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UNIT I 

INTRODUCTION TO FLUID 

 Fluid may be defined as a substance which is capable of flowing. It has no definite shape of its own, 

but confirms to the shape of the containing vessel. A small amount of shear force exerted on a fluid 

will cause it to undergo a deformation. It continues as long as the force is to be applied. 

 The study of fluids in motion, where pressure forces are not considered, is called fluid kinematics and 

if the pressure forces are also considered for the fluids in motion, that branch of science is called fluid 

dynamics. 

Generally, matter exists in three states. They are 

 Solid 

 Liquid and 

 Gas. 

Although different in many respects, liquids and gases have a common characteristic in which they differ 

from solids. The liquid and gas together are called by the common term 'fluids'. 

A fluid is a substance which deforms continuously under the action of shear stress. In addition, it has the 

following properties: 

 It is unable to retain any unsupported shape. 

 It flows under its own weight and takes the shape of any solid body with which it contained. 

 A fluid in equilibrium cannot sustain any shear. 

 It cannot regain its original shape on the removal of the shear force.  

 Shear stresses occur in fluids only when they are in motion. 

 Rate of strain is directly proportional to the applied stress. 

 

 Fluid mechanics is a physical science related with the behavior of fluid at rest and in continuous 

motion. It consists of two approaches such as empirical hydraulics and classical hydrodynamics. 

Empirical hydraulics deals with the motion of water but classical hydrodynamics deals with the flow 

analysis based on concept of ideal fluid. 

------------------------------------------------------------------------------------------------------------------------------ 

DIFFERENCE BETWEEN SOLID AND FLUID 

 In nature, all matter exists in any one of three forms of states such as solid, liquid or gas, or in a mixture 

of these forms. The liquid and gaseous form are usually combined and given a common name of fluid, 

because of the common characteristics exhibited by liquids and gases. 

 A solid is generally concerned as a substance that has its own shape and undergoes an infinitesimal 

change in volume under pure compressive load. It offers resistance to change in shape without a 

change in volume under the application of tangential forces. This force may cause some displacement 

of one layer over another in the direction of the applied force, but the material will not continue to 



deform indefinitely. When this force is removed, the deformation will disappear provided a critical limit 

has not been exceeded. 

 The spacing and latitude of motion of molecules are very small in solids, large in a liquid and extremely 

large in gas. Accordingly, the intermolecular bonds are very strong in solids, weak in liquids and very 

weak in gases. It is due to that the solid is very compact and rigid. The common materials classified 

as solids are bricks, steel, diamond, wood, rubber, plastics etc. 

 The fluids do not have their own shape and they do not offer any resistance to change in shape when 

a deforming tangential force is applied. They continuously deform under the action of such forces, 

however small the force may be. 

 The continuous deformation under the action of tangential force causes liquids and gases to flow 

rather than to remain as solid. The common examples of fluids are water, kerosene, milk, gasoline, 

air, steam etc. 

------------------------------------------------------------------------------------------------------------------------------ 

CLASSIFICATION OF FLUIDS 

The fluids may be classified into the following five types: 

1. Ideal fluid    

2. Real fluid 

3. Newtonian fluid   

4. Non-Newtonian fluid 

5. Ideal plastic fluid 

Fluids are classified as follows: 

 Ideal fluids and Real or Practical fluids. 

 Newtonian fluids and Non-Newtonian fluids. 

1. Ideal Fluids 

Ideal fluids have the following properties. 

 It is incompressible. 

 It has zero viscosity. 

 Shear force is zero when the fluid is in motion i.e. No resistance is offered to the motion of any 

fluid particles. 

2. Real or practical Fluids 

 It is compressible. 

 They are viscous in nature. 

 Some resistance is always offered by the fluid when it is in motion. 

 Shear stress always exists in such fluids. 

 



3. Newtonian Fluids 

In Newtonian fluids, a linear relationship exists between the magnitudes of shear stress (𝛕) and the 

resulting rate of deformation (du /dy). i.e. the constant of proportionality µ , does not change with the rate 

of deformation. 

𝛕 = 𝜇 
𝒅𝒖

𝒅𝒚
 

Example: Water, Kerosene. 

The viscosity at any given temperature and pressure is constant for a Newtonian fluid and is 

independent of the rate of deformation. 

4. Non-Newtonian Fluids 

 In Non-Newtonian fluids, there is a non-linear relation between the magnitude of the applied shear 

stress and the rate of deformation. The viscosity will vary with variation in rate of deformation. They 

do not obey Newton's law of viscosity. 

 The Non-Newtonian fluids can be further classified into five groups. They are simple Non-Newtonian, 

ideal plastic, shear thinning, shear thickening and real plastic fluids. Simple Non-Newtonian has 

already explained. 

 In plastics, there is no flow upto a certain value of shear stress. After this limit, it has a constant 

viscosity at any given temperature. 

 In shear thinning materials, the viscosity will increase with rate of deformation (du/dy). 

 In shear thickening materials, viscosity will decrease with rate of deformation (du/dy). 

 Example: Non-Newtonian fluids are paint, toothpaste, and printer's ink. 

5. Ideal Plastic Fluid: A fluid, in which shear stresses more than the yield value and shear stress is 

proportional to the rate of shear strain (or velocity gradient), is known as ideal plastic fluid 

 

Figure. The relationship between shear stress and shear 

------------------------------------------------------------------------------------------------------------------------------ 



FUNDAMENTAL DIMENSIONS AND UNITS 

All physical quantities are measured in certain units. There are two types of units: 

 Fundamental units 

 Derived units 

1. Fundamental units 

All the physical quantities are expressed in terms of the following three fundamental units: 

 Length (L) 

 Mass (M) 

 Time (T) 

2. Derived units 

Some units called derived units are expressed in terms of fundamental units, such as units of area, 

velocity, accelesration, pressure etc. 

The following four systems of units are internationally accepted. 

 C.G.S units 

 F.P.S units 

 M.K.S units 

 S.I. units 

----------------------------------------------------------------------------------------------------------------------------- 

PROPERTIES OF FLUIDS 

Density or Mass Density: Density or mass density of a fluid is defined as the ratio of the mass of a fluid 

to its volume. Thus mass per unit volume of a fluid is called density. It is denoted the symbol (ρ rho). The 

unit of mass density in SI unit is kg per cubic metre, i.e. kg/m3.  

 The density of liquids may he considered as constant while that of gases changes with the variation 

of pressure and temperature. 

Mathematically, mass density is written as. 

Density or mass density =   
mass of a fluid 

 volume  
 

The value of density of water is 1 gm/cm3 or 1000 kg/m3. 

Specific Weight or Weight Density: Specific weight or weight density of a fluid is the ratio between 

the weight of a fluid to its volume. The weight per unit volume of a fluid is called weight density and it is 

denoted by the symbol ω  

Weight of fluid (Mass of fluid) x Acceleration due to gravity 



     =     
(mass of a fluid x  g) 

 volume  of fluid
 

The value of specific weight or weight density (ω) for water is 9.81 X 1000 Newton/m3 in SI units. 

Specific Volume: Specific volume of a fluid is defined as the volume of a fluid occupied by a unit mass 

or volume per unit mass of a fluid is called specific volume. Mathematically, it is expressed as 

Specific volume    = Volume of fluid /mass of fluid 

      =  
1

 (mass /volume) 
    =  

1

𝜌
 

Specific Gravity: Specific gravity is defined as the ratio of the weight density for density) of a fluid to the 

weight density (or density) of a standard fluid. For liquids, the standard fluid is taken water and for gases, 

the standard fluid is taken air. Specific gravity is also called as relative density. It is dimensionless quantity 

and is denoted by the symbol S. 

       

Mathematically,   S (for liquids) =    
Weight density (density)of liquid

weight density (density)of water
 

  

       S (for gases)           =    
Weight density (density)of gas

weight density (density)of air
  

         

Thus weight density of a liquid  =   S x Weight density of water 

             = S x 1000 x 9.81 N/m3 

 The density of a liquid              = S x Density of water 

       = S x 1000-kg/m3. 

 If the specific gravity of a fluid is known, then the density of the fluid will be equal to specific gravity 

of fluid multiplied by the density of water. For example the specific gravity of mercury is 13.6, hence 

density of mercury = 13.6 x 1000 = 13600 kg/m3. 

VISCOSITY 

 Viscosity is defined as the property of a fluid which offers resistance to the movement of one layer of 

fluid over another adjacent layer of the fluid.  

 When two layers of a fluid, a distance 'dy' apart, move one over the other at different velocities, say u 

and u + du as shown in Fig., the viscosity together with relative velocity causes a shear stress acting 

between the fluid layers. 

 The top layer causes a shear stress on the adjacent lower layer while the lower layer causes a shear 

stress on the adjacent top layer.  



 This shear stress is proportional to the rate of change of velocity with respect to y. It is denoted by 

symbol τ called Tau. 

 

Fig. Velocity variation near a solid boundary 

Mathematically,       τ α 
𝒅𝒖

𝒅𝒚
 

τ = µ 
𝐝𝐮

𝐝𝐲
 

where µ (called mu) is the constant of proportionality and is known as the co-efficient of dynamic viscosity 

or only viscosity. 
𝑑𝑢

𝑑𝑦
  represents the rate of shear strain or rate of shear deformation or velocity gradient. 

From equation, we have  

Thus viscosity is also defined as the shear stress required to produce unit rate of shear strain. 

 

Kinematic Viscosity. It is defined as the ratio between the dynamic viscosity and density of fluid. It is 

denoted by the Greek symbol (v) called 'nu’. Thus, mathematically. 

      v = 
viscosity

density
   =  

𝛍

𝛒
 

In MKS and SI, the unit of kinematic viscosity is metre2 /sec or   𝑚2/sec, while in CGS units it is written as 

cm2/s. In CGS units, kinematic viscosity is also known as stoke. 

one stoke   =  cm2/s   =  ( 
1

100
 )2  m2/s  = 10

-4  
m2/s   

centistoke  = 
1

 100
  stoke 

------------------------------------------------------------------------------------------------------------------------------ 

Newton's Law of Viscosity. It states that the shear stress (x) on a fluid element layer is directly 

proportional to the rate of shear strain. The constant of proportionality is called the coefficient of viscosity. 

Mathematically, it is expressed as given by equation (1.2) or as 

𝛕 = 𝜇 
𝒅𝒖

𝒅𝒚
 



Fluids which obey the above relation are known as Newtonian fluids and the fluids which do not obey 

the above relation are known as Non- Newtonian fluids 

------------------------------------------------------------------------------------------------------------------------------ 

Calculate the specific weight, density and specific gravity of one litre of a liquid which weighs 7 

N. 

Given : 

Volume = l litre =  
1

1000 
m3      (or )1 litre = 1000 cm3  

Weight = 7 N 

Solution:  

        (i)Specific weight (w) =  
𝑤𝑒𝑖𝑔ℎ𝑡 

𝑣𝑜𝑙𝑢𝑚𝑒 
 =  

7𝑁
1

     1000 
 𝑚3 

  = 7000 N/m3. Ans. 

 (ii) Density (ρ)        =  
𝑤

𝑔
  =  

7000

 9.81
  kg/m3   =   713.5 kg/m3. Ans. 

 (in) Specific gravity    =   
𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑 

 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟
  =   

7000

 1000
           ( Density of water = 1000 kg/m3) 

        = 0.7135 Ans. 

------------------------------------------------------------------------------------------------------------------------------ 

Calculate the density, specific weight and weight of one litre of petrol of specific gravity = 0.7 

Given: 

Volume =  litre =  x 1000 cm3 = 
1000

106
  m3 = 0.001 m3 

Sp. gravity  S , = 0.7 

(i) Density (p)  = S x 1000 kg/m3   = 0.7 x 1000  

       = 700 kg/m3 

(ii) Specific weight (w)  

   w = ρ x g = 700 x 9.81 N/m3  

           = 6867 N/m3. Ans. 

(iii) Weight (W) 

We know that,  specific weight  =  
𝑤𝑒𝑖𝑔ℎ𝑡

𝑣𝑜𝑙𝑢𝑚𝑒
    = 

𝑊

0.001
   or 6867  

W = 6867 X 0.001 = 6.867 N. Ans. 

------------------------------------------------------------------------------------------------------------------------------ 



A plate 0.025 mm distant from a fixed plate, moves at 60 cm/s and requires a force of 2 N per unit 

area i.e., 2 N/m2  to maintain this speed. Determine the fluid viscosity between the plates. 

Given : 

Distance between plates,     dy = .025 mm 

               = .025 x 10-3 m 

Velocity of upper plate,     u = 60 cm/s = 0.6 m/s  

Force on upper plate,   F = 2.0 N/m2                

This is the value of shear stress i.e., 𝛕 

Solution:  

Let the fluid viscosity between the plates is μ, 

we know that,      𝛕 = 𝜇 
𝒅𝒖

𝒅𝒚
 

where,    du = change of velocity 

             dy = change of distance = 0.025 x 10-3 m 

    = force per unit area = 2.0 N/m2 

 2.0 = μ 
0.60

 0.025∗ 10−3
    

μ =  
2.0 𝑥 0.025 𝑥 10−3

 0.60
   =  8.33 x 10-5  Ns/m2 

= 8.33 x 10-5  x 10 poise  

μ = 8.33 x 10-4 poise 

------------------------------------------------------------------------------------------------------------------------------ 

The dynamic viscosity of an oil, used for lubrication between a shaft and sleeve is 6 poise. The 

shaft is of diameter 0.4 m and rotates at 190 r.p.m. Calculate the power lost in the Bearing for a 

sleeve length of 90 mm. The thickness of the oil film is 1.5 mm.  

Given  

Viscosity    μ  =  6 poise    =  
6

10
    

Ns/m2  

Diameter of shaft,  D = 0.4  

Speed of shaft,        N = 190 r.p.m  

Sleeve length   L = 90 mm =  90 x 10 -3  m  
            

Thickness of oil film,     t = 1.5 mm = 1.5 x 10 -3 m 

 



Tangential velocity of shaft, u = 
𝜋 𝐷 𝑁

60
   = 

π x 0.4 x 190

60
 

            u = 3.98 m/s 

Solution: 

using this relation,  

𝛕 = 𝜇 
𝒅𝒖

𝒅𝒚
 

where  du = Change of velocity   = u - 0 = u = 3.98 m/s 

dy = Change of distance  = t = 1.5 x 10 -3 m 

      𝛕 = 10 x 
3.98

1.5 x 10−3 
  =   15922 N/m2 

This is shear stress on shaft, 

Shear force on the shaft,    F = shear stress x Area 

              = 1592 x π D L  = 1592 x π x 0.4 x 90x10-3 

           F = 180.05 N 

Torque on the shaft,          T  =  Force x  
𝑫

𝟐
  

            =  180.05 x  
0.4

2
   

        T = 36.01 Nm 

Power lost,   =  
2 𝜋  𝑁 𝑇

60
  = 

2 π  190 x 36.01

60
 

 Power lost      = 716.48 W 

------------------------------------------------------------------------------------------------------------------------------ 

If the velocity profile of a fluid over a plate is parabolic with the vertex 20 cm from the plate, where 

the velocity is 120 cm/sec. Calculate the velocity gradients and shear stresses at a distance of 0, 

10 and 20 cm from the plate, if the viscosity of the fluid is 8.5 poise. 

Given: 

Distance of vertex from plate = 20 cm  

Velocity at vertex,        u = 120 cm/sec 

Viscosity,         µ = 8.5 poise    

          = 8.5 / 10 Ns/m2 = 0.85  

         

The velocity profile is given parabolic and equation of velocity profile is 

u = ay2 + by + c              ......... (i) 

where a, b and c are constants. Their values are determined from boundary conditions as: 

(a) at y = 0, u = 0 

(b) at y = 20 cm,  u = 120 cm/sec 



(c)     at y = 20 cm, (du/dy)  =  0 

Solution:  

substituting boundary condition (a) in equation (i), we get 

c = 0 

boundary condition (b) on substitution in (i) gives 

    120 = a (20)2 + b(20) = 400a + 20b                ........(ii) 

boundary condition (c) on substitution in equation (i) gives 

du / dy = 2ay+b 

    0 = 2 x a x 20+ b = 40a + b 

Solving equations (ii) and (ii) for a and b, 

From equation (iii),   b = - 40a 

Substituting this value in equation (ii), we get 

120 = 400a + 20 x (- 40a) = 400a - 800a = -400a 

120 = -400a 

 a = 120 / (-400)   =   -3/10      =  - 0.3 

    b = - 40 x (-0.3)    =   12.0 

Substituting the values of a, b and c in equation (i), 

u = - 0.3y2 + 12y 

Velocity Gradient: 

(du/dy) = -0.3 x 2y +12  =  -0.6y +12 

at y= 0, Velocity Gradient, (du/dy)y=0   = -0.6 x 0+12  = 12/s Ans. 

at y= 10 cm,   (du/dy)y=10  = -0.6 x 10+12  = - 6+12    =  6/s Ans. 

at y= 20 cm, , (du/dy)y= 20   = -0.6 x 20+12  =  -12+12 = 12/s Ans. 

Shear Stresses: 

Shear stress is given by,             𝝉 =  µ   
𝒅𝒖

𝐝𝐲
 

Shear stress at y= o, τ =  µ   ( 
du

dy
 )y= 0         =   0.85 x 12.0   =   10.2 N/m2  Ans 

Shear stress at y= o, τ =  µ   ( 
du

dy
 )y= 10        =   0.85 x  6.0     =   5.1 N/m2  Ans 

Shear stress at y= o, τ =  µ   ( 
du

dy
 )y= 20         =   0.85 x  0        =   0  Ans 

------------------------------------------------------------------------------------------------------------------------------ 

Calculate the dynamic viscosity of an oil, which is used for lubrication between a square plate of 

size 0.8 m x 0.8 m and an inclined plane with angle of inclination 30° as shown in Fig. The weight 

of the square plate is 300 N and it slides down the inclined plane with a uniform velocity of 0.3 

m/s. The thickness of oil film is 1.5 mm. 



