θ (nlogn) O(nlogn)

4. Bubble sort Ω (n) θ (n
2
) O(n

2
)

5. Selection sort Ω (n
2
) θ (n

2
) O(n

2
)

6. Insertion sort Ω (n) θ (n
2
) O(n

2
)

7. Shell sort Ω (nlogn) θ (n
2
) O(n

2
)

8. Radix sort Ω (n) θ (n) O(n)

Data Structures/Dept Of CSE/SVCET

1

CST35 - DATA STRUCTURES

UNIT – 1 TWO MARKS

1. Define Data structures. (or) What is the need of data structure?

 Data Structure is a method of organizing large amount of data more efficiently, such that any

operation on that data becomes easy. It also represents the logical relationship between the

elements.

2. What are the types of data structure?

i) Primary Data Structures

 Constants

 Pointers

ii) Secondary Data Structures

 Static data structures

o Array

o Structures

 Dynamic data structures

o Linear data structures
 Stack, Queue, Linked list

o Non-linear data structures
 Trees, Graph

3. What is a primary data structure?

 It is a basic data structures that directly operate upon the machine instructions.

 All the basic constants (i.e integers, floating point numbers character constants, string constants)

and pointers are considered as primary data structure.

4. Define static data structures

 A data structures formed when the number of data items is known in advance is referred as static

data structure or fixed size data structure.

 Eg. Arrays ,structures.

5. Define dynamic data structures

 A data structure formed when the number of data items are not known in advance is known as

dynamic data structure or variable size data structure

6. Define linear data structure

 Linear data structure is data structure having a linear relationship between its adjacent elements.

Stack, Queue, Linked lists are examples of linear data structure.

7. Define non-linear data structure.

 Non-linear data structures are data structures that don’t have a linear relationship between its

adjacent elements but have a hierarchical relationship between the elements. Trees and graphs are

examples of nonlinear data structures.

8. Define algorithm

 Algorithm is a sequence of unambiguous instructions to solve a problem.

 A problem may have many solutions/algorithm. We need to select the best algorithm which is

suitable for a given problem.

 After the algorithm for the problem is chosen, it is converted to program.

Data Structures/Dept Of CSE/SVCET

2

9. What are the properties of algorithm ?

 Input: Algorithm may take zero or more input

 Output: Algorithm always produces a single output

 Definiteness: Every instruction in an algorithm must be clear and unambiguous

 Finiteness : For all possible inputs, algorithm must produce result in finite steps

 Effectiveness: The algorithm must be feasible

10. List out the phases of program creation?

 Requirements

 Design

 Analysis

 Refinement and Coding

 Verification

11. What are the basic operations of data structures?

 Traversing

 Searching

 Sorting

 Insertion

 Deletion

 Merging

12. State the need for algorithm analysis

 Since a problem may have many algorithms, Comparing one algorithm with another is performed

based on the amount of computing resources used by algorithm. By analyzing the algorithm, best

algorithm for the problem can be chosen based on time complexity and the space complexity.

13. What is an array?

 Array is a collection of elements of same data type that are stored under a common name.

 The elements of array are stored in contiguous memory location.

14. Why do we use a Multidimensional array?

 A multidimensional array can be useful to organize subgroups of data within an array. In addition to
organizing data stored in elements of an array, a multidimensional array can store memory

addresses of data in a pointer array and an array of pointers.

 Syntax:

o datatype arrayname[size 1][size 2][size 3]……[size n];

 Example:
o int a[4][4][4] ; where a is a three dimensional array of int type and can hold 64

elements.

15. What are the various algorithmic notations?

Name of the algorithm : Each algorithm is given by its name

Data required for the algorithm: Data required for executing an algorithm is given as arguments to

the algorithm

Comments : It describes the data passed to the algorithm or the steps of an algorithm

Steps of the algorithm: The sequence of steps which is performed by the algorithm

Read => Used to read the values

Write => Used to display the values

Data Structures/Dept Of CSE/SVCET

3

16. Define time complexity with a suitable example.

 It is the total amount of time required by an algorithm to complete its execution. It is also called

as running time or execution time of an algoritm

 Time complexity depends on input data, read and write speed of machine etc

 Example: for i=1 to n

x=x+1

end for

Number of times loop executed = n => T(n) = O(n)

17. What is the use of space complexity?

 It is the amount of memory resources utilized to execute an algorithm

 The memory is required to store program instructions, store variables, constants etc

18. Mention the use of pointer array.

 The Advantage of a pointer array is that, the pointers can be reordered in any manner without

moving the data items.

 By storing the address of the array element in a pointer, we can directly access that element in
the array

19. What is an multidimensional array?

 An array with more than one subscript is called multi dimensional array.

 Multidimensional arrays are slower in execution than one dimensional arrays.

Example:

 int a[4][4][4] ; where a is a three dimensional array of int type and can hold 64 elements.

20. What do you meant by sorting?

 Sorting a sequence of elements involves rearranging them in either ascending or descending

order depending upon the relationship among the elements.

21. What is the necessity for sorting technique?

 All data processing requires accessing records efficiently and quickly.

 Search techniques are most efficient only when the data items are sort according to some

specified keys.

 If the list/file is not sorted, searching a record takes more time when the list/file is large.

22. What are the factors to be considered while choosing a sorting technique?

 Running time of the sorting technique

 Memory space needed for the sorting technique

 Number of comparisons required for sorting the list

 Programming time

23. What is meant by internal sorting?

 An internal sort is a sorting process that takes place entirely within the main memory of a computer.

 This is possible whenever the data to be sorted is small.

 For sorting larger data, it may be necessary to hold only small amount of data in memory at a time

 So, The rest of the data is normally held on some larger memory like a hard-disk.

24. When sorting method is said to be stable? Give example for stable and unstable sorting.

 A sorting method is said to be stable when it has minimum number of swaps

 Stable sorting techniques: Bubble sort, Insertion sort, Selection sort, Merge sort

 Unstable sorting techniques: Quick sort, Heap sort, Shell sort, Radix sort

Data Structures/Dept Of CSE/SVCET

4

25. What do you meant by searching?

 Searching is an operation to find the location of the given data in the array .

 Searching is said to be successful if the data is present otherwise said to be unsuccessful.

 There are three types of searching:

o Linear search

o Binary search

o Fibonacci search

26. What is meant by linear search?

 Linear search is otherwise called as sequential search .

 Let a be the array of N numbers and X be the element to be searched .

 Our aim is to find whether X is present or not by comparing all the elements in array from 1 to N.

27. What is meant by binary search?

 Binary search is implemented using sorted array. It splits the array into two sub arrays based on

middle element recursively.

 If the search element is a middle element, its position is returned or if it is less than the middle

element, searching is performed on the left side of middle element, else, searching is performed on

the right side of middle element.

28. What is meant by Fibonacci search ?

 The Fibonacci search technique is a method of searching a sorted array using divide and conquer

algorithm that narrows down possible locations with the aid of Fibonacci numbers .

 Fibonacci search divides the array into two parts that have sizes that are consecutive Fibonacci

numbers

29. What do you mean by performance analysis of an algorithm?

 It is a process of making evaluative judgement about the algorithms

 Performance analysis consider mainly execution speed, memory consumption of that algorithm

 Since there are multiple alternative algorithms will be available to solve a problem, we analyse and

select a best suitable algorithm based on our requirements.

30. Compare linear search and binary search.

Linear Search Binary Search

It is not as fast as binary search. It is faster than linear search.

The elements need not be inputed in sorted
order.

The elements must be inputed in sorted order.

Searching is performed in a sequential manner Searching is performed based on the middle
element in the array, recursively.

Time complexity is more Time complexity is less

31. Define Big oh(O) notation

Big Oh is defined as

The function f(n) = O(g(n)) if and only if there exists constants c and n0, such that

f(n) ≤ c * g(n) for all n ≥ n0. Here f(n) and g(n) are computation time of the algorithm

Example:

f(n) = 3n +2 ≤ 4*n for all n ≥ 2, where f(n) = 3n+2, c = 4 , g(n) =n and n0 = 2

Data Structures/Dept Of CSE/SVCET

5

32. Define Omega(Ω) notation

Omega is defined as

The function f(n) = Ω(g(n)) if and only if there exists constants c and n0, such that

f(n) ≥ c * g(n) for all n ≥ n0. Here f(n) and g(n) are computation time of the algorithm

Example:

f(n) = 3n +2 ≥ 3*n for all n ≥ 1, where f(n) = 3n+2, c = 3 , g(n) =n and n0 = 1

33. Define Theta(Ө) notation.

Theta is defined as

The function f(n) = Ө(g(n)) if and only if there exists constants c1, c2 and n0, such that

c1 * g(n) ≤ f(n) ≤ c2 * g(n) for all n ≥ n0. Here f(n) and g(n) are computation time of the algorithm

Example:

3*n ≤ 3n +2 ≤ 4*n for all n ≥ 2, where c1=3, c2=4, g(n) =n, f(n) = 3n+2, n0 = 2

34. Define heap.

 A heap is defined to be a complete binary tree with the property such that each parent node is larger

than its child nodes.

 The root node in heap is the largest element in the tree.

35. Define max heap.

 A max heap referred as descending heap of size n is defined as a complete binary tree of n nodes

such that the data in the each parent node is greater than its child nodes.

 The root node in heap is the largest element in the tree.

36. Define min heap.

 A min heap referred as ascending heap of size n is defined as a complete binary tree of n nodes such

that the data in the each parent node is lesser than its child nodes.

 The root node in heap is the smallest element in the tree.

37. How sorting is performed in heap sort?

Step1: Set of elements in array is adjusted according to the max heap property.

Step2: Then the root element is swapped with the last element. Then the last element is deleted from

heap and stored in array.

Step3: Then, Repeat the step 1 until heap has no element

38. Which is the fastest sorting technique & why?

 Quick sort technique is the fastest sorting technique.

 The advantage is that, The data can be moved to great distance in one move to place it in its exact

position as in final list which reduces unnecessary swaps.

39. Which is the fastest sorting technique & why?

 It follows divide and conquer technique.

 It divides the array into sub-array based on mid position recursively, until the we get a single
element.

 It, then conquers each sub-array by merging each sub-array recursively thereby forming the sorted
array

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

1

UNIT – 2

LINEAR DATA STRUCTURES:

 In linear data structure, elements will have a linear relationship with the adjacent

elements.

 Example: Stack, Queue, Linked list

STACK:

 Stack is an ordered collection of homogeneous elements, where insertion and deletion are

performed only at one end(top of the stack).

 Insertion of elements in stack is called PUSH

 Deletion of elements in stack is called POP

 Stack follows LIFO(Last In First Out) strategy. (i.e) The element which is pushed last

will be popped out first

 Stack act as a Static Data structure if it is implemented using arrays

 Stack act as a Dynamic Data structure if it is implemented using Linked list

 Initially top = -1, which implies that stack is empty

Stack[4]

Stack[3]

Stack[2]

Stack[1]

Stack[0]

Representation of stack of size 5 as an array

OPERATIONS OF STACK

i) Push operation:

 Push operation is used to insert the element at top of the stack.

 Before performing push operation, it is necessary to check the stackfull condition,

because if a stack is full, push operation cannot be performed.

 If Stack is not full, (i.e) there is some space available in stack, then, top pointer is

incremented by one and then the element will be pushed at the top of the stack.

Algorithm:

Push(element)

if (top = = size – 1)

Write “Stack is full. Can‟t perform push”

else

top = top + 1

stack [top] = element

end if

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

2

 Consider the size of stack is 3. Initially top = -1.

 Consider, We need to push the element 10 into the stack

o When we check the stack, we find that stack is not full. So we increment top by 1.

Hence top = 0. We store the element 10 in stack[0]

Stack[2]

Stack[1]

top Stack[0]

 We need to push the element 15 into the stack

o When we check the stack, we find that stack is not full. So we increment top by 1.

Hence top = 1. We store the element 15 in stack[1]

Stack[2]

top Stack[1]

Stack[0]

 We need to push the element 20 into the stack

o When we check the stack, we find that stack is not full. So we increment top by 1.

Hence top = 2. We store the element 20 in stack[2]

top Stack[2]

Stack[1]

Stack[0]

 We need to push the element 25 into the stack. When we check the stack, we find that

stack is full.(i.e) top = = size – 1 becomes true. So we can‟t push the element 25 unless

some of the elements from the stack is popped.

POP operation:

 Pop operation deletes the element at top of the stack.

 Before performing pop operation, it is necessary to check the stack empty condition,

because if a stack is empty, pop operation cannot be performed.

 If Stack is not empty, (i.e) there is some values are available in stack, then, element at top

of stack is popped out and top pointer is decremented by 1.

Algorithm:

Pop()

if (top = = – 1)

Write “Stack is empty. Can‟t perform pop”

else

element = stack[top]

top = top -1

return(element)

end if

10

15

10

20

15

10

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

3

 If pop operation is to be done, element at top of stack 20 is popped and top is

decremented by 1

Stack[2]

top Stack[1]

Stack[0]

 If pop operation is to be done, element at top of stack 15 is popped and top is

decremented by 1

Stack[2]

Stack[1]

top Stack[0]

 If pop operation is to be done, element at top of stack 10 is popped and top is

decremented by 1

Stack[2]

Stack[1]

Stack[0]

top -1

 Since top is -1, stack is empty. Hence further pop operation cannot be done.

Display:

 Display operation displays the element in the stack

 If there is no elements in stack, element can‟t be displayed

 If there are elements in stacks, it displays the elements from the top position of the stack
till the zeroth position

display()

if top = = -1

Write “ stack is empty. No elements to display”

else

for i = top to 0

Write stack [i]

end for

end if

APPLICATIONS OF STACK:

 Book in a table

 Shipment in cargo

 Plate on a tray

 Towers of hanoi

 Conversion of infix expression to postfix expression

 Evaluation of arithmetic expression

o An arithmetic expression consists of operands and operators

o Notations: Infix => operand operator operand

o prefix => operator operand operand

o Postfix => operand operand operator

15

10

10

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

4

ab*

stored in postfix are operators alone

expression

)

Here close bracket encountered, so all

symbols upto open bracket is popped and

ab b

a *

a a

Empty

(

Postfix expression Input token Operator stack

CONVERSION OF INFIX EXPRESSION TO POSTFIX EXPRESSION:

Algorithm for converting infix to postfix:
While(tokens are available) // token may be a alphabet or number or operator or „(„ or „)‟

ch = read(token)

if(ch = = „ („)

push(ch)

break

end if
if(ch = = „) „)

pop all operators until „(„ is encountered

break

end if
if (ch = = operand)

output(ch) (or) Write the operand in postfix expression

else
if (priority(ch) <= priority(stack[top])

element = pop()

output(element)

push(ch)

else
push(ch)

end while
write postfix expression

Example 1

Convert the infix expression (a * b) to postfix

(

(

*

(

*

(

*

(

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

5

Example 2:

((a + b) ^ c – (d*e) / f)

Operator stack Input token Postfix expression

Empty

Empty

(

Empty

(

a a

+ a

b Ab

)
+

(

(

^

c

-

//Here priority of – is less than ^ , so ^ is

popped from stack and stored in postfix

expression and – is pushed to stack in next

step

ab+

ab+

ab+c

ab+c

(

(

(

+

(

(

(

(

+

(

(

^

(

^

(

^

(

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

6

ab+c^

(ab+c^

d ab+c^d

* ab+c^d

* e

(
-

(

*)
(// Here close bracket encountered, so all
- symbols upto open bracket is popped and
(operators alone are stored in postfix

expression

-

(

/

// Here priority of operator / is greater than

- ,so / is pushed to a stack

f

ab+c^de

ab+c^de

ab+c^de*

ab+c^de*

ab+c^de*f

-

(

(

-

(

(

-

(

*

(

-

(

/

-

(

/

-

(

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

7

)

// Here close bracket encountered, so all

symbols until open bracket are popped out

and operators are stored in postfix

expression

ab+c^de*f/-

Stack is empty Tokens are not available ab+c^de*f/-

EVALUATION OF POSTFIX EXPRESSION USING STACK:

Algorithm for evaluating postfix expression:

While(tokens are available)

ch = read(token)

if(ch = = operand)

read ch

push(ch)

else if (ch = = operator)

y = pop()

x = pop()

result = x operator y

push(result)

else

write “invalid postfix expression”

end if

end while

value = pop()

write value

Example 1:

Postfix expression is ab*

Stack Input token

 a

// a is a operand. So, read the value for a. For (eg) a = 5. Then

push value of a to stack

 b

// b is a operand. So, read the value for b. For (eg) b = 7. Then

push value of b to stack

/

-

(

5

7

5

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

8

a

// a is a operand. So, read the value for a. For (eg) a = 5. Then push

value of a to stack

7

5

b

// b is a operand. So, read the value for b. For (eg) b = 7. Then

push value of b to stack

y =7
x = 5

+

// * is a operator. So, pop two values from stack. (i.e) pop 1
st
 value

and store it in y and pop 2
nd

 value and store it in x.

Find the result = x + y => result = 12

Push the result to the stack

c

// c is a operand. So, read the value for a. For (eg) c = 2. Then push

value of a to stack

y =2
x = 12

^

// ^ is a operator. So, pop two values from stack. (i.e) pop 1
st

value and store it in y and pop 2
nd

 value and store it in x.

Input token Stack

7

y =7
5 x = 5

*

// * is a operator. So, pop two values from stack. (i.e) pop 1
st

value and store it in y and pop 2
nd

 value and store it in x.

 Find the result = x * y => result = 35

Push the result to the stack

Example 2:

Postfix expression is ab+c^de*f/-

5

 7

 5

12

2

12

2

12

35

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

9

Find the result = x ^ y => 12 ^ 2 => 1100 ^ 0010 => result = 1110

result = 14. Push the result to the stack

14

d
// d is a operand. So, read the value for d. For (eg) d = 3. Then

3 push value of a to stack
14

e
2

// e is a operand. So, read the value for e. For (eg) e = 2. Then push
3

value of a to stack
14

2
y =2

3
x = 3

14

6

14

*

// * is a operator. So, pop two values from stack. (i.e) pop 1
st

and store it in y and pop 2
nd

 value and store it in x.

Find the result = x * y => result = 3 * 2 => result = 6

Push the result to the stack

f

value

3 // f is a operand. So, read the value for f. For (eg) f = 3. Then push
6 value of f to stack
14

3
y =3

6
x = 6

14

2

14

y =2

x = 14

12

Pop the value from stack and

display it.

Hence 12 is popped and displayed.

Value of the ab+c^de*f/- is 12

/

// / is a operator. So, pop two values from stack. (i.e) pop 1
st

value and store it in y and pop 2
nd

 value and store it in x.

Find the result = x / y => result = 6/3 => result = 2

Push the result to the stack

-

// - is a operator. So, pop two values from stack. (i.e) pop 1
st

value and store it in y and pop 2
nd

 value and store it in x.

Find the result = x - y => result = 14 – 2 => result= 12

Push the result to the stack

No token present

2

14

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

10

10

QUEUES:

 Queue is an ordered collection of homogeneous elements where insertion(enqueue) and

deletion(dequeue) takes place at two ends(front and rear).

 Enqueue operation is performed at rear

 Dequeue operation is performed at front

 Queue follows a strategy FIFO(First In First Out). (i.e) The element which is enqueued

first is dequeued from the queue first.

OPERATIONS OF QUEUE:

i) ENQUEUE:

 Enqueue of an element can be performed in the queue only if the space is available in

queue.

 Hence, before inserting an element, it is necessary to check the status of queue.

 If space is available in queue, the element will be inserted at the rear position in queue

Algorithm:

enqueue(int element)

if (front = = -1)

front = 0

end if

if (rear = = SIZE – 1)

write “ Queue is full. Can‟t perform enqueue”

else

rear = rear +1

Q[rear] = element

end if

Consider the SIZE of queue is 2. Initially, front = -1, rear = -1

Q[0] Q[1]

enqueue(10)

front = = -1 => True

front = 0

rear = = 1 => -1 = = 1 => false

rear = 0

Q[0] = 10

Q[0] Q[1]

front rear

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

11

8

enqueue(8)

front = = -1 => False

rear = = 1 => 0 = = 1 => false

rear = 1

Q[1] = 8

10 8

Q[0] Q[1]

front rear

enqueue(15)

front = = -1 => False

rear = = 1 => 1 = = 1 => True => Queue is full

ii) DEQUEUE:

 Dequeue of an element can be performed in the queue only if element is present.

 Hence, before performing dequeue, it is necessary to check the status of queue.

 If element is present in queue, the element is dequeued from the front.

Algorithm:

dequeue()

if (front = = -1)

Write “ Queue is empty. Can‟t dequeue elements”

else

Write “ The element dequeued is Q [front]

if (front = = rear)

front = rear = -1

else

front = front + 1

end if

end if

At present, Queue has elements

10 8

Q[0] Q[1]

front rear

dequeue()

front = = -1 => false

The element dequeued is 10

front = 1

Q[0] Q[1]

front rear

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

12

dequeue()

Front = = -1 => false

The element dequeued is 8

if 1 = = 1 => true

front = rear = -1

Q[0] Q[1]

Dequeue()

front = = -1 => true => Queue is empty. Can‟t dequeue elements

Display elements in a queue:

 Display operation displays the elements from the front of queue to the rear.

display()

if(front = = -1)

write “ Queue is empty”

else

for i = front to rear

write Q[i]

end for

end if

CIRCULAR QUEUE:

 Circular queue is similar to queue, except that the elements are arranged in circular

manner.

 Since the elements are in circular manner, the next element of the last position in queue is

the first element.

CQ [1]

CQ[0]

Initially front = rear = -1

i) ENQUEUE:

 Enqueue of an element can be performed in the queue only if the space is available in

queue.

 Hence, before inserting an element, it is necessary to check the status of queue.

 If space is available in queue, the element will be inserted at the rear position in queue

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

13

8 10

Algorithm:

enqueue(int element)

if (front = = (rear + 1) % MAX)

write “ Queue is full. Can‟t enqueue” // (i.e) front and rear are equal

break

end if

if (front = = -1)

front = rear = 0

else

rear = (rear + 1) % MAX

end if

CQ[rear] = element

Consider the SIZE of circular queue is 2. Initially, front = -1, rear = -1

enqueue(10)

if -1 = = 0 => false

if front = = -1 => true => front = rear = 0

CQ[0] = 10

CQ [1

CQ[0]

front rear

enqueue(8)

if front = = -1 => false

rear = (rear+1) % 2 => rear = 1 %2 => rear = 1

CQ[1] = 8

CQ [1]

rear

enqueue(15)

CQ[0]

front

if front = (1 + 1) % 2 => 0 = = 0 => Circular queue is full

]

10

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

14

ii) DEQUEUE:

 Dequeue of an element can be performed in the circular queue only if element is present.

 Hence, before performing dequeue, it is necessary to check the status of circular queue.

 If element is present in circular queue, the element is dequeued from the front.

Algorithm:

dequeue()

if (front = = -1)

Write “ Queue is empty. Can‟t dequeue elements”

else

Write “ The element dequeued is CQ [front]

if (front = = rear)

front = rear = -1

else

front = (front + 1) % MAX

end if

end if

Trace out:

At present, circular queue has following elements

CQ [1]

rear

CQ[0]

dequeue()

The element dequeued is 10

front = 1

dequeue()

The element dequeued is 8

front = rear = -1 => Circular queue is empty

Display:

 Display the elements in circular queue

display()

if (front = = -1)

write “ Queue is empty

while (front ! = rear)

write CQ[front]

front = (front + 1) % MAX

end while

write CQ [rear]

front

8 10

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

15

102 \ 0 20

LINKED LIST:

 Linked list is a dynamic data structure where its size can be varied during its use

 Adjacency between the elements of linked list are maintained by using links/pointers.

Link/ Pointer stores the address of next node

 Each element in a linked list is called as node

SINGLE LINKED LIST

Representation of node in a Single linked list

(Or)

newnode newnode

 Each node has two parts. Data part where the actual data is stored and the link part where

the address of next node is stored.

 (i.e) Each node contains pointer to the next node in list

 Each node has a name and a specific address, using that the node can be accessed

 Head is the empty node which points to the first node in the list. To make the head to

point to the first node in a list, address of the first node is stored in a head node.

 Head node doesn‟t store any data.

head node 1 node 2

Address: 100 Address: 102

Append operation in linked list:

 Append is used to append the node at end of the linked list.

 When there is no node in a linked list, head points to NULL

 When the first node is created, head pointer is made to point to the first node by storing the

address of that node in head.

 head is a pointer which should always points to 1
st
 node in the list.

 tail always points to last node. When there is only one node in list, both head and tail will be same

Append()

Create a node named as “newnode”

newnode data = value

newnode next = NULL

if head = = NULL

head = newnode

else

tail next = newnode

end if

tail = newnode

15 100

address of next node Data link Data

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

16

\ 0 30

\ 0 20

\ 0 20

\ 0 20

102 20 \ 0 30

102 20 \ 0 30

EXAMPLE:

Since there is no node initially *head=NULL

Append 20

Initially we need to create a empty node named as newnode

newnode

newnode

Address:100

If head = = NULL => True. Hence Address of newnode is stored in head

head = 100

newnode

head Address:100

tail

head Address:100

Append 30

Initially we need to create a empty node named as newnode

newnode

newnode

Address:102

If head = = NULL => False.

tail next = 102

tail newnode

head Address:100 Address:102

tail

head Address:100 Address: 102

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

17

15

102 20 \ 0 30

INSERTION IN A SINGLE LINKED LIST:

 A node can be inserted in a single linked list at any position

 If the newnode is to be inserted at 1
st
 position in the linked list, then the address of the present

head should be stored in next part of newnode. Then head is made to point to the newnode by

storing its address in head.

 P is a pointer which is used to point to the position where insertion need to be done.

Algorithm:

insert()

Create a node named as “newnode”

newnode data = value

newnode next = NULL

p= head

if pos = = 1

newnode next = head

head = newnode

else

for i = 1 to pos

prevnode = p

p = p next

end for

prevnode next = newnode

newnode next = p

end if

Example:

Insertion of element 15 at position 1

tail
head Address:100 Address: 102

we need to create a empty node named as newnode and store value in it

newnode

newnode

Address:104

if pos = = 1 => True

newnode next = 100

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

18

18

100 18

\ 0 30 102 20 100 15

106 15 102 20 \ 0 30

newnode tail

Address:104 head Address:100 Address: 102

head = 104

newnode tail

head Address:104 Address:100 Address: 102

Insertion of element 18 at position 2:

we need to create a empty node named as newnode and store value in it

newnode

newnode

Address:106

If pos = = 1 => False

P points to head node. Make the p as prevnode and Move the pointer p to position 2

prevnode tail

head Address:104 p Address:100 Address: 102

newnode

Address:106

DELETION OF ELEMENT IN A LINKED LIST:

 A node can be deleted in a single linked list at any position

 If the node is to be deleted at 1
st
 position in the linked list, then the head is made to point to

second node and 1
st
 node should be deleted

 P is a pointer which is used to point to the position where deletion need to be done.

\ 0 30 102 20 100 15

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

19

106 15 102 20 \ 0 30

100 18

100 18 102 20 \ 0 30

Algorithm:

delete()

p= head

if pos = = 1

head = p next

free(p)

else

for i = 1 to pos

prevnode = p

p = p next

end for

prevnode next = p next

if(p next = = NULL)

tail = prevnode

end if

free(p)

end if

Example:

Deletion of element at position 1

If pos = = 1 => True

head = 106

tail
p head Address:104 Address:100 Address: 102

Address:106

tail

head Address:106 Address:100 Address: 102

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

20

100 18 102 20 \ 0 30

100 18 102 20 \ 0 30

102 18 \ 0 30

102 18 \ 0 30

Deletion of element at position 2

p = head

tail

p head Address:106 Address:100 Address: 102

if pos = = 1 => False

Make p as prevnode and Move the pointer p to position 2

prevnode tail
head Address:106 p Address:100 Address: 102

prevnode tail
head Address:106 Address: 102

Displaying elements in a linked list:

Display()

p = head

while(p ! = NULL)

write p data

p = pnext

end while

prevnode tail
p head Address:106 Address: 102

while p ! = NULL => True

18 is displayed

p points to next node 30

while p ! = NULL => True

30 is displayed

p points to next location. (i.e) There is no node . Hence p points to NULL

while p! = NULL => False

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

21

20

newnode

head Address:100

20

CIRCULAR LINKED LIST:

 Circular linked list is similar to the single linked list. In circular linked list, the last node in the list

is connected to the first node by storing the address of the first node in the last node.

APPEND OPERATION IN CIRCULAR LINKED LIST:

 Append is used to append the node at end of the linked list.

 When there is no node in a linked list, head points to NULL

 When the first node is created, head pointer is made to point to the first node. The first node is

made to point to itself forming a circular list. Whenever a node is appended, the last node is made

to point to first node.

 head is a pointer which should always points to
1st

 node in the list.

 tail always points to last node. When there is only one node in list, both head and tail will be same

Append()

Create a node named as “newnode”

newnode data = value

if head = = NULL

head = newnode

else

tail next = newnode

end if

newnode next =head

tail = newnode

EXAMPLE:

Since there is no node initially *head=NULL

Append 20

Initially we need to create a empty node named as newnode

newnode

newnode

Address:100

If head = = NULL => True. Hence Address of newnode is stored in head

head = 100

20 100

head

tail

Address:100

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

22

30

Append 30

Initially we need to create a empty node named as newnode

newnode

newnode

Address:102

If head = = NULL => False.

tail next = 102 , newnode next =100

20 102 30 100

head

tail

Address:100

newnode

Address: 102

20 102 30 100

head

Address:100

tail

Address: 102

INSERTION IN A CIRCULAR LINKED LIST:

 A node can be inserted in a circular linked list at any position

 If the newnode is to be inserted at 1
st
 position in the linked list,then head is made to point to the

newnode by storing its address in head. Then the last node is made to point to the first node.

 p is a pointer which is used to point to the position where insertion need to be done.

ALGORITHM:

insert()

Create a node named as “newnode”

newnode data = value

p= head

if pos = = 1

newnode next = head

head = newnode

tail next = head

else

for i = 1 to pos

prevnode = p

p = p next

end for

prevnode next = newnode

newnode next = p

end if

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

23

tail

tail

15

100 15

100 15

EXAMPLE:

INSERTION OF ELEMENT 15 AT POSITION 1

20 102 30 100

head

Address:100

tail

Address: 102

we need to create a empty node named as newnode and store value in it

newnode

newnode

Address:104

if pos = = 1 => True

newnode next = 100

newnode

Address:104

head = 104

newnode

head Address:104

tail next = 104

15 100 20 102 30 104

head

newnode

Address:104

Address:100

tail

Address: 102

20 102 30 100

head

Address:100 tail

Address: 102

20 102 30 100

 Address:100 tail

Address: 102

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

24

18

INSERTION OF ELEMENT 18 AT POSITION 2:

we need to create a empty node named as newnode and store value in it

newnode

Address:106

If pos = = 1 => False

p points to head node. Make the p as prevnode and Move the pointer p to position 2

15 100 20 102 30 104

head

prevnode

Address:104

p

Address:100

tail

Address: 102

 15 106

 18 100 20 102 30 104

 prevnode

head Address:104

newnode

Address:106

p

Address:100

tail
Address: 102

DELETION OF ELEMENT IN A CIRCULAR LINKED LIST:

 A node can be deleted in a circular linked list at any position

 If the node is to be deleted at 1
st
 position in the linked list, then the head is made to point to second node

and last node is linked to the head node. Then the 1
st
 node will be deleted.

 p is a pointer which is used to point to the position where deletion need to be done.

ALGORITHM:

delete()

p= head

if head = = tail

free(p)

head = tail = NULL

else if pos = = 1

head = p next

tail next = head

free(p)

else

for i = 1 to pos

prevnode = p

p = p next

end for

prevnode next = p next

if(p next = = NULL)

tail = prevnode

end if

free(p)

end if

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

25

newnode

head Address:106 Address:100
tail

Address: 102

106 30 100 18 102 20

Example:

DELETION OF ELEMENT AT POSITION 1

If pos = = 1 => True

head = 106

 15 106

 18 100

 20 102 30 104

prevnode

p head Address:104

newnode

Address:106

Address:100

tail

Address: 102

tail next = 106 , free(p)

DELETION OF ELEMENT AT POSITION 2

p = head

If pos = = 1 => False

p points to head node. Then, Make the p as prevnode and Move the pointer p to position 2

 18 100 20 102 30 106

newnode tail

p head Address:106 Address:100 Address: 102

 18 100 20 102 30 106

prevnode tail

head Address:106 p Address:100 Address: 102

18 102 30 106

prevnode

head Address:106

tail

Address:102

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

26

prevnode

p head Address:106

tail

Address:102

106 30 102 18

DISPLAYING ELEMENTS IN A LINKED LIST:

Display()

p = head

while(p ! = NULL)

write p data

p = pnext

if p = = head

break

end if

end while

while p ! = NULL => True

18 is displayed

p points to next node 30

while p ! = NULL => True

30 is displayed

p points to next location. (i.e) head node . since p = = head, break executed.

DOUBLE LINKED LIST:

 Double linked list is a linked list where the elements can be traversed both in forward

direction and also in backward direction

Representation of node in a Double linked list

(Or)

newnode newnode

 Each node has three parts. Address of the previous node, data and address of next node

 By using the address of previous node, the previous node in the list can be accessed and

by using the address of next node, the next node in the list can be accessed

 (i.e) Each node contains pointer to the previous node and also next node in list

 Each node has a name and a specific address, using that the node can be accessed

Address of prev node data address of next node

prev data next

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

27

Append operation in linked list:

 Append is used to append the node at end of the linked list.

 When there is no node in a linked list, head points to NULL

 When the first node is created, head pointer is made to point to the first node by storing the

address of that node in head.

 Previous node address of the first node is always NULL

 tail always points to last node. When there is only one node in list, both head and tail will be same

Append()

Create a node named as “newnode”

newnode data = value

newnode next = NULL

if head = = NULL

newnode prev =NULL

head = newnode

else

tail next = newnode

newnode prev = tail

end if

tail = newnode

EXAMPLE:

Since there is no node initially *head=NULL

Append 20

Initially we need to create a empty node named as newnode

newnode

newnode

Address:100

If head = = NULL => True. Hence Address of newnode is stored in head

head = 100

newnode

head Address:100

\0 20 \ 0

 tail

head Address:100

\0 20 \ 0

 20 \ 0

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

28

\0 20 102

100 30 \ 0

Append 30

Initially we need to create a empty node named as newnode and store the value

 30 \0

newnode

If head = = NULL => False.

tail next = 102

newnode prev = 100

 tail newnode

head Address:100 Address:102

INSERTION IN A DOUBLE LINKED LIST:

 A node can be inserted in a double linked list at any position

Insertion at 1
st
 position:

 If the newnode is to be inserted at 1
st
 position in the linked list, head is made to point to the

newnode.

 Previous node address of newnode is made as NULL.

 Address of the present head (i.e) p, should be stored in next part of newnode. Address of newnode

is stored in Previous part of p.

Insertion at any position:

 P is a pointer which is used to point to the position where insertion need to be done.

 Both the forward and backward links are created to the new node which is inserted at certain

position.

Algorithm:

insert()

Create a node named as “newnode”

newnode data = value

newnode next = NULL

p= head

if pos = = 1

head = newnode

newnode prev = NULL

newnode next = p

p prev = newnode

else

for i = 1 to pos

prevnode = p

p = p next

end for

newnode prev = p prev

newnode next = p

pprevnext = newnode

pprev = newnode

end if

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

29

\0 20 102

100 30 \ 0

\0 15 100

104 20 102

100 30 \ 0

Example:

At present, link list has elements

 tail

p head Address:100 Address:102

Insertion of element 15 at position 1

we need to create a empty node named as newnode and store value in it

newnode

Address:104

if pos = = 1 => True

head = 104

newnode prev = NULL

newnode next = 100

p prev = 104

 newnode tail

head Address:104 Address:100 Address:102

Insertion of element 18 at position 2:

At present, link list has elements

Initially pointer p points to head node. Make the p as prevnode whenever p moves to next position. Move

p until the position where insertion is to be done.(i.e) p is moved to position 2.

 prevnode tail

head Address:104 p Address:100 Address:102

 we need to create a empty node named as newnode and store value in it

newnode

Address:106

if pos = = 1 => False

newnode prev = 104

newnode next = 100

pprevnext = 106

pprev = 106

100 30 \ 0

104 20 102

\0 15 100

 15 \ 0

 18 \ 0

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

30

\0 15 106

104 18 100

106 20 102

100 30 \ 0

\0 18 100

106 20 102

100 30 \ 0

 newnode tail

head Address:104 Address:106 Address:100 Address:102

DELETION OF ELEMENT IN A DOUBLE LINKED LIST:

 A node can be deleted in a single linked list at any position

 If the node is to be deleted at 1
st
 position in the linked list, then the head is made to point to

second node and 1
st
 node should be deleted

 P is a pointer which is used to point to the position where deletion need to be done.

Algorithm:

delete()

p= head

if pos = = 1

head = p next

head prev =NULL

free(p)

else

for i = 1 to pos
p = p next

end for

if p next = = NULL // Deletion of last node

p prev next = NULL

tail = p prev

else

p prev next = p next

p next prev = p prev

end if

free(p)

end if

Example:

At present, the linked list has elements,

 tail

head p Address:104 Address:106 Address:100 Address:102

Deletion of element at position 1

if pos = = 1 => True

head = 106

 tail

head Address:106 Address:100 Address:102

head prev = NULL

100 30 \ 0

106 20 102

104 18 100

\0 15 106

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

31

\0 18 100

106 20 102

100 30 \ 0

\0 18 102

106 30 \0

\0 18 102

106 30 \0

Deletion of element at position 2

if pos = = 1 => False

P points to head node. Move the pointer p to position where the deletion to be done. (i.e) pos 2

At present, elements in linked list are,

 tail

head Address:106 p Address:100 Address:102

if p next = =NULL => False

p prev next = 102

p next prev = 106

 tail

head Address:106 Address:102

Deletion at position 2

 tail

head Address:106 p Address:102

if p next = = NULL => True

p prev next = NULL

tail = 106

 18 \ 0

tail

head Address:106

Displaying elements in a double linked list:

displayforward()

p = head

while(p ! = NULL)

write p data

p = pnext

end while

displaybackward()

p = tail

while(p ! = NULL)

write p data

p = pprev

end while

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

32

\0 20

100 10 \ 0 20

LINKED STACK

 It is also called as implementation of stack using linked list.

 head is a pointer which initially points to NULL

 The head pointer specifies the top of the stack.

 Push operation is similar to insertion of element in linked list at position 1

Operations of stack:

i) PUSH OPERATION:

 push operation push the element to the top of the stack(head)

 Initially when there is no elements, head = NULL.

 If new element is to be pushed, new node is created and the element is stored.

 Address of the present head node is stored in next link of the newnode, thereby the new element

is inserted at 1
st
 position

 head is made to point to newnode.(i.e) 1
st
 node, which is a top of stack

Algorithm:

push (int element)

create a newnode

newnodedata = element

newnode next = head

head = newnode

push(20)

Initially we need to create a empty node named as newnode

newnode

head Address:100

push (10)

head Address:102 Address: 100

(top of stack)

POP OPERATION:

 pop operation removes the element at top of the stack

 If stack is empty, pop operation cannot be performed. (i.e) when head = NULL, pop can‟t be

performed

 Make the pointer p to point to 1
st
 node. Move the head to point to next location. Free the memory

pointed by p

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

33

100 10 \ 0 20

\0 20

Algorithm:

pop()

p = head

print “ the element popped is head data”

head = head next

free (p)

p Address:102 head Address: 100

free(p)

head Address:100

Display:

Display operation displays the elements in stack from the top of stack. (i.e) head

display()

p = head

while p ! = NULL

print “ p data”

p = p next

end while

LINKED QUEUE (or) Implementation of Queue using linked list.

 Initially *front =* rear = NULL.

 Enqueue is similar to append operation in linked list.

 Dequeue is similar to deleting the 1
st
 node in linked list.

i) ENQUEUE OPERATION:

 In enqueue operation, element is always inserted at the rear position.

Algorithm:

enqueue(int element)

create newnode

newnode data = element

newnode next = NULL

if (front = = NULL)

front = rear = newnode

else

rear next = newnode

rear = newnode

end if

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

34

\0 35

\0 20

102 20 \0 35

102 20 \0 35

Trace out:

enqueue(25)

Initially we need to create a empty node named as newnode

newnode

NULL

front rear newnode

Address:100

Front = = NULL => true

enqueue(35)

front rear newnode

Address:100

Initially we need to create a empty node named as newnode

newnode

Address: 102

front = = NULL => false

rear front newnode

Address:102

front rear newnode

Address:102

ii) DEQUEUE OPERATION:

 Dequeue of an element can be performed in the queue only if element is present.

 Hence, before performing dequeue, it is necessary to check the status of queue.

 If element is present in queue, the element is dequeued from the front.

\0 20

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

35

102 \0 35

Algorithm:

dequeue()

if (front = = NULL)

Write “ Queue is empty. Can‟t dequeue elements”

else

p = front

front = front next

Write “ deleted element is p data”

free(p)

end if

TRACE OUT:

dequeue()

if front = = NULL => false

Address:102

front rear

deleted element is 20

dequeue()

if front = = NULL => false

NULL

Address: 102

p front rear front

deleted element is 35

dequeue() => front = = NULL => true => queue is empty

DISPLAY:

 Display is used to display the elements in queue

display()

if(front = = NULL)

write “ Queue is empty”

else

p = front

while (p ! = NULL)

Write p data

p = p next

end while

p front

20

\0 35

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

36

SINGLE LINKED LIST PROGRAMS:

1. Function to count the number of nodes in a linked list.

Procedure:

 head is a pointer to the first node. P is also a pointer to 1
st
 node. Initialize count to zero.

 While p is not null, increment value of count and move the p to next position.

 When p points to null, return the value of count.

Algorithm:

int Count()

p = head

while (p ! = NULL)

count ++;

p = p next

end while

return count

2. Function to Search an element from a linked list
Procedure:

 P is a pointer which points to 1
st
 node in list.

 While p is not null, compare the value in p with x. If it matches, return 1. If it doesn‟t matches

move p to next position thereby compare all elements.

 If no match found with any of elements, return 0.

Algorithm:

int Search(node * head, int x) // head is a pointer to 1
st
 node, x is the element to be searched

p = head

while (p ! = NULL)
if (p data = = x)

return 1 // (i.e) element is present

end if

p = p next

end while

return 0 //(i.e) element is not present

3. Function to Merge two linked list
Procedure:

 p1 points to 1
st
 node in L1 and p2 points to 1

st
 node in L2.

 Move the pointer p1 to the last node in L1

 Link the last node of L1 to 1
st
 node of L2.

 Return the merged list

Algorithm:

Merge(node * head1, node * head2) // head1 and head2 are pointers to 1
st
 node in L1 and L2

p1 = head1, p2=head2 // p1 points to 1
st
 node in 1

st
 linked list and p2 points to 1

st
 node in 2

nd
 linked list

while(p1 next ! = NULL)

p1 = p1 next

end while

p1 next = p2

return (head1)

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

37

head1 p1 Address:100 p1 Address:102 p1 Address: 104

Consider Linked list 2 (L2)

\0 10 108 8

106 30 102 20 100 15

Consider Linked list 1 (L1)

head2 p2 Address:106 Address:108

4. Function to find the intersection point of two linked list L1 and L2 (i.e) L1 ∩ L2

Procedure:

 Get the count of L1

 Get the count of L2

 Traverse the larger linked list until the distance, such that, number of nodes in L1 and L2 are same.