Given: 

Area of plate, A = 0.8 x 0.8 = 0.64 m: 

Angle of plane, θ = 30° 

Weight of plate, W = 300 N 

Velocity of plate, u = 0.3 m/s 

Thickness of oil film,    t = dy = 1.5 mm  

        = 1.5 x 10 3 m  

      

Solution:  

Let the viscosity of fluid between plate and inclined plane is µ.  

Component of weight W, along the plane = Wcos 60° = 300 cos 60° = 150 N 

Thus the shear force, F, on the bottom surface of the plate = 150 N 

shear stress,           τ =  
Force

Area
 = 150 / 0.64 N/m2 

Now using equation, we have 

τ =  µ     (du/dy)  

where du = change of velocity = u - 0 = u = 0.3 m/s 

   dy = t = 1.5 x 10 -3 m 

150/0.64  =  µ (0.3 / 1.5 x 10-3) 

 µ = (150 x 1.5 x 10-3 ) / 0.64 x 0.3 

µ = 17 N s/m2 = 1.17 x 10  

µ = 11.7 poise Ans 

------------------------------------------------------------------------------------------------------------------------------ 

  Two large plane surfaces are 2.4 cm apart. The space between the surfaces is filled with 

glycerine. What force is required to drag a very thin plate of surface area 0.5 square metre between 

the two large plane surfaces at a speed of 0.6 m/s, if: 

(i) the thin plate is in the middle of the two plane surfaces, and 

(ii) the thin plate is at a distance of 0.8 cm from one of the plane surfaces ? Take the dynamic 

viscosity of glycerine = 8. 10 x 10-1 N s/m2. 

 

Given: 



Distance between two large surfaces = 2.4 cm 

Area of thin plate, A = 0.5 m2  

Velocity of thin plate, u = 0.6 m/s  

Viscosity of glycerine, μ = 8.10 X 10-1 N s/m2  

Solution:  

Case I: When the thin plate is in the middle of the two plane surfaces  [Refer to Fig.] 

Let F1 = Shear force on the upper side of the thin plate Fig. 1.7 (a) 

F2 = Shear force on the lower side of the thin plate  

F = Total force required to drag the plate  

Then,       F = F1 + F2 

 

The shear stress (𝛕1) on the upper side of the thin plate is given by equation.  

𝛕1 = 𝜇 ( 
𝒅𝒖

𝒅𝒚
 )1 

where,    du = Relative velocity between thin plate and upper large plane surface  

        = 0.6 m/sec 

   dy = Distance between thin plate and upper large plane surface 

        = 1.2 cm = 0.012 m (plate is a thin one and hence thickness of plate is neglected)  

𝛕1 = 8.10 x 10-1 x ( 
0.6

0.012
 ) = 40.5 N/m2  

Now , shear force ,  F1 =  shear stress x Area 

       = 𝛕1 x  A   =  40.5 x 0.5 =  20.25 N 

            F1 = 20.25 N  

Similarly shear stress (𝛕2) on the lower side of the thin plate is given by 

𝛕2 = 𝜇 ( 
𝒅𝒖

𝒅𝒚
 )2 



𝛕2 = 8.10 x 10-1 x ( 
0.6

0.012
 ) = 40.5 N/m2  

Now , shear force ,  F2 =  shear stress (𝛕2) x Area 

       = 𝛕2 x  A   =  40.5 x 0.5 =  20.25 N 

               F2 = 20.25 N 

Then ,   Total force     F = F1 + F2  =  20.25 + 20.25 

F = 40.5 N 

Case II. When the thin plate is at a distance of 0.8 cm from one of the plane surfaces [Refer to Fig]. 

Let the thin plate is at a distance 0.8 cm from the lower plane surface. 

 

Then distance of the plate from the upper plane surface, 

 2.4 cm – 0.8  = 1.6 cm  = .016 m 

(Neglecting thickness of the plate)  

The shear force on the upper side of the thin plate,  

 F1 = Shear stress (𝛕1) x Area = 𝛕1 x A 

    = 𝜇 ( 
𝑑𝑢

𝑑𝑦
 )1 x A  =  8.10 x 10-1 x ( 

0.6

0.016
 ) x 0.5 

F1  = 15.18 N 

The shear force on the lower side of the thin plate, 

F2 = Shear stress (𝛕2) x Area = 𝛕2 x A 

  = 𝜇 ( 
𝑑𝑢

𝑑𝑦
 )2 x A  =  8.10 x 10-1 x ( 

0.6

0.8/100
 ) x 0.5 

F2  = 30.36 N 

Total force required,    F = F1 + F2  = 15.18 + 30.36  F = 45.54 N     

------------------------------------------------------------------------------------------------------------------------------ 



A vertical gap 2.2 cm wide of infinite extent contains a fluid of viscosity 2.0 Ns/m2 and specific 

gravity 0.9. A metallic plate 1.2 m X 1.2 m X0.2 cm is to be lifted up with a constant velocity of 0.15 

m/sec, through the gap. If the plate is in the middle of the gap, find the force required. The weight 

of the plate is 40 N. 

------------------------------------------------------------------------------------------------------------------------------ 

PASCAL LAW 

It states that the pressure or intensity of pressure at a point in a fluid at rest is equal in all 

directions. 

 

The fluid element is of very small dimensions ie, dx, dy and ds. Consider an arbitrary fluid element of 

wedge shape in a fluid mass at rest as shown. Let the width of the element perpendicular to the plane of 

paper is unity and 𝑝𝑥, 𝑝𝑦 and 𝑝𝑧 are the pressures or intensity of pressure acting on the face AB, AC and 

BC respectively. Let ABC = θ. Then the forces acting on the element are: 

 Pressure forces normal to the surfaces. 

 Weight of element in the vertical direction. 

𝑝𝑥 = 𝑝𝑦 = 𝑝𝑧 

------------------------------------------------------------------------------------------------------------------------------ 

ABSOLUTE GAUGE, ATMOSPHERIC AND VACUUM PRESSURES 

The pressure on a fluid is measured in two different systems. In one system, it is measured above 

the absolute zero or complete vacuum and it is called the absolute pressure and in other system, pressure 

is measured above the atmospheric pressure and it is called gauge pressure. Thus: 

 



1. Absolute pressure is defined as the pressure which is measured with reference to absolute vacuum 

pressure. 

2. Gauge pressure is defined as the pressure which is measured with the help of a pressure measuring 

instrument, in which the atmospheric pressure is taken as datum. The atmospheric pressure on the scale 

is marked as zero. 

 

3. Vacuum pressure is defined as the pressures below the atmospheric pressure. 

The relationship between the absolute pressure, gauge pressure and vacuum pressure are shown in Fig.  

Mathematically : 

(i) Absolute pressure  = Atmospheric pressure + Gauge pressure   

              Pab  =    Patm + Pgauge 

(ii) Vacuum pressure  = Atmospheric pressure - Absolute pressure 

The atmosphcric pressure at sea level at 15°C is 101.3 KN/m2 or 10.13 KN/ Cm2 in SI unit. In case of 

MKS units, it is equal to 1.033 kgf/cm2. 

----------------------------------------------------------------------------------------------------------------------------------------- 

 

MEASUREMENT OF PRESSURE 

The pressure of a fluid is measured by the following devices. 

1. Manometers  

2. Mechanical gauges  

Manometers: 

i) Simple Manometers 

ii) Differential manometers 

a) U - tube differential Manometers 

b) Inverted U - tube differential Manometers 

SIMPLE MANOMETER 

A simple manometer consists of a glass tube having one of its ends connected to a point where pressure 

is to be measured and other end remains open to atmosphere. Common types of simple manometers 

are: 

1. Piezometer 

2. U-tube Manometer 

3. Single Column Manometer 

Piezometer: It is the simplest form of manometer used for measuring gauge pressures. One end of this 

manometer is connected to the point where pressure is to be measured and other end is open to the 

atmosphere as shown in Fig. The rise of liquid gives the pressure head at that point. If at a point A, the 

height of liquid say water is h in piezometer tube, then pressure at A 

    = ρ x g x h (N/m2) 



 

U-tube Manometer: It consists of glass tube bent in U-shape, one end of which is connected to a point 

at which pressure is to be measured and other end remains open to the atmosphere as shown in Fig.  

 

The tube generally contains mercury or any other liquid whose specific gravity is greater than the specific 

gravity of the liquid whose pressure is to be measured. 

For gauge pressure,    p =    (ρ2 g h2 - ρ1 g h1 ) 

For vacuum pressure, p =  - (ρ2 g h2 + ρ1 g h1 ) 

------------------------------------------------------------------------------------------------------------------------------ 

A simple U-tube manometer containing mercury is connected to a pipe in which a fluid of sp. gr. 

0.8 and having vacuum pressure is flowing. The other end of the manometer is open to 

atmosphere. Find the vacuum pressure in pipe, if the difference of mercury level in the two limbs 

is 40 cm and the height of fluid in the left from the centre of pipe is 15 cm below. 

 Given: 

Sp. gr. of fluid, S1 = 0.8 

Sp. gr. of mercury, S2 = 13.6 

Density of fluid, ρ1  = 800 

Density of mercury, ρ2  = 13.6 x 1000 

Difference of mercury level, h2 = 40 cm = 0.4 m 

Height of liquid in left limb, h1 = 15 cm = 0.15 m 

                 



Solution. 

Let the pressure in pipe = p   

Equating pressure above datum line A-A, we get 

ρ2 g h2 + ρ1 g h1 +P = 0 

p   =  - (ρ2 g h2 + ρ1 g h1 ) 

p  = -[13.6 x 1000 x 9.81 x 0.4 + 800 x 9.81 x 0.15] 

    = - [53366.4 + 1177.2]  =  - 54543.6 N/m2 

 p = - 5.454 N/cm2 

------------------------------------------------------------------------------------------------------------------------------ 

  The right limb of a simple U-tube manometer containing mercury is open to the atmosphere 

while the left limb is connected to a pipe in which a fluid of sp. gr. 0.9 is flowing. The centre of the 

pipe is 12 cm below the level of mercury in the right limb. Find the pressure of fluid in the pipe if 

the difference of mercury level in the two limbs is 20 cm. 

------------------------------------------------------------------------------------------------------------------------------ 

SINGLE COLUMN MANOMETER 

Single column manometer is a modified form of a U-tube manometer in which a reservoir, having a large 

cross-sectional area (about 100 times) as compared to the area of the tube is connected to one of the 

limbs (say left limb) of the manometer as shown in Fig.  

Due to large cross-sectional area of the reservoir, for any variation in pressure, the change in the liquid 

level in the reservoir will be very small which may be neglected and hence the pressure is given by the 

height of liquid in the other limb. The other limb may be vertical or inclined. Thus there are two types of 

single column manometer as: 

 Vertical Single Column Manometer. 

 Inclined Single Column Manometer.  

Vertical Single Column Manometer 

Fig. shows the vertical single column manometer. Let X-X be the datum line in the reservoir and 

in the right limb of the manometer, when it is not connected to the pipe. When the manometer is 

connected to the pipe, due to high pressure at A, the heavy liquid in the reservoir will be pushed 

downward and will rise in the right limb. 

Let , 

Δh = Fall of heavy liquid in reservoir  

h2 = Rise of heavy liquid in right limb 

h1 = Height of centre of pipe above X-X 

pA = Pressure at A, which is to be measured  

A = Cross-sectional area of the reservoir  

a = Cross-sectional area of the right limb  

S1= Sp. gr. of liquid in pipe 

S2= Sp. gr. of heavy liquid in reservoir and 

right limb 



 

 

ρ1 = Density of liquid in pipe  

ρ2 = Density of liquid in reservoir  

Fall of heavy liquid in reservoir will cause a rise of heavy liquid level in the right limb. 

A x Δh = a x h2 

Δh =  a x h2 / A 

finally,     PA = ρ2 g h2 - ρ1 g h1 

 

 

Inclined Single Column Manometer 

Fig. shows the inclined single column manometer. This manometer is more sensitive. Due to inclination 

the distance moved by the heavy liquid in the right limb will be more. 

 

Let L = Length of heavy liquid moved in right limb from X-X 

θ = Inclination of right limb with horizontal 

h2 = Vertical rise of heavy liquid in right limb from X-X = L x sin θ  

From equation, the pressure at A is 

PA = ρ2 g h2 - ρ1 g h1 

Substituting the value of h2, we get 

PA =  sinθ x  ρ2 g  - ρ1 g h1 

------------------------------------------------------------------------------------------------------------------------------ 



DIFFERENTIAL MANOMETERS 

Differential manometers are the devices used for measuring the difference of pressures between 

two points in a pipe or in two different pipes. A differential manometer consists of a U-tube, containing a 

heavy liquid, whose two ends arc connected to the points, whose difference of pressure is to be 

measured. Most commonly types of differential manometers are: 

1. U-tube differential manometer  

2. Inverted U-tube differential manometer 

U-Tube Differential Manometer 

Fig. shows the differential manometers of U-tube type. 

In Fig. the two points A and B are at different level and also contains liquids of different sp. gr. 

These points are connected to the U-tube differential manometer. Let the pressure at A and B are pA 

and pB. 

Let  h = Difference of mercury level in the U-tube. 

y = Distance of the centre of B, from the mercury level in the right limb.  

x = Distance of the centre of A, from the mercury level in the right limb,  

ρ1 = Density of liquid at A.  

ρ2 = Density of liquid at B.  

ρg = Density of heavy liquid or mercury. 

 

 

Taking datum line at X-X. 

Pressure above X-X in the left limb = ρ1g(h + x) + pA  

where pA = pressure at A. 

Pressure above X-X in the right limb = ρg x g x h + ρ2 x g x y + pB  

where pB = Pressure at B. 

Equating the two pressure, we have 

ρ1g(h + x) + pA = = ρg x g x h + ρ2 x g x y + pB 

PA-PB = ρg gh + ρ2 g y - ρ1g(h + x) 



            = h g (ρg- ρ1) + ρ2 g y - ρ1gx 

Difference of pressure at A and B = h x g(ρg – ρ1) + ρ2gy - ρ1gx  

The two points A and B are at the same level and contains the same liquid of density ρ, 

 Then 

PA-PB  = gh(ρg – ρ1) 

------------------------------------------------------------------------------------------------------------------------------ 

A Differential manometer is connected at the two points A and B of two pipes as shown in Fig.  

The pipe A contains a liquid of sp. gr. = 1.5 while pipe B contains a liquid of sp. gr. = 0.9. The 

pressures at A and B are 1 kgf/cm2 and 1.80 kgf/cm2 respectively. Find the difference in mercury 

level in the differential manometer.  

Given: 

Sp. gr. of liquid at A , S1 = 1.5     [ ρ1 = 1500 kg/m3 ] 

Sp. gr. of liquid at B , S2 = 0.9     [ ρ1 = 900 kg/m3 ] 

Pressure at A,     = PA = 1 kgf/cm2   = 1 x 104 kgf/m2   

           = 104 x 9.81 N/m2    ( 1 kgf  = 9.81 N) 

Pressure at B,     = PA = 1.8 kgf/cm2   = 1.8 x 104 kgf/m2   

           = 1.8 x 104 x 9.81 N/m2 

Density of mercury   = 13.6 x 1000 kg/m3   

 

Solution:  

Taking X-X as datum line,  

Pressure above X-X in the left limb 

    = 13.6 x 1000 x 9.81 x h + 1500 x 9.81 x (2 + 3) + PA  



    = 13.6 x 1000 X 9.81 x h + 7500 x 9.81 + 9.81 x 104  

Pressure above X-X in the right limb 

    = 900 x 9.81 x (h + 2) + PB 

    = 900 x 9.81 x (h + 2) + 1.8 x I04 x 9.81  

Equating the two pressure, we get  

    13.6 x 1000 x 9.81h + 7500 x 9.81 + 9.81 x 104 = 900 x 9.81 x (h + 2) + 1.8 x 104 x 9.81  

Dividing by 1000 x 9.81, we get 

13.6 h + 7.5 + 10 = (h + 2.0) x 0.9 + 18 

13.6 h+ 17.5 = 0.9 h+ 1.8+ 18 = 0.9 h+ 19.8  

(13.6 - 0.9) h = 19.8 - 17.5  (or) 12.7/ h = 2.3  

h = 2.3 / 12.7  =  0.181 m   

h = 18.1 cm Ans 

------------------------------------------------------------------------------------------------------------------------------ 

A differential manometer is connected at the two points A and B as shown in Fig. At B air pressure 

is 9.81 N/cm2 (abs), find the absolute pressure at A. 

 

------------------------------------------------------------------------------------------------------------------------------ 

Inverted u-tube differential manometer: 

 It consists of an inverted U-tube, containing a light liquid. The two ends of the tube are connected to the 

points whose difference of pressure is to be measured. It is used for measuring difference of low 

pressures. Fig. shows an inverted U-tube differential manometer connected to the two points A and B. 

Let the pressure at A is more than the pressure at B. 

Let 



h1 = Height of liquid in left limb below the datum line X-X 

h2 = Height of liquid in right limb   

 h = Difference of light liquid  

ρ1 = Density of liquid at A  

ρ2 = Density of liquid at B  

ρs = Density of light liquid  

pA = Pressure at A  

pB = Pressure at B. 

 

Taking X-X as datum line. Then pressure in the left limb below X-X 

= PA- ρ1 gh1 

Pressure in the right limb below X-X 

= PB- ρ2 gh2 - ρs gh 

Equating the two pressure 

PA- ρ1 gh1  = PB - ρ2 gh2 - ρs gh  

        PA-PB = ρ1 gh1  - ρ2 gh2 - ρs gh 

------------------------------------------------------------------------------------------------------------------------------ 

Water is flowing through two different pipes to which an inverted differential manometer having 

an oil of sp. gr. 0.8 is connected. The pressure head in the pipe A is 2 m of water, find the 

pressure in the pipe B for the manometer readings as shown in Fig. 

Given: 

 



Solution: 

Pressure head at A = 
𝑃𝐴

𝜌𝑔
 = 2 m of water  

PA = p x g x 2 = 1000 x 9.81 x 2  

     = 1000 x 9.81 x 2  

PA = 19620 N/m2 

Fig. shows the arrangement. Taking X-X as datum line.  

Pressure below X-X in the left limb = PA - ρ1 g h1 

   = 19620 - 1000 x 9.81 x 0.3 

= 16677 N/m2 

 

Pressure below X-X in the right limb 

= PB - 1000 x 9.81 x 0.1 - 800 x 9.81 x0.12  

= PB - 981 - 941.76 = PB - 1922.76  

Equating the two pressure, we get 

16677 =  PB - 1922.76    

PB          =  16677 + 1922.76 = 18599.76 N/m2 

PB       =  1.8599 N/cm2 Ans. 

------------------------------------------------------------------------------------------------------------------------------ 

In Fig. an inverted differential manometer is connected to two pipes A and B which convey water. 

The fluid in manometer is oil of sp. gr. 0.8. For the manometer readings shown in the figure, find 

the pressure difference between A and B. 

Given : 

Sp. gr. of oil  S0  = 0.8 

Density of oil   ρ0 =  (S0  x 1000)  = 800 kg/m3   

Difference of oil in the two limbs,  

     = (30 + 20) - 30        = 20 cm 

 

Solution: 

Taking datum line at X-X  

Pressure in the left limb below X-X 



     = PA- 1000 x 9.81 x 0 

           = PA - 2943 

Pressure in the right limb below X-X  

     = PB – 1000 x 9.81 x 0.3 – 800 x 9.81 x 0.2  

     = PB - 2943 - 1569.6  

     = PB - 4512.6  

Equating the two pressure,  

 PA - 2943 = PB - 4512.6 

    PB – PA = 4512.6 - 2943  

   PB – PA  = 1569.6 N/m2. Ans 

------------------------------------------------------------------------------------------------------------------------------ 

Find out the differential reading ‘h' of an inverted U-tube manometer containing oil of specific 

gravity 0.7 as the manometric fluid when connected across pipes A and B as shown in Fig. below, 

conveying liquids of specific gravities 1.2 and 1.0 and immiscible with manometric fluid. Pipes A 

and B are located at the same level and assume the pressures at A and B to be equal. 

 

------------------------------------------------------------------------------------------------------------------------------ 

An inverted U-tube manometer is connected to two horizontal pipes A and B through which water 

is flowing. The vertical distance between the axes of these pipes is 30 cm. When an oil of specific 

gravity 0.8 is used as a gauge fluid, the vertical heights of water columns in the two limbs of the 

inverted manometer (when measured from the respective centre lines of the pipes) are found to 

be same and equal to 35 cm. Determine the difference of pressure between the pipes. 

Given: 

 



Specific gravity of measuring liquid = 0.8  

The arrangement is shown in Fig.  

Let PA = pressure at A  

PB = pressure at H.  

The points C and D lie on the same horizontal line.  

Hence pressure at C should be equal to pressure at D.  

Solution: 

But pressure at C  = PA - ρ g h 

        = PA – 1000x 9.81 x (0.35) 

But pressure at D  = PB – ρ1 g h1 – ρ2 g h2 

        = PB – 1000x 9.81 x (0.35) – 800 x 9.81 x 0.3 

But pressure at C = pressure at D  

PA - 1000 x 9.81 x .35  = PB - 1000 x 9.81 x 0.35 - 800 x 9.81 x 0.3  

                   800 x 9.81 x 0.3 =  PB - PA   

PB - PA  =  800 x 9.81 x 0.3  

PB - PA  =  2354.4 N/m2   Ans. 

------------------------------------------------------------------------------------------------------------------------------ 

MECHANICAL GAUGES 

Mechanical gauges are used to measure high fluid pressure and where high precision is not 

required. Some of common types of mechanical gauges are given below: 

(a) Diaphragm Pressure Gauge 

(b) Bourdon tube pressure gauge 

(c)  Bellows pressure gauge 

(d)  Dead-weight pressure gauge 

Diaphragm Pressure Gauge 

 The pressure responsive element in this gauge is an elastic sheet corrugated diaphragm. The 

diaphragm gets deflection being towards the low pressure side.  

 



 When the fluid enters into the diaphragm, it causes its elastic deformation under pressure to be 

transmitted to a pointer through link and hinge joints as shown in fig.   

 A pointer is moved on a graduated circular dial in pressure units. However, this pressure gauge is 

used to measure relatively low pressure. The Aneroid barometer operates on a similar principle. 

 

 Bourdon Tube Pressure Gauge:  

 The pressure responsive element in Bourdon tube pressure gauge is a tube of steel or bronze which 

is elliptical cross-section and curved into a-circular arc, called Bourdon tube.  

 The outer end of the tube is closed and free to move. The other end of the tube, through which the 

fluid enters, is rigidly fixed to the frame as shown in Fig.  

 The pressure gauge is connected to the vessel containing fluid under pressure. Due to increase in 

internal pressure, the elliptical cross-section of the tube tends to become circular, thus causing the 

tube to straighten out slightly. 

 

 The outward movement of the free end of the tube is transmitted, through a link, quadrant and pinion, 

to a pointer which moving clockwise on the graduated circular dial indicates the pressure intensity 

of the fluid.  

 When a gauge is connected to a partial vacuum, the Bourdon tube tends to close, thereby moving 

the pointer in anti-clockwise duration, indicating the negative or vacuum pressure. 

 The movement of the free end of the Bourdon tube in directly proportional to the difference between 

the external atmospheric pressure and internal fluid pressure.  

 Hence the Bourdon pressure gauge records (a) the gauge pressure; which is the difference between 

fluid pressure and outside atmospheric pressure, and (b) the negative or vacuum pressure which is 

difference between outside atmospheric pressure and fluid pressure. 

 



Dead-weight Pressure Gauge:  

 

 It consists of placing a dead weight on the top of a plunger fitted in a vertical cylinder. Oil is used as 

the working fluid in dead weight pressure gauge. We know that intensity of pressure for any load “W” 

on the plunger is given by p= W/A 

where,   A = cross-sectional area of the plunger, (
π

4
 D2) 

              D = diameter of the plunger 

 According to Pascal's law: the intensity of pressure (p) at any point in a fluid at rest is same in all 

direction. So same pressure (p) is transmitted to the pressure gauge to be calibrated and the pointer 

of the pressure gauge moves and takes up a steady position on the dial. 

 That position is marked as 'p'. In this way, by loading the plunger by loads of other magnitudes, other 

intensities of pressures are marked on the dial. 

 

Bellows Pressure Gauge:  

 In this pressure gauge the pressure responsive element is made of a thin metallic tube having deep 

circumferential corrugations.  

 In response to the pressure changes this elastic element expands or contracts, thereby moving the 

pointer on a graduated circular dial as shown in Fig. 

 

------------------------------------------------------------------------------------------------------------------------------ 



COMPRESSIBILITY AND BULK MODULUS 

Compressibility is the reciprocal of the bulk modulus of elasticity, K which is defined as the ratio of 

compressive stress to volumetric strain. 

Consider a cylinder fitted with a piston as 

shown in Fig. 

Let,, 

  V =  Volume of a gas enclosed in the cylinder 

  p =  Pressure of gas when volume is V  

Let,                  

The pressure is increased   to   p + dp,  

The volume of gas decreases from   V to V - dV, 

Then increase in pressure   = dp kgf / m2  

Decrease in volume   =  dV 

Volumetric strain   = 
𝑑𝑉

𝑉
 

[ - ve sign means the volume decreases with increase of pressure]  

Bulk modulus   K, =  
Increase of pressure

Volumetric strain
 

        =  
dp
dV

V

  = 
− dp

V
 V 

Compressibility,    = 
𝟏

  𝑲
 

------------------------------------------------------------------------------------------------------------------------------ 

VAPOUR PRESSURE AND CAVITATION 

 A change from the liquid state to the gaseous state is known as vaporization. The vaporization (which 

depends upon the prevailing pressure and temperature condition) occurs because of continuous 

escaping of the molecules through the free liquid surface. 

 Consider a liquid (say water) which is confined in a closed vessel. Let the temperature of liquid is 20°C 

and pressure is atmospheric. This liquid will vaporise at 100°C. When vaporization takes place, the 

molecules escapes from the free surface of the liquid.  

 These vapour molecules get accumulated in the space between the free liquid surface and top of the 

vessel. These accumulated vapours exert a pressure on the liquid surface. This pressure is known as 

vapour pressure of the liquid or this is the pressure at which the liquid is converted into vapours. 

 Again consider the same liquid at 20°C at atmospheric pressure in the closed vessel. If the pressure 

above the liquid surface is reduced by some means, the boiling temperature will also reduce. If the 

pressure is reduced to such an extent that it becomes equal to or less than the vapour pressure, the 

boiling of the liquid will start, though the temperature of the liquid is 20°C.  

 Thus a liquid may boil even at ordinary temperature, if the pressure above the liquid surface is reduced 

so as to be equal or less than the vapour pressure of the liquid at that temperature. 



 Now consider a flowing liquid in a system. If the pressure at any point in this flowing liquid becomes 

equal to or less than the vapour pressure, the vaporization of the liquid starts. The bubbles of these 

vapours are carried by the flowing liquid into the region of high pressure where they collapse, giving 

rise to high impact pressure.  

 The pressure developed by the collapsing bubbles is so high that the material from the adjoining 

boundaries gets eroded and cavities are formed on them. This phenomenon is known as cavitation. 

 Hence the cavitation is the phenomenon of formation of vapour bubbles of a flowing liquid in a region 

where the pressure of the liquid falls below the vapour pressure and sudden collapsing of these vapour 

bubbles in a region of higher pressure.  

 When the vapour bubbles collapse, a very high pressure is created. The metallic surfaces, above 

which the liquid is flowing, is subjected to these high pressures, which cause pitting action on the 

surface. Thus cavities are formed on the metallic surface and hence the name is cavitation. 

------------------------------------------------------------------------------------------------------------------------------ 

SURFACE TENSION AND CAPILLARITY 

Surface tension is defined as the tensile force acting on the surface of a liquid in contact with a gas or on 

the surface between two immiscible liquids such that the contact surface behaves like a membrane under 

tension. The magnitude of this force per unit length of the free surface will have the same value as the 

surface energy per unit area. It is denoted by Greek letter σ (called sigma). In MKS units, it is expressed 

as kgf /m while in SI units as N/m. 

 

The phenomenon of surface tension is explained by Fig. Consider three molecules A, B, C of a liquid in 

a mass of liquid. The molecule A is attracted in all directions equally by the surrounding molecules of the 

liquid. Thus the resultant force acting on the molecule A is zero. But the molecule B, which is situated 

near the free surface, is acted upon by upward and downward forces which are unbalanced. Thus a net 

resultant force on molecule B is acting in the downward direction. The molecule C, situated on the free 

surface of liquid, does experience a resultant downward force. All the molecules on the free surface 

experience a downward force. Thus the free surface of the liquid acts like a very thin film under tension 

of the surface of the liquid act as though it is an elastic membrane under tension. 

 

Surface Tension on Liquid Droplet: Consider a small spherical droplet of a liquid of radius V. On the 

entire surface of the droplet, the tensile force due to surface tension will be acting.  

Let G  = Surface tension of the liquid 



       p = Pressure intensity inside the droplet (in excess of the outside pressure intensity)  

       d = Dia. of droplet. 

 

Let the droplet is cut into two halves. The forces acting on one half (say left half) will be  

(i) tensile force due to surface tension acting around the circumference of the cut portion as shown in Fig. 

(b) and this is equal to,     =  σ x Circumference 

        = σ x πd 

(ii) pressure force on the area, 
𝜋

4
 d2   = p 

𝜋

4
 d2    

Equating the above equations, w get 

    p =  
4𝜎

𝑑
 

Surface Tension on a Hollow Bubble: A hollow bubble like a soap bubble in air has two surfaces in 

contact with air, one inside and other outside. Thus two surfaces are subjected to surface tension. In 

such case, we have 

Surface Tension on a Liquid Jet: 

 Consider a liquid jet of diameter 7f and length 'L' as shown in Fig. 

Let p = Pressure intensity inside the liquid jet above the outside pressure 

a = Surface tension of the liquid. A 

Consider the equilibrium of the semi jet, we have Force due to pressure = p x area of semi jet 

= pxLxd 

Force due to surface tension = a x 2L. Equating the forces, we have 

p x Lx d = G x2L 

 

------------------------------------------------------------------------------------------------------------------------------ 

CAPILLARITY 

Capillarity is defined as a phenomenon of rise or fall of a liquid surface in a small tube relative to the 

adjacent general level of liquid when the tube is held vertically in the liquid. The rise of liquid surface is 

known as capillary rise while the fall of the liquid surface is known as capillary depression. It is expressed 

in terms of cm or mm of liquid. Its value depends upon the specific weight of the liquid, diameter of the 

tube and surface tension of the liquid. 

 



Expression for Capillary Rise. Consider a glass tube of small diameter V/' opened at both ends and is 

inserted in a liquid, say water. The liquid will rise in the tube above the level of the liquid. 

Let h = height of the liquid in the tube. Under a state of equilibrium, the weight of liquid of height h is 

balanced by the force at the surface of the liquid in the tube. But the force at the surface of the liquid in 

the tube is due to surface tension. 

 

Let a = Surface tension of liquid 

8 = Angle of contact between liquid and glass tube. 

The weight of liquid of height h in the tube = (Area of tube  

 

 Expression for Capillary Fall: If the glass tube is dipped in mercury, the level of mercury in the tube 

will be lower than the general level of the outside liquid as shown in Fig. 

Let h = Height of depression in tube. 

Then in equilibrium, two forces are acting on the mercury inside the tube. First one is due to surface 

tension acting in the downward direction and is equal to a x nd x cos 0. 

 

 

 

Second force is due to hydrostatic force acting upward and is equal to intensity of pressure at a depth 

Equating the two, we get 

Value of θ for mercury and glass tube is 128°. 



------------------------------------------------------------------------------------------------------------------------------ 

Calculate the capillary effect in millimetres in a glass tube of 4 mm diameter, when immersed in 

(i) water and (ii) mercury. The temperature of the liquid is 20°C and the values of the surface 

tension of wafer and mercury at 20°C in contact with air are 0.073575 N/m and 0.51 N/m 

respectively. The angle of contact for water is zero and that for mercury is 130°. Take density of 

water at 20°C as equal to 998 kg/m3  

Solution. Given : 

Dia. of tube,  d = 4mm = 4 x l0-3 m 

The capillary effect (ie. capillary rise or depression) is given by equation as,  

h = 
4σ cosθ

ρ g d
 

where,  σ = surface tension in N/m 

     θ = angle of contact 

     ρ = density 

(i) Capillary effect for water 

σ = 0.073575 N/m 

θ = 0° 

ρ = 998 kg/m3 at 20°C 

h = 
4 x.073575 x cos 0°

998 x 9.81 x  4x10−3
 

h = 7.51x 10-3  m  

h = 7.51 mm 

 

(ii) Capillary effect for mercury 

σ = 0.51 N/m,  

θ = 130° 

ρ = sp. gr. x 1000 = 13.6 x 1000 = 13600 kg/m3 

h = 
4 x 0.51 x cos 130°

13600 x 9.81 x 4x10−3
 

= - 2.46 x 10-3 m  

         h = - 2.46 mm 

[ The negative sign indicates the capillary depression ] 

------------------------------------------------------------------------------------------------------------------------------ 

  An oil of viscosity 5 poise is used for lubrication between a shaft and sleeve. The diameter of 

the shaft is 0.5 m and it rotates at 200 r.p.m. Calculate the power lost in oil for a sleeve length of 

100 mm. The thickness of oil film is 1.0 mm. 

Solution. Given : 



Viscosity    μ  =  5 poise    =  
5

10
    Ns/m2  =  0.5 Ns/m2   

Diameter of shaft,  D = 0.5  

Speed of shaft,        N = 200 r.p.m  

Sleeve length    L = 100 mm =  100 x 10 -3  m = 0.1 m 

Thickness of oil film,     t = 1.0 mm = 1.0 x 10 -3 m 

Tangential velocity of shaft, u = 
𝜋 𝐷 𝑁

60
   = 

π x 0.5 x 200

60
 

            u = 5.235 m/s 

using this relation,  

𝛕 = 𝜇 
𝒅𝒖

𝒅𝒚
 

where  du = Change of velocity   = u - 0 = u = 5.235 m/s 

dy = Change of distance  = t = 1.0 x 10 -3 m 

       𝛕 =  
0.5 x 5.235

1  x 10−3 
  =   2617.5 N/m2 

This is shear stress on shaft, 

Shear force on the shaft,    F = shear stress x Area 

              = 2617.5 x π D L  = 2617.5 x π x 0.5 x 0.1 

           F = 410.95 N 

Torque on the shaft,          T  =  Force x  
𝑫

𝟐
  

            =  410.95 x  
0.5

2
   

        T = 102.74 Nm 

Power lost,   =T x ω (Watts) =   
2 𝜋  𝑁 𝑇

60
  (W) = 

2 π  200 x 102.74

60
 

 Power lost      = 2150 W  = 2.15 kW 

------------------------------------------------------------------------------------------------------------------------------ 

Calculate the capillary rise in a glass tube of 2.5 mm diameter when immersed vertically 

in (a) water and fb) mercury. Take surface tensions σ = 0.0725 N/m for water and σ = 0.52 

N/m for mercury in contact with air. The specific gravity for mercury is given as 13.6 and 

angle of contact = 130°. 

------------------------------------------------------------------------------------------------------------------------------ 

The capillary rise in the glass tube is not to exceed 0.2 mm of water. Determine its 

minimum size, given that surface tension for water in contact with air = 0.0725 N/m. 