 Now traverse, both the linked list simultaneously to find the intersection node in L1 and L2

 Algorithm:

Intersection(node * head1, node * head2)

c1 = count(L1)

c2 = count(L2)

if c1 > c2

d = c1 – c2 // d is the distance need to be traversed in larger linked list

get_intersectionnode()

else

d = c2 – c1

get_intersectionnode()

end if

get_intersectionnode()

p1 = head1

p2 = head2

p1 moves until distance d

while(p1 ! =NULL && p2 ! = NULL)

if (p1 data = = p2 data)

return p1 data

end if

p1 = p1 next

p2 = p2 next

end while

UNIT-II Data Structures/Dept of CSE/SVCET
Dp

38

5. Function to display n
th

 node in a linked list

Nthnode()

p = head // head and p are the pointers to the 1
st
 node in the linked list

for (i = 1 ; i < n ; i ++)

p = p next

end for

write p data

6. Function to copy one linked list to another.

Procedure:

 head 1 and head2 are the pointers to 1
st
 node in Liked list 1 (L1) and Linked list 2(L2).

 Initially pointer p1 points to 1
st
 node in L1.

 While there is a node in L1, data in L1 is copied to newnode. That newnode is attached to the L2.

This process is performed until there is no node in L1

Algorithm:

p1 = head1

head2 = NULL

while(p1 ! = NULL)

create newnode

newnode data = p1 data

newnode next = NULL

if(head = = NULL)

head2 = newnode

else

tail next = newnode

tail = newnode

p1 = p1 next

end while

Data Structures/Dept of CSE/SVCET

1

UNIT – 2 TWO MARKS

1. What is Stack?

 Stack is a linear and static data structure.

 Stack is an ordered collection of elements in which insertion and deletion of elements is

performed at only one end called Top.

 Initial condition of the stack Top=-1.

 It is otherwise called as LIFO (Last In First Out).

2. What are the various operations that can be performed on stack?

 In Stack, we can perform two operations namely Push and Pop.

Push: Push means inserting a new element into the stack. Insertion can be done by incrementing

top by 1.

Pop: Pop means deleting an element from the stack. Deletion can be done by decrementing top

by 1.

3. What do you mean by Top in Stack?

 Top is the pointer which always points the top element of the Stack.

 If Top =-1, then Stack is Empty.

 We can insert a new element into stack by incrementing top by 1.

 We can delete an element from stack by decrementing top by 1.

4. What are the applications of Stack? (Nov 13)

i. Matching of nested parenthesis in a mathematical expression.

ii. Conversion of infix to postfix.

iii. Evaluation of postfix.

iv. Towers of Hanoi

v. Shipment in cargo

vi. Arrangement of books/plates in table

5. What are the conditions that should be satisfied in the matching of nested parenthesis?

Matching of nested parenthesis should satisfy the following two conditions:

i. Number of opening parenthesis should be equal to the number of closing parenthesis.

ii. The closing parenthesis should be preceded by the matching opening parenthesis.

6. Define Expression, Operator and Operand?

Expression: Expression is the collection of operators and operands.

Operator: Operator is the symbol which performs mathematical operations on variables.

Operand: Operand is the constant or variable whose values may be int, real, char.

Data Structures/Dept of CSE/SVCET

2

7. What are the various types of operators based on number of Operands?

Based on number of operands, there are three types of operators.

i. Unary Operator: Unary operator depends upon only one operand.

ii. Binary Operator: Binary operator depends upon two operands.

iii. Ternary Operator: Ternary operator depends upon three operands.

8. What are types of Expression?

Expression is classified as three types according to position of operator with respect to the

operands. They are:

i. Infix: The operator is placed in between two operands. E.g.: A+B.

ii. Postfix: The operator is placed after the operands. E.g.: AB+.

iii. Prefix: The operator is placed before the operands. E.g.: +AB.

9. What do you mean by Hierarchy of Operators?

The order in which the arithmetic operators are evaluated is called Hierarchy of Operators. There

are two types. They are:

i. High Level Priority.

ii. Low Level Priority.

10. What is Queue?

 Queue is a linear and static data structure.

 Queue is an ordered collection of elements in which we can insert an element at one end

called Rear and delete an element at another end called Front.

 Initial condition of the stack Rear=Front=-1.

 It is otherwise called as FIFO (First In First Out).

11. What are the various operations that can be performed on Queue?

In Queue, we can perform two operations namely Insertion and Deletion.

Enqueue: Insertion can be done by incrementing Rear by 1.

Dequeue: Deletion can be done by incrementing Front by 1.

12. What do you mean by Queue empty?

If Queue has no data, then it is called as Queue Empty.

Queue may be empty on two conditions.

i. Front = Rear = -1 and

ii. Front = = Rear while performing dequeue.

13. What is Linked list?

 Linked list is a dynamic and linear data structure.

 Linked list is an ordered collection of elements in which each element is referred as a

Node.

 Node has two parts. Data field and link field.

(Or)

Node Node

address of next node Data link Data

Data Structures/Dept of CSE/SVCET

3

102 \ 0 20

14. What are various fields in a Linked list?

Each node has two fields namely

i. Data field or Information field and

ii. Address field or Link field.

Data Field: Data field contains the actual data.

Address Field: Address field contains the address of next node in list.

15. Define Head Pointer?

 Head pointer is the pointer which always points the first node in the list.

 Head pointer holds the address of the first node.

 Using Head pointer only we can move from first node to last node.

16. List the advantages and drawbacks of Double linked list.

Advantages:

 The elements in double linked list can be traversed both in forward and in backward

directions

 The deletion operation in double linked list is more efficient if pointer to the node to be
deleted in given

Drawbacks:

It requires extra space for storing the previous pointer.

Insertion and deletion takes more time than single linked list

17. What are the types of Linked List?

There are three types of Linked list. They are

i. Single Linked list, ii. Double Linked list iii. Circular Linked list.

18. What is Single linked list?

 In Single linked list, each node has data to be stored and one link to the next node.

 In Single linked list, we can move only in one direction from head pointer to Null pointer.

Each node has two fields namely

i. Data field or Information field and

ii. Address field or Link field.

It is otherwise called as Linear Linked list.

Representation of node in a Single linked list

head node 1 node 2

Address: 100 Address: 102

19. List out the application of a linked list

 Manipulation of polynomials

 Implementation of Stacks and Queues

 Sparse matrices

15 100

Data Structures/Dept of CSE/SVCET

4

\0 20 102

100 30 \ 0

20. What is Double Linked list?

 Double linked list is a linked list where the elements can be traversed both in forward

direction and also in backward direction

Representation of node in a Double linked list

(Or)

newnode newnode

Example:

 tail newnode

head Address:100 Address:102

21. What is Circular Single Linked list?

 In Circular Single linked list, the last node is connected to the first node.

 In Circular Single linked list, we can move only in one direction from head pointer to

Null pointer.

22. List the advantages and drawbacks of circular linked list.

Advantages:

 If we are at a node, we can to go to any node.But in linear list,it’s not possible to go to

previous node.

 It saves time in traversing from last node to 1
st
 node than in double linked list which

traverse entire list backwards

Drawbacks:

 It is not easy to reverse a list

 Accessing previous element cannot be done in single step.

23. What is Circular Double Linked list?

 In Circular Double linked list, the last node is connected to the first node.

 In Circular Double Linked list, we can move in both the direction from head pointer to

Null address or vice versa.

24. List out the advantages in using a linked list.

 It is a dynamic data structure

 It is not necessary to specify the number of elements in a linked list during its declaration

 Insertion and deletion is done at any place in linked list easily, only when it is needed,

which avoids wastage of memory

25. List out the disadvantages in using a linked list.

 Searching a particular element in list is difficult and time consuming

 Additional storage space is used for storing pointers

Address of prev node data address of next node

prev data next

Data Structures/Dept of CSE/SVCET

5

26. State the difference between arrays and linked list.

Arrays Linked List

Size of any arrays is fixed.(Static DS) Size of a linked list is variable based on
requirement(Dynamic DS).

It is necessary to specify the number of
elements during the declaration.

It is not necessary to specify the number of
elements during the declaration.

Insertion and deletion of element at
random position in array is complex

Insertion and deletion of element at
random position in linked list is simpler.

27. Convert the following infix expression to postfix expression/reverse polish notation

(a) A^B*C-D+E/F/(G+H)

Expression tree:

–

* +

^ C D /

A B E /

F +

G H

Postorder traversal gives a postfix expression => AB^C*DEFGH+//+–

b) (A+B)* (C^(D–E)+F) – G

 If parenthesis present, operator with high priority is moved out of parenthesis.

 If nested parenthesis present, innermost parenthesis is first executed.

(A+B) * (C^(D–E)+F) – G

=> (AB+) * ((C^(D–E) + F) – G)

=> (AB+) * ((C ^ (DE-) + F) – G)

=> (AB+) * ((CDE–) + F)^ – G)

=> (AB+) * ((CDE– F)^+ – G) =>(AB+) * (CDE–F^+G–)

=> AB+CDE–F^+G–*

28. List the Applications of queue

 Printing

 CPU scheduling

 Mail service

 Elevator

 Keyboard buffering

Data Structures/Dept of CSE/SVCET

6

29. Mention the advantages of representing stacks using linked list than arrays.

 It is not necessary to specify the number of elements to be stored in a stack during its

declaration.

 Insertions and deletions can be handled easily and efficiently.

 Linked list representation of stacks can grow & shrink in size without wasting the

memory space, depending upon the insertion and deletion that occurs in the list.

 Multiple stacks can be represented efficiently using a chain for each stack.

30. Define Priority Queue.

 Priority Queue is the ordered collection of elements which are placed on the priority.

 Insertion and deletion are done according to the priority.

There are two types of Priority Queue. They are

i. Ascending Priority Queue and

ii. Descending Priority Queue.

31. Define Dequeue.

 Dequeue is otherwise called as Double ended queue.

 In Dequeue, we can insert and delete at both ends either front or rear.

32. Define Ascending Priority Queue.

 In this elements are placed in ascending order.

 The first smallest element is placed in first position and second smallest element in
second position and so on.

 The new data item is inserted in priority queue without affecting the ascending order of

queue.

33. Define Descending Priority Queue.

 In this elements are placed in descending order.

 The first highest element is placed in first position and second highest element is placed

in second position and so on.

 The new data item is inserted in priority queue without affecting the descending order of

queue.

34. Define Input restricted Dequeue.

 It means we can insert the element only at one end and delete the elements at both ends.

35. Define Output restricted Dequeue.

 It means we can insert the elements in both ends and delete the elements at only one end.

36. List the basic operations carried out in a linked list.

The basic operations carried out in a linked list include.

 Creation of list, Insertion of an element, Deletion of an element, Searching of an element,

Traversal of the list.

37. What are the different ways to implement list?

 Array implementation of list

 Linked list implementation of list

UNIT-III Data Structures/Dept of CSE/SVCET

1

UNIT – 3

NON - LINEAR DATA STRUCTURES:

 In Non-linear data structure, elements will have a non-linear relationship with the other

elements.

 The elements are said to be Non-linear, if there is a possible way to skip some of the

elements in data structure, while traversing the elements.

 Example: Trees, Graph

TREES:

A tree T is defined as a finite set of one or more nodes such that

 There is one specially designated node called ROOT.

 The remaining nodes are partitioned into a collection of sub-trees (T1 ,T2 ,T3……Tn) of the

root, each of which is also a tree.

Properties of a Tree

1. Any node can be the root of the tree and each node in a tree has the property that there is

exactly one path connecting that node with every other node in the tree.

2. The tree in which the root is identified is called a rooted tree; a tree in which the root is not

identified is called a free tree.

3. Each node, except the root, has a unique parent.

4. A tree T can never be empty.

Example LEVEL Height or Depth

 A 0 1

B

C

1

2

D

E

F

G

2

3

H I

J
 3 4

Fig. Tree

UNIT-III Data Structures/Dept of CSE/SVCET

2

D

E F

H I

Tree terminologies:

 The nodes of a tree have a parent-child relationship. The root does not have a parent; but

each one of the other nodes has a parent node associated to it.

 A node which doesn‟t have children is called a leaf node or terminalnodes.

 A line from a parent to a child node is called a branch. If a tree has n nodes, one of

which is the root there would be n-1 branches.

Degree of a node:

 The number of sub-trees of a node is called its degree. The degree of A,B,C,D is 2, F is 1

and E,G,H,I, J is zero.

The degree of a tree :

 The degree of the tree is the maximum degree of the nodes in the tree.

Siblings:

 Nodes with the same parent are called siblings. Here B & C, D & E, F & G, H & I are all

siblings.

Level of the node:

 The level of a node is defined by initially letting the root at level zero. If a node is at level

L, then its children will be at level L+1.

Height of the tree:

 The height or depth of a tree is defined to be the maximum level of tree(L) plus 1.

 Height of tree H= L +1.

Forest:

 A set of trees is called forest; if we remove the root of a tree we get a forest. In the below

fig, if we remove A, we get a forest with three trees.

Fig.Forest (Sub-trees)

A
A

B B C
C

D

E F G

G

H I J
J

K L M
K L M

UNIT-III Data Structures/Dept of CSE/SVCET

3

A

B C

D F G

H

BINARY TREES

 A binary tree is a tree, which is, either empty or consists of a root node and two disjoint

binary trees called the left sub-tree and right sub-tree.

Fig. Binary Tree

 In a binary tree, no node can have more than two children.

 So every binary tree is a tree, not every tree is a binary tree.

 A tree can never be empty but a binary tree may be empty.

Properties of Binary tree:

 In any binary tree, the maximum number of nodes on level L is 2
L
 , where L ≥0.

 The maximum number of nodes possible in a binary tree of height H is 2
H
 -1.

 The minimum number of nodes possible in a binary tree of height H is h.

 The height of a complete binary tree with n number of nodes is log2(n+1).

Full binary tree

 A Full binary tree is a binary tree in which all intermediate nodes have same degree as 2

and all leaves are at the same level.

Fig. Full binary tree

UNIT-III Data Structures/Dept of CSE/SVCET

4

Complete binary tree

 A binary tree is said to be a complete binary tree if all its levels, except possibly the last

level, have the maximum number of possible nodes, and all the nodes in the last level

appear as far left as possible

Fig. Complete binary tree

Representation of a Binary Tree:

1. Linear Representation of a Binary Tree

 The linear representation of implementing a binary tree uses a one-dimensional array of

size (2^H)-1 where H is the depth or height of the tree.

 This type of representation is static (i.e) memory allocated initially is fixed. Hence the

size of the tree cannot be changed dynamically.

 In this representation, the nodes are stored level by level, starting from the zero level

where only the root node is present. The root node is stored in the first memory location.

Fig. Binary tree

Fig. Array representation of above binary tree

UNIT-III Data Structures/Dept of CSE/SVCET

5

0 G 0 0 F

C 0 B

A

0 D 0

0 H 0

Following rules can be used to decide the location of any node of a tree in the array assuming

that the array index starts from 1.

1. Store the root in 1
st
 location of the array.

2. If a node is in location i , where 1<i≤n

(a) PARENT(i)=[i/2] , for the node when i=1,ther is no parent.

(b) LCHILD(i)=2*i , If 2*i> n then i has no left child.

(C) RCHILD(i)=2*i +1 , If 2*i +1> n then i has no right child.

Advantages

 Given a child node, its parent node can be determined immediately. If a child node is at

location i in the array, then its parent is at location i/2.

 It can be implemented easily in languages in which only static memory allocation is

directly available.

Disadvantages

 Insertion or deletion of a node causes considerable data movement up and down the

array, using an excessive amount of processing time.

 Wastage of memory due to partially filled trees.

2. Linked List Representation

 The problems of sequential representation can be easily overcome through the use of a

linked list representation. Each node will have three fields LCHILD, DATA and

RCHILD. LCHILD points to left sub-tree and RCHILD points to the right sub-tree of

node.

The following figure is an example of linked storage representation of a binary tree.

Fig. Binary tree Fig. Linked representation of a binary tree

UNIT-III Data Structures/Dept of CSE/SVCET

6

Advantages:

 If one knows the address of the root node then from it any other node can be accessed.

 It allows dynamic memory allocation

Disadvantages

 Linked representation requires extra memory to maintain pointers.

 Its implementation algorithm is more difficult in languages that do not offer dynamic

storage techniques.

EXPRESSION TREE:

An expression tree is a tree which represent the arithmetic expression as a tree.In expression tree,

 Each operator node has exactly two branches.

 Each operand node has no branches; such trees are called expression trees.

The expression tree is constructed as follows:

i) In a given expression, find the priority of each operator.

ii) The operator with lowest priority is chosen as a root/parent node

iii) Left sub-tree of that operator will be expression to the left of operator and Right sub-tree of

that operator will be expression to the right of operator.

iv) Repeat the above step until expression tree is formed.

Example:

Consider an expression

A + B * C

In the above expression, + has low priority compared to *. Hence + taken as root node

Step 1:

+

A B*C

Step 2:

+

A *

B C

UNIT-III Data Structures/Dept of CSE/SVCET

7

Example 2:

Construct an expression tree for following expression (A+B*C) – (D*E).

Since – has a low priority, – is chosen as root.

–

(A+B*C) (D*E)

In expression (A + B * C), + has low priority. Hence + is chosen as parent.

–

+ (D*E)

A B*C

In B*C and D*E, there is only one operator, hence that operator act as a parent.

–

+ *

A * D E

B C

Example 3:

Construct an expression tree for following expression x^2+y/c*d–a.

Priority Operators Association

1 ^ Right to Left

2 * , / Left to Right

3 + , – Left to Right

 The operator with lowest priority in expression is + and - . Since the Association is left to

right. Expression should be processed from left to right.

+

x^2 y/c*d–a

 Since x ^ 2 has only one operator, that operator is chosen as parent. In y/c*d–a, – has

low priority. Hence – is chosen as parent. Left child of – is y/c*d and right child is a

+

^ –

x 2 y/c*d a

 In y/c*d, / and * have same priority. Since association is Left to Right, the expression is
processed from Left to Right

+ +

^ – ^ –

x 2 * a x 2 * a

y/c d / d

 Since y/c has only 1 operator, it act as parent y c

UNIT-III Data Structures/Dept of CSE/SVCET

8

TRAVERSALS OF A BINARY TREE

 Traversing a tree means processing the tree such that each node is visited only once.

 Let T be a binary tree, such that there are number of different ways to visit the nodes.

 The methods differ primarily in the order in which they visit the nodes.

 The three different traversals of T are Inorder, Preorder and Postorder traversals.

 In C, each node is defined as a structure of the following form:
struct node

{

int data;

struct node *lchild;

struct node *rchild;

}

typedef struct node NODE;

i) INORDER TRAVERSAL:

 It follows the strategy Left-Root-Right.

 In this traversal, if T is not empty, we first traverse (in order) the left sub-tree; Then visit

the root node of T and then traverse the right sub-tree.

 We may note that expression is in infix notation. The in-order traversal produces a left

expression then prints out the operator at root and then a right expression.

Algorithm

Inorder(T)

//Initially T points to the root node of binary tree, where each node has three fields lchild, data and rchild.

if T ≠ NULL then

call Inorder(T lchild)

print T data

call Inorder(T rchild)

end if

Example 1:

Recursion tree for the following tree:

A recursion tree is a tree, which

i) Traverse a tree from root node to the bottom till the leaf node

ii) Then, traverse the tree from left to right.

step1 T
A

B C

UNIT-III Data Structures/Dept of CSE/SVCET

9

–

+ *

A * D E

B C

Inorder(T lchild) Print “ A” Inorder(T rchild)

Inorder (B) Inorder(C)

Step2: T Step3: T

NULL Print “B” NULL NULL Print “C” NULL

 In above recursion tree, if we traverse from root to bottom and from left to right,We get

Inorder of the given tree is BAC

Example 2:

The Output is : C B D A F E G

Example 3:

Consider the binary tree given in the following figure.

Fig. Expression Tree

Tree, T initially is rooted at „– „;

 Since left(T) is not NULL; currently T points to „+‟;

 Since left(T) is not NULL; currently T points to „A‟;

 Since left (T) is NULL; we print data in T (i.e) A.

A

A

B E

C D F G

UNIT-III Data Structures/Dept of CSE/SVCET

10

A

 We then print root T i.e. „+‟. Now T points to „+‟

 We now perform in-order traversal of right (T) current T becomes rooted at„*‟.

 Since left(T) is not empty; current T becomes rooted at „B‟ since left(T) is empty; we visit
data in T i.e. B; check for right (T) which is empty, therefore we move back to parent tree. We

then print root T i.e. „*‟.

 Now Inorder traversal of right(T) is performed; which would give us „C‟.We then print root –

Then, in-order traversal of right(T) is performed which would give us „D‟, „*‟ and „E‟.

Therefore the complete listing is: A+B*C-D*E

ii) PREORDER TRAVERSAL:

 It follows the strategy Root-Left-Right.

 In this traversal, if T is not empty, we print the root node of T, then traverse the left sub-

tree and then traverse the right sub-tree.

 Preorder traversal of a given tree gives the prefix expression.

Algorithm

Preorder(T)
//Initially T points to the root node of binary tree, where each node has three fields lchild, data and rchild.

if T ≠ NULL then

print T data

call Inorder(T lchild)

call Inorder(T rchild)

end if

Example 1:

step1

Print “A” Preorder(B) Preorder(C)

Step2: T Step3: T

NULL Print “B” NULL NULL Print “C” NULL

 In above recursion tree, if we traverse from root to bottom and from left to right,We get

Preorder of the given tree as ABC

T
A

B C

UNIT-III Data Structures/Dept of CSE/SVCET

11

–

+ *

A * D E

B C

Example 2:

Consider the binary tree given in the following figure.

Preorder traversal of above binary tree gives –+A*BC*DE iii)

POSTORDER TRAVERSAL:

 It follows the strategy Left-Right-Root.

 In this traversal, if T is not empty, we traverse the left sub-tree and then traverse the right
sub-tree and then we print the root node of T

 Postorder traversal of a given tree gives the postfix expression.