------------------------------------------------------------------------------------------------------------------------------ 



HYDROSTATIC FORCES ON SURFACES 

This chapter deals with the fluids (i.e., liquids and gases) at rest. This means that there will be no relative 

motion between adjacent or neighboring fluid layers. The velocity gradient, which is equal to the change 

of velocity between two adjacent fluid layers divided by the distance between the layers, 

will be zero or   
𝑑𝑢

𝑑𝑦
 = 0. The shear stress which is equal to μ 

𝑑𝑢

𝑑𝑦
 will also be zero. Then the forces acting  

on the fluid particles will be : 

 due to pressure of fluid normal to the surface 

 due to gravity (or self-weight of fluid particles) 

TOTAL PRESSURE AND CENTRE OF PRESSURE 

Total pressure is defined as the force exerted by a static fluid on a surface either plane or curved when 

the fluid comes in contact with the surfaces. This force always acts normal to the surface. 

Centre of pressure is defined as the point of application of the total pressure on the surface. There are 

four cases of submerged surfaces on which the total pressure force and centre of pressure is to be 

determined. The submerged surfaces may be: 

 Vertical plane surface 

 Horizontal plane surface 

 Inclined plane surface 

 Curved surface 

1. VERTICAL PLANE SURFACE SUBMERGED IN LIQUID 

Consider a plane vertical surface of arbitrary shape immersed in a liquid as shown in Fig. Let A = Total 

area of the surface 

h = Distance of C.G. of the area from free surface of liquid  

G = Centre of gravity of plane surface P = Centre of pressure 

 h* = Distance of centre of pressure from free surface of liquid. 

 

 



(a) Total Pressure (F): The total pressure on the surface may be determined by dividing the entire 

surface into a number of small parallel strips. The force on small strip is then calculated and the total 

pressure force on the whole area is calculated by integrating the force on small strip. 

Consider a strip of thickness dh and width b at a depth of h from free surface of liquid as shown in Fig. 

 F=pgAh 

 

Center of pressure (h*): 

(b) Centre of Pressure (h*): Centre of pressure is calculated by using the "Principle of Moments", which 

states that the moment of the resultant force about an axis is equal to the sum of moments of the 

components about the same axis. 

The resultant force F is acting at P, at a distance h* from free surface of the liquid as shown in Fig 

 

In the above equation equation, h is the distance of C.G. of the area of the vertical surface from free 

surface of the liquid. Hence from equation, it is clear that: 

 Centre of pressure (i.e., h*) lies below the centre of gravity of the vertical surface. 

 The distance of centre of pressure from free surface of liquid is independent of the density of the 

liquid. 

 

The moments of inertia and other geometric properties of some important plane surfaces 

 



 

------------------------------------------------------------------------------------------------------------------------------ 

A rectangular plane surface is 2 m wide and 3 m deep. It lies in vertical plane in water. Determine 

the total pressure and position of centre of pressure on the plane surface when its upper edge is 

horizontal and (a) coincides with water surface, (b) 2.5 m below the free water surface.  

 

Given :  

Width of plane surface, b = 2 m  

Depth of plane surface, d = 3 m 

Solution: 

(a)Upper edge coincides with water surface  

Total pressure is given by equation as , 

 F = ρ g A ℎ̅   

where,   ρ = 1000 kg/ m3   

g = 9.81 m/s2     

A = 3 x 2 = 6 m2 ,  

 

ℎ̅  = 
1

2
 (3) = 1.5 m 

F= 1000 x 9.81 x 6 x 1.5 = 88290 N. Ans.  

Depth of centre of pressure is given by equation as, 

h* =    
𝐼𝐺 

𝐴 ℎ
+ ℎ̅  

where,  𝐼𝐺  = M.O.I, about C.G. of the area of surface  



bd3

12
 =  

2 x 33

12
  = 4.5 𝑚4  

4.5

6 x 1.5
 + 1.5 = 0.5 + 1.5 = 𝟐. 𝟎 𝐦 

 

 (b) Upper edge is 2.5 m below water surface (Fig.) 

Total pressure (F) is given by 

F = ρ g A ℎ̅  

where h = Distance of C.G. from free surface of 

water 

2.5 + 
3

2
 = 4.0 m 

F = 1000 x9.81 x 6 x 4.0 

      = 235440 N. Ans.  

Centre of pressure is given by,                h* =    
𝑰𝑮 

𝑨 𝒉
+ ℎ̅ 

where,  IG = 4.5, A = 6.0,     ℎ̅ = 4.0 

                 h* =    
4.5

6.0 x 4.0
+ 4.0 

           = 0.1875 + 4.0  

     h*  = 4.1875 m Ans. 

------------------------------------------------------------------------------------------------------------------------------ 

Determine the total pressure on a circular plate of diameter 1.5 m which is placed vertically in 

water in such a way that the centre of the plate is 3 m below the free surface of water. Find the 

position of centre of pressure also. 

Given:  

Dia. of plate, d =  1.5 m 

A =  
𝜋

4
  (1.5)2 = 1.767 m2  

ℎ̅ = 3.0 m 

Solution:     

Total pressure is given by equation, 

 F = ρ g A ℎ̅  

  = 1000 x 9.81 x 1.767 x 3.0 N  

           F = 52002.81 N Ans.                  

 

 

 



Position of centre of pressure ( h*) is given by equation, 

     h* =    
𝑰𝑮 

𝑨 𝒉
+ �̅�     

where,  IG  = 
 𝛑𝒅𝟒

𝟔𝟒
  = 

π x 1.54

64
 

h* =   
0.2485

1.767 x 3.0
 + 3.0  

     = 0.0468 + 3.0 

         h* = 3.0468 m Ans.  

------------------------------------------------------------------------------------------------------------------------------ 

A rectangular sluice gate is situated on the vertical wall of a lock. The vertical side of the sluice 

is ‘d’  metres in length and depth of centroid of the area is 'p' m below the water surface.  

 

----------------------------------------------------------------------------------------------------------------------------------------- 

2. HORIZONTAL PLANE SURFACE SUBMERGED IN LIQUID 

Consider a plane horizontal surface immersed in a static fluid. As every point of the surface is at the same 

depth from the free surface of the liquid, the pressure intensity will be equal on the entire surface and 

equal to,   p = ρ g h , where h is depth of surface. 

 

Let  A = Total area of surface  

Then total force, F, on the surface 

   =  p x Area = ρ g h x A = ρ g A ℎ̅ 

where   ℎ̅ = Depth of C.G. from free surface of liquid = h  

            h* = Depth of centre of pressure from free surface = h 

------------------------------------------------------------------------------------------------------------------------------ 



Fig. Shows a tank full of water. Find:  

1. Total pressure on the bottom of tank.  

2. Weight of water in the tank.  

3. Hydrostatic paradox between the results of (i) and (ii).   

4. Width of tank is 2 m.  

 

Given:  

Depth of water on bottom of tank, h1 = 3 + 0.6 = 3.6 m 

Width of tank = 2 m 

 Length of tank at bottom Area at the bottom, = 4 m 

Area at the bottom = 4 x 2 = 8 m2 

(i)Total pressure F, on the bottom is 

F=ρ g A ℎ̅ = 1000 x 9.81 x 8 x 3.6  

= 282528 N Ans. 

(ii) Weight of water in tank = ρ g x Volume of tank 

  = 1000 x 9.81 x [3 x 0.4 x 2 + 4 x 0.6 x 2]  

= 1000 x 9.81 [2.4 + 4.8]  

= 70632 N Ans. 

(iii)From the results of (i) and (ii),  

It is observed that the total weight of water in the tank is much less than the total pressure at the 

bottom of the tank. This is known as Hydrostatic paradox. 

------------------------------------------------------------------------------------------------------------------------------ 

3. INCLINED PLANE SURFACE SUBMERGED IN LIQUID 

Consider a plane surface of arbitrary shape immersed in a liquid in such a way that the plane of the 

surface makes an angle 9 with the free surface of the liquid as shown in Fig. 

Let  

A = Total area of inclined surface 

ℎ̅ = Depth of C.G. of inclined area from free surface  

h* = Distance of centre of pressure from free surface of liquid  

θ = Angle made by the plane of the surface with free liquid surface 



Let the plane of the surface, if produced meet the free liquid surface at O. Then 0-0 is the axis 

perpendicular to the plane of the surface. 

 

 

Let �̅� = distance of the C.G. of the inclined surface from 0-0 

y* = distance of the centre of pressure from O-O. 

F  =  ρ g sin θ  �̅�  x A       (  ℎ̅ =  𝑦 ̅  sin θ  ) 

F  =  ρ g A ℎ̅ 

 

Centre of Pressure (h*) 

h* =    
𝑰𝑮   𝒔𝒊𝒏𝟐 𝛉

𝑨 �̅�
+ �̅� 

If θ = 90°. the above equation, becomes same as equation which is applicable to vertically plane 

submerged surfaces. 

In above equation,, IG = M.O.I, of inclined surfaces about an axis passing through G and parallel to 0-0. 

------------------------------------------------------------------------------------------------------------------------------ 

A rectangular plane surface 2 m wide and 3 m deep lies in water in such a way that its plane makes 

an angle of 30° with the free surface of water. Determine the total pressure and position of centre 

of pressure when the upper edge is 1.5 m below the free water surface.  

Given :  

Width of plane surface, b = 2 m 

Depth, d = 3 m   Angle, θ = 30° 

Distance of upper edge from free water surface = 1.5 m  

 



Solution: 

(i) Total pressure force is given by equation as 

F = p g A ℎ̅ 

where   ρ = 1000 kg/m3 

 A = b x d= 3 x 2 = 6 m2 

ℎ̅  = Depth of C.G. from free water surface  

    = 1.5+ 1.5 sin 30°  

{ ℎ̅ = AE + EB = 1.5 + BC sin 30° = 1.5+ 1.5 sin 30° } 

   = 1.5+ 1.5 x 
1

2
 =  2.25 m 

          F  = 1000 x 9.81 x 6 x 2.25  

          F  = 132435 N. Ans. 

 

(II) Centre of pressure (h*) Using equation , we have  

h* =    
𝑰𝑮   𝒔𝒊𝒏𝟐 𝛉

𝑨 �̅�
+ �̅� 

where,       IG  =  
bd3

12
  =  

2 x 33

12
   

       IG  =  4.5 m4 

h* =    
4.5 x  sin230

6  x 2.25
+ 2.25 

h* =   0.0833 + 2.25  

h* =   2.3333 m 

------------------------------------------------------------------------------------------------------------------------------ 

  A rectangular plane surface 3 m wide and 4 m deep lies in water in such a way that its plane 

makes an angle of 30° with the free surface of water. Determine the total pressure force and 

position of centre of pressure, when the upper edge is 2 m below the free surface. 

 

------------------------------------------------------------------------------------------------------------------------------ 



A circular plate 3.0 m diameter is immersed in water in such a way that its greatest and least 

depth below the free surface are 4 m and 1.5 m respectively. Determine the total pressure on 

one face of the plate and position of the centre of pressure. 

 

------------------------------------------------------------------------------------------------------------------------------ 

4. CURVED SURFACE SUB-MERGED IN LIQUID 

Consider a curved surface AB, sub-merged in a static fluid as shown in Fig. Let dA is the area of 

a small strip at a depth of It from water surface. 

Then pressure intensity on the area dA is = pgh 

Pressure force,     dF =  p x Area =  ρ g h x dA 

This force dF acts normal to the surface.  

Hence total pressure force on the curved surface should be 

F = ∫ 𝜌 𝑔 ℎ 𝑑𝐴  

 

But here as the direction of the forces on the small areas are not in the same direction, but varies from 

point to point. Hence integration of equation for curved surface is impossible.  

------------------------------------------------------------------------------------------------------------------------------ 

Compute the horizontal and vertical components of the total force acting on a curved surface 

AB, which is in the form of a quadrant of a circle of radius 2 m as shown in Fig. Take the width 

of the gate as unity.  

Given :  



 

Width of gate    =  1.0 m,   

Radius of the gate   =  2.0 m  

Distance ,          AO =  OB  = 2 m 

 

Solution: 

Horizontal force, Fx exerted by water on gate is given by equation as 

Fx = Total pressure force on the projected area of curved surface AB on vertical plane 

    = Total pressure force on OB  

{projected area of curved surface on vertical plane = OB x 1} 

 F = p g A ℎ̅ 

= 1000 x 9.81 x 2 x1 x ( 1.5 + 
2

2
) 

 [ area of OB = A = BO x 1 = 2 x 1 = 2 ] 

ℎ̅ = Depth of C.G. of OB from free surface =  1.5 + 
2

2
 

Fx  = 9.81 x 2000 x 2.5 = 49050 N 

The point of application of Fx is given by , h* =    
𝑰𝑮   

𝑨 �̅�
+ �̅� 

where,  𝐼𝐺  = M.O.I, about C.G. of the area of surface  

bd3

12
 =  

1 x 23

12
  =  

2

3
 𝑚4  

        h* =  

𝟐

𝟑

2 x 2.5
 + 2.5  = 

1

7.5
 + 2.5 m 

= 0.1333 +  2.5   

h* = 2.633 m from free surface 

Vertical force Fy exerted by water is given by equation, 

       Fy = Weight of water supported by AB upto free surface  

= Weight of portion DABOC  

= Weight of DAOC + Weight of water A OB  

= ρ g [Volume of DAOC + Volume of AOB ] 



= 1000 x 9.81 [ AD x AO X 1 + 
π 

4 
 x (OA)2 x 1 ] 

= 1000 x 9.81 [ 1.5 x 2.0 X 1 + 
π 

4 
 x (2)2 x 1 ] 

= 1000 x 9.81 [ 3.0 + π ] N 

Fy =  60249.1 N 

----------------------------------------------------------------------------------------------------------------------------- 

Find the magnitude and direction of the resultant force due to water acting on a roller gate of 

cylindrical form of 4.0 m diameter, when the gate is placed on the dam in such a way that water 

is just going to spill. Take the length of the gate as 8 m 

 

------------------------------------------------------------------------------------------------------------------------------ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



BUOYANCY 

 When a body is immersed in a fluid, an upward force is exerted by the fluid on the body. This 

upward force is equal to the weight of the fluid displaced by the body and is called the force of buoyancy 

or simply buoyancy. 

CENTRE OF BUOYANCY 

 It is defined as the point, through which the force of buoyancy is supposed to act. As the force of 

buoyancy is a vertical force and is equal to the weight of the fluid displaced by the body, the centre of 

buoyancy will be the centre of gravity of the fluid displaced. 

------------------------------------------------------------------------------------------------------------------------------ 

Find the volume of the water displaced and position of centre of buoyancy for a wooden block of 

width 2.5 m and of depth 1.5 m, when it floats horizontally in water. The density of wooden block 

is 650 kg/m3 and its length 6.0 m 

Given: 

Width   =    2.5m 

Depth   =    1.5m 

Length    =    6.0m 

Volume of the block =    2.5 x 1.5x6.0  

     =   22.50 m3  

Density of wood,   ρ =    650 kg/m3 

Solution:  

 Weight of block   =    ρ x g x Volume 

     =    650 x 9.81 x 22.50 N  

     = 143471 N 

 For equilibrium the weight of water displaced   = Weight of wooden block 

                = 143471 N  

Volume of water displaced       =   
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑

𝑊𝑒𝑖𝑔ℎ𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟
    = 

143471

1000 x 9.81
 

 (Weight density of water = 1000 x 9.81 N/ m3)  

 

Position of Centre of Buoyancy.  

Volume of wooden block in water    =    Volume of water displaced 

          2.5 x h x 6.0            =    14.625 m3, where h is depth of wooden block in water 

 

             h  =   
14.625

2.5 x 6.2
     

    h  =   0.975 m 

          Centre of Buoyancy   =  
0.975

2
    =   0.4875 m from base. Ans. 

------------------------------------------------------------------------------------------------------------------------------ 



A wooden log of 0.6 m diameter and 5m length is floating in river water. Find the depth of the 

wooden log in water when the sp. Gravity of the log is 0.7. 

Given: 

Dia. of log          D =  0.6 m 

Length,         L  =  5 m 

Sp. gr.         S  =  0.7 

Density of log (ρ)     = 0.7 x 1000  = 700 kg/m3 

Weight density of log,  w = 𝜌 x g 

            = 700 x 9.81 N/m3 
 

Solution: 

Find depth of immersion (or) h  

Weight of wooden log   = Weight density x Volume of log 

     = 700 x 9.81 x 
π

4
 (𝐷)2 x L 

     = 700 x 9.81 x 
𝜋

4
 (.6)2 x 5 N  

                =         989.6 x 9.91 N 

For equilibrium, 

Weight of wooden log  = Weight of water displaced 

     = Weight density of water x Volume of water displaced 

 Volume of water displaced  = 
989.6 x 9.81

1000 x 9.81
  

                = 0.9896 m3 

       (Weight density of water = 1000x9.81 N/m3) 

Let h is the depth of immersion 

 Volume of log inside water             = Area of ADCA x Length 

     = Area of ADCA x 5.0 

But volume of log inside water = Volume of water displaced = 0.9896 m3 

   0.9896             = Area of ADCA x 5.0 

   Area of ADCA  = 
0.9896

5.0
 = 0.1979 m2 

But  area of ADCA   = Area of curved surface ADCOA + Area of ∆AOC 

     = 𝜋𝑟2 [
3600−2𝜃

3600
] + 

1

2
 r 𝑐𝑜𝑠 𝜃 x 2r 𝑠𝑖𝑛 𝜃 

     = 𝜋𝑟2 [1 −
𝜃

1800] + 𝑟2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 

   0.1979  = 𝜋(.3)2 [1 −
𝜃

1800] + (.3)2 cos 𝜃 sin 𝜃 

   0.1979  = .2827 - .00157 𝜃 + 0.9  cos 𝜃 sin 𝜃 

or  .00157 𝜃 - .09 cos 𝜃 sin 𝜃 = .2827 - .1979 = 0.0848 

  𝜃 −
.09

.00157
 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃  = 

.0848

.00157
 



or   𝜃 − 57.32 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 = 54.01  

or  𝜃 − 57.32 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 -54.01  =  0 

For 𝜃 =600,  60-57.32 x 0.5 x .866 – 54.01          =    60 – 24.81 – 54.01 = -18.82 

For 𝜃 =700,  70-57.32 x 0.342 x .0.9396 – 54.01 =   70 – 18.4 – 54.01 = -2.41 

For 𝜃 =720,  72-57.32 x 0.309 x .951 – 54.01      =    72 – 16.84 – 54.01 = +1.14 

For 𝜃 =710,  71-57.32 x 0.325x .9455 – 54.01     =    71 – 17.61 – 54.01 = -0.376 

 𝜃 =71.50,  71.5-57.32 x 0.3173 x .948 – 54.01 =    71.5 – 17.24 – 54.01 = +.248 

Then   h     =  r + r cos 71.50 

         =  0.3 + 0.3 x 0.3173  

    h   = 0.395 m. 

------------------------------------------------------------------------------------------------------------------------------ 

META-CENTRE 

 It is defined as the point about which a body starts oscillating when the body is tilted by a small angle. 

The meta-centre may also be defined as the point at which the line of action of the force of buoyancy 

will meet the normal axis of the body when the body is given a small angular displacement. 

 Consider a body floating in a liquid as shown in Fig.(a). Let the body is in equilibrium and G is the 

centre of gravity and B the centre of buoyancy. For equilibrium, both the points lie on the normal 

axis, which is vertical. 

 

Fig. Meta – centre 

 Let the body is given a small angular displacement in the clockwise direction as shown in Fig. (b). 

the centre of buoyancy, which is the centre of gravity of the displaced liquid or centre of gravity of 

the portion of the body sub-merged in liquid, will now be shifted towards right from the normal axis.  

 Let it is at B1 as shown in Fig.(b). The line of action of the force of buoyancy in this new position, will 

intersect the normal axis of the body at some point say M. This point M is called Meta-centre. 

------------------------------------------------------------------------------------------------------------------------------ 

 

 

 

 



META-CENTRIC HEIGHT 

 The distance MG, i.e., the distance between the meta-centre of a floating body and the centre of 

gravity of the body is called meta-centric height. 

Analytical Method For Meta-Centre Height: 

 Fig (a) shows the position of a floating body in equilibrium. The location of centre of gravity and 

centre of buoyancy in this position is at G and B. The floating body is given a small angular 

displacement in the clockwise direction.  

 This is shown in Fig (b). The new centre of buoyancy is at B1. The vertical line through B1 cuts the 

normal axis at M. Hence M is the meta-centre and GM is meta-centric height. 

 

Fig  Meta-centre height of floating body 

 The angular displacement of the body in the clockwise direction causes the wedge-shaped prism 

BOB on the right of the axis to go inside the water while the identical wedge-shaped prism 

represented by AOA emerges out of the water on the left of the axis.  

 These wedges represent a gain in buoyant force on the right side and a corresponding loss of 

buoyant force on the left side.  

 The gain is represented by a vertical force dFB acting through the C.G of the prism BOB while the 

loss is represented by an equal and opposite forece dFB acting vertically downward through the 

centroid of AOA. The couple due to these buoyant forces dFB tends to rotate the ship in the counter 

clock wise direction.  

 Also the moment caused by the displacement of the centre of buoyancy from B to B1 is also in the 

counter clock wise direction. Thus these two couples must be equal. 

 



Couple due to wedges. Consider towards the right of the axis a small strip of thickness dx at a distance 

x from O as shown in Fig.(b). The height of strip x x ∠BOB = x x 𝜃.  

       [∵ ∠BOB = ∠𝐴OA = ∠BMB1 = 𝜃] 

 Area of strip  = Height x Thickness = x x 𝜃 x dx 

If L is the length of the floating body, then 

 Volume of strip = Area x L 

     =  x x 𝜃 x L x dx 

 Weight of strip  = 𝜌g x Volume = 𝜌gx 𝜃L dx 

 Similarly, if a small strip of thickness dx at a distance x from O towards the left of the axis is 

considered, the weight of strip will be 𝜌gx 𝜃L dx. The two weights are acting in the opposite direction and 

hence constitute a couple. 

Moment of this couple = Weight of each strip x Distance between these two weights 

     = 𝜌gx 𝜃L dx [x + x] 

     = 𝜌gx 𝜃L dx x 2x = 𝜌gx2 𝜃L dx 

 Moment of the couple for the whole wedge 

     = ∫ 2  𝜌gx2 𝜃L dx  ……. (1) 

Moment of couple due to shifting of centre of buoyancy from B to B1 

     = FB x BB1 

     = FB x BM x 𝜃                          {∵ 𝐵𝐵1 = 𝐵𝑀x𝜃 if 𝜃 is very small} 

     = W x BM x 𝜃    {∵ 𝐹𝐵 = 𝑊}….(2) 

But these two couples are the same. Hence equating equations (4.1) and (4.2), we get 

   W x BM x 𝜃 = ∫ 2 𝜌gx2 𝜃 Ldx 

   W x BM x 𝜃 = 2𝜌g𝜃 ∫ 𝑥2 Ldx 

   W x BM = 2𝜌g ∫ 𝑥2 Ldx 

Now Ldx = Elemental area on the water line shown in Fig. (c) and = dA 

  W x BM = 2𝜌g ∫ 𝑥2 dA 

But from Fig 4.5(c) it is clear that ∫ 𝑥2 dA is the second moment of area of the plan of the body at water 

surface about the axis Y-Y. Therefore 

  W x BM = 𝜌gI    {Where I = 2 ∫ 𝑥2 dA } 

   BM  =  
𝜌𝑔𝐼

𝑊
 

But    W = Weight of the body 

     = Weight of the fluid displaced by the body 

     = 𝜌𝑔 x Volume of the fluid displaced by the body 

     = 𝜌𝑔 x Volume of the body sub-merged in water 

     = 𝜌𝑔 x ∀ 

    BM = 
𝜌𝑔 x 𝐼

𝜌𝑔 x ∀
 = 

𝐼

 ∀
    ………..(3) 



    GM = BM – BG =  
𝐼

 ∀
  - BG 

 Meta-centric height =  GM =  
𝑰

 ∀
  - BG    ……….(4) 

------------------------------------------------------------------------------------------------------------------------------ 

A rectangular pontoon is 5 m long, 3 m wide and 1.20 m high. The depth of immersion of the 

pontoon is 0.80 m in sea water. If the centre of gravity is 0.6 m above the bottom of the pontoon, 

determine the meat-centric height. The density for sea water = 1025 kg/m3. 

Given: 

    Dimension of pontoon   =   5 m x 3 m x 1.20 m 

    Depth of immersion      = 0.8 m 

    Distance  AG       = 0.6 m 

    Distance  AB   = 
1

2
 x Depth of immersion 

          = 
1

2
 x .8 = 0.4 m 

    Density for sea water   =   1025 kg/m3 
                    

Solution: 

 Meta-centre height GM, given by equation  is 

    GM =     
𝑰

 ∀
  - BG 

Where I = M.O. Inertia of the plan of the pontoon about Y-Y axis 

  =    
1

2
 x 5 x 33 m4 =  

𝟒𝟓

𝟒
 m4    

 ∀ =    Volume of the body sub-merged in water 

  =     3 x 0.8 x 5.0 = 12.0 m3 

 BG =    AG – AB  

=    0.6 – 0.4  

=    0.2 m 

 GM  =    
45

4
  x 

1

12.0
 - 0.2  

  =      
45

48
 - 0.2    = 0.9375 – 0.2  

 GM     =    0.7375 m. 

------------------------------------------------------------------------------------------------------------------------------ 

A uniform body of size 3 m long x 2 m wide x 1 m deep floats in water. What is the weight of the 

body if depth of immersion is 0.8 m? Determine the meta-centric height also. 

Given: 

Dimension of body  = 3 x 2 x 1 

Depth of immersion = 0.8 m 

Find (i) Weight of body, W 



        (ii) Meta-centric height, GM 

 

Solution: 

(i) Weight of Body , W 

   = Weight of water displaced 

   = 𝜌𝑔 x Volume of water displaced 

   = 1000 x 9.81 x Volume of body in water 

   = 1000 x 9.81 x 3 x 2 x 0.8 N 

   W      = 47088 N. 

(ii) Meta-centric Height, GM 

 Using equation (4) , we get 

    GM =  
𝐼

 ∀
  - BG  

Where I = M.O.I about Y-Y axis of the plan of the body 

  =    
𝐼

 12
 x 3 x 23   = 

3 x 23

 12
  

  =    2.0 m4 

∀ = Volume of body in water 

   = 3 x 2 x 0.8 = 4.8 m3 

  BG  = AG – AB      =  
1.0

 2
 – 

0.8

 2
       = 0.5 – 0.4      = 0.1 

   GM = 
2.0

 4.8
 – 0.1 = 0.4167- 0.1   

  GM   = 0.3167 m. 

------------------------------------------------------------------------------------------------------------------------------ 

A block of wood of specific gravity 0.7 floats in water. Determine the meta-centric height of the 

block if its size is 2 m x 1 m x 0.8 m. 

Given: 

Dimension of block  = 2 x 1 x 0.8 

Let depth of immersion = h m 



Sp. gr. of wood  = 0.7 

 

Solution: 

Weight of wooden piece = Weight density of wood* x Volume 

     = 0.7 x 1000 x 9.81 x 2 x 1 x 0.8 N 

Weight of water displaced = Weight density of water x Volume of the wood sub-merged in water 

     = 1000 x 9.81 x 2 x 1 x h N 

For equilibrium, 

Weight of wooden piece  = Weight of water displaced 

 700 x 9.81 x 2 x 1 x 0.8 = 1000 x 9.81 x 2 x 1 x h 

     h = 
700 x 9.81 x 2 x 1 x 0.8

1000 x 9.81 x 2 x 1
 = 0.7 x 0.8 = 0.56 m 

 Distance of centre of Buoyancy from bottom, i.e., 

   AB = 
ℎ

2
 = 

0.56

2
 = 0.28 m 

and  AG = 0.8 / 2.0 = 0.4 m 

  BG = AG – AB = 0.4 – 0,28 = 0.12 m 

The meta-centric height is given by equation (4) or 

  GM =  
𝐼

 ∀
  - BG  

Where   I =   
𝐼

  12
 x 2 x 1.03  = 

𝑰

 𝟔
 m4 

  ∀ = Volume of wood in water 

     = 2 x 1 x h = 2 x 1 x .56  = 1.12 m3 

  GM = 
𝐼

 6
 x 

𝐼

 1.12
 - 0.12  

         = 0.1488 – 0.12  

  GM  = 0.0288 m. 

* Weight density of wood =     𝜌x g,   where 𝜌= density of wood 

     =     0.7 x 1000 = 700 kg/m3. Hence w for wood  

     =     700 x 9.81 N/m3. 

------------------------------------------------------------------------------------------------------------------------------ 



A solid cylinder of diameter 4.0 m has a height of 3 metres. Find the meta-centric height of the 

cylinder when it is floating in water with its axis vertical. The sp. gr. of the cylinder = 0.6 

Given: 

Dia. Of cylinder D = 4.0 m 

Height of cylinder h = 3.0 m 

Sp. gr. of cylinder = 0.6 

Solution: 

Depth of immersion of cylinder 

    = 0.6 x 3.0 = 1.8 m 

  AB = 
1.8

2
 = 0.9 m 

 

and   AG = 
3

2
 = 1.5 m 

  BG = AG – AB 

    = 1.5 – 0.9 = 0.6 m 

Now the meta –centric height GM is given by equation (4.4) 

   GM =  
𝐼

 ∀
  - BG  

But    I = M.O.I about Y-Y axis of the plan of the body 

      = 
𝜋

64
 D4 = 

𝜋

64
 (4.0)4 

and   ∀ = Volume of cylinder in water 

      =  
𝜋

4
 D4 Depth of immersion 

       = 
𝜋

4
 (4)2 x 1.8 m3 

  GM  =  

𝜋

64
 x (4.0)4

𝜋

4
 x (4.0)2 x 1.8

 - 0.6 

    = 
1

16
 x 

4.02

1.8
 - 0.6 = 

1

1.8
 - 0.6 = 0.55-0.6 = -0.05 m. 

-ve sign means that meta-centre, (M) is below the centre of gravity (G). 

------------------------------------------------------------------------------------------------------------------------------ 

 

CONDITIONS OF EQUILIBRIUM OF A FLOATING AND SUB-MERGED BODIES 

  A sub-merged or a floating body is said to be stable if it comes back to its original position after a 

slight disturbance. The relative position of the centre of gravity (G)  and centre of buoyancy (B1) of a 

body determines the stability of a sub-merged body. 

 

 



Stability of a Sub-merged body 

 The position of centre of gravity and centre of buoyancy in case of completely sub-merged body 

are fixed. Consider a balloon, which is completely sub-merged in air. Let the lower position of the balloon 

contains heavier material, so that its centre of gravity is lower than its centre of buoyancy as shown in 

Fig. (a).  

Let the weight of the balloon is W. The weight W is acting through G, vertically in the downward direction, 

while the buoyant force FB is acting vertically up, through B. For the equilibrium of the balloon  W = FB.  

If the balloon is given an angular displacement in the clockwise direction as shown in Fig.(a), then W and 

FB constitute a couple acting in the anti-clock wise direction and brings the balloon in the original position. 

Thus the balloon in the position shown by Fig. (a) is in stable equilibrium. 

 

Stabilities of sub-merged bodies 

(a) Stable Equilibrium, When W = FB and point B is above G, the body is said to be in stable 

equilibrium. 

(b) Unstable Equilibrium, If W = FB, but the centre of buoyancy (B) is below centre of gravity (G), 

the body is in unstable equilibrium as shown in Fig (b). A slight displacement of the body, in the 

clockwise direction, gives the couple due to W and FB also in the clockwise direction. Thus the 

body does not return to its original position and hence the body is in unstable equilibrium. 

(c) Neutral Equilibrium. If FB=W and B and G are at the same point as shown in Fig. (c), the body 

is said to be in neutral equilibrium. 

----------------------------------------------------------------------------------------------------------------------------- 

      STABILITY OF FLOATING BODY 

The stability of a floating body is determined from the position of Meta-centre (M). In case of floating 

body, the weight of the body is equal to the weight of liquid displaced. 

(a) Stable Equilibrium. 

 If the point M is above G, the floating body will be in stable equilibrium shown in Fig.(a). If a slight 

angular displacement is given to the floating body in the clockwise direction, the centre of buoyancy 

shifts from B to B1 such that the vertical line through B1 cuts at M.  

 Then the buoyant force FB through B1 and weight W through G constitute a couple acting in the anti 

clockwise direction and thus bringing the floating body in the original position. 



 

Stability of floating bodies 

(b) Unstable Equilibrium.  

 If the point M is below G, the floating body will be in unstable equilibrium as shown in Fig 4.13 (b). The 

disturbing couple is acting in the clockwise direction. The couple due to buoyant force FB and W is 

also acting in the clockwise direction and thus overturning the floating body. 

(c )Neutral Equilibrium.  

 If the point M is at the centre of gravity of the body, the floating body will be in neutral equilibrium. 

------------------------------------------------------------------------------------------------------------------------------ 

A solid cylinder of diameter 4.0 m has a height of 4.0 m. Find the meta-centric height of the 

cylinder if the specific gravity of the material of cylinder = 0.6 m and it is floating in water with its 

axis vertical. State whether the equilibrium is stable or unstable. 

Given: 

D            =   4 m 

Height,  h   =   4 m 

Sp. gr.  =   0.6 

Solution:    

Depth of cylinder in water  = Sp. gr. x h 

           = 0.6 x 4.0 = 2.4 m 

 Distance of centre of buoyancy (B) from A 

  AB =  
2.4

2
 =   1.2 m 

Distance of centre of gravity (G) from A 

  AG =  
4.0

2
  = 

4.0

2
   =   2.0 m 

 

 BG = AG – AB = 2.0 – 1.2 = 0.8 m 

 Now the meta-centric height GM is given by 

  GM =  
𝐼

 ∀
  - BG  

Where  I = M.O.I  of the plan of the body about Y-Y axis 

      = 
𝜋

64
 D4 = 

𝜋

64
 (4.0)4 

  ∀ = Volume of cylinder in water 

      =  
𝜋

4.0
 D4 Depth of cylinder in water = 

𝜋

4
 x 42 x 2.4 m3 



   
𝐼

 ∀
  =  

𝜋

64
 x 44

𝜋

4
 x 42 x 2.4

   = 
1

16
 x 

42

2.4
 = 

1

2.4
 = 0.4167 m. 

  GM =  
𝐼

 ∀
  - BG  = 0.4167 – 0.8 = -0.3833 m. 

-ve sign means that meta-centre, (M) is below the centre of gravity (G). Thus the cylinder is in unstable 

equilibrium. 

------------------------------------------------------------------------------------------------------------------------------ 

A rectangular pontoon 10.0 m long , 7 m broad and 2.5 m deep weighs 686.7 kN. Its carmes on its 

upper deck an empty boiler of 5.0 m diameter weighing 588.6 kN. The centre of gravity of the boiler 

and the pontoon are at their respective centre along a vertical line. Find the meta-centric height. 

Weight density of sea water is 10.104 kN/m3. 

Given:  

Dimension of pontoon = 10 x 7 x 2.5 

Weight of pontoon W1 = 686.7 kN 

Dia. Of boiler   D    = 5.0 m 

Weight of boiler W2 = 588.6 kN 

w for sea water       = 10.104 kN/m3 

                      

Solution. 

 To find the meta-centric height, first determine the common centre of gravity G and common 

centre of buoyancy B of the boiler and pontoon. Let G1 and G2 are the centre of gravities of pontoon and 

boiler respectively. 