Algorithm

Postorder(T)
//Initially T points to the root node of binary tree, where each node has three fields lchild, data and rchild.

if T ≠ NULL then

call Postorder(T lchild)

call Postorder(T rchild)

print T data

end if

Example 1:

step1: T
A

B C

A

Postorder(T lchild) Postorder(T rchild) Print “A”

Postorder (B) Postorder(C)

Step2: T Step3: T

NULL Print “B” NULL NULL Print “C” NULL

 In above recursion tree, if we traverse from root to bottom and from left to right, we get

Postorder of the given tree as BCA.

UNIT-III Data Structures/Dept of CSE/SVCET

12

D

C I

A G K

B E H J

–

+ *

A * D E

B C

Example 2:

Consider the binary tree given in the following figure.

Postorder traversal of above binary tree gives ABC*+DE*–

EXAMPLES FOR TREE TRAVERSAL:

Inorder Traversal : 5 10 15 20 25 30 40

Preorder Traversal: 20 10 5 15 30 25 40

Postorder Traversal :5 15

Example 2:

10 25 40 30 20

Inorder Traversal : A B C D E G H I J K

Preorder Traversal: D C A B I G E H K J

Postorder Traversal :B A C E H G J K I D

Example 1:
20

10 30

5 15 25 40

UNIT-III Data Structures/Dept of CSE/SVCET

13

BINARY SEARCH TREE(BST)

 A binary tree T is termed binary search tree or binary sorted tree,
if each node N of T satisfies the following property:

o “The value at N is greater than every value in the left sub-tree of N and is less than
every value in the right sub-tree of N”.

Fig. Binary Search Tree

Binary search tree operations:

The basic operation on a binary search tree(BST) include,

 Inserting data

 Deleting data

 Searching data

 Finding minimum element

 Finding maximum element

 Size of tree (or) Counting number of nodes in tree

i) Insertion of an element in BST:

 The insertion operation on a BST is one step more than the searching operation.

 To insert an element into BST, the tree required to be searched starting from the root
node. If „element‟ is found do nothing, otherwise „element‟ is to be inserted at the dead

end where the search halts.

Algorithm:

InsertBST(node *T, int element)

// „T‟ is the pointer to the root of the tree and „data‟ is the element to be inserted

if (T= = NULL)

//Create a node and return

T=newnode

T→data = element

T→lchild = NULL

T→rchild = NULL

else if (element<T→data)

Tlchild =InsertBST(Tlchild, element)

else if(element> T→data)

Trchild =InsertBST(Trchild, element)

else

print“ element is already exist

end if
return T

UNIT-III Data Structures/Dept of CSE/SVCET

14

 30 \ 0

 30 \ 0

 30

 30

Example:

Insert 30

Initially T = NULL

InsertBST(T, 30)

T = = NULL => True

Create newnode and make it as T

T T

Address:106

Here the left child of T and right child of T is NULL

Insert 20:

InsertBST(T, 20)

T = = NULL => False

20 < 30, so traverse left sub-tree of 30

InsertBST(NULL, 20)

T

Insert 35:

InsertBST(T, 35)

T = = NULL => False

35 > 30, so traverse right sub-tree of 30 T

Insert 40

InsertBST(T, 40)

T= = NULL => False

InsertBST(NULL, 35)

T

40 > 30, so traverse right sub-tree of 30

T rchild = InsertBST(T rchild, 40)

30 rchild = InsertBST(Address of 35, 40)

30
\0 30 \ 0

T
30

2

T 30

20 35

\0 20 \ 0

\0 20 \ 0

\0 20 \ 0

\0 35 \ 0

UNIT-III Data Structures/Dept of CSE/SVCET

15

 30

T 40> 30

InsertBST(Address of 35, 40)

 30

40>35

\0 35

T

T

Insert 25

25> 20

Insert 32 T 32> 30

30

20

35

32 <35

25 32 40

Insert 22

22> 20

\0 40 \0

T

30

20
35

40
25< 30 T

30

20
35

25
40

22< 30 T

30

20
35

22<25 25
40

22

\0 20 \ 0

\0 20 \ 0

UNIT-III Data Structures/Dept of CSE/SVCET

16

ii) Deletion of an element in BST:

 Deletion is the process whereby a node is deleted from the tree. Only certain nodes in a

binary tree can be deleted easily. (i.e) the node with 0 or 1 children can be deleted easily,

but, the node with 2 childrens cannot be deleted easily.

The node to be deleted can fall into any one of the following categories

 Case 1: Node may not have any children (ie, it is a leaf node)

 Case 2: Node may have only one child (either left / right child)

 Case 3: Node may have two children (both left and right child)

Algorithm:

DeleteBST(node *T, int element)

// „T‟ is the pointer to the root of the tree and „data‟ is the element to be inserted

if (T = = NULL)

print “ root empty”

if(element < T data)

T lchild = deleteBST(T lchild, element)

else if(element > T data)

T rchild = deleteBST(T rchild, element)

else

if(T lchild = = NULL && T rchild = = NULL) // Node to be deleted is leaf node

free(T)

else if(T lchild = = NULL) // Node to be deleted have only right child

temp = T rchild

free(T)

return temp

else // Node to be deleted have only left child

temp = T lchild

free(T)

return temp

end if

end if

// Node to be deleted have both left and right child

Find the minimum value at the right sub-tree of the node, which is to be deleted.

Replace that minimum value with the node to be deleted.

Free the minimum value node

UNIT-III Data Structures/Dept of CSE/SVCET

17

30

20
35

10 25
40

22

30

20
40

10 25

22

30

22
40

10 25

30

22
40

10

Example: Consider a Binary Search Tree

Case 2: Delete 35.

Since 35 is a node having only one child(right child), the right child of node 35 is copied and it is

returned. Node 35 is freed.

Case 3: Delete 20

Node 20 have both left and right sub- tree.

Hence, the minimum value in right sub tree is found, which is 22.

Now 22 should be replaced in place of 20.

Then, prev location of 22 is freed from tree.

Case 1 : Delete 25

Since 25 is a leaf node, it can be directly deleted and the node is freed from memory

UNIT-III Data Structures/Dept of CSE/SVCET

18

25<30
30

25>22 22
40

10 25

iii) Searching of an element in BST:

Searching an element in BST is much faster than searching data in arrays or linked lists.

 Searching starts from the root of the tree

 If the search key value is less than the value in root, then the search is done at left sub-tree

 If the search key value is greater than root, then the search is done at right sub-tree

 This searching should continue till the node with the search key value or null pointer(end of

the branch) is reached.

In case null pointer is reached, it is an indication of the absence of the node.

Example: Search an element 25 in following BST

Search element found at specified address

Example: Search an element 5 in following BST

5<30
30

5<10

5<22

10

22
40

25

NULL(Element not present)

Algorithm:

SearchBST((node *T, int element)

// „T‟ is the pointer to the root of the tree and „data‟ is the element to be inserted

if (T = = NULL)

print “ root empty”

if(element < T data)

SearchBST(T lchild, element)

else if(element > T data)

SearchBST(T rchild, element)

else

return T // The address of node T where the element found is returned

end if

UNIT-III Data Structures/Dept of CSE/SVCET

19

iv) Finding a minimum value in a BST

 The node with minimum value can be found in a BST by traversing the tree along the left

sub-tree until, left child of the node is not equal to null value.

Algorithm:

Minvaluenode(node * T)

while(T lchild ! = NULL)

T = T lchild

end while

return T data

v) Finding a maximum value in a BST

 The node with maximum value can be found in a BST by traversing the tree along the

right sub-tree until, right child of the node is not equal to null value.

Algorithm:

Maxvaluenode(node * T)

while(T rchild ! = NULL)

T = T rchild

end while

return T data

vi) Size of the tree:

 The size of the tree gives the number of nodes in a given tree.

 It is given by 1 + size of the left sub-tree + size of the right sub-tree

Algorithm:

size(node * T)

if T = = NULL

return 0

else

return (1 + size(T lchild) + size(T rchild))

end if

UNIT-III Data Structures/Dept of CSE/SVCET

20

B
6

3
LL

4

F = 2 6

RR
4

3

4

3 6

AVL TREES

 AVL tree is a Binary Search Tree(BST), except that for every node in a tree, height of the

left sub-tree and right sub-tree differ by atmost 1

 Balance Factor(BF) = Maximum Height(Left sub-tree) - Maximum Height(Right sub-

tree)

 BF can be 1, 0 or -1. If not, tree need to be balanced by making either single or double

rotations.

ROTATIONS IN AN AVL TREE:

i) LL rotation (or) Single Rotation with Left(or) Rotateleft

 It is performed , If insertion is performed in the right sub-tree of right child of T. We

Consider T is a node where imbalance occurs.

BF = -2

6 LL rotation

8 BF= -1

10 BF = 0

Inserted element

ii) RR rotation (or) Single Rotation with Right(or) Rotateright

It is performed , If insertion is performed in the left sub-tree of left child of T.

6 BF = 2

RR rotation

3

2

iii) LR(Left – Right rotation)

 In this double rotation is performed. Left rotation followed by right rotation.

 LR is performed , If insertion is performed in the right sub-tree of left child of T.

8

6 10

3

2 6

UNIT-III Data Structures/Dept of CSE/SVCET

21

2

4

3 RR

2 LL

4

3

2 4

3

iv) RL(Right – Left rotation)

 In this double rotation is performed. Left rotation followed by right rotation.

 It is performed , If insertion is performed in the left sub-tree of right child of T.

BF = - 2

AVL tree rotations Algorithm:

Balance Factor(BF) = Maximum Height(Left sub-tree) – Maximum Height(Right sub-tree)

If(BF = = - 2)

If(element > Trchilddata)

T = LL(T)

Else

T = RL(T)

If(BF = = 2)

If(element < Tlchilddata)

T = RR(T)

Else

T = LR(T)

LL(node *T)

Rotateleft(T)

Return(T)

RR(node *T)

Rotateright(T)

Return(T)

LR(node *T)

Tlchild = Rotateleft(Tlchild)

T= Rotateright(T)

Return(T)

RL(node *T)

Trchild = Rotateright(Trchild)

T= Rotateleft(T)

Return(T)

UNIT-III Data Structures/Dept of CSE/SVCET

22

Rotateleft(node * x)

node *y

y = x rchild

x rchild = y lchild

y lchild = x

x height = height(x)

y height = height(y)

return(y)

Rotateright(node * x)

node *y

y = x lchild

x lchild = y rchild

y rchild = x

x height = height(x)

y height = height(y)

return(y)

UNIT-III Data Structures/Dept of CSE/SVCET

23

2

1
10

4 42

Example:

Insert the elements 2, 4, 1, 42, 10, 12, 9, 22, 15 in a AVL tree

Insert 2

BF = 0

Insert 4

BF = -1

Insert 1

BF = 0

BF=0

Insert 42

BF = -1

BF=0

BF = 0

In the below tree, since the element 10 is inserted as left sub-tree of right child of T, RL

rotation is performed
BF = -1

2
BF= 0

1
4 BF= -2

42

BF = 1

BF=0 10 RR Rotation

2

2
T BF= -2

LL rotation

4 1

10

42

2

4

BF= 0
2

1 4

BF= 0

1

2

4 BF= -1

Insert 10
42

UNIT-III Data Structures/Dept of CSE/SVCET

24

Insert 12

In the below tree, since the element 12 is inserted as the right sub-tree of right child of T, LL rotation

is performed T

Insert 9

BF = -1

2

BF = 1

10

42

1 4 12

9

Insert 22

In the below tree, since the element 22 is inserted as right sub-tree of left child of T, LR rotation is

performed.

BF = -1

2

BF = 0
10

T

42

10 BF = 2

BF = 2 2 RR rotation
42

1 4 22

1 4 12

9 22

LL rotation
9 12

BF = -1

2

BF = 1
10

BF = 0
22

1 4 12 42

9

2
BF = -2

1
10

4 42

12

10

2 42

1 4 12

UNIT-III Data Structures/Dept of CSE/SVCET

25

 2

 5

 2

 5 9

B TREE

B tree of order m is a m-way search tree that is either empty or satisfies the following properties

 Root node has atleast 2 children, unless it act as a leaf node

 All internal nodes have m/2 to m children

 All leaf nodes must be at same level

 The number of keys is 1 less than the number of children for non-leaf nodes and m/2 to

m -1 for leaf nodes

INSERTION AND DELETION IN B TREE OF ORDER M

 m represents a maximum number of pointers in a node.

 For n key , n+1 pointers will be available.

INSERTION:

Insert 5, 3, 2, 9, 7, 8, 6, 10, 12, 1 in a B tree of order 3 and delete 8, 2, 5, 1

Insert 5:

 5

Insert 3:

 3 5

Insert 2:

 2 3 5

Since B tree of order 3, can store only 2 key elements, we find the middle element and it is

moved one level upward

 2 3 5

 3

Insert 9:

 3

UNIT-III Data Structures/Dept of CSE/SVCET

26

 2

 5 7 9

 2

 5

 9

 2

 5

 8 9

 2

 5 6

 8 9

 2

Insert 7:

 3

Here the middle element 7 is moved one level upward and 5 and 9 are attached as left child and

right child of 7

 3 7

Insert 8:

 3 7

Insert 6:

 3 7

Insert 10:

 3 7

 3 7 9

 7 is moved up level and 3 and 9 are attached as left and right child and other values are
attached to their respective parent. 8 and 10 are left and right child of 9.

 5 6

 8 9 10

UNIT-III Data Structures/Dept of CSE/SVCET

27

 3

 9

 2

 5 6

 8

 10

 3

 9

 2

 5 6

 8

 10 12

 3

 9

 1 2

 5 6

 8

 10 12

 3

 9

 1 2

 5 6

 10 12

 7

Insert 12:

 7

Insert 1:

 7

DELETION:

Delete 8, 2, 5, 1

Delete 8:

 7

UNIT-III Data Structures/Dept of CSE/SVCET

28

 3

 10

 1 2

 5 6

 9

 12

 3

 10

 1

 5 6

 9

 12

 3

 10

 1

 6

 9

 12

 3 6

 10

 3 6

 9

 12

 7

Delete 2:

 7

Delete 5:

 7

Delete 1:

 7

 Here leaf nodes are not at same level

 7 10

 12

 9

UNIT-III Data Structures/Dept of CSE/SVCET

29

B+ TREE INDEX FILES

A B+ tree is a rooted tree satisfying the following properties:

 All paths from root to leaf are of the same length

 Leaf nodes store the actual record. Other nodes only have an index that is used to access

that record

 Each internal node has n/2 to n children.

 Each leaf node has between (n–1)/2 and n–1 values

 Left child of parent is strictly less than the parent node and the right child of parent is

greater than or equal to parent node.

B+ Tree Node Structure:

 Ki are the search-key values

 Pi are pointers to children (for non-leaf nodes) or pointers to records(for leaf nodes).

 The search-keys in a node are ordered
 K1 <K2 <K3 <. . .<Kn–1

Insertion in B+ trees:

Consider a B+ tree of order 3. It means each node in tree can store maximum of 3 key values and

have maximum of 4 children.

(i.e) If a node can store n key, it have n+1 pointers (or) child nodes

Insert the values 1, 4, 7, 10, 17, 21, 28 in B + tree.

Insert 1

 1

Insert 4

 1 4

Insert 7

 1 4 7

Insert 10

 When we try to insert 10, there is no space in node. Hence the middle value in node is

found and it is moved one level upward

 Here 4 is moved one level upward and remaining values are attached according to the 5
th

property of B+ tree

 1 4 7

UNIT-III Data Structures/Dept of CSE/SVCET

30

 1

 4 7 10

 1

 4

 7 10 17

 4

 7

 10 17 21

 4

Insert 17

When we try to insert 17, there is no space in node

Hence middle value in the node 7 is moved one level upward and remaining elements are

adjusted according to the 5
th

 property of B+ tree

 4 7

Insert 21

When we try to insert 21, there is no space in node

Hence middle value in the node 10 is moved one level upward and remaining elements are

adjusted according to the 5
th

 property of B+ tree

 4 7 10

 1

Insert 28

When we try to insert 28, there is no space in node

Hence middle value in the node 17 is moved one level upward. When 17 is moved one level

upward, again there is no space in root node

Hence, middle value in the node 7 is moved one level upward

 7

7 10 4 1

 4 7 10

 7 10 17

 10 17 21

 4 7 10

 4

 10 17

 17 21 28

UNIT-III Data Structures/Dept of CSE/SVCET

31

 4

 10 17

 7

 10

 17 21

1

Deletion 28 and 4 :

Delete 28

 7

Delete 4

 7 10 17

 1

Difference between B tree and B + tree:

B tree B + tree

More height compared to width More width compared to height

Each node have some record. No need to

traverse until leaf node

Root/internal node contain only pointer to leaf

node. Leaf node only contain record

7 10

4 17 21

UNIT-III Data Structures/Dept of CSE/SVCET

32

t

h

e

r

e

TRIE TREE INDEXING

 Trie is an efficient information retrieval data structure, using which search complexities

can be brought into optimal limit

Insertion in trie:

 In trie, every character of input key is inserted as a trie node.

 The children is an array of pointers to next level trie node.

 If K is the length of key, N is the number of keys in trie, Alphabet size is 26,

o Memory requirement for trie is O(alphabet size * K * N)

 Initialize root with NULL

 Insert the key “ there” in trie

root

 Last character in trie node act as leaf node

 Leaf node determines the end of the key

 In this above trie, there is only one child for each node

 If we insert a key, in which some of the characters of the key already exists in trie, then

nodes for the new characters alone is constructed and they are joined with already

existing characters.

 Insertion of keys their, leave, leaf, bye in trie

UNIT-III Data Structures/Dept of CSE/SVCET

33

t

h

e

i

r

r

e

l a

e
n

y

a

f
v

e

root

Searching in trie:

 When performing search in a trie, 1
st
 character in search key is compared with the

character in trie starting from the child of root. If it matches, searching continued with

comparing 2
nd

 character of search key with the that key in trie etc.

 Search may terminate due to the end of the string(i.e) search key exists in trie.

 Search may also terminate when the last character in the search key is not a leaf node in

trie. (i.e) Search key doesn‟t exist

 Searching of key “there”. We start from the child of root node. When 1
st
 character „t‟ is

found, the next character h is searched and so on. If all the characters of the search key is

found and the last character in search key „e‟ is the leaf of the trie.

o Hence the search key „ there‟ is present in trie.

 Searching of key “thei”. In this all the characters of the search key are present in trie,

but the last character in search key doesn‟t act as a leaf node intrie.

o Hence, the search key thei is not present in trie.

UNIT-III Data Structures/Dept of CSE/SVCET

34

UNIT – 3 TWO MARKS

1. Define Tree .Give an example.

 Tree is a non linear data structure, where there is no linear relation between the data

items.

 It can be defined as finite set of more than one node.

 There is a special node designated as root node.

 The remaining nodes are partitioned into sub-trees(T1, T2,…,Tn) of a tree T.

Example: Directory structure hierarchy

Figure: Tree

2. Define a path in a tree. Give example.

 The path in a tree is referred as the nodes in which the successive nodes are connected by

the edge in a tree. Example: In the above tree,the path from A to I is A – B, B – D, D – I.

 A path from a node n1 to nk is defined as the sequence of nodes n1, n2…..nk such

that ni is the parent of ni+1 for 1<i<k.

3. Define height of the node in a tree. Give example.

 The height of node ni in a tree is the length of the longest path from ni to a leaf

 In the above tree, Height of node B is 2. Height of node A is 3.

4. List the applications of trees.

 Decision making in games, Routing algorithms where the next path of packet is

determined, Directory/ Folder traversal in a system, Auto-correct applications/ Spell

checker, Syntax tree in compilers, Undo function in text editor

 Binary search trees, Expression trees, Threaded binary trees

5. Define terminal nodes in a tree

 A node that has no children is called as a terminal node. It is also referred as a leaf node.

These nodes have degree has zero.

6. Define non-terminal nodes in a tree?

 All intermediate nodes that traverse the given tree from its root node to the terminal

nodes are referred as non terminal nodes.

UNIT-III Data Structures/Dept of CSE/SVCET

35

7. Define branch, siblings & ancestors?

 Branch or edge of a tree is called as the link or connection between two nodes.

 The nodes having the same parent are called siblings.

 The ancestor of a node is referred as all nodes along the path of root node to the node.

8. State the properties of tree?

 Any node can be the root of the tree.

 There is only one path exists between any node to every other node in a tree

 Every node, expect the root node has a unique parent.

 If the root is identified; then that tree is called as the rooted node, else tree is called as the
free tree.

9. Define degree?

 The degree of a node is referred as the number of sub-trees of a particular node.

 Example: Degree of A, B, C, D are 2. Degree of F and G is 1 and Degree of H, I, E, J, K

are 0.

10. Define height of the node and tree?

 The height of a node is the length of the longest downward path between the node and a

leaf.

 The height of a tree is the length of the longest downward path between the root and a

leaf.

11. Define binary tree

 A binary tree is a tree, which is, either empty or consists of a root node and two disjoint

binary trees called the left sub-tree and right sub-tree.

 In a binary tree, no node can have more than two children.

12. List the properties of binary tree.

 In any binary tree, the maximum number of nodes on level L is 2
L
 , where L ≥0.

 The maximum number of nodes possible in a binary tree of height H is 2
H
 -1.

 The minimum number of nodes possible in a binary tree of height H is h.

 The height of a complete binary tree with n number of nodes is log2(n+1).

13. What is meant by full binary tree?

 A Full binary tree is a binary tree in which all intermediate nodes have same degree as 2
and all leaves are at the same level.

Fig. Full binary tree

UNIT-III Data Structures/Dept of CSE/SVCET

36

14. What is meant by complete binary tree?

A binary tree is said to be a complete binary tree if all its levels, except possibly the last level,

have the maximum number of possible nodes, and all the nodes in the last level appear as far left

as possible

Fig. Complete binary tree

15. Define a left skewed binary tree?

 A left skewed binary tree is a tree, which has only left child nodes

16. Define a right skewed binary tree?

 A right skewed binary tree is a tree, which has only right child nodes

17. What are the different ways of representing a binary tree?

 Linear representation using arrays

 Linked representation using pointers

18. What is meant by binary tree traversal?

 Traversing a binary tree means moving through all the nodes in the binary tree visiting

each node in the tree only once.