Then  

 AG1 = 
25

2
 = 1.25 m 

 AG2 = 2.5 + 
5.0

2
 = 2.5 +  2.5         

  =   5.0 m 

The distance of common centre of gravity G from 

A is given as  

  AG = 
𝑊1x 𝐴𝐺1+𝑊2x𝐴𝐺2

𝑊1+𝑊2
  

   
686.7x 1.25+588.6x5.0

(686.7+588.6)
   =   2.98 m 

                           

Let h is the depth of immersion. Then  

Total weight of pontoon and boiler  = Weight of sea water displaced 

or  (686.7 + 588.6)             = w x Volume of the pontoon in water 

      = 10.104 x L x b x Depth of immersion 

    1275.3  = 10.104 x 10 x 7 x h 



     h = 
1275.3

 10 x 7 x 10.104 
 = 1.803 m 

 The distance of the common centre of buoyancy B from A is 

     AB =  
ℎ

2
 =  

1.803

2
  =    .9015 m 

     BG   =   AG – AB     

              =     2.98 - .9015  

             = 2.078 m 

 Meta – centric height is given by,   GM =  
𝑰

 ∀
  - BG  

Where  I = M.O.I  of the plan of the body at the water level along  Y-Y 

      =   
1

12
   x 10.0 x 73 = 

10 x 49 x 7

12
  m4 

  ∀  =  Volume of the body in water 

      =  L x b x h = 10.0 x 7 x 1.857       

  
𝐼

 ∀
  =  

10 x 49 x 7

12 x 10 x 7 x 1.857
   = 

49

12 x 1.857
   = 2.198 m. 

  GM =  
𝐼

 ∀
  - BG   

         =    2.198 – 2.078  

  GM  =  0.12 m. 

 Meta-centric height of both the pontoon and boiler = 0.12 m. 

------------------------------------------------------------------------------------------------------------------------------ 

EXPERIMENTAL METHOD OF DETERMINATION OF META-CENTRIC HEIGHT 

 The meta-centric height of a floating vessel can be determined, provided we know the centre of 

gravity of the floating vessel. Let w1 is a known weight placed over the centre of the vessel as shown in 

Fig.(a) and the vessel is floating. 

 

Meta-centric height 

Let  W = Weight of vessel including w1 

 G = Centre of gravity of the vessel 

 B = Centre of buoyancy of the vessel 

 The weight w1 is moved across the vessel towards right through a distance x as shown in               

Fig.(b). The vessel will be tilted. The angel of heel 𝜃 is measured by means of a plumbline and a protractor 



attached on the vessel. The new centre of gravity of the vessel will shift to G1 as the weight w1 has been 

moved towards the right.  

Also the centre of buoyancy will change to B1 as the vessel has tilted. Under equilibrium, the moment 

caused by the movement of the load w1 through a distance x must be equal to the moment caused by 

the shift of the centre of gravity from G to G1. Thus 

 The moment due to change of w1 = w1 x x 

      w1x = WGM tan𝜃 

Hence      GM = 
𝑤1𝑥

𝑊 𝑡𝑎𝑛𝜃
  ……………(4.5)  

 

------------------------------------------------------------------------------------------------------------------------------ 

A ship 70 m long and 10 m broad has a displacement of 19620 kN. A weight of 343.35 kN is moved 

across the deck through a distance of 6 m. The ship is tilted through 60. The moment of inertia of 

the ship at water-line about its fore and aft axis is 75% of M.O.I of the circumscribing rectangle. 

The centre of buoyancy is 2.25 m below water-line. Find the meat-centric height and position of 

centre of gravity of ship. Specific weight of sea water is 10104 N/m3. 

Given: 

Length of ship,  L = 70 m 

Breadth of ship,  b = 10 m 

Displacement,  W = 19620 kN 

Angle of heel,  𝜃 = 60 

M.O.I. of ship at water-line  = 75 % of M.O.I. of circumscribing rectangle 

w for sea-water   = 10104 n/m3 kN 

Movable weight  w1 = 343.35 kN 

Distance moved by w1 x = 6m  

Centre of buoyancy  = 2.25 m below water surface 

 

Solution: 

Find  (i) Meta-centric height, GM 

 (ii) Position of centre of gravity, G 

(i) Meta-centric height, GM is given by equation  

   GM  =       
𝑤1𝑥

𝑊 𝑡𝑎𝑛𝜃
    =     

343.35𝑘𝑁 x 6.0

19620 𝑘𝑁 x tan 60
 



   =     
343.35𝑘𝑁 x 6.0

19620 𝑘𝑁 x .1051
     

   =   0.999 m. 

(ii) Position of centre of gravity, G 

  GM =  
𝐼

 ∀
  - BG  

Where  I = M.O.I  of the ship at water-line about Y-Y 

    = 75% of 
1

12
 x 70 x 103  

    = .75 x 
1

12
 x 103 = 4375 m4 

and   ∀ = Volume of ship in water =    
Weight of ship

Weight density of water
  

   =  
19620

10.104
 = 1941.74 m3 

   
𝐼

 ∀
  = 

4375

 1941.74
  = 2.253 m 

    GM = 2.253 – BG  

   .999 = 2.253 – BG 

     BG = 2.253 - .999   =  1.254 m 

From Fig., it is clear that the distance of G from free surface of the water = distance of B from water 

surface – BG 

   =       2.25 – 1.254     

   =      0.996 m. 

------------------------------------------------------------------------------------------------------------------------------ 

A pontoon of 15696 kN displacement is floating in water. A weight of 245.25 kN is moved through 

a distance of 8 m across the deck of pontoon, which tilts the pontoon through an angle 40. Find 

meta-centric height of the pontoon. 

Given: 

Weight of pontoon = Displacement 

   W = 15696 kN 

Movable weight w1 = 245.25 kN 

Distance moved by weight w1, x=8 m 

Angle of heel,  𝜃 = 40 

Solution: 

The meta-centric height, GM is given by equation 

   GM =       
𝑤1𝑥

𝑊 𝑡𝑎𝑛𝜃
   

    =      
245.25𝑘𝑁 x 8

15696 𝑘𝑁 x tan 40
      =       

1962

15696  x 0.0699
  

       GM  = 1.788 m 

------------------------------------------------------------------------------------------------------------------------------ 



UNIT II 

KINEMATICS OF MOTION 

INTRODUCTION 

Kinematics is defined as that branch of science which deals with motion of particles without considering 

the forces causing the motion. The velocity at any point in a flow field at any time is studied in this 

branch of fluid mechanics.  

Once the velocity is known, then the pressure distribution and hence forces acting on the fluid can be 

determined, In this chapter, the methods of determining velocity and acceleration are discussed. 

METHODS OF DESCRIBING FLUID MOTION 

     The fluid motion is described by two methods. They are (i) Lagraugian Method, and (ii) Eulerian 

Method.  

 In the Lagrangian method, a single fluid particle is followed during its motion and its velocity * 

acceleration, density, etc.. are described.  

 In case of Eulerian method, the velocity, acceleration, pressure, density etc., arc described at a 

point in Row field. The Eulerian method is commonly used in fluid mechanics. 

 

TYPES OF FLUID FLOW 

 The fluid flow is classified as: 

 Steady and unsteady flows  

 Uniform and (ton-uniform flows  

 Laminar and turbulent flows  

 Compressible and incompressible flows 

 Rotational and irrotational flows  

 One, two and three-dimensional flows. 

 

Steady and Unsteady flow: 

Steady flow 

Fluid flow is said to be steady if at any point in the flowing fluid various characteristics such as 

velocity, density, pressure, etc. do not change with time. 

    ∂V/∂t = 0 ∂p/∂t = 0 ∂ρ/∂t = 0 

Unsteady flow 

Fluid flow is said to be unsteady if at any point flowing fluid any one or all characteristics which 

describe the behaviour of the fluid in motion change with time. 

                                             ∂V/∂t ≠ 0      ∂p/∂t ≠ 0      ∂ρ/∂t ≠ 0 

 

Uniform and Non-uniform flow. 

Uniform flow 

When  the  velocity  of  flow  of  fluid  does  not  change  both  in  direction  and magnitude 



from point to point in the flowing fluid for any given instant of time, the flow is said to be uniform.

                                            ∂V/∂s = 0 ∂p/∂s = 0 ∂ρ/∂s = 0 

Non-uniform flow 

If the velocity of flow of fluid changes from point to point in the flowing fluid at any instant, the 

flow is said to be non-uniform flow. 

                                          ∂V/∂s ≠ 0         ∂p/∂s ≠ 0 ∂ρ/∂s ≠ 0 

 

Laminar and Turbulent flow: 

Laminar flow 

A flow is said to be laminar if Reynolds number is less than 2000 for pipe flow. Laminar flow 

is possible only at low velocities and high viscous fluids.  In laminar type of flow, fluid particles 

move in laminas or layers gliding smoothly over the adjacent layer. 

Turbulent flow 

In Turbulent flow, the flow is possible at both velocities and low viscous fluid. The flow is said 

to be turbulent if Reynolds number is greater than 4000 for pipe flow.  In Turbulent type of flow fluid, 

particles move in a zig – zag manner. 

 

Compressible and incompressible flow 

Compressible flow 

 The compressible flow is that type of flow in which the density of the fluid changes from point 

to point i.e. the density is not constant for the fluid.   It is expressed in kg/sec. 

                              ρ ≠ constant 

Incompressible flow 

  The incompressible flow is that type of flow in which the density is constant for the fluid flow. 

Liquids are generally incompressible. It is expressed in m3/s. 

                              ρ = constant 

 

Rotational and Irrotational flow. 

Rotational flow 

 Rotational flow is that type of flow in which the fluid particles while flowing along stream lines 

and also rotate about their own axis. 

Irrotational flow 

If the fluid particles are flowing along stream lines and do not rotate about their own axis that type 

of flow is called as ir-rotational flow 

 

One, Two and Three dimensional flow. 

One dimensional flow 

The flow parameter such as velocity is a function of time and one space co- ordinate only   

                     u = f (x),            v = 0   & w = 0. 



Two dimensional flow 

The velocity is a function of time and two rectangular space co-ordinates. 

                             u = f1(x,y),      v = f2(x,y)        & w =0. 

Three dimensional flow 

The velocity is a function of time and three mutually perpendicular directions. 

        u = f1(x,y,z),      v = f2(x,y,z) &          w = f3(x,y,z). 

---------------------------------------------------------------------------------------------------------------------------- 

CONTINUITY EQUATION 

The equation based on the principle of conservation of mass is called continuity equation. Thus for a 

fluid flowing through the pipe at all the cross-section, the quantity of fluid per second is constant. 

Consider two cross-sections of a pipe as shown in Fig. 

 

 Let    V1 = Average velocity at cross-sect ion I-1  

ρ1  = Density at section 1-1  

A1 = Area of pipe at section I -1  

and V2, ρ1, A2  arc corresponding values at section. 2-2.  

  Then rate of flow at section 1-1 = ρ1  A1 V1 

Rate of flow at .section 2-2       = ρ2 A2 V2    

According to hlw of conservation of mass of flow 

Rate of flow at section l - I = Rate of flow at section 2-2  

ρ1  A1 V1  =  ρ2 A2 V2 

Equation  is applicable to the compressible as well as incompressible fluids and is called Continuity 

Equation. If the fluid is in- compressible, then ρ1 = ρ2  and continuity equation  reduces to 

 A1 V1  =  A2 V2   

---------------------------------------------------------------------------------------------------------------------------- 

RATE OF FLOW OR DISCHARGE (Q) 

It is defined as the quantity of a fluid flowing per second through a section of a pipe or a channel. For 

an incompressible fluid (or liquid ) the rate of flow or discharge is expressed as the volume or fluid 

flowing across the section per second. For compressible fluids, the rate of flow is usually expressed as 

the weight of fluid flowing across the section. Thus 



(i) For liquids the units or Q are m3/s or litres/s  

(ii) For gases the units of Q is kgf/s or Newton/s  

Consider a liquid flowing through a pipe in which 

 A = Cross-sectional area of pipe  

V = Average velocity of fluid across the section  

Then discharge,   Q = A xV 

---------------------------------------------------------------------------------------------------------------------------- 

The diameters of a pipe at the sections 1 and 2 are 10 cm and 15 cm respectively. Find the 

discharge through the pipe if the velocity of water flowing through the pipe at section 1 m /s. 

Determine also the velocity at section 2. 

Given: 

At section 1,  D1 = 10cm = 0.1 m 

 A1 = 
𝜋

4
 (𝐷1

2) = 
𝜋

4
 (.1)2 

        = 0.007854 m2 

 V1 = 5 m/s. 

At section 2,   D2 = 15 cm = 0.15 m 

   A2 = 
𝜋

4
 (.15)2 = 0.01767 m2 

                                         

Solution: 

(i) Discharge through pipe is given by equation  

  Q  = A1 x V1 

      =  0.007854 x 5  

      = 0.03927 m3/s. 

Using equation we have, 

    A1 V1  = A2 V2 

(ii)   V2  =  
𝐴1𝑉1

A2
 = 

0.007854

0.01767
 x 5.0  

   V2 = 2.22 m/s. 

---------------------------------------------------------------------------------------------------------------------------- 

A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20 cm and 15 cm 

respectively. If the average velocity in the 30 cm diameter pipe is 2.5 m/s, find the discharge in 

this pipe. Also determine the velocity in 15 cm pipe if the average velocity in 20 cm diameter 

pipe is 2 m/s. 

Given : 

 D1 = 30 cm = 0.30 m 

 A1 = 
𝜋

4
 𝐷1

2 = 
𝜋

4
 .32 = 0.007068 m2 

 V1 = 2.5 m/s 

 

            D2 =    20 cm = 0.20 m  A2 =    
𝜋
4
 (.2)2 = 

𝜋

4
 x .4  = 0.0314 m2 



 V2 =   2 m/s 

 D3 =  15 cm = 0.15 m 

 A3      =   
π

4
 (.15)2  =   

𝜋

  4
 x 0.225       =.01767 m2 

 

    

Solution: 

Find  (i) Discharge in pipe 1 or Q1 

(ii) Velocity in pipe of dia. 15 cm or V3 

Let Q1, Q2 and Q3 are discharges in pipe 1 , 2 and 3 respectively. 

 Then according to continuity equation 

   Q1  = Q2 + Q3   ………………(1) 

(i) The discharge Q1 in pipe 1 is given by 

Q1  = A1 V1 = 0.07068 x 2.5 m3/s =   0.1767 m3/s. 

(ii) Value of V3 

Q2  = A2 V2 = 0.0314 x 2.0  =   0.0628 m3/s. 

Substituting the values Q1 and Q2 in equation (1) 

   0.1767    = 0.0628 + Q3 

        Q3      = 0.1767 = 0.0628 = 0.1139 m3/s. 

But        Q3     = A3 x V3  = 0.01767 V3 or 0.1139 = 0.01767 x V3 

        V3        = 
0.1139

0.01767
 = 6.44 m/s. 

---------------------------------------------------------------------------------------------------------------------------- 

25 cm diameter pipe carries oil of sp.gr. 0.9 at a velocity of 3 m/s. At another section the diameter 

is 20cm. Find the velocity at this section and also mass rate of flow of oil. 

Given. 

at section 1,  D1 = 25 cm = 0.25 m 

   A1 = 
𝜋

4
 𝐷1

2 =
𝜋

4
 x 0.252 = 0.049 m3 

   V1 = 3 m/s 

at section 2,  D2 = 20 cm = 0.2 m 

   A2 = 
𝜋

4
 (0.2)2 = 0.0314 m2 

   V2 = ? 

Mass rate of flow of oil = ? 



Solution: 

Applying continuity equation at section 1 and 3 

A1 V1 = A2 V2 

or  0.049 x 3.0 = 0.0314 x  V2 

   V2 = 
0.049 x 3.0

0.0314
  

= 4.68 m/s. 

Mass rate of flow of oil = Mass density x Q = 𝜌 x A1 x V1 

Sp.gr.of oil   = 
Density of oil

Density of water
 

 Density of oil  = Sp. gr. of oil x Density of water 

    = 0.9 x 1000 kg/m3 = 
900 𝑘𝑔

𝑚3  

 Mass rate of flow  = 900 x 0.049 x 3.0 kg/s  

            = 132.23 kg/s. 

---------------------------------------------------------------------------------------------------------------------------- 

CONTINUITY EQUATION IN THREE – DIMENSIONS 

 Consider a fluid element of lengths dx , dy and dz in the direction of x, y and z. Let u, v and w 

are the inlet velocity components in x, y and z direction respectively.  

 

Mass of fluid entering the face ABCD per second 

   = 𝜌 x Velocity in x-direction x Area of ABCD 

   = 𝜌 x u x (dy x dz) 

Then mass of fluid leaving the face EFGH per second = 𝜌u  dydz + 
𝜕

𝜕𝑥
 (𝜌u  dydz) dx 

 Gain of mass in x-direction 

   = Mass through ABCD – Mass through EFGH per second 

   = 𝜌u  dydz - 𝜌u  dydz - 
𝜕

𝜕𝑥
 (𝜌u  dydz) dx 

   = - 
𝜕

𝜕𝑥
 (𝜌u  dydz) dx 

   = - 
𝜕

𝜕𝑥
 (𝜌u) dx  dydz 

Similarly, the net gain of mass in y-direction 



   = - 
∂

∂y
 (𝜌𝜐) dxdydz 

and in z-direction = - 
𝜕

𝜕𝑧
 (𝜌𝑤) dxdydz 

  Net gain of masses = - [
𝜕

𝜕𝑥
 (𝜌𝑢) +

𝜕

𝜕𝑦
 (𝜌𝜐) +

𝜕

𝜕𝑧
 (𝜌𝑤)] dxdydz 

Since the mass is neither created nor destroyed in the fluid element, the net increase of mass per unit 

time in the fluid element must be equal to the rate of increase of mass of fluid in the element. But mass 

of fluid in the element is 𝜌 . dx . dy . dz  and its rate of increase with time is 
𝜕

𝜕𝑡
 (𝜌 . dx . dy . dz) or 

𝜕𝜌

𝜕𝑡
 . dx 

dy dz 

Equating the two expressions, 

  - [
𝜕

𝜕𝑥
 (𝜌𝑢) +

𝜕

𝜕𝑦
 (𝜌𝜐) +

𝜕

𝜕𝑧
 (𝜌𝑤)] dxdydz  =  

𝜕𝜌

𝜕𝑡
 . dx dydz 

 
𝜕𝜌

𝜕𝑡
 + 

𝜕

𝜕𝑥
 (𝜌𝑢) + 

𝜕

𝜕𝑦
 (𝜌𝜐) +

𝜕

𝜕𝑧
 (𝜌𝑤) = 0 [Cancelling dx dy dz from both sides]….. (1) 

 Equation  is the continuity equation in Cartesian co-ordinates in its most general form.  