19. What are the difference binary tree traversal techniques?

 Inorder traversal

 Preorder traversal

 Postorder traversal

20. State the merits and demerits of linear representation of binary trees

Merits:

 Storage method is easy and can be easily implemented in arrays

 When the location of a parent /child node is known other one can be determined easily.

Demerits:

 Insertions and deletions in a node, taker an excessive amount of processing time due to

data movement up and down the array.

UNIT-III Data Structures/Dept of CSE/SVCET

37

21. State the merits and demerits of linked representation of a binary tree

Merits:

 Insertions and deletions in a node, involves no data movement except the re arrangement

of pointers, hence less processing time.

Demerits:

 Given a node structure, it is difficult to determine its parent node.

 Memory spaces are wasted for storing null pointers for the nodes, which have one or no

subtrees.

22. Define a binary search tree.

 A binary tree T is termed binary search tree or binary sorted tree,

if each node N of T satisfies the following property:

“The value at N is greater than every value in the left sub-tree of N and is less than every value

in the right sub-tree of N”.

23. What do you mean by general trees?

 General tree is a tree with nodes having any number of children

24. Define Trie tree.

 A trie, also called digital tree and sometimes radix tree or prefix tree (as they can be

searched by prefixes), is an ordered tree data structure that is used to store a dynamic set

or associative array where the keys are usually strings.

 It is an efficient information retrieval data structure. Using trie, search complexities can

be brought to optimal limit (key length)

25. What is meant by Expression Tree?

 An expression tree is a binary tree in which the operands are attached as leaf nodes and

operators become the internal nodes.

26. Construct an expression tree for a following postfix expression AB*C+

Step 1:

+

AB* C

Step 2:

+

* C

A B

27. List the tree traversal applications.

 Listing a directory in an hierarchal file system (preorder)

 Calculating the size of a directory (post order)

UNIT-III Data Structures/Dept of CSE/SVCET

38

28. What is meant by full node in binary tree.

 Full node is a node which have both children as not NULL. (i.e) a node with two children

 In binary tree, the number of full node + 1 = Number of leaf nodes

29. What are the applications of binary tree?

 Binary Search Tree

 Binary Space Partition

 Syntax tree

 Tries

 Heaps

30. Define B – Tree

 B - tree is a self-balancing tree data structure that keeps data sorted and allows searches,

sequential access, insertions, and deletions in logarithmic time.

 The B-tree is a generalization of a binary search tree in that a node can have more than

two children

31. List the properties of B-trees.

B tree is a m-way search tree, such that

1. All leaf nodes are at same level

2. All internal nodes have m/2 to m children

3. Root have atleast two children unless it act as leaf node

4. The number of keys is one less than the number of children for non-leaf nodes and m/2 to

m for leaf nodes

32. What is meant by Threaded binary tree?

 A binary tree is made threaded by making all right child pointers that would normally be

NULL point to the inorder successor of the node

 The idea of threaded binary trees is to make inorder traversal faster and do it without

stack and without recursion

33. List the types of threaded binary tree.

Single Threaded: Where a NULL right pointers is made to point to the inorder successor (if

successor exists)

Double Threaded: Where both left and right NULL pointers are made to point to inorder

predecessor and inorder successor respectively. The predecessor threads are useful for reverse

inorder traversal and postorder traversal.

UNIT-III Data Structures/Dept of CSE/SVCET

39

34. Show that every tree is a bipartite graph.

 If a vertices of graph is divided into 2 disjoint subset, such that, edges should not connect
vertices of same subset.

 Similarly, in tree, the child will be connected only to the parent and not to their siblings.

35. Give the application/use of B- trees.

 B-tree is optimized for systems that read and write large blocks of data.

 B-trees are a good example of a data structure for external memory. It is commonly used

in databases and filesystems.

36. Define B+ tree and its properties.

A B+ tree is a rooted tree satisfying the following properties:

 All paths from root to leaf are of the same length

 Leaf nodes store the actual record. Other nodes only have an index that is used to access

that record

 Each internal node has n/2 to n children.

 Each leaf node has between (n–1)/2 and n–1 values

 Left child of parent is strictly less than the parent node and the right child of parent is

greater than or equal to parent node.

37. Compare B tree and B + tree

B tree B + tree

More height compared to width More width compared to height

Each node have some record. No need to

traverse until leaf node

Root/internal node contain only pointer to leaf

node. Leaf node only contain record

38. Define AVL tree.

 AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the left and

right sub-trees of any node differ by at most one

 Balance Factor(BF) = Height(Left Sub-tree) – Height(Right sub-tree)

 BF can be either -1, 0 or +1. If not tree should be balanced by making single or double

rotations.

39. List out the advantages of trees.

 It is used in manipulation of hierarchical data

 Provides efficient searching of data

 Like linked list, there is no upper limit on number of elements to be stored in tree

Data Structures/Dept of CSE/SVCET

1

1

2 3

4

UNIT – 4

GRAPH:

 A graph G consists of a set of Vertices (nodes) and a set of Edges (arcs).

 Graph can be represented as

o G(V,E). V is a finite and non-empty set of vertices.

o E is a set of pair of vertices; these pairs are called as edges.

 V(G) = Set of vertices of graph G and E(G) = Set of edges of graph G

 An Edge e= (v, w) is a pair of vertices v and w, and to be incident with v and w.

 A graph can be pictorially represented as follows,

Fig. Graph G

 We have numbered the vertices of the graph as 1,2,3,4

 Therefore, V(G)=(1,2,3,4) and E(G) = {(1,2),(1,3),(1,4),(2,3),(2,4), (3,4)}

BASIC TERMINOLOGIES OF GRAPH

Undirected Graph (or) Unqualified graph:

 Undirected graph is a graph in which, the pair of vertices representing the edges is unordered.

 Edges in undirected graph doesn‟t specify the direction

Directed graph (or) Digraph:

 Directed graph is a graph in which, the pair of vertices representing the edges is ordered.

 Edges in directed graph specify the direction

Path in a graph:

 Path between vertices u,v is a sequence of edges that connects u and v

 Path between 1 to 4 are {1 – 2 –4, 1–4, 1–3–4, 1–2–3–4, 1–3–2–4}

1

2 3

4

Data Structures/Dept of CSE/SVCET

2

1

2 3

4

1

2 3

4

1

2 3

4

Connected graph:

 In Undirected graph, If there is a path from any vertex to every other vertex in a graph, then the

graph is called connected graph.

Strongly Connected graph:

 In Directed graph, If there is a path from any vertex to every other vertex in a graph, then the graph

is called strongly connected graph.

Complete Graph

 A Graph is a complete, if there is an edge between every pair of vertices.

 It has exactly n(n-1)/2 number of edges.

Sub Graph

A sub-graph of G is a graph G„ such that V(G‟)

V(G) and E(G „)

E(G).

(a)

Graph G

Data Structures/Dept of CSE/SVCET

3

1

2

3

4 5

1

2 3

2 3

4

1

2 3

4

Some of the Subgraphs of G

Fig. Sub graphs of G

Adjacent Vertices:

A vertex v1 is said to be a adjacent vertex of v2, if there exist an edge (v1,v2) or (v2,v1).

(a)

Graph G

Adjacent(1) = {2,3,4}, Adjacent(2) = {1,3,4}, Adjacent(3) = {1,2,4}, Adjacent(4) = {1,2,3}

Length of the graph:

The length of the graph is the number of edges in it.

Weakly Connected Graph

If there does not exist a directed path from one vertex to another vertex then it is said to be a weakly

connected graph.

Cycle

A cycle is a path in which the first and the last vertices are the same.

1

2 3

4

Data Structures/Dept of CSE/SVCET

4

Degree

 The number of edges incident on a vertex determines its degree. There are two types of degrees for

directed graph In-degree and out-degree.

 In-Degree of the vertex V is the number of edges for which vertex V is a head. (or) Number of edges

whose direction is towards the vertex

 Out-Degree of vertex V is the number of edges for which vertex is a tail. (or) Number of edges

whose direction is outside that vertex

A GRAPH IS SAID TO BE A TREE, IF IT SATISFIES THE TWO PROPERTIES:

a. It is connected

b. There are no cycles in the graph.

GRAPH REPRESENTATION

A graph can be represented by some of the following three methods,

1. Set representation

2. Adjacency matrix.

3. Adjacency list.

1. SET REPRESENTATION

This is one of the straightforward method of representing a graph. With this method, two sets are

maintained:

(1) V, the set of vertices,

(2) E, the set of edges

But if the graph is weighted, the set E is the ordered collection of three tuples, that is,

E=(cost of edge, source vertex, destination vertex).

Fig. Types of Graphs

Data Structures/Dept of CSE/SVCET

5

Above Graphs can be represented as follows,

Although, it is a straight forward representation and the most efficient one from the memory point of

view, this method of representation is not useful so far as the manipulation of graph is concerned.

2. ADJACENCY MATRIX REPRESENTATION

The adjacency matrix A for a graph G(V,E) with n vertices, is an n* n matrix of bits ,such that

Aij = 1 , if there is an edge from vi to vj and

Aij = 0, if there is no such edge.

Fig. Graph (G)

The adjacency matrix for the graph G is,

0 1 1 1

A=

 The space required to represent a graph using its adjacency matrix is n* n bits.

 From the adjacency matrix, one may readily determine if there an edge connecting any two vertices i

and j.

For directed graph, Aij = 1 , if there is an directed edge from vi to vj and

Aij = 0, if there is no directed edge from vi to vj.

The adjacency matrix is a simple way to represent a graph, but it has 2 disadvantages,

 It takes O(n*n) space to represent a graph with n vertices ; even for sparse graphs and

 It takes O(n*n) times to solve most of the graph problems.

1

2 3

4

1 0 1 1

1 1 0 1

1 1 1 0

Data Structures/Dept of CSE/SVCET

6

iii) ADJACENCY LIST OR LINKED REPRESENTATION

 The representation of the n rows of the adjacency matrix are represented as n linked lists. There is one

list for each vertex in G. The nodes in list I represent the vertices that are adjacent from vertex I. Each

node has at least 2 fields: VERTEX which contain vertex name and LINK to next vertex in list.

Vertex 1

Vertex 2

Vertex 3

Vertex 4

Fig. Linked list representation of Graph

 The total number of edges in G can be determined in time O(n+e).

Comparison among Various Representations

 The adjacency matrix representation has the disadvantage that it always requires an n×n matrix with

n vertices, regardless of the number of edges.

 The set representation of graphs is very concise but manipulation with this representation has a lot of

difficulties.

 Insertion, deletion, searching, merging operations in a graph can be easily done using linked list

representation.

 But , when we consider overall performance, the matrix representation is more powerful than all.

V2 V3 V1

\0 V4 V2 V1

\0 V4 V3 V1

\0 V4 V3 V2

\0

Data Structures/Dept of CSE/SVCET

7

V1

V2 V3

V4 V5 V6 V7

V8

GRAPH TRAVERSAL

Given an undirected graph G(V.E) and a vertex v in V(G) we are interested in visiting all

vertices in G that are reachable from v (that is all vertices connected to v). We have two ways to

do the traversal. They are

 Depth First Search

 Breadth First Search.

DEPTH FIRST SEARCH

 In DFS we pick on one of the adjacent vertices; visit all of its adjacent vertices and back

track to visit the unvisited adjacent vertices.

 In graphs, we do not have any start vertex or any special vertex Therefore the traversal

may start from any arbitrary vertex.

Let us see an example, consider the following graph.

Let us start with V1,

1. Its adjacent vertices are V2, V8, and V3. Let us visit V2.

2. V2‟s adjacent vertices are V1, V4, V5. Since V1 is already visited, Let us visit V4.

3. V4‟s adjacent vertices are V2, V8. Since, V2 is already visited, Let us visit V8.

4. V8‟s adjacent vertices are V4, V5, V1, V6, V7. Since V4 and V1 are visited. Let us visit V5.

5. V5‟s adjacent vertices are V2, V8.

6. Since Both vertices V2 and V8 are already visited, backtracking is performed.

7. We had V6 and V7 unvisited in the list of V8, visit V6.

8. V6‟s adjacent vertices are V8 and V3. Since V8 already visited, visit V3.

9. V3‟s adjacent vertices are V1, V7. Since V1 is already visited, visit V7.

10. V7‟s adjacent vertices are already visited, we back track and find that we have visited all the

vertices of G.

Therefore the sequence of traversal is

V1, V2, V4, V8, V5, V6, V3, V7.

This is not a unique or the only sequence possible using this traversal method.

We may implement the Depth First search by using a stack and also by using recursion

Data Structures/Dept of CSE/SVCET

8

V A

VISITED[A] = 1 DFS(B) DFS(C) E

DFS is best described recursively as

Algorithm:

DFS(v)

//Given an undirected graph G(V, E) with n vertices and an VISITED array initially set to zero

//This algorithm visits all vertices reachable from v .

VISITED[v] = 1

for each vertex w adjacent to v do

if VISITED [w] =0 then

call DFS (w)

end if

end for

Example1:

A

C

B E

G

D F

VISITED[B]=1 DFS(D) DFS(F) VISITED[C]=1 DFS(G)

VISITED[D]=1 VISITED[F]=1 DFS(E) VISITED[G]=1

VISITED[E]=1

ORDER OF DFS TRAVERSAL: ABDFECG

Data Structures/Dept of CSE/SVCET

9

B D

A F

C E

V A

VISITED[A] = 1 DFS(B) C

VISITED[B]=1 DFS(C) A D

VISITED[C]=1 DFS(D) A B E

VISITED[D]=1 DFS(E) B C F

VISITED[E]=1 DFS(F) D F

VISITED[F]=1 D E

V1

V2 V3

V4 V5 V6 V7

V8

Example 2:

ORDER OF DFS TRAVERSAL: A,B,C,D,E,F

BREADTH FIRST SEARCH

Consider the following graph.

Data Structures/Dept of CSE/SVCET

10

V1

V2 V3

V4 V5 V6 V7

V8

V1

V1

V2 V3

V8

V1

V2 V3

V4 V5 V8

 In BFS, we first visit all the adjacent vertices of the start vertex and then visit all the

unvisited vertices adjacent to these and so on.

 Let us consider the same example, given in figure. We start say, with V1. Its adjacent vertices

are V2, V8, V3.

 We visit all one by one. We pick on one of these, say V2. The unvisited adjacent vertices to

V2 are V4, V5 . we visitboth.

 We go back to the remaining visited vertices of V1 and pick on one of this, say V3. The

unvisited adjacent vertices to V3 are V6,V7. We visit both. Thus all the vertices are visited.

(a) (b) (c)

(d)

Fig. Breadth First Search

 Thus the sequence so generated is V1,V2, V8, V3,V4, V5,V6, V7. Here we need a queue instead

of a stack to implement it.

 We add unvisited vertices adjacent to the one just visited at the rear and read at from to find

the next vertex to visit.

Data Structures/Dept of CSE/SVCET

11

A

B C

D

ALGORITHM:

BFS(v)
//BFS of G is carried out beginning at vertex v. All vertices are marked as visited[i]=1

Visited[v]=1

Enqueue vertex v to queue

While(queue is not empty)

Dequeue()

For all vertices w adjacent to v

If(visited(w)==0)

Enqueue(w)

Visited[w]=1

End if

End for

End while

Example:

0 0 0 0

Visited[A] Visited[B] Visited[C] Visited[D]

Consider, BFS started at vertex A.

BFS(A)

Visited[A] = 1

Visited[A] Visited[B] Visited[C] Visited[D]

Enqueue vertex A in Queue

Queue

Q!= empty => Perform dequeue => A is dequeued

Adjacent(A) = { B, C} and both B and C are not visited.

Enqueue B and mark it as visited and then enqueue C and mark it as visited

Queue

1 1 1 0

Visited[A] Visited[B] Visited[C] Visited[D]

1 0 0 0

A

B C

Data Structures/Dept of CSE/SVCET

12

B C

A F

D E

Q!= empty=> perform dequeue => B is dequeued

Adjacent(B) = {A, D}

Here A is already visited. Hence D is enqueued and it is marked as visited

Queue

1 1 1 1

Visited[A] Visited[B] Visited[C] Visited[D]

Q!=empty => Perform dequeue => C dequeued

Adjacent(C) = {A,D}. Here both A and D are already visited

Q!=empty=> D dequeued

Adjacent(D) = { B, C}. Here both B and C are already visited

Q!=empty => False

ORDER OF BFS TRAVERSAL : ABCD

EXAMPLE 2:

0 0 0 0 0 0

Visited[A] Visited[B] Visited[C] Visited[D] Visited[E] Visited[F]

Consider, BFS started at vertex A.

BFS(A)

Visited[A] = 1

Visited[A] Visited[B] Visited[C] Visited[D] Visited[E] Visited[F]

Enqueue vertex A in Queue

Queue

Q!= empty => Perform dequeue => A is dequeued

Adjacent(A) = { B, D} and both B and D are not visited.

C D

1 0 0 0 0 0

A

Data Structures/Dept of CSE/SVCET

13

Enqueue B and mark it as visited and then enqueue D and mark it as visited

Queue

1 1 0 1 0 0

Visited[A] Visited[B] Visited[C] Visited[D] Visited[E] Visited[F]

Q!= empty=> perform dequeue => B is dequeued

Adjacent(B) = {A, C, D}

Here A and D are already visited. C is not visited. Hence C is enqueued and marked as visited

Queue

1 1 1 1 0 0

Visited[A] Visited[B] Visited[C] Visited[D] Visited[E] Visited[F]

Q!=empty => Perform dequeue => D dequeued

Adjacent(D) = {A,B,C,E}. Here both A, B and C are already visited. E is not visited. Hence E is

enqueued and marked as visited

Queue

1 1 1 1 1 0

Visited[A] Visited[B] Visited[C] Visited[D] Visited[E] Visited[F]

Q!=empty=> C dequeued.

Adjacent(C) = { B, D, E, F}. Here B, D and E are already visited. F is not visited. Hence F is

enqueued and marked as visited

Queue

1 1 1 1 1 1

Visited[A] Visited[B] Visited[C] Visited[D] Visited[E] Visited[F]

Q!=empty=> E dequeued.

Adjacent(E) = {C,D,F}. Here all vertices C, D and F are already visited.

Q!=empty => F dequeued

Adjacent(F) = { C,E}. Here C and E are already visited.

ORDER OF BFS TRAVERSAL: ABDCEF

B D

D C

C E

E F

Data Structures/Dept of CSE/SVCET

14

MINIMUM SPANNING TREE

Spanning tree is a subset of Graph G, which has all the vertices covered with minimum possible

number of edges. Hence, a spanning tree does not have cycles and it cannot be disconnected

(Or)

Spanning tree: The property of spanning tree is that all the vertex of Graph G is visited exactly

once.

Minimum Spanning tree: The property of minimum spanning tree is that all the vertex of

Graph G is visited exactly once with minimum cost.

(or)

Minimum spanning tree is a spanning tree that has minimum weight/cost than all other

spanning trees of the same graph.

PRIM’S ALGORITHM TO FIND THE MINIMUM SPANNING TREE OF A GRAPH

Algorithm:

1. Construct a cost matrix for a given graph G.

// Cost matrix contains a cost of each vertex to every other vertex in graph G

2. Start at any arbitrary vertex. Add that vertex to the tree T and mark it as visited

3. The edge (u,v) can be added to the tree T, if

i) It is an edge with minimum cost

ii) It should not create a cycle in T

iii) The newly added vertex doesn‟t present in T already. If so, that vertex v is marked

as visited.

Example:

20

Cost matrix:

 A B C D

A - 5 10 25

B 5 - 5 15

C 10 5 - 20

D 25 15 20 -

Initially spanning tree T is Null

Consider, the arbitrary vertex chosen is A

Hence A is added to T and it is marked as visited

5
A B

10

25 15

5

D C

Data Structures/Dept of CSE/SVCET

15

A

Step 1:

T

Step 2:

The edge A,B is an edge with minimum cost in row A. Adding of that edge doesn‟t form any

cycle. Hence it is added to the tree T and it is marked.

Step 3:

The edge B,C is an edge with next minimum cost in row A and B. Adding of that edge doesn‟t

form any cycle. Hence it is added to the tree T.

5

A B

5

C

Step 4:

The edge A,C is an edge with next minimum cost in row A, B and C. Adding an edge between

A and C creates a loop in spanning tree T. Hence it is ignored.

5

A B

5

C

Step 5:

The edge B,D is an edge with next minimum cost in row A, B and C. Adding of that edge

doesn‟t form any cycle. Hence it is added to the tree T.

In minimum spanning tree T, All vertices are visited exactly once.

Minimum cost of visiting all vertices of given graph G exactly once is 25.

5

A B

15 5

D C

5

A B

Data Structures/Dept of CSE/SVCET

16

A

3
C

 5
D

6
B

3

A 2 3 2 F

3 5

C

4

E

A

A B

2

3
C

Example 2:

Cost matrix:

 A B C D E F

A - 6 3 ∞ ∞ ∞

B 6 - 2 5 ∞ ∞

C 3 2 - 3 4 ∞

D ∞ 5 3 - 2 3

E ∞ ∞ 4 2 - 5

F ∞ ∞ ∞ 3 5 -

Initially spanning tree T is Null

Consider, the arbitrary vertex chosen is A

Hence A is added to T and it is marked as visited

Step 1:

T

Step 2:

The edge A,C is an edge with minimum cost in row A. Adding of that edge doesn‟t form any

cycle. Hence it is added to the tree T and it is marked.

Step 3:

The edge B,C is an edge with next minimum cost in row A and B. Adding of that edge doesn‟t

form any cycle. Hence it is added to the tree T.