 

This equation is applicable to : 

(i) Steady and unsteady flow 

(ii) Uniform and non-uniform flow and 

(iii) Compressible and incompressible fluids 

For steady flow, 
𝜕𝜌

𝜕𝑡
 = 0 and hence equation (1) becomes as 

  
𝜕

𝜕𝑥
 (𝜌𝑢) +

𝜕

𝜕𝑦
 (𝜌𝜐) +

𝜕

𝜕𝑧
 (𝜌𝑤) = 0  ……….(2) 

If the fluid is incompressible, then 𝜌 is constant and the above equation becomes as 

  
𝜕𝑢

𝜕𝑥
+

𝜕𝜐

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
  = 0    …………(3) 

Equation (3) is the continuity equation in three-dimensions. For a two-dimensional flow, the 

component w=0 and hence continuity equation becomes as 

𝜕𝑢

𝜕𝑥
+

𝜕𝜐

𝜕𝑦
  = 0    …………(4) 

---------------------------------------------------------------------------------------------------------------------------- 

VELOCITY AND ACCELERATION 

 Let V is the resultant velocity at any point in a fluid flow. Let u, v and w are its component in x,y 

and z directions. The velocity components are function of space co-ordinates and time. Mathematically 

the velocity components are given as 

  u = f1 (x , y , z , t) 

  v = f2 (x , y , z , t) 

  w = f3 (x , y , z , t) 

and Resultant velocity,  V = ui + vj + wk = √𝑢2 + 𝑣2 + 𝑤2 



Let ax, ay and az are the total acceleration in x , y and z direction respectively. Then by the chain rule of 

differentiation, we have 

  ax = 
𝑑𝑢

𝑑𝑡
 = 

∂u

∂x
 

dx

dt
+  

∂u

∂y
 
dy

dt
+

∂u

∂z
 

dz

dt
+

du

dt
   

But   
𝑑𝑥

𝑑𝑡
 = u , 

𝑑𝑦

𝑑𝑡
 = v and 

𝑑𝑧

𝑑𝑡
 = w 

  ax = 
𝑑𝑢

𝑑𝑡
 = u 

𝜕𝑢

𝜕𝑥
 +  𝑣

𝜕𝑢

𝜕𝑦
 + 𝑤

𝜕𝑢

𝜕𝑧
+

𝜕𝑢

𝑑𝑡
   

Similarly ay = 
𝑑𝑣

𝑑𝑡
 = u 

𝜕𝑣

𝜕𝑥
 +  𝑣

𝜕𝑣

𝜕𝑦
 + 𝑤

𝜕𝑣

𝜕𝑧
+

𝜕𝑣

𝑑𝑡
     ………..(5) 

  az = 
𝑑𝑤

𝑑𝑡
 = u 

𝜕𝑤

𝜕𝑥
 +  𝑣

𝜕𝑤

𝜕𝑦
 + 𝑤

𝜕𝑤

𝜕𝑧
+

∂w

dt
   

For steady flow, 
𝜕𝑉

𝜕𝑡
 = 0 , where V is resultant velocity  

or   
𝜕𝑢

𝜕𝑡
 = 0 , 

𝜕𝑉

𝜕𝑡
 = 0 and 

𝜕𝑤

𝜕𝑡
 = 0 

Hence  acceleration in x , y and z direction becomes 

ax = 
𝑑𝑢

𝑑𝑡
 = u 

𝜕𝑢

𝜕𝑥
 +  𝑣

𝜕𝑢

𝜕𝑦
 + 𝑤

𝜕𝑢

𝜕𝑧
   

ay = 
𝑑𝑣

𝑑𝑡
 = u 

𝜕𝑣

𝜕𝑥
 +  𝑣

𝜕𝑣

𝜕𝑦
 + 𝑤

𝜕𝑣

𝜕𝑧
     ………..(6) 

  az = 
𝑑𝑤

𝑑𝑡
 = u 

𝜕𝑤

𝜕𝑥
 +  𝑣

𝜕𝑤

𝜕𝑦
 + 𝑤

𝜕𝑤

𝜕𝑧
   

Acceleration vector A = axi + ayj + azk 

    = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2   ………..(7) 

---------------------------------------------------------------------------------------------------------------------------- 

Local Acceleration and Convective Acceleration.  

Local acceleration is defined as the rate of increase of velocity with respect to time at a given 

point in a flow field. In the equation given by (5.6) the expression  
𝜕𝑢

𝜕𝑡
 , 

𝜕𝑉

𝜕𝑡
 or 

𝜕𝑤

𝜕𝑡
  is known as 

local acceleration 

 

Convective acceleration: It is defined as the rate of change of velocity due to the change of 

position of fluid particles in a fluid flow. The expression other than 
𝜕𝑢

𝜕𝑡
 , 

𝜕𝑉

𝜕𝑡
 or 

𝜕𝑤

𝜕𝑡
 in equation (5.6) 

are known as convective acceleration. 

---------------------------------------------------------------------------------------------------------------------------- 

The velocity vector in a fluid flow is given V = 4x3i – 10x2yj + 2tk . Find the velocity and 

acceleration of a fluid particle at (2, 1, 3) at time t = 1. 

Solution: 

 The velocity components u, v and w are u = 4x3 , y= -10x2 , w = 2t 

For the point (2, 1, 3) , we have x = 2 , y = 1 and z = 3 at time t = 1 

Hence velocity components at (2 ,1 , 3) are 



   u = 4 x (2)3 = 32 units 

   v = -10(2)2 (t) = -40 units 

   w = 2 x 1 = 2 units 

 Velocity vector V at (2, 1, 3) = 32i – 40j + 2k 

  Resultant velocity =   √𝑢2 + 𝑣2 + 𝑤2 

            =   √322 + (−40)2 + 22  

         =  √1024 + 1600 + 4  

         = 51.26 units. 

Acceleration is given by equation, 

ax =  u 
𝜕𝑢

𝜕𝑥
 +  𝑣

𝜕𝑢

𝜕𝑦
 + 𝑤

𝜕𝑢

𝜕𝑧
  + 

𝜕𝑢

𝜕𝑡
 

ay =  u 
𝜕𝑣

𝜕𝑥
 +  𝑣

𝜕𝑣

𝜕𝑦
 + 𝑤

𝜕𝑣

𝜕𝑧
+  

𝜕𝑣

𝜕𝑡
    

  az =  u 
𝜕𝑤

𝜕𝑥
 +  𝑣

𝜕𝑤

𝜕𝑦
 + 𝑤

𝜕𝑤

𝜕𝑧
 +

𝜕𝑤

𝜕𝑡
 

now from  velocity components, we have 

   
𝜕𝑢

𝜕𝑥
 = 12𝑥2 ,

𝜕𝑢

    𝜕𝑦
= 0,                

𝜕𝑢

𝜕𝑧
= 0         𝑎𝑛𝑑  

𝜕𝑢

𝜕𝑡
 = 0 

   
𝜕𝑣

𝜕𝑥
 = −20𝑥𝑦 ,

𝜕𝑣

 𝜕𝑦
= −10𝑥2 ,    

  𝜕𝑣

  𝜕𝑧
= 0                 

𝜕𝑣

𝜕𝑡
 = 0 

   
𝜕𝑤

𝜕𝑥
 = 0 ,            

𝜕𝑤

𝜕𝑦
= 0,                

𝜕𝑤

 𝜕𝑧
= 0                

𝜕𝑤

𝜕𝑡
 = 2.1 

Substituting the values, the acceleration components at (2,1,3) at time t = 1 are 

  𝑎𝑥  =  4𝑥3(12𝑥2)+( −10𝑥2𝑦) (0)+2t x (0) + 0 

   =  48𝑥5= 48 x (2)5   

 = 48 x 32   = 1536 units 

  𝑎𝑦  =  4𝑥3(-20xy)+( −10𝑥2𝑦) (-10𝑥2)+2t(0) + 0 

   =  −80𝑥4𝑦 + 100𝑥4𝑦 

   =  -80 (2)4(1) + 100 (2)4 x 1  

= -1280 + 1600   = 320 units. 

𝑎𝑧  =  4𝑥3(0)+( −10𝑥2𝑦) (0)+ (2t)(0) +2.1  

= 2.0 units 

  Acceleration is  A =  axi + ayj + azk = 1536i + 320j + 2k. 

 Resultant  A =  √(1536)2 + (320)2 + (2)2 units 

        =  √2359296 + 102400 + 4  = 1568.9 units. 

---------------------------------------------------------------------------------------------------------------------------- 

The following cases represent the two velocity components, determine the third 

component of velocity such that they satisfy the continuity equation: 

(i) u = x2 + y2 + z2 ; v = xy2 – yz2 + xy 

(ii) v = 2y2 , w = 2xyz 



Solution: 

 The continuity equation for incompressible fluid is given by equation  as 

   
𝜕𝑢

𝜕𝑥
 + 

𝜕𝑣

𝜕𝑦
 +

𝜕𝑤

𝜕𝑧
  = 0 

Case I.  u = x2 + y2 + z2      
𝜕𝑢

𝜕𝑥
=   2𝑥 

  v = xy2 – yz2 + xy    
𝜕𝑣

𝜕𝑦
 = 2xy – z2 + x 

Substituting the values of 
𝜕𝑢

𝜕𝑥
 𝑎𝑛𝑑 

𝜕𝑣

𝜕𝑦
 in continuity equation 

 2x + 2xy – z2 + x +
𝜕𝑤

𝜕𝑧
  = 0 

or   
𝜕𝑤

𝜕𝑧
 = -3x – 2xy + z2 or 𝜕𝑤 = (-3x – 2xy + z2) 𝜕𝑧 

Integration of both sides gives ∫ 𝑑𝑤 = ∫(−3𝑥 − 2𝑥𝑦 + 𝑧2)𝑑𝑧 

or     w = [−3𝑥𝑧 − 2𝑥𝑦𝑧 +
𝑧3

3
] + Constant of integration 

where constant of integration cannot be a function of z. But if can be a function of x and y that 

is f(x,y). 

    w = [−3𝑥𝑧 − 2𝑥𝑦𝑧 +
𝑧3

3
]+ f(x,y). 

Case II.  v = 2y2      
𝜕𝑣

𝜕𝑦
=   4𝑦 

   w = 2xyz     
𝜕𝑤

𝜕𝑧
=   2𝑥𝑦 

Substituting the values of 
𝜕𝑣

𝜕𝑦
 and 

𝜕𝑤

𝜕𝑧
 in continuity equation, we get 

 
𝜕𝑢

𝜕𝑥
 + 4y + 2xy = 0 

or  
𝜕𝑢

𝜕𝑥
  = - 4y - 2xy or du = (- 4y – 2xy) dx 

Integrating, we get  u = 4xy – 2y 
𝑥2

2
 + f(y,z) = -4xy – x2y + f(y,z). 

---------------------------------------------------------------------------------------------------------------------------- 

A fluid flow field is given by  V = x2yi – y2zj – (2xyz + yz2) k. Prove that it is a case of possible 

steady incompressible fluid flow. Calculate the velocity and acceleration at the point (2,1,3) 

Solution: For the given fluid flow field 

    u = x2y   
𝜕𝑢

𝜕𝑥
=   2𝑥𝑦 

      v = y2z    
𝜕𝑣

𝜕𝑦
=   2𝑦𝑧 

   w = -2xyz- y2   
𝜕𝑤

𝜕𝑧
=  −2𝑥𝑦 − 2𝑦𝑧 

For a case of possible steady incompressible fluid flow, the continuity equation (5.4) should be satisfied. 

i.e.,  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
=0  

Substituting the values of 
𝜕𝑢

𝜕𝑥
,

𝜕𝑣

𝜕𝑦
𝑎𝑛𝑑

𝜕𝑤

𝜕𝑧
, we get 



  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 2xy + 2yz -2xy-2yz=0 

Hence the velocity field V = V = x2yi – y2zj – (2xyz + yz2) k is possible case of fluid flow. 

Velocity at (2,1,3) 

 Substituting the values  x =2 , y = 1 and z=3 in velocity field, we get 

 V = x2yi – y2zj – (2xyz + yz2) k 

     = 22 + 1i + 12 x 3j – (2 x 2 x 1 x 3 + 1 x 32)k 

                = 4i + 3j – 21k. 

and Resultant velocity  = √42 + 34 + (−21)2 = √16 + 9 + 441 = 466 = 21.587 units. 

Acceleration at (2,1,3) 

The acceleration components ax , ay and az for steady flow are 

ax  =  u 
𝜕𝑢

𝜕𝑥
 +  𝑣

𝜕𝑢

𝜕𝑦
 + 𝑤

𝜕𝑢

𝜕𝑧
   

ay  =  u 
𝜕𝑣

𝜕𝑥
 +  𝑣

𝜕𝑣

𝜕𝑦
 + 𝑤

𝜕𝑣

𝜕𝑧
    

 az  =  u 
𝜕𝑤

𝜕𝑥
 +  𝑣

𝜕𝑤

𝜕𝑦
 + 𝑤

𝜕𝑤

𝜕𝑧
  

u  = x2y ,   
𝜕𝑢

𝜕𝑥
= 2𝑥𝑦 ,    

𝜕𝑢

𝜕𝑦
= 𝑥2   𝑎𝑛𝑑  

𝜕𝑢

𝜕𝑧
= 0  

v  = y2z ,    
𝜕𝑣

𝜕𝑥
= 0 ,    

𝜕𝑣

𝜕𝑦
=  2𝑦𝑧,    

𝜕𝑣

𝜕𝑧
= 𝑦2  

w = -2xyz – yz2 ,  
𝜕𝑤

𝜕𝑥
= −2𝑦𝑧 ,   

𝜕𝑤

𝜕𝑦
= −2𝑥𝑧 − 𝑧2  ,    

𝜕𝑤

𝜕𝑧
= 2𝑥𝑦 − 2𝑦𝑧  

Substituting these values in acceleration components, we get acceleration at (2,1,3) 

 𝑎𝑥  =   𝑥2y (2𝑥y) + y2z(x2) – (2xyz + yz2) (0) 

  = 2x3y2 + x2y2z 

  = 2 (2)312 + 22 x 12 x 3 = 2 x 8 + 12    = 16 + 12 = 28 units. 

 

𝑎𝑦  =   𝑥2y (0) + y2z(2yz) – (2xyz + yz2) (y2) 

  = 2y3y2 – 2xy3z – y3z2 

  = 2 x 13 x 32 – 2x2x13 x 3-13 x 32 = 18 -12 – 9 = -3 units 

 

𝑎𝑧  =   𝑥2y (−2𝑦𝑧) + y2z(2xz – z2) – (2xyz + yz2) (y2) (-2xy – 2yz) 

 = - 2x2y2z - 2xy2z- y2z3+[4x2y2z +2xy2z2+4xy2z2 + 2y2z3] 

 = -2 x 22 x 12 x 3 – 2 x 2 x 12 x 32 – 12 x 33 

  + [4 x 22 x 12 x 3 + 2 x 2 x 12 x 32 + 4 x 2 x 12 x 32 + 2 x 12 x 33] 

 = -24-36-27+[48+36+72+54] 

 = -24-36-27+48+36+72+54 = 123 

Acceleration =  axi + ayj + azk = 28i-3j+123k. 

or  Resultant acceleration = √282 + (−3)2 + 1232 = √784 + 9 + 15129 

      = √15922 = 126.18 units. 

---------------------------------------------------------------------------------------------------------------------------- 



Find the convective acceleration at the middle of a pipe which converges uniformly from 0.4 m 

diameter to 0.2 m diameter over 2 m length. The rate of flow is 20 lit/s. If the rate of flow changes 

uniformly from 20 l/s to 40 l/s in 30 seconds. Find the total acceleration at the middle of the pipe 

at 15th second. 

Given: 

 Diameter at section 1. 

D1 = 0.4 m ; D2 = 0.2 m , L=2 m , Q=20 l/s = 0.02 m3/s as one litre = 0.001m3 = 1000 cm3. 

Find  (i) Convective acceleration at middle i.e., at A when Q=20 l/s. 

 (ii) Total acceleration at A when Q changes from 20 l/s to 40 l/s in 30 seconds. 

Solution: 

Case I. In this case, the rate of flow is constant and equal to 0.02 m3/s. The velocity of flow is in x-

direction only. Hence this is one-dimensional flow and velocity components in y and z directions are 

zero or v=0 , z=0. 

  Convective acceleration = u 
𝜕𝑢

𝜕𝑦
 only  …………..(i) 

Let us find the value of u and 
𝜕𝑢

𝜕𝑥
 at a distance x from inlet 

The diameter (D1) at a distance x from inlet or at section X-X is given by, 

   D1 = 0.4 – 
0.4− .02

2
 x x  

        = (0.4 – 0.1 x) m 

The area of cross section (Ax) at section X-X is given by, 

   Ax  = 
𝜋

4
 𝐷𝑥

2 =  
𝜋

4
 (0.4 – 0.1 x)2 

Velocity (u) at the section X-X in terms of Q (i.e., in terms of rate of flow) 

   u = 
𝑄

𝐴𝑟𝑒𝑎
 = 

𝑄

𝐴
 = 

𝑄
𝜋

4
 𝐷𝑥

2 = 
4𝑄

𝜋(0.4−0.1 𝑥)2  

    = 
1.273𝑄

(0.4−0.1 𝑥)2 = 1.273Q (0.4 − 0.1 𝑥)−2 m/s  …..(ii) 

To find 
𝜕𝑢

𝜕𝑥
, we must differentiate equation (ii) with respect to x. 