Data Structures/Dept of CSE/SVCET

17

A B D

2 3

3
C

A B D

2 3 2

3
C E

A B D
3

2 3 2 F

3
C E

Step 4:

The edge C,D is an edge with next minimum cost in row A, B and C. Adding of that edge

doesn‟t form any cycle. Hence it is added to the tree T.

Step 5:

The edge D,E is an edge with next minimum cost in row A, B, C and D. Adding of that edge

doesn‟t form any cycle. Hence it is added to the tree T.

Step 6:

The edge D,F is an edge with next minimum cost in row A, B, C, D and E. Adding of that edge

doesn‟t form any cycle. Hence it is added to the tree T.

In above minimum spanning tree T, All vertices are visited exactly once.

Minimum cost of visiting all vertices of given graph G exactly once is 13.

Data Structures/Dept of CSE/SVCET

18

1
v1 v2

6 2 4 10

5
v3 v4

7
 v5

8 7 4 6

v6 v7

2

v1

Example 3:

Cost matrix:

 v1 v2 v3 v4 v5 v6 v7

v1 - 1 6 2 ∞ ∞ ∞

v2 1 - ∞ 4 10 ∞ ∞

v3 6 ∞ - 5 8 ∞ ∞

v4 2 4 5 - 7 7 4

v5 ∞ 10 ∞ 7 - ∞ 6

v6 ∞ ∞ 8 7 ∞ - 2

v7 ∞ ∞ ∞ 4 6 2 -

Initially spanning tree T is Null

Consider, the arbitrary vertex chosen is v1

Hence v1 is added to T and it is marked as visited

Step 1:

T

Step 2:

The edge v1,v2 is an edge with minimum cost in row v1. Adding of that edge doesn‟t form any

cycle. Hence it is added to the tree T and it is marked.

Step 3:

The edge v1,v4 is an edge with minimum cost in row v1 and v2. Adding of that edge doesn‟t

form any cycle. Hence it is added to the tree T and it is marked.

1

v1 v2
2

v4

1

v1 v2

Data Structures/Dept of CSE/SVCET

19

Step 4:

The edge v2,v4 is an edge with minimum cost in row v1, v2 and v4. Adding edge v2,v4 form a

cycle. Hence this edge is ignored.

Step 5:

The edge v4,v7 is an edge with minimum cost in row v1, v2 and v4. Adding of that edge doesn‟t

form any cycle. Hence it is added to the tree T and it is marked.

Step 6:

The edge v7,v6 is an edge with minimum cost in row v1, v2, v4 and v7. Adding of that edge

doesn‟t form any cycle. Hence it is added to the tree T and it is marked.

Step 7:

The edge v4,v3 is an edge with minimum cost in row v1, v2, v4, v6 and v7. Adding of that edge

doesn‟t form any cycle. Hence it is added to the tree T and it is marked.

1

v1 v2
2

v3
5 v4

4

v6
2

v7

1

v1 v2
2

v4
4

v6
2

v7

1

v1 v2
2

v4
4

v7

1

v1
2

v2

v4

Data Structures/Dept of CSE/SVCET

20

1
b c

6 2 4 10

5 7
a e d

8 7 4 6

f g

2

a

Step 8:

The edge v7,v5 is an edge with minimum cost in row v1, v2, v3, v4, v6 and v7. Adding of that

edge doesn‟t form any cycle. Hence it is added to the tree T and it is marked.

In above minimum spanning tree T, All vertices are visited exactly once.

Minimum cost of visiting all vertices of given graph G exactly once is 20.

Example 4:

Cost matrix:

 a b c d e f g

a - 6 ∞ ∞ 5 8 ∞

b ∞ - 1 ∞ 2 ∞ ∞

c ∞ ∞ - 10 ∞ ∞ ∞

d ∞ ∞ ∞ - 7 ∞ 6

e ∞ ∞ 4 ∞ - ∞ ∞

f ∞ ∞ ∞ ∞ 7 - ∞

g ∞ ∞ ∞ ∞ 4 2 -

Step 1:

Initially spanning tree T is Null

Consider, the arbitrary vertex chosen is a

Hence a is added to T and it is marked as visited

1

v1 v2
2

v3
5 v4 v5

4

6
v6

2
v7

Data Structures/Dept of CSE/SVCET

21

c
4

5

a e

b c
6 4

5

a e

b c
6 4 10

5

a e d

b c

6 4 10

5

a e d

g 6

Step 2:

The edge a,e is an edge with minimum cost in row a. Adding of that edge doesn‟t form any

cycle. Hence it is added to the tree T and it is marked.

Step 3:

The edge e,c is an edge with minimum cost in row a and e. Adding of that edge doesn‟t form any

cycle. Hence it is added to the tree T and it is marked.

Step 4:

The edge a,b is an edge with minimum cost in row a, c and e. Adding of that edge doesn‟t form

any cycle. Hence it is added to the tree T and it is marked.

Step 5:

The edges b,c and b,e cannot be added to T, since each vertex can be visited exactly once. The

edge c,d is an edge with minimum cost in row a, b, c and e. Adding of that edge doesn‟t form

any cycle. Hence it is added to the tree T and it is marked.

Step 6:

The edge d,g is an edge with minimum cost in row a, b, c, d and e. Adding of that edge doesn‟t

form any cycle. Hence it is added to the tree T and it is marked.

5

a e

Data Structures/Dept of CSE/SVCET

22

b c

6 4 10

5

a e d

f
2

g 6

Step 7:

The edge g,f is an edge with minimum cost in row a, b, c, d, e and g. Adding of that edge doesn‟t

form any cycle. Hence it is added to the tree T and it is marked.

In above minimum spanning tree T, All vertices are visited exactly once.

Minimum cost of visiting all vertices of given graph G exactly once is 33.

KRUSKAL ALGORITHM TO FIND MINIMUM SPANNING TREE OF GRAPH

Algorithm:

T = Null. // T is a minimum spanning tree T

E is an edge set which contains all edges in G from lowest cost to highest cost

While((Number of edges in T < n – 1) && (E ! = empty))

Choose an edge (u, v) from E with lowest cost

Delete (u,v) from E

If (u, v) doesn‟t creates a cycle in T

Add that edge edge (u,v) to T

Else

Discard that edge (u,v)

End if

End while

Example:

20

Edge set:

Edges AB BC AC BD DC AD

Cost 5 5 10 15 20 25

5
A B

10

25 15 5

D C

Data Structures/Dept of CSE/SVCET

23

5
A B

5
A B

5

C

5
A B

15 5

D C

Step 1:

Initially T is null. Number of vertices n = 4. Hence n-1 = 3

Since, Number of edges in T is 0 < 3 and E ! = empty

Edge AB is chosen from Edge set E and it is deleted.

Since adding of edge AB doesn‟t form cycle, it is added to T

Now, Number of edges in T is 1 < 3 and E ! = empty

Edge BC is chosen from Edge set E and it is deleted.

Since adding of edge BC doesn‟t form cycle, it is added to T

Now, Number of edges in T is 2 < 3 and E ! = empty

Edge AC is chosen from Edge set E and it is deleted.

Since adding of edge AC forms cycle, it is ignored

Edge BD is chosen from Edge set E and it is deleted.

Since adding of edge BD doesn‟t forms cycle, it is added to T

In above minimum spanning tree T, All vertices are visited exactly once.

Minimum cost of visiting all vertices of given graph G exactly once is 25.

A
 5

B

5

C

Data Structures/Dept of CSE/SVCET

24

1
v1 v2

6 2 4 10

5
v3 v4

7
 v5

8 7 4 6

v6 v7

2

1

v1 v2
2

v4

v6
2

v7

Example 2:

Edge set:

Edges v1,v2 v1,v4 v6,v7 v2,v4 v4,v7 v3,v4 v1,v3 v5,v7 v4,v5 v4,v6 v3,v6 v2,v5

Cost 1 2 2 4 4 5 6 6 7 7 8 10

Step 1:

Initially T is null. Number of vertices n =7. Hence n-1 = 6

Edge v1,v2 is chosen from Edge set E and it is deleted.

Since adding of edge v1v2 doesn‟t form cycle, it is added to T

 1

Step 2:

Edge v1,v4 is chosen from Edge set E and it is deleted.

Since adding of edge v1v4 doesn‟t form cycle, it is added to T

Step 3:

The edge v6,v7 is chosen from Edge set E and it is deleted.

Since adding of edge v6,v7 doesn‟t form cycle, it is added to T

1

v1 v2
2

v4

v1 v2

Data Structures/Dept of CSE/SVCET

25

Step 4:

The edge v2,v4 is chosen from Edge set E and it is deleted.

Since adding of edge v2,v4 form cycle, it is ignored

Step 5:

The edge v4,v7 is chosen from Edge set E and it is deleted.

Since adding of edge v4,v7 doesn‟t form cycle, it is added to T

Step 6:
The edge v3,v4 is chosen from Edge set E and it is deleted.

Since adding of edge v3,v4 doesn‟t form cycle, it is added to T

Step 7:
The edge v1,v3 is chosen from Edge set E and it is deleted.

Since adding of edge v1,v3 form cycle, it is ignored

Step 8:

The edge v5,v7 is chosen from Edge set E and it is deleted.

Since adding of edge v5,v7 doesn‟t form cycle, it is added to T

In above minimum spanning tree T, All vertices are visited exactly once.

Minimum cost of visiting all vertices of given graph G exactly once is 20.

1

v1 v2
2

 5
v3 v4

v5

4

v6
2

v7
6

1

v1 v2
2

 5
v3 v4

4

v6
2

v7

1

v1 v2
2

v4

4

v6
2

v7

Data Structures/Dept of CSE/SVCET

26

SINGLE SOURCE SHORTEST PATH ALGORITHM

Dijkstra algorithm:

Given a single source vertex, dijkstra algorithm will find the shortest path to all other vertex of

the graph G.

Dijkstra(G,S)

1. i = 1 // i represents the row of shortest path table

2. In row i of shortest path table, write 0 for the source vertex and Infinity for other vertex

3. While(row i has unvisited vertices)

U = extract minimum value from row i and mark it.

i ++

Copy already marked values and U in new row

For (each unvisited neighbor V of U)

Tempdist = distance[U] + Edgecost(U,V)

If(tempdist < distance[V]

Distance[V] = tempdist

End if

End for

End while

4. When destination vertex is marked, perform backtracking to find the shortest path.

5. Move upward from the destination vertex.

i) If value doesn‟t changes, move upward further

ii) Else, mark that row and from that row move upward. Goto step i) until the source

vertex is marked

Similarly we can find the shorted path from source vertex to all other vertex in graph by using

backtracking.

6. When shortest path is found, display the path from source to destination.

Example:

20

Consider the Source vertex is A

Create a shortest path table. Since there are 4 vertices, the table has 4 columns.

A B C D

0 ∞ ∞ ∞

Write 0 in column A since it is a source vertex.

Smallest unmarked value in row 1 is 0. Hence it is marked. Create another row and copy marked

values alone to the new row.

6
A B

10

35

D

15

5

C

Data Structures/Dept of CSE/SVCET

27

A B C D

0 ∞ ∞ ∞

0

 Find the minimum value of each edge from the marked vertex A, if there exists an direct

edge. Otherwise copy the previous value of that vertex.

 Minimum value of any edge X, Y is found by

min(value of destination vertex column, value in source vertex column + edge cost)

Here X is a source vertex and Y is a destination vertex

A B C D

0 ∞ ∞ ∞

0 A to B => min(∞, 0 +6)
6

A to C =>min(∞, 0+10)
10

A to D => min(∞, 0+35)
35

The smallest unmarked value in 2
nd

 row is found and it is marked. (i.e) 6 is marked

Create another row and copy marked values alone to the new row.

A B C D

0 ∞ ∞ ∞

0 6 10 35

0 6 B to C=> min(10, 6 +5)
10

B to D => min(35, 6+15)
21

The smallest unmarked value in 3
rd

 row is found and it is marked. (i.e) 5 is marked

Create another row and copy marked values alone to the new row.

A B C D

0 ∞ ∞ ∞

0 6 10 35

0 6 10 21

0 6 10 C to D => min(21, 10+20)
21

The minimum cost from A to B is 6

The minimum cost from A to C is 10

The minimum cost from A to D is 21

By applying back tracking,

The shortest path from A to B is found as A B

The shortest path from A to C is found as A C

The shortest path from A to D is found as A B C

Data Structures/Dept of CSE/SVCET

28

Example 2:

1
v1 v2

6 2 4 10

5 6

v3 v4 v5

8 4 7

v6 v7

1

Consider the Source vertex is v1

Create a shortest path table. Since there are 7 vertices, the table has 7 columns.

v1 v2 v3 v4 v5 v6 v7

0 ∞ ∞ ∞ ∞ ∞ ∞

Write 0 in column v1 since it is a source vertex.

Smallest unmarked value in row 1 is 0. Hence it is marked. Create another row and copy marked

values alone to the new row.

v1 v2 v3 v4 v5 v6 v7

0 ∞ ∞ ∞ ∞ ∞ ∞

0 v1 to v2 =>

min(∞,0+1)

1

v1 to v3 =>

No direct edge

∞

v1 to v4 =>

min(∞,0+2)

2

v1 to v5 =>

No direct edge

∞

v1 to v6=>
No direct

edge
∞

v1 to v7 =>

No direct

edge
∞

The smallest unmarked value in 2
nd

 row is found and it is marked. (i.e) 1 is marked=> v2 marked

Create another row and copy marked values alone to the new row.

v1 v2 v3 v4 v5 v6 v7

0 ∞ ∞ ∞ ∞ ∞ ∞

0 1 ∞ 2 ∞ ∞ ∞

0 1 v2 to v3 =>

No direct edge

∞

v2 to v4 =>

min(2,1+4)

2

v2 to v5 =>

min(∞,1+10)

10

v2 to v6 =>

No direct

edge
∞

v2 to v7 =>

No direct

edge
∞

The smallest unmarked value in 3
rd

 row is found and it is marked. (i.e) 2 is marked =>v4 marked

Create another row and copy marked values alone to the new row.

v1 v2 v3 v4 v5 v6 v7

0 ∞ ∞ ∞ ∞ ∞ ∞

0 1 ∞ 2 ∞ ∞ ∞

0 1 ∞ 2 10 ∞ ∞

0 1 v4 to v3 =>

min(∞,2+5)
7

2 v4 to v5 =>

min(10,2+6)
8

v4 to v6 =>

min(∞,2+8)
10

v4 to v7 =>

min(∞,2+4)
6

6

Data Structures/Dept of CSE/SVCET

29

The smallest unmarked value in 4
th

 row is found and it is marked. (i.e) 6 is marked => v7 marked

Create another row and copy marked values alone to the new row.

v1 v2 v3 v4 v5 v6 v7

0 ∞ ∞ ∞ ∞ ∞ ∞

0 1 ∞ 2 ∞ ∞ ∞

0 1 ∞ 2 10 ∞ ∞

0 1 7 2 8 10 6

0 1 v7 to v3 =>

No direct edge
7

2 v7 to v5 =>
No direct edge

8

v7 to v6 =>

min(10, 6+1)
7

6

The smallest unmarked value in 5
th

 row is found and it is marked. (i.e) 7 is marked => v3 marked

Create another row and copy marked values alone to the new row.

v1 v2 v3 v4 v5 v6 v7

0 ∞ ∞ ∞ ∞ ∞ ∞

0 1 ∞ 2 ∞ ∞ ∞

0 1 ∞ 2 10 ∞ ∞

0 1 7 2 8 10 6

0 1 7 2 8 7 6

0 1 7 2 v3 to v5 =>
No direct edge

8

v3 to v6 =>

min(7, 7+6)
7

6

The smallest unmarked value in 6
th

 row is found and it is marked. (i.e) 7 is marked => v6 marked

Create another row and copy marked values alone to the new row.

v1 v2 v3 v4 v5 v6 v7

0 ∞ ∞ ∞ ∞ ∞ ∞

0 1 ∞ 2 ∞ ∞ ∞

0 1 ∞ 2 10 ∞ ∞

0 1 7 2 8 10 6

0 1 7 2 8 7 6

0 1 7 2 v6 to v5 =>

No direct edge
8

7 6

By applying backtracking, we can find that,

The shortest path from v1 to v2 is v1v2 and its cost is 1

The shortest path from v1 to v3 is v1v4v3 and its cost is 7

The shortest path from v1 to v4 is v1v4 and its cost is 2

The shortest path from v1 to v5 is v1v4v5 and its cost is 8

The shortest path from v1 to v6 is v1v4v7v6 and its cost is 7

The shortest path from v1 to v7 is v1v4v7 and its cost is 6

Data Structures/Dept of CSE/SVCET

30

Example 3:

B
 5 D

6 3

A 2 3 2 F

3 5

C EF

4

Consider the Source vertex is A

Create a shortest path table. Since there are 6 vertices, the table has 6 columns.

A B C D E F

0 ∞ ∞ ∞ ∞ ∞

Write 0 in column A since it is a source vertex.

Smallest unmarked value in row 1 is 0. Hence it is marked. Create another row and copy marked

values alone to the new row.

A B C D E F

0 ∞ ∞ ∞ ∞ ∞

0 A to B =>

min(∞, 0+6)

6

A to C =>

min(∞, 0+3)

3

A to D =>

No direct

edge
∞

A to E =>

No direct

edge
∞

A to F =>

No direct

edge
∞

The smallest unmarked value in 2
nd

 row is found and it is marked.(i.e) 3 is marked => C marked

Create another row and copy marked values alone to the new row.

A B C D E F

0 ∞ ∞ ∞ ∞ ∞

0 6 3 ∞ ∞ ∞

0 C to B =>

min(6, 3+2)
5

3 C to D =>

min(∞, 3+3)
6

C to E =>

min(∞, 3+4)
7

C to F =>

No direct edge
∞

The smallest unmarked value in 3
rd

 row is found and it is marked.(i.e) 5 is marked => B marked

Create another row and copy marked values alone to the new row.

A B C D E F

0 ∞ ∞ ∞ ∞ ∞

0 6 3 ∞ ∞ ∞

0 5 3 6 7 ∞

0 5 3 B to D =>

min(6, 5+5)
6

B to E =>

No direct edge
7

B to F =>

No direct edge
∞

Data Structures/Dept of CSE/SVCET

31

The smallest unmarked value in 4
th

 row is found and it is marked.(i.e) 6 is marked => D marked

Create another row and copy marked values alone to the new row.

A B C D E F

0 ∞ ∞ ∞ ∞ ∞

0 6 3 ∞ ∞ ∞

0 5 3 6 7 ∞

0 5 3 6 7 ∞

0 5 3 6 D to E =>

min(7, 6+2)
7

D to F =>

min(∞, 6+3)
9

The smallest unmarked value in 5
th

 row is found and it is marked.(i.e) 7 is marked => E marked

Create another row and copy marked values alone to the new row.

A B C D E F

0 ∞ ∞ ∞ ∞ ∞

0 6 3 ∞ ∞ ∞

0 5 3 6 7 ∞

0 5 3 6 7 ∞

0 5 3 6 7 9

0 5 3 6 7 E to F =>

min(9, 7+5)
9

All the vertices of the graph is marked.

By applying backtracking, we can find that,

The shortest path from A to B is ACB and its cost is 5

The shortest path from A to C is AC and its cost is 3

The shortest path from A to D is ACD and its cost is 6

The shortest path from A to E is ACE and its cost is 7

The shortest path from A to F is ACDF and its cost is 9

Data Structures/Dept of CSE/SVCET

32

B

A D E

C

B

A D

C

B C

A
D

A B

C

TOPOLOGICAL SORTING

 Topological sorting applies only to Directed Acyclic Graph(DAG)

 Topological sort of DAG G(V,E) is a linear ordering of all its vertices such that, if G

contains an edge (u,v), then u always appears before v in the ordering.

 Topological sort of a graph is not unique.(i.e) There may be multiple topological order for a

given graph

Example:

The topological order for a above graph are A,B,C,D,E (or) A,C,B,D,E

List of graph where topological sorting cannot be applied.

(a) (b) (c)

Algorithm:

Initialize Stack S and visited set as Empty

While(all vertex of G are not in visited set)

Choose any arbitrary vertex v.

If it is not in visited set,

Call topo(v)

End while

Data Structures/Dept of CSE/SVCET

33

B
A

C
D

E

F G

H

Topo(v)

//Given an undirected graph G(V, E) with n vertices and an VISITED array initially set to zero

VISITED[v] = 1

for each vertex w adjacent to v do

if VISITED [w] =0 then

call Topo (w)

end if

push(v)

end for

Example 1:

Initially Stack S and visited set is empty

Consider the arbitrary vertex chosen is E

E is passed to the topo function

Topo(E)

VISITED[E] = 1 Topo(H) Topo(F) Push(E)

VISITED[H]=1 Push(H)

VISITED[F]=1 Topo(G) Push(F)

VISITED[G]=1 Push(G)

While all vertices of G are not visited.

Choose an another arbitrary vertex B

E is passed to the Topo function

Data Structures/Dept of CSE/SVCET

34

Topo(B)

VISITED[B] =1 Topo(C) Topo(D) Push(B)

VISITED[C]=1 Push(C) VISITED[D] =1 Push(D)

While all vertices of G are not visited.

Choose an another arbitrary vertex A

A is passed to the Topo function

Topo(A)

VISITED[A] =1 Push(A)

 Since all the vertices of G are visited, Process stops.

 Now the elements of the stack are

A

B

D

C

E

F

G

H

 The elements from the stack are popped out and it is displayed which gives a topological

order of a graph G

 Topological order of the given graph is A,B,D,C,E,F,G,H

Data Structures/Dept of CSE/SVCET

35

b c

a e d

f g

Example 2:

Initially Stack S and visited set is empty

Consider the arbitrary vertex chosen is a

a is passed to the topo function

Topo(a)

VISITED[a] = 1 Topo(b) e Push(a)

VISITED[b]=1 Topo(c) e Push(b)

VISITED[c] =1 Topo(d) e Push(c)

VISITED[d] =1 Topo(e) g Push(d)

VISITED[e] =1 Topo(f) Topo(g) Push(e)

VISITED[f] =1 Push(f) VISITED[g] =1 Push(g)

 While all the vertices of graph are visited the contents of stack is popped and displayed,

which gives a topological order of a graph

a

b

c

d

e

g

f

 Topological order of the given graph is a,b,c,d,e,g,f

Data Structures/Dept of CSE/SVCET

36

SETS

 A set is an unordered collection of distinct, homogeneous elements.

Terminologies:

i) Bag:

 A bag is an unordered collection of homogeneous elements and all the elements are not

necessarily distinct

ii) Union of sets:

 Union of two sets is formed by combining the elements of set 1 with set 2 such that no

duplicate values exist.

 If Si and Sj are two sets, their union is given by Si U Sj

iii) Intersection of sets:

 Intersection of two sets is a collection of elements that appears common in both sets.

 If Si and Sj are two sets, their intersection is given by Si ∩ Sj

iv) Difference of sets:

 Difference of two sets is the set of elements from one set that do not appear in common in

a second set.

 If Si and Sj are two sets, their difference is given by Si – Sj

v) Subset:

 A set is said to be a subset of another set, if all the elements in first set appears in second

set

vi) Null set:

 A set is said to be null set, if it doesn‟t contain any element in it.

 Null set is denoted by ø
vii) Disjoint set:

 Two sets Si and Sj are said to be disjoint, if the intersection of two sets is an empty set

 Si ∩ Sj = ø

vii) Cardinality:

 The number of elements in a set is termed as cardinality

viii) Equality:

 Two sets are said to be equal, if all the elements of first set appear in the second set and

all the elements from the second set also appears in the first set.

 If Si and Sj are equal, then it is denoted as Si ≡ Sj

Data Structures/Dept of CSE/SVCET

37

13 8 5 20 10 15

REPRESENTATION OF SETS:

The various ways of representing sets are

i) Linked list representation of sets

ii) Hash table representation of sets

iii) Bit vector representation of sets

iv) Tree representation of sets

i) Linked list representation of sets:

It is a simplest and straight forward representation of a set. It allows dynamic storage facility.

Consider a Set S = { 15, 10, 20, 5, 8, 13}

 Head node doesn‟t store any data. Head points to the first element in aset

Header

Operation on linked list representation of sets:

a) Union

Union of two given sets Si and Sj are performed to get set S

(i.e) Set S = Si U Sj

Initially S is empty. As a first step copy all the elements of Si to S. Then each element in Sj is

inserted at the end of S only if that element is not already present.

Consider, Set Si ={ 15, 10, 5}and Sj = { 5 , 8 }

Si

Header

Sj

Header

S

Header

5 10 15

8 5

8 5 10 15 \0

\0

\0

Data Structures/Dept of CSE/SVCET

38

10

15

8 5 \0

b) Intersection

 If Si and Sj are two sets, their intersection is given by S = Si ∩ Sj

 Initially S is empty. The values in Si and Sj are compared and the common value in both

set is alone inserted to Set S. Consider, Set Si ={ 15, 10, 5}and Sj = { 5 , 8 }

S

Header

c) Difference:

 If Si and Sj are two sets, their difference is given by S = Si – Sj

 Initially S is empty. Find the common value in both Si and Sj. Remove that common

value from Si and then copy the values in Si to S.

 Consider, Set Si ={ 15, 10, 5}and Sj = { 5 , 8 }

S

Header

ii) Hash table representation of sets

 Hash table contains several buckets, where each bucket can store a list of elements

 Each bucket can hold an arbitrary number of elements.

 Consider Set S = { 15, 10, 5, 8}

 Consider H(x) is a hash function which can store elements of set in any one of the bucket

 Consider a hash table which contains 4 buckets.

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Operations on Hash table representation of sets

Let Si = {15, 5, 10}, Sj = {5, 8}

 The union operation can be performed by pairing the corresponding buckets.

 The union of hash table refers to union of corresponding buckets in the hash table.

 The intersection of hash table refers to common value in corresponding buckets in the

hash table.

 The difference of hash table gives the Set Si after removing the common value between

Si and Sj

5

10 15 \0

Data Structures/Dept of CSE/SVCET

39

Let Set Si

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Let Set Sj

Bucket 1

Bucket 2

Bucket 3

Bucket 4

S = Si U Sj

Bucket 1

Bucket 2

Bucket 3

Bucket 4

S= Si ∩ Sj

Bucket 1

Bucket 2

Bucket 3

Bucket 4

S = Si - Sj

Bucket 1

Bucket 2

Bucket 3

Bucket 4

\0 10

5 15

8 5

\0 10

8 5 15

5

10

\0 15

\0

\0

\0

\0

\0

Data Structures/Dept of CSE/SVCET

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

40

1

3 5 7 9

11 13

iii) Bit vector representation of sets:

Bit vector representation specifies the presence or absence of an element in set.

Example:

A set giving the record of a student who scored above 90 %

{ 0, 1, 1, 0, 0, 1, 0}. Here 0 specifies the absence of record of student who scored above 90 %

and 1 specifies the presence of record of student who scored above 90 %

Operations on bit vector representation of set

Union

To obtain the union of sets Si and Sj, Bitwise OR operation can be performed

Consider Si = { 1 0 1 0 1 1 0 }

Sj = { 0 0 1 1 0 1 1 }

The set S = Si U Sj = { 1 0 1 1 1 1 1}

Intersection

To obtain the intersection of sets Si and Sj, Bitwise AND operation can be performed

Consider Si = { 1 0 1 0 1 1 0 }

Sj = { 0 0 1 1 0 1 1 }

The set S = Si ∩ Sj = { 0 0 1 0 0 1 0}

Difference

Difference of Si and Sj is the set of values that appear in Si but not in Sj

This can be done performing Bitwise AND on the Complement of Sj

Consider Si = { 1 0 1 0 1 1 0 }

Sj = { 0 0 1 1 0 1 1 } => Sj‟ = { 1 1 0 0 1 0 0}

Si – Sj => Si ∩ Sj‟ = { 1 0 0 0 1 0 0}

iv) Tree representation of sets

 In tree representation of set, a tree is used to represent one set and each element in set has

the same root.

 The trees are not necessarily binary tree

Consider a set S = { 1, 3, 5, 7, 9, 11, 13 }

Representation of set in an array (i.e) Parent array of the given tree

- - 1 - 1 - 1 - 1 - 7 - 7 - -

Data Structures/Dept of CSE/SVCET

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

41

1

3 5 7

11 13

9

Operation on tree representation of set:

a) Exclusion:

Case 1 : Exclusion of an element which is a leaf node

 Let the element to be excluded be i. Make the parent[i] = Null

 Reduce the number of elements of set by 1

Case 2 : Exclusion of an element which is not a leaf node

 Let the element to be excluded be i.

 Traverse the parent array to select an element j such that it is a successor of i and is a

leaf node.

 Make parent[j] = parent [i]. Then, Make parent[i] = Null

 Traverse the parent array to replace all the occurrence of i by j

Example:

Exclusion of element 7

Parent array of the given tree

- - 1 - 1 - 1 - 11 - 7 - 7 - -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element to be excluded is 7 (i.e) i is 7

Traverse the parent array from 7 to select the successor which is a leaf node. (i.e) j is 9

Parent[9] = 1

Parent[7] = Null

Traverse parent array and replace the occurrence of 7 by 9

Parent array of the given tree

- - 1 - 1 - - - 1 - 9 - 9 - -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

3 5 9

11 13

Exclusion of element 11

Parent array of the given tree

- - 1 - 1 - - - 1 - - - 9 - -

Data Structures/Dept of CSE/SVCET

APPLICATION OF SETS:

i) Hash table representation of set is used in spelling check

ii) Bit array representation of set is used in information system

iii) Tree representation of set is used in Client – Server environment

i) Spelling checker:

The spelling checker system maintains the dictionary in a form of one hash table. The input

words to be checked is maintained in another hash table. The intersection operation of these two

hash tables is performed to check the misspelled word.

ii) Information system:

Bit strings are used for information storing and retrieval

Consider a student table

Register number Sex Department

101 Male ECE

102 Male CSE

103 Female IT

104 Male Mechanical

105 Female CSE

In this technique, the length of bit string is equal to the number of records

We need a bit array to store a set of bit strings

Bit Array Bit String

Male 11010

Female 00101
CSE 01001

Information retrieval using bit string

Consider, we need a record of Female student of CSE department

Female ∩ CSE => 00101 ∩ 01001

=> 00001

It represents the register number 105 is a female student of CSE department

iii) Client – Server environment:

 Tree representation of sets is used in client-server environment

 A square symbol represents a client-server system. In this, any number of client system

can be connected to the server system in an hierarchy.

 The clients of different server can communicate with each other provided that, both that

servers belongs to the same set.

 Here B,C,D are client of server A. E,F are clients of server B. G is client of server C. H

is a client of server D

 The client E can communicate with client G since the servers of E and G belong to same

set.

42

A

B C D

E F G H

Data Structures/Dept of CSE/SVCET

43

A B

C D

TRANSITIVE CLOSURE

 Given a vertex v, it is possible to find the reachability of all other vertices of graph G.

 Reachable means that there is a path from vertex u to v.

 If path exist between u to v, it is denoted as 1. If path doesn‟t exist, it is denoted as 0.

 The transitive closure of a given graph can be represented as Reachability matrix.

Example 1:

Consider a following graph

Reachability matrix:

 A B C D

A 0 1 1 1

B 0 1 1 1

C 0 1 1 1

D 0 1 1 1

Example 2:

Data Structures/Dept of CSE/SVCET

44

1

2 3

4

1

2 3

4

UNIT – 4 TWO MARKS

1. Define graph. Give example

 A graph G consists of a set of Vertices (nodes) and a set of Edges (arcs).

 Graph can be represented as

o G(V,E). V is a finite and non-empty set of vertices.

o E is a set of pair of vertices; these pairs are called as edges.

 V(G) = Set of vertices of graph G and E(G) = Set of edges of graph G

Here V(G)=(1,2,3,4) and E(G) = {(1,2),(1,3),(1,4),(2,3),(2,4), (3,4)}

2. Define Undirected Graph (or) Unqualified graph:

 Undirected graph is a graph in which, the pair of vertices representing the edges is unordered.

 Edges in undirected graph doesn‟t specify the direction

3. Define Directed graph (or) Digraph:

 Directed graph is a graph in which, the pair of vertices representing the edges is ordered.

 Edges in directed graph specify the direction

4. Define Path in a graph:

 Path between vertices u,v is a sequence of edges that connects u and v

 Path between 1 to 4 are {1 – 2 –4, 1–4, 1–3–4, 1–2–3–4, 1–3–2–4}

5. What is meant by a Connected graph?

 In Undirected graph, If there is a path from any vertex to every other vertex in a graph, then the

graph is called connected graph.

1

2 3

4

Data Structures/Dept of CSE/SVCET

45

1

2 3

4

1

2 3

2 3

4

1

2 3

4

6. What is meant by Strongly Connected graph?

 In Directed graph, If there is a path from any vertex to every other vertex in a graph, then the graph

is called strongly connected graph.

7. What is meant by a Complete Graph?

 A Graph is a complete, if there is an edge between every pair of vertices.

 It has exactly n(n-1)/2 number of edges.

8. Define Sub Graph.

A sub-graph of G is a graph G„ such that V(G‟)

V(G) and E(G „)

E(G).

Some of the Subgraphs of G

(a)

Graph G

Fig. Sub graphs of G

1

2 3

4

Data Structures/Dept of CSE/SVCET

46

1

2

3

4 5

1

2 3

4

9. Define Adjacent Vertex in graph

A vertex v1 is said to be a adjacent vertex of v2, if there exist an edge (v1,v2) or (v2,v1).

(a)

Graph G

Adjacent(1) = {2,3,4}, Adjacent(2) = {1,3,4}, Adjacent(3) = {1,2,4}, Adjacent(4) = {1,2,3}

10. What is meant by Length of the graph?

The
length

 of the graph is the number of edges in it.

11. What is meant by Weakly Connected Graph?

If there does not exist a directed path from one vertex to another vertex then it is said to be a weakly

connected graph.

12. What is meant by Cycle in graph?

A cycle is a path in which the first and the last vertices are the same.

13. Define Degree of a graph.

 The number of edges incident on a vertex determines its degree. There are two types of degrees for

directed graph In-degree and out-degree.

 In-Degree of the vertex V is the number of incoming edges

 Out-Degree of vertex V is the number of edges that leaves the vertex

Data Structures/Dept of CSE/SVCET

47

14. What is a spanning tree?

Spanning tree is a subset of Graph G, which has all the vertices covered with minimum possible

number of edges. Hence, a spanning tree does not have cycles and it cannot be disconnected

Graph G Spanning trees of G

15. Define minimum spanning tree.

Minimum spanning tree is a spanning tree that has minimum weight/cost than all other spanning

trees of the same graph.

15. How does a graph differ from a tree?

Trees Graph

Tree is a minimally connected graph and having
only one path between any two vertices.

In graph there can be more than one path

Tree doesn‟t have loop, circuit or self loop Graph can have loop, circuit or self loop

Tree is DAG(Directed Acyclic graph) Graph may be cyclic or Acyclic

Parent child relationship exist No such relationship exists

Tree can be traversed using inorder, preorder and
postorder traversals

Graph can be traversed using Breadth First Search
and Depth First Search

16. Define multistage graph.

 A multistage graph G=(V,E) is a directed graph in which vertices are partitioned into
K>=2 disjoint set (set Vi) where [1<= i <= K]. In addition, if (u, v) is an edge E then

u ∈vi, v ∈ vi+1. Each set vi is called stage in a graph.

 Let c(i, j) be the cost of edge. The cost of a path from (S to D) is the sum of costs of the

edges on the path.

 The Multistage graph problem is to find the minimum cost path from “S” to “D”.

17. What are the two ways to maintain graph G in a memory of computer? (or) What are the

different ways to represent a graph?

 Set representation

 Adjacency matrix representation

 Adjacency list (or) Linked list representation

18. Write the advantages of topological sorting.

 It is used in scheduling a sequence of jobs based on dependencies

 It is used in determining the order of compilation, data serialization, resolving dependencies in

linkers.

 It is used to quickly compute shortest path with a weighted acyclic graph

19. Define topological sort.

 Topological sort of DAG G(V,E) is a linear ordering of all its vertices such that, if G

contains an edge (u,v), then u always appears before v in the ordering.

 Topological sort of a graph is not unique.

Data Structures/Dept of CSE/SVCET

48

20. State the applications of graph.

1. Facebook: Each user is represented as a vertex and two people are friends when there

is an edge between two vertices. Similarly friend suggestion also uses graph theory

concept.

2. Google Maps: Various locations are represented as vertices and the roads are

represented as edges and graph theory is used to find shortest path between two nodes.

3. Recommendations on e-commerce websites: The “Recommendations for you” section

on various e-commerce websites uses graph theory to recommend items of similar type

to user‟s choice.

4. Broadcasting in networks

21. Define the term set and bag in set ADT

 A set is an unordered collection of distinct, homogeneous elements.

 A bag is an unordered collection of homogeneous elements and all the elements are not

necessarily distinct

22. What do you know about graph traversal

 Two types of graph traversal that can be performed is Breadth First Search(BFS) and

Depth First Search(DFS).

 BFS explores siblings before exploring its children

 DFS explores all the nodes reachable from X before exploring its siblings

23. Explain union by rank in a set

 Union by rank always attaches the shorter tree to the root of the taller tree. Thus, the
resulting tree is no taller than the originals unless they were of equal height, in which case

the resulting tree is taller by one node.

 To implement union by rank, each element is associated with a rank. Initially a set has one

element and a rank of zero. If two sets are unioned and have the same rank, the resulting

set's rank is one larger; otherwise, if two sets are unioned and have different ranks, the

resulting set's rank is the larger of the two.

25. Define Adjacency matrix.

 Adjacency matrix is a representation used to represent a graph with zeros and ones.

 A graph containing n vertices can be represented by a matrix with n rows and n columns.

 The matrix is formed by storing 1 n its ith and jth column of the matrix, if there exists an
edge between ith and jth vertex of the graph and 0 if there is no edge between ith and jth

vertex of the graph .

 Adjacency matrix is also referred as incidence matrix.

26. Define weighted graph.

A graph is said to be a weighted graph if every edge in the graph is assigned some weight or

value. The weight of an edge is a positive value that may be representing the distance between

the vertices or the weights of the edges along the path.

Data Structures/Dept of CSE/SVCET

49

A D

B C

27. What are the two methods for finding shortest path?

 Single source shortest path

 All pair shortest path

28. Differentiate BFS and DFS

DFS BFS

Backtracking is possible Backtracking is not possible

Stack can be used to implement DFS Queue is used to implement BFS

It explores all the nodes reachable from X
before exploring its siblings.

BFS explores siblings before exploring its
children

Search is done in depth order Search is done in same level order

29. Define shortest path problem. Give Example.

 The shortest path problem is the problem of finding a PATH between 2 nodes(source and
destination), such that the sum of weight of its constituent edge is minimized.

 Eg: finding quickest way to go to one location to another.

30. Find the adjacency matrix of a given graph.

Adjacency matrix:

 A B C D

 A 0 0 1 1

 B 1 0 0 1

A= C 0 1 0 0

 D 0 0 1 0

31. What are the different representations of set?

i) Linked list representation of sets ii) Hash table representation of sets

iii) Bit vector representation of sets iv) Tree representation of sets

32. What are the various operations on set ?

 Union, Intersection, Difference, Exclusion.

32. What are the various applications of set?

i) Hash table representation of set is used in spelling check

ii) Bit array representation of set is used in information system

iii) Tree representation of set is used in Client – Server environment

UNIT-V Data Structures/Dept of CSE/SVCET

1

UNIT – 5

TABLES:

 Table is a data structure used to store the records.

 Access table stores the location of all records in a file. The method of accessing the record in

a file using an access table is call table lookup, which is independent on number of records.

 It helps in efficient retrieval of records

Types of Tables:

i) Inverted tables:

Consider a telephone company maintains the records of all customers. These records can be used

to serve several purposes. List of all customers based on alphabetical order of names, List of all

customers based on lexicographical ordering of address, List of all customers based on ascending

order of phone numbers

Storing these records in normal table has several drawbacks.

1. Requirement of extra storage: Three times the actual memory

2. Difficulty in modification of records: If the customer changes his address it need to

be updated in all the three tables.

To avoid maintaining multiple tables for different purpose, We use a single inverted table.

Original table

Index Name Address Phone number

1 Raj Nethaji street 250121

2 Anbu Medical colony 230131

3 Akash Officer‘s colony 260158

4 Jagan Mgr street 254836

Table after performing ascending order of names, address and phone number

Name Address Phone number

Akash Medical colony 230131

Anbu Mgr street 250121

Jagan Nethaji street 254836

Raj Officer‘s colony 260158

The index of corresponding name, address and phone number in original table is written in

the inverted table.

INVERTED TABLE:

Name Address Phone number

3 2 2

2 4 1

4 1 4

1 3 3

If we search the customer name or address or phone number, with the help of index, the

corresponding record is retrieved from the original table.

UNIT-V Data Structures/Dept of CSE/SVCET

2

0

2

4

5

Y O B

A

S I

E H

ii) Jagged tables:

 In jagged table, Each row in a table has varying number of elements.

 Given a linear index value, the access array is searched to find the appropriate data in a

table.

Access table Jagged table

Storing the elements of jagged table as an array, we get

H E I S A B O Y

Access table

iii) Rectangular tables:

Accessing elements using access table

 Rectangular tables are similar to matrices

 Elements are stored in a form of rows and columns

 (i.e) m*n. where m represents the number of rows and n represents the number of

columns

 a11 a12 a13… a1n

A= a21 a22 a23… a2n

 a31 a32 a33… a3n

…..…………………..

am1 am2 am3… amn

0

5

4

2

UNIT-V Data Structures/Dept of CSE/SVCET

3

iv) HASH TABLES:

 Hashing is an effective technique to calculate the direct location of a data record on the

disk using hash function.

Several types of hash function are:

i) Mid-square method

In this method, A key is multiplied by itself and the address is obtained by choosing an

appropriate number of bits or digits from the middle of the square. The selection of bits or digits

based on the table size and also they should fit into one computer word of memory.

Example: Consider a key, 56789 and when it is squared we get 3224990521. If the three digit

address is needed, then positions 5 to 7 may chosen, giving address 990.

ii) Division method

In this method, integer x is to divide by M and d then to use the remainder modulo M. The hash

function is

H(x) = x mod M

Great care should be taken while choosing value for M and preferably it should be an even

number. By making M a large prime number the keys are spread out evenly.

iii) Folding method

A key is partitioned into a number of parts, each of which has the same length as the required

address. The parts are then added together, ignoring the final carry, to form an address. For eg., if

the key 356942781 is to be transformed into a three-digit address.

Example:

356, 942 and 781 are added to yield 079.

iv) Digit analysis method

Digit analysis forms an addresses by selecting and shifting digits or bits of the original key.

Example: A key 7546123 is transformed to the address 2164 by selecting digits in positions 3 to

6 and reversing their order.

UNIT-V Data Structures/Dept of CSE/SVCET

4

Hash file organization:

 Data is stored in buckets. A bucket is a unit of storage containing one or more records (a

bucket is typically a disk block).

 In a hash file organization we obtain the bucket of a record directly from its search-key

value using a hash function.

i) STATIC HASHING:

 In static hashing, number of buckets in the hash table is fixed.

Consider a hash function

h(x) = x , where h(x) is a hash function, x is the search key

 If we use the above hash function, the key element will be stored at the corresponding index.

 If we want to store 2, 4, 5, it will be stored at location 2,4, and 5 respectively in a hash table.

 A hash table consists of several buckets. Consider a hash table of size 6

 h(2) = 2, h(4) = 4, h(5) =5

0

1

2

3

4

5

Hash table of size 6

 If we want to store, key 100, then 100 buckets need to be created in hash table.

 Hence the hash function, h(x) = x leads to wastage of memory.

 To improve it, hash function is modified as

o h(x) = x % size , where size represents the size of hash table
Consider a hash table of size 10.

h(x) = x % 10

Insert the key values 3, 17, 18, 27

0

1

2

3

4

5

6

7

8

9

Hash table of size 10
When 27 is to be inserted, h(27) = 27 % 10 => 7. When we try to insert 27 at position 7, collision occurs.

2

4

5

3

17

18

UNIT-V Data Structures/Dept of CSE/SVCET

5

Collision resolution techniques:
To avoid the collision, when inserting elements into the Hash table, two techniques are used

i) Open hashing

a. Chaining

ii) Closed hashing

a. Linear Probing

b. Quadratic Probing

i) Open hashing:

a. Chaining:

 In chaining, each index in a hash table maintains a set of elements in a chain, if multiple
elements corresponds to the same index.

 Consider a hash table of size 10.

h(x) = x % 10
Insert the key values 3, 17, 18, 27, 63

0

1

2

3

4

5

6

7

8

9

Hash table of size 10

ii) Closed hashing:

a. Linear Probing:

 In linear probing, if there is no space for storing the element in corresponding index, then

Find the next free space and store the element in it.

 Consider a hash table of size 10.

h(x) = x % 10
Insert the key values 3, 17, 18, 27

h(3) = 3 % 10 => h(3) =3

h(17) = 17 % 10 => h(17) =7

h(18) = 18 % 10 => h(18) =8

h(27) = 27 % 10 => h(27) = 7. Since 17 and 27 corresponds to same index 7, 27 is stored in next

free space

Hence, the Hash function is modified as

h’(x) = index position + i , where i ranges from 1 to n

h‘(27) =7 + 1 => h‘(27) = 8. Since index position 8 is already filled by 18, next position is

checked

h‘(27) = 7 +2 => h‘(27) =9. Since index position 9 is free, 27 is stored in index 9.

18

27 17

63 3

18

UNIT-V Data Structures/Dept of CSE/SVCET

6

Insert the key values 3, 17, 18, 27

0

1

2

3

4

5

6

7

8

9

Hash table of size 10

 Drawback of this approach is that, elements are clustered in a single place

b. Quadratic probing:

 To avoid the clustering of elements, Quadratic probing is used

 Hash function

o h(x) = x % 10
o h’(x) = index position + x2

Insert the key values 3,22, 31

h(3) = 3 % 10 => h(3) =3

h(22) = 22 % 10 => h(22) =2

h(32) = 32 % 10 => h(32) =2

since index position 2 is already filled by 22,

h‘(32) = 2 + 1
2
 = h‘(32) = 3. Position 3 is also already filled

h‘(32) = 2 + 2
2
 = h‘(32) = 6. Since position 6 is free, element 32 is filled at position 6. Hence

clustering of elements is avoided.

0

1

2

3

4

5

6

7

8

9

Hash table of size 10

3

17

18

27

22

3

32

UNIT-V Data Structures/Dept of CSE/SVCET

7

35

21

40

74

47

35

40

41

21

74

47

ii) DYNAMIC HASHING (or) EXTENDABLE HASHING:

 In dynamic hashing, Buckets are allocated on-demand dynamically.

 It specifies a binary value for each bucket.

 If the number of bit is 1, then possible number of buckets are 0 and 1

 If the number of bits is 2, then possible number of buckets are 00, 01, 10 and 11

 If the number of bits is 3, then possible number of buckets are 000, 001, 010, 011, 100,

101, 110, 111.

Consider a hash function

h(x) = x % 32

Consider, we want to insert 35, 21, 47, 40, 74

Hash function, h(x) x % 32 Remainder value Binary value of the remainder

h(35) 35%32 3 0011

h(21) 21%32 21 10101

h(47) 47%32 15 1111

h(40) 40%32 8 1000

h(74) 74%32 10 1010

 In a binary value of the remainder, consider 1

st
 two bits of each number and store the

corresponding number in that bucket. Consider each bucket can store 3 values

00 01 10 11

 When we try to insert 41, h(41) => 41 % 32 => 9 => 1001, 41 should be inserted in

bucket 10. But it leads to overflow in bucket 10.

 Hence the number of bucks is increased by considering the 1
st
 three binary digits of the

remainder

000 001 010 011 100 101 110 111

Advantage:

 It is good for database that grows and shrinks in size

Disadvantage:

 As the data size increases, the number of buckets also increased

UNIT-V Data Structures/Dept of CSE/SVCET

8

if

for repea

loop while

SYMBOL TABLE:

Symbol table is a Data Structure which contains an information about the identifier.

Symbol table contains a set of locations where a record of each identifier is present.

Symbol table has two fields

 Identifier name

 Memory location

Identifier name Memory location

X 1000

Y 2000

Z 3000

 Here X, Y, Z are the variables used in the program

 Column 1 => Contains the entry for the variables

 Column 2 => Contains the address where the value of the variable is stored

Two ways to implement symbol table:

i) STATIC TREE TABLE:

 In Static tree table, identifiers are known in advance. No new insertion and deletion of

identifiers are allowed.

 Example: Reserved keywords

 Sorting the names and store them sequentially using Binary Search Tree(BST)

 Example: Perform insertion and deletion of keywords in BST

 Insert keywords if, for, repeat, loop, while in BST

ii) DYNAMIC TREE TABLE:

 In Dynamic tree table, identifiers are not known in advance. Insertion and deletion of

identifiers are allowed dynamically.

 Example: Perform Insertion in BST, AVL tree with any example.

UNIT-V Data Structures/Dept of CSE/SVCET

9

EXTERNAL SORTING

 When sorting is performed on data which is stored on external storage devices, it is called

external sorting.

 Application such as Geographical Information System(GIS), Bioinformatics, Statistical

analysis, soft computing need to store large amount of data.

 When the data need to be stored is very large and it cannot be accommodated in main

memory, then those data is stored in external storage devices like magnetic tapes, hard

disk etc.

 Some of the external sorting algorithms are: Balanced two-way merge, Multi-way

merging, Poly-phase merge sort, Oscillating sorting, External radix sort.

SORTING ON TAPES

 Data in magnetic tape is divided into n-blocks of equal size.

Data organization on a magnetic tape

i) Balanced 2 – way merge sort

 Balanced 2- way merge sort requires 4 magnetic tapes to sort the data.

 2 – way merge sort combines two ascending runs into single ascending run.(A sorted

segment of a file is called ascending run)

 Let T1, T2, T3, T4 be the four tapes. Size of each tape need to store entire data under sort

Steps in performing sorting:

 Create initial ascending runs by internal sort

i) Read each block from Input tape and place that alternatively on tape T1 and T2

ii) Thus, ascending runs for Block1, Block3, Block5…etc are stored in T1 and Block2,

Block4, Block6…etc are stored in T2

 Perform external merge

i) While performing external merging, runs are merged and stored on alternate tapes,

until the final run is obtained.

UNIT-V Data Structures/Dept of CSE/SVCET

10

Analysis of Balanced two – way merge sort:

 Total time for performing internal sorting of all blocks

T(N) = O(N), where N is a number of data blocks under sort.

 Time to retrieve data from tape and storing data into tape, (i.e) external device time is

Te(N) = (tr + tw) * N

Where, tr is time to read data from tape

tw is time to write data into tape

 Time complexity of performing 2 – way merge sort is O(N log N)

UNIT-V Data Structures/Dept of CSE/SVCET

11

ii) Multi-way merge sort:

 It is an m- way merging where m-runs are combined into a single run. Here m > 2

 Consider m =3. Hence 3 tapes need to be maintained in a form of three linked list

 Consider initial input runs of each tape is already sorted.

UNIT-V Data Structures/Dept of CSE/SVCET

12

iii) Poly- phase merge sort:

Poly-phase merge sort combines both the 2-way merge sort and multi-way merge sort

UNIT-V Data Structures/Dept of CSE/SVCET

13

EXTERNAL STORAGE DEVICES

Overview of physical storage media:

 Physical storage media is classified based on Speed with which data can be accessed,

Cost per unit of data, Reliability

 Primary storage: Fastest media but volatile (cache, main memory).

 Secondary storage: next level in hierarchy, non-volatile, moderately fast access time

o also called on-line storage

o E.g. flash memory, magnetic disks

 Tertiary storage: lowest level in hierarchy, non-volatile, slow access time

o also called off-line storage

o E.g. magnetic tape, optical storage

 Cache – fastest and most costly form of storage; It is a volatile(erasable) storage;

 Main memory:

o Volatile — contents of main memory are usually lost if a power failure or system
crash occurs.

o fast access and size is too small

 Flash memory

o Data survives power failure(Non-volatile)

o Data can be written at a location only once.

o Reads are as faster as main memory, but writes and erase is slower

 Magnetic-disk

o Survives power failures(non-volatile) and but disk failure leads to failure of data

o Data is stored on spinning disk, and read/written magnetically

o It is a long-term storage and stores entire database.

o direct-access – possible to read data on disk in any order, unlike magnetic tape

UNIT-V Data Structures/Dept of CSE/SVCET

14

 Optical storage

o It is non-volatile, data is read optically from a spinning disk using a laser

o CD-ROM (640 MB) and DVD (4.7 to 17 GB) most popular forms

o Write-one, read-many (WORM) optical disks used for archival storage (CD-R,

DVD-R, DVD+R)

o Multiple write versions also available (CD-RW, DVD-RW, DVD+RW, and DVD-

RAM)

o Juke-box systems, with large numbers of removable disks, a few drives, and a

mechanism for automatic loading/unloading of disks available for storing large

volumes of data

 Tape storage

o It is non-volatile, used primarily for backup (to recover from disk failure), and for

archival data

o sequential-access – much slower than disk

o very high capacity (40 to 300 GB tapes available)

Magnetic disks:

 Platter is divided into circular tracks

o Over 50K-1lakh tracks are present in one platter

 Each track is divided into sectors.

o There are 500 to 1000 sectors per track

 To read/write a sector

o Disk arm swings platter from center to end

o Read-write head read/write the data in the sector

o Cylinder i consists of i
th

 track of all the platters

UNIT-V Data Structures/Dept of CSE/SVCET

15

FILE ORGANIZATION

 The database is stored as a collection of files. Each file is a sequence of records. A record

is a sequence of fields.

 Fields: Account_Number, Brach_Name and Balance.

 Collection of Records in a file is described by the following diagram

FILE QUERIES (OR) QUERIES ON FILES:

 Files are like tables.

 We use a file system database as prefix in queries when we refer to object across the

database

 Example: select * from hdfs . ‗ path of the file‘

 Here the file system database used is Hadoop Distributed File System(HDFS).

i) Plain Text Files:

 Comma – Separated Values(.csv)

 Tab – Separated Values(.tsv)

 Pipe – Separated Values(.psv)

Comma – Separated Values:

 In this, each column in a table is stored in a file, separated by comma.

 The file is stored with an extension .csv

 To display the entire columns of the csv file,

o Select * from dfs. ‗ path of the csv file‘.

 To display only 1
st
 and 2nd columns of csv file,

o Select columns[0], columns[1] from dfs. ‗ path of csv file‘

Expr $0 Expr $1

1 Raj

2 Bala

3 Ravi

UNIT-V Data Structures/Dept of CSE/SVCET

16

 To display the column name as meaningful, we can rename the column name by using

following queries

o Select columns[0] as rollno, columns[1] as name from dfs. ‗ path of csv file‘

Rollno Name

11 Raj

5 Bala

15 Ravi

 To display the data in columns based on condition,

o Select columns[0] as rollno, columns[1] as name from dfs. ‗ path of csv file‘

where columns[0] > 10

Tab-separated values and Pipe-separated values:

 Similar type of queries which are used in comma-separated values can be used for Tab-

separated values and Pipe-separated values files

ii) Structured data file:

JSON file:

 JSON file is a file that stores simple data structures and objects.

 It contains data in a standard data interchange format which is text-based and human-

readable. JSON files were originally based on a subset of JavaScript, but is considered a

language-independent format, being supported by many different programming APIs.

 Google+, which uses JSON files for saving Profile data.

 JSON is commonly used in Ajax Web application programming. It is becoming

increasingly popular as an alternative to XML.

 Mozilla Firefox saves bookmark backups using JSON files. The files are saved to the

Firefox user profile directory within a folder called bookmarkbackups.

Queries on JSON files:

Select * from cp . ‗ path of json file‘ limit 5; // cp represents the class path

It displays the first five rows of the json file.

iii) Querying sequence files:

 Sequence files are flat files which stores binary key value pairs.

 In this, the values are stored in binary form.

 Select * from dfs. ‗ path of the sequence file‘ Limit 1

Binary key Binary value

ff011 1001100

 The binary form of key value pair can be converted to the corresponding string

o Select convert_from(Binary key , ‗UTF8‘), convert_from(Binary value, ‗UTF8‘)

from dfs.‘path of sequence file‘ limit 1; // UTF represents Unicode Text Format

Expr $0 Expr $1

Key0 Value0

UNIT-V Data Structures/Dept of CSE/SVCET

17

SEQUENTIAL FILE ORGANIZATION

 Sequential files have data records stored in a specific order.

 Sequential file can be accessed in serially.

 Suitable for applications that require sequential processing of the entire file

 The records in the file are ordered by a search-key.

 A key is defined to the data records to uniquely identify each data.

 For e.g., in a Bank application the customer is uniquely identified by bank account

number.

 The following figure shows how the records are organized by a links or pointer chains

sequentially.

OPERATIONS PERFORMED IN SEQUENTIAL FILE ORGANIZATION

1. INSERTION OF RECORDS

2. UPDATION OF RECORDS

3. SEARCHING OF RECORDS

4. DELETION OF RECORDS

INSERTION AND DELETION IN SEQUENTIAL FILE ORGANIZATION

 Insertion and Deletion – use pointer chains

 Insertion –locate the position where the record is to be inserted

o if there is free space insert there

o if no free space, insert the record in an overflow block

o In either case, pointer chain must be updated

 Need to reorganize the file from time to time to restore sequential order.

UNIT-V Data Structures/Dept of CSE/SVCET

18

Fig. The role of Overflow block in sequential file organization

SEARCHING A RECORD IN A FILE

 It involves looking or finding a record sequentially (one by one) in file until finding the

required record.

INDEXED SEQUENTIAL FILE

 Each record of a file has a key field which uniquely identifies that record.

 An index consists of keys and address (physical disc locations)

 An index sequential file is a sequential file (i.e. sorted into order of a key field) which has
an index.

 A full index to a file is one in which there is an entry for every record.

 Indexed sequential file are important for applications where data needs to be accessed
sequentially and randomly using the index.

 An indexed sequential file allows fast access to a specific record.

 E.g.:- A company may store details about its employees as an indexed sequential file.

Sometimes the file is accessed, Sequentially, for e.g.:- When the whole file is processed

to produce pay slips at the end of the month.

 Randomly, may be an employee changes address, or a female employee gets married and

changes her surname.

Disadvantage of Sequential Files - The retrieval of a record from a sequential file, on average,

requires access to half the records in the file, making such enquiries not only inefficient but very

time consuming for large files. To improve the query responses time of a sequential file, a type

of indexing technique can be added.

UNIT-V Data Structures/Dept of CSE/SVCET

19

INDEXING

 An index is used to quickly locate and access the data in a database table.

o E.g., author catalog in library

 Index files are typically much smaller than the original file

 Data is stored in the form of records. Every record has a key field, by which a record can

be uniquely identified.

 The general format of an index file is

Search-key value Pointer to actual record on disk

 Search Key–It is an attribute to set of attributes which is used to look up records in a file.

Example:

 Consider, there are 100 records each of 10 bytes long. If we need to access 60
th

 record,

we need to access (59 records*10bytes)=> 590 bytes before accessing 60th record,

If indexing is not used

 Index file contain only id and pointer whose size is assumed to be 2 bytes for each
record

 Since, index file is much smaller than the actual file,

 If we need to access 60
th

 record, We need to access (59 records*2bytes)=> 118 bytes

before accessing 60th record, If indexing is used.

 Hence the time of searching is reduced.

Two basic types of indices:

o Ordered indices: Search keys are stored in sorted order

o Hash indices: Search keys are distributed uniformly across ―buckets‖ using a
―hash function‖.

TYPES OF ORDERED INDICES:

i) PRIMARY INDEX

 Entries in the index table have a one-to-one relationship with the main table.

 Primary index can be of two types:

o Dense index: each and every record in the main table has an entry in the index
table.

o Sparse index: Only some of the record in main table will have an entry in index

table

UNIT-V Data Structures/Dept of CSE/SVCET

20

a) DENSE INDEX:

index table File with set of records

index table File with set of records

b) SPARSE INDEX:

index table File with set of records

UNIT-V Data Structures/Dept of CSE/SVCET

21

index table File with set of records

ii) CLUSTERING INDEX:

 Grouping of related (or) same type of record is performed in clustering.

 Several Employees of same department can be grouped into cluster

 Several Students of same department can be grouped into cluster

 Based on department – id, the particular records in the cluster can be accessed

UNIT-V Data Structures/Dept of CSE/SVCET

22

iii) SECONDARY INDICES:

 Secondary level index are used, if the data blocks doesn‘t fit to main memory

 Two level of index is used to access the records.

 The data blocks are stored in hard disk.

UNIT-V Data Structures/Dept of CSE/SVCET

23

UNIT – 5 TWO MARKS

1. What are Jagged tables? (or) Comment on Jagged tables.

 In jagged table, Each row in a table has varying number of elements.

 Given a linear index value, the access array is searched to find the appropriate data in a

table.

2. What are the components of hash table?

 Bucket array => It is an array where elements are stored

 Hash Function => It is a function/algorithm which is used for storing elements in a hash

table.

3. Compare sequential and index organization.

Sequential organization Index organization

Data is entered in entry sequential order Data is entered in key sequential order

Data is not in sorted order Data is in sorted order based on key

Access of data is slower Access of data is fast

Duplicate data is allowed Duplicate data is not allowed

Key is not available Key is available

It is also called as QSAM(Queue Sequential
Access Method)

It is also called as VSAM(Virtual Storage
Access Method)

4. Write the difference between internal and external sorting.

 When data which is to be sorted fits in main memory, then that sorting is called as

internal sorting. Example: Sorting of small set of values.

 When sorting is performed on massive amount of data, which is stored on external

storage devices, it is called external sorting.Example: Sorting of Geographical

Information System(GIS), Biometrics data.

5. Classify external sorting.

 Some of the external sorting algorithms are: Balanced two-way merge, Multi-way

merging, Poly-phase merge sort, Oscillating sorting, External radix sort.

6. What is hashing?

 Hashing is an effective technique to calculate the direct location of a data record on the

disk using hash function.

 Hash function is denoted by H(x)

7. What is hash table? (Or) what is Hash map ? (or) Why hash table have been used?

 Hash table is a Data structure where the data elements are stored, searched, deleted based

on the keys generated for each element, which is obtained from a hashing function.

 Hash table has an array of buckets which stores data.

UNIT-V Data Structures/Dept of CSE/SVCET

24

8. What is index technique?

 An index is used to quickly locate and access the data in a database table.

o E.g., author catalog in library

 Index files are typically much smaller than the original file

 The general format of an index file is

Search-key value Pointer to actual record on disk

9. Define symbol table. (or) what is the use of symbol table? (or) List the properties of

symbol table.

 Symbol table is a data structure used by compilers in order to store information about the

occurrence of identifiers, function names etc. (i.e) It stores the memory address where the

value of identifier present

 It is used to verify that the used identifiers are declared.

 It is used to verify that the expression is semantically correct – Perform typechecking.

10. What do you know about collision in hashing? (or) Explain hash collision.

 When two or more data elements in the data set U, maps to the same location in the hash

table, then it is called as hash collision.

11. What is a need of inverted table?

 Inverted table is used to avoid maintaining multiple tables for different purpose. Instead,

a single inverted table is used.

 To create inverted table, each of the column in original table is ordered. Then, the

corresponding index of each value in original table is written in the inverted table.

12. Name some of the external storage devices.

 Magnetic disk, Magnetic tape, Hard disk, Flash drive, CD/DVD, Solid state memory card

13. What are the indexing techniques available for files?

 Indexed Sequential file organization, Hash indices, B+ tree index, Trie tree index,

Dense index, Sparse index, Clustered index, Secondary index, multilevel index.

14. What is sequential file access?

 In sequential file, Records are stored in sequential order. The records in the file are

ordered by a search-key.

 Each record can be accessed only in a sequential manner.

 It is suitable for applications that require sequential processing of the entire file

UNIT-V Data Structures/Dept of CSE/SVCET

25

15. Define dense and sparse index.

 Dense index: In dense index, each and every record in the main table has an entry in the

index table.

 Sparse index: In sparse index, Only some of the record in main table will have an entry

in index table

16. What are the methods available for accessing a symbol table?

 Insert() operation is used to add information into the symbol table

 Lookup() operation is used to search a name in symbol table, to determine whether the

symbol exists in a table

 Scope() operation is used to identify whether the symbol is in local or global scope

17. Write the main advantages of indexed sequential file. (or) Write about ISAM(Indexed

Sequential Access Method).

 Indexed sequential file are important for applications where data needs to be accessed
sequentially and randomly using the index.

 Example: Company stores employee details in indexed sequential file. Here, the entire

file is accessed while crediting salary for all employees. File is accessed randomly when
a particular employee changes his address.

18. What are the four types of queries?

 Querying plain text files

 Querying sequential files

 Querying JSON files

 Querying directories

19. What is meant by a table?

 Table is a data structure used to store the records.

 It helps in efficient retrieval of records.

 Access table stores the location of all records in a file. The method of accessing the record in

a file using an access table is call table lookup, which is independent on number of records.

20. What are the various collision resolution techniques in hashing?

i) Open hashing

a. Chaining

ii) Closed hashing

a. Linear Probing

b. Quadratic Probing

21. What is meant by dynamic hashing?

 In dynamic hashing, Buckets are allocated on-demand dynamically.

 It specifies a binary value for each bucket.