   
𝜕𝑢

𝜕𝑥
 = 

𝜕

𝜕𝑥
 [1.273Q (0.4 − 0.1 𝑥)−2] 

        = 1.273Q(-2) (0.4 − 0.1 𝑥)−1 x (-0.1) [Here Q is constant]…..(iii) 

        = 0.2546Q (0.4 − 0.1 𝑥)−1 

Substituting the value of u an 
𝜕𝑢

𝜕𝑥
 in equation (i), we get 

Convective acceleration  = [1.273Q (0.4 − 0.1 𝑥)−2] x[0.2546Q (0.4 − 0.1 𝑥)]−1 

        = 1.273 x 0.2546 x Q2 x (0.4 − 0.1 𝑥)−3 

    = 1.273 x 0.2546 x (0.02)2 x (0.4 − 0.1 𝑥)−3  [∵ 𝑄 = 0.02 𝑚3/𝑠] 

 Convective acceleration at the middle (where x = 1 m) 

    = 1.273 x 0.2546 x (0.02)2 x (0.4 − 0.1 x 1)−3m/s2  

    = 1.273 x 0.2546 x (0.02)2 x (0.3)−3m/s2  

    = 0.0048 m/s2. 



Case II. When Q changes from 0.02 m3/s to 0.04 m3/s in 30 seconds, find the total acceleration at x=1 

and t=15 seconds 

Total acceleration = Convective acceleration + Local acceleration at t=15 seconds. 

The rate of flow at t=15 seconds is given by 

  Q = Q1 + 
𝑄2−𝑄1

30
 x 15 where Q1 = 0.04 m3/s and Q1 = 0.02 m3/s 

     = 0.02 + 
(0.04−0.02)

30
 x 15  

     = 0.03 m3/s 

The velocity (u) and gradient (
𝜕𝑢

𝜕𝑥
)in terms of Q are given by equations (ii) and (iii) respectively  

 Convective acceleration = u. 
𝜕𝑢

𝜕𝑥
 

    = [1.273Q (0.4 − 0.1 𝑥)−2] x[0.2546Q(0.4 − 0.1 𝑥)−1] 

        = 1.273 x 0.2546 x Q2 x (0.4 − 0.1 x 1)−3 

    = 1.273 x 0.2546 x (0.03)2 x (0.3)−3m/s2  

    = 0.0108 m/s2.   ………..(iv) 

Local acceleration = 
𝜕𝑢

𝜕𝑡
 = 

𝜕

𝜕𝑡
 , [1.273Q (0.4 − 0.1 𝑥)−2]  

       [∵ 𝑢 𝑓𝑟𝑜𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (𝑖𝑖)𝑖𝑠 𝑢 = 1.273𝑄(0.4 − 0.1 𝑥)−2] 

    = 1.273𝑄(0.4 − 0.1 𝑥)−2 x 
𝜕𝑄

𝜕𝑡
 

    [∵ Local acceleration is at a point wher 𝑥 is constant but Q is changing] 

Local acceleration (at x = 1 m) 

  = 1.273 x (0.4 − 0.1 𝑥)−2 x 
𝜕𝑄

𝜕𝑡
 

  = 1.273 x (0.3)−2 x 
0.02

30
   [∵

𝜕𝑄

𝜕𝑡
= 

𝑄2−𝑄1

𝑡
 = 

0.04−0.02

30
 = 

0.02

30
 

  = 0.00943 m/s2.   …………(v) 

Hence adding equations (iv) and (v), we get total acceleration. 

 Total acceleration = Convective acceleration + Local acceleration 

             = 0.0108 + 0.00943  

   = 0.02023 m/s2. 

---------------------------------------------------------------------------------------------------------------------------- 

VELOCITY POTENTIAL FUNCTION AND STREAM FUNCTION 

Velocity Potential Functions. It is defined as a scalar function of space and time such that its negative 

derivative with respect to any direction gives the fluid velocity in that direction. It is defined by  (Phi). 

Mathematically, the velocity, potential is defined as  = ∫ 𝑓(𝑠, 𝑦, 𝑧) for steady flow such that 

  u = - 
𝜕

𝜕𝑥
 

  v = - 
𝜕

𝜕𝑦
   …………(1) 

  w = - 
𝜕

𝜕𝑧
 

where u, v and w are the components of velocity in x,y and z directions respectively. 



The velocity components in cylindrical polar co-ordinates in terms of velocity potential functions are 

given by 

 ur =  
𝜕

𝜕𝑟
 

 u = 
1

𝑟
 
𝜕

𝜕
   ……………(1A) 

where ur = velocity component in radial direction (i.e., in r direction) 

and    u = velocity component in tangential direction (i.e., in  direction) 

The continuity equation for an incompressible steady flow is  
𝜕𝑢

𝜕𝑥
 +  

𝜕𝑣

𝜕𝑦
 +

𝜕𝑤

𝜕𝑧
   = 0 

Substituting the values of u , v and w from equation (5.9) we get 

  
𝜕

𝜕𝑥
 (−

𝜕ϕ

𝜕𝑥
) + 

𝜕

𝜕𝑦
 (−

𝜕ϕ

𝜕𝑦
) + 

𝜕

𝜕𝑧
 (−

𝜕ϕ

𝜕𝑧
) = 0 

or    
𝜕2ϕ

𝜕𝑥2 + 
𝜕2ϕ

𝜕𝑦2 + 
𝜕2ϕ

𝜕𝑧2  = 0  ……….(2) 

equation (2) is a Laplace equation. 

For two-dimension case, equation (1) reduces to 
𝜕2ϕ

𝜕𝑥2 + 
𝜕2ϕ

𝜕𝑦2 = 0  ……….(5.11) 

If any value of  that satisfies the Laplace equation, will correspond to some case of fluid flow.  

Properties of the Potential Function. The rotational components* are given by 

  z = 
1

2
 [ 

𝜕𝑣

𝜕𝑥
 +  

𝜕𝑢

𝜕𝑦
] 

  y = 
1

2
 [ 

𝜕𝑢

𝜕𝑧
 +  

𝜕𝑤

𝜕𝑥
] 

  x = 
1

2
 [ 

𝜕𝑤

𝜕𝑦
 +  

𝜕𝑣

𝜕𝑧
] 

Substituting the values of u, v and w from equation (1A) in the above rotational components, we get 

  z = 
1

2
 [

𝜕

𝜕𝑥
 (−

𝜕ϕ

𝜕𝑦
) −

𝜕

𝜕𝑦
 (−

𝜕ϕ

𝜕𝑥
)] = 

1

2
 [−

𝜕2ϕ

𝜕𝑥𝜕𝑦
 + 

𝜕2ϕ

𝜕𝑦𝜕𝑥
] 

  y = 
1

2
 [

𝜕

𝜕𝑧
 (−

𝜕ϕ

𝜕𝑥
) −

𝜕

𝜕𝑥
 (−

𝜕ϕ

𝜕𝑧
)] = 

1

2
 [−

𝜕2ϕ

𝜕𝑧𝜕𝑥
 + 

𝜕2ϕ

𝜕𝑥𝜕𝑧
] 

  x = 
1

2
 [

𝜕

𝜕𝑦
 (−

𝜕ϕ

𝜕𝑧
) −

𝜕

𝜕𝑧
 (−

𝜕ϕ

𝜕𝑦
)] = 

1

2
 [−

𝜕2ϕ

𝜕𝑦𝜕𝑧
 + 

𝜕2ϕ

𝜕𝑧𝜕𝑦
] 

If  is a continuous function, then 
𝜕2ϕ

𝜕𝑥𝜕𝑦
 = 

𝜕2ϕ

𝜕𝑦𝜕𝑥
 ; 

𝜕2ϕ

𝜕𝑧𝜕𝑥
 = 

𝜕2ϕ

𝜕𝑥𝜕𝑧
 ; etc. 

  z = y = x = 0 

When rotational components are zero, the flow is called ir-rotational. Hence the properties of the 

potential function are: 

1. If velocity potential () exists, the flow should be irrotational. 

2. If velocity potential () satisfies the Laplace equation, it represents the possible steady 

incompressible irrotational flow. 

---------------------------------------------------------------------------------------------------------------------------- 

Stream Function. It is defined as the scalar function of space and time ; such that its partial derivative 

with respect to any direction gives the velocity component at right angles to that direction. It is denoted 

by  (Psi) and defined only for two-dimensional flow. Mathematically, for steady flow it is defined as  

= f(x,y) such that 



  
𝜕

𝜕𝑥
 = v 

and   
𝜕

𝜕𝑦
 = -u   …………..(1) 

The velocity components in cylindrical polar co-ordinates in terms of stream function are given as 

  ur = 
1

𝑟
  

𝜕

𝜕
  and u = −  

𝜕

𝜕𝑟
    …………….(1A) 

where ur = radial velocity and u =tangential velocity 

The continuity equation for two-dimensional flow is 
𝜕𝑢

𝜕𝑥
 + 

𝜕𝑣

𝜕𝑦
 = 0. 

Substituting the values of u and v from equation (5.12), we get 

  
𝜕

𝜕𝑥
 (−

𝜕

𝜕𝑦
) +

𝜕

𝜕𝑦
 (

𝜕

𝜕𝑥
) = or - 

𝜕2

𝜕𝑥𝜕𝑦
+

𝜕2

𝜕𝑥𝜕𝑦
 = 0 

Hence existence of  means a possible case of fluid flow. The flow may be rotational or irrotational. 

The rotational component z is given by  z = 
1

2
 [ 

𝜕𝑣

𝜕𝑥
− 

𝜕𝑢

𝜕𝑦
] 

Substituting the values of u and v from equation (5.12) in the above rotational component, we get 

z = 
1

2
 [

𝜕

𝜕𝑥
 (

𝜕

𝜕𝑦
) −

𝜕

𝜕𝑦
 (−

𝜕

𝜕𝑦
)] = 

1

2
 [

𝜕2

𝜕𝑥2  + 
𝜕2

𝜕𝑦2] 

For irrotational flow, z =0. Hence above equation becomes as 
𝜕2

𝜕𝑥2  +  
𝜕2

𝜕𝑦2 = 0 

Which is Laplace equation for  . 

The Properties of stream function () are: 

1. If stream function () exists, it is a possible case of fluid which may be rotational or irrotational. 

2. If stream function () satisfies the Laplace equation, it is possible case of an irrotational flow. 

 

Equipotential Line. A line along which the velocity potential  is constant, is called equipotential line. 

For equipotential line  = Constant 

    d = 0  

But       = f(x,y) for steady flow 

  d = 
𝜕

𝜕𝑥
 dx + 

𝜕

𝜕𝑦
 dy 

   = -udx – vdy       {∵  
𝜕

𝜕𝑥
=  −u ,

𝜕

𝜕𝑦
− v } 

  = - (udx + vdy) 

For equipotential line, d =0 

  -(udx + vdy) = 0 or udx + vdy = 0 

  
𝑑𝑦

𝑑𝑥
 = - 

𝑢

𝑣
      …………(2) 

But  
𝑑𝑦

𝑑𝑥
 = slope of equipotential line. 

 

Line of Constant Stream Function 

    = Constant 

   d  =  0  



But    d =  
𝜕

𝜕𝑥
 dx + 

𝜕

𝜕𝑦
 dy+vdx-udy  {∵  

𝜕

𝜕𝑥
=  v ;  

𝜕

𝜕𝑦
= −u } 

For a line of constant stream function 

    = d = 0 or vdx – udy = 0 

   
𝑑𝑦

𝑑𝑥
 = 

𝑣

𝑢
      …………(3) 

But  
𝑑𝑦

𝑑𝑥
 is slope of stream line. 

From equation (2) and (3) it is clear that the product of the slope of the equipotential line and 

the slope of the stream line at the point of intersection is equal to -1. Thus the equipotential lines are 

orthogonal to the stream lines at all points of intersection.  

---------------------------------------------------------------------------------------------------------------------------- 

Flow Net. A grid obtained by drawing a series of equipotential lines and stream lines is called a flow 

net. The flow net is an important tool in analyzing two-dimensional irrotational flow problems. 

 

Relational Between Stream Function and Velocity Potential Function 

From equation (5.9), 

We have  u = - 
𝜕

𝜕𝑥
 and v = - 

𝜕

𝜕𝑦
  

From equation (5.12), We have u = - 
𝜕

𝜕𝑦
 and v =- 

𝜕

𝜕𝑥
  

Thus we have u = - 
𝜕

𝜕𝑥
 =- 

𝜕

𝜕𝑦
 and v = - 

𝜕

𝜕𝑦
 = 

𝜕

𝜕𝑥
 

Hence   
𝜕

𝜕𝑥
 = 

𝜕

𝜕𝑦
 

and   
𝜕

𝜕𝑦
 = 

𝜕

𝜕𝑥
    ……………(5.15) 

---------------------------------------------------------------------------------------------------------------------------- 

The velocity potential function () is given by an expression        = - 
𝒙𝒚𝟑

𝟑
−  𝒙𝟐 + 

𝒙𝟑𝒚

𝟑
+ 𝒚𝟐  

I. Find the velocity components in x and y direction. 

II. Show that  represents a possible case of flow. 

Solution: Given:   =  - 
𝑥𝑦3

3
−  𝑥2 + 

𝑥3𝑦

3
+ 𝑦2  

The partial derivatives of  w.r.t. x and y are 

  
𝜕

𝜕𝑥
 = - 

𝑦3

3
−  2𝑥 + 

3𝑥2𝑦

3
   …………….(1) 

and   
𝜕

𝜕𝑦
 = - 

3𝑥𝑦2

3
 + 

𝑥3

3
 +2y   …………….(2) 

(i) The velocity components u and v are given by equation (5.9) 

  u = - 
𝜕

𝜕𝑥
 = - [− 

𝑦3

3
−  2𝑥 + 

3𝑥2𝑦

3
 ] = 

𝑦3

3
+  2𝑥 – x2y 

   u = 
𝑦3

3
−  2𝑥 − 𝑥2𝑦 

  v = - 
𝜕

𝜕𝑦
 = - [− 

3𝑥𝑦2

3
+  

𝑥3

3
 + 2y ] = 

3𝑥𝑦2

3
 - 

𝑥3

3
 - 2y= xy2 - 

𝑥3

3
 -2y 

(ii) The given value of ,will represent a possible case of flow if it satisfies the Laplace equation, i.e., 



  
𝜕2

𝜕𝑥2  +  
𝜕2

𝜕𝑦2 = 0 

From equations (1) and (2), we have 

Now   
𝜕

𝜕𝑥
  = -  

𝑦3

3
−  2𝑥 − 𝑥2𝑦 

  
𝜕2

𝜕𝑥2 = -2 + 2xy 

and   
𝜕

𝜕𝑦
 =  xy2 + 

𝑥3

3
 + 2y 

  
𝜕2

𝜕𝑦2 = - 2xy + 2 

  
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 = (-2+2xy)+(-2xy+2)=0 

 Laplace equation is satisfied and hence  represent a possible case of flow.  

---------------------------------------------------------------------------------------------------------------------------- 

If for a two-dimensional potential flow, the velocity potential is given by   = x (2y-1). determine 

the velocity at the point P(4,5). Determine also the value of stream function  at the point P. 

Solution:  Given:     = x (2y-1) 

(i) The velocity components in the direction of x and y are 

  u = - 
𝜕

𝜕𝑥
 = - 

𝜕

𝜕𝑥
  [𝑥(2𝑦 − 1)]] =  −[2𝑦 − 1] =  1 − 2𝑦  

  v = - 
𝜕

𝜕𝑦
 = - 

𝜕

𝜕𝑦
  [𝑥(2𝑦 − 1)]] =  −[2𝑥] =  −2𝑥  

At the point P(4,5), i.e., at x=4 , y=5 

   u  = 1-2x5=-9 units/sec 

   v  = -2x4=-8 units/sec 

  Velocity at P     = -9i -8j 

or Resultant velocity at P = √92 + 82 =  √81 + 64 12.04 units/sec. 12.04 units/sec. 

(ii) Value of Stream Function at P 

We know that   
𝜕

𝜕𝑦
 = -u = -(1-2y) = 2y-1  ………..(i) 

and   
𝜕

𝜕𝑥
 = v = -2x    ……….(ii) 

Integrating equation (i) w.r.t. ‘y’, we get 

  ∫ 𝑑 = ∫(2y − 1)dy or  = 
2𝑦2

2
−  𝑦 + Constant of integration. 

The constant of integration is not a function of y but it can be a function of x.  Let the value of constant 

of integration is k. Then 

   = y2 – y + k 

Differentiating the above equation w.r.t. ‘x’, we get  …………..(iii) 

  
𝜕

𝜕𝑥
 = 

𝜕𝑘

𝜕𝑥
 

But from equation (ii) 
𝜕

𝜕𝑥
 = -2x 

Equating the value of 
𝜕

𝜕𝑥
 , we get 

𝜕k

𝜕𝑥
 = -2x 

Integrating this equation, we get k = ∫ −2𝑥𝑑𝑥 = - 
2𝑥2

2
 = -x2. 



Substituting this value of k in equation (iii), we get  = y2-y-x2. 

 Stream function  at P(4,5) = 52 – 5 – 42 = 25 – 5 – 16 = 4 units. 

---------------------------------------------------------------------------------------------------------------------------- 

The stream function for a two-dimensional flow is given by  = 2xy. Calculate the velocity at the 

point P(2,3). Find the velocity potential function . 

Solution. Given:  = 2xy  

The velocity components u and v in terms of  are 

  u  = - 
𝜕

𝜕𝑦
 = - 

𝜕

𝜕𝑦
 (2xy) = -2x 

  v  = - 
𝜕

𝜕𝑥
 =  

𝜕

𝜕𝑥
 (2xy) = 2y 

At the point P(2,3) we get u = -2x2=-4 units/sec. 

         v = 2 x 3 =6 units/sec. 

 Resultant velocity at P = √𝑢2 + 𝑣2=√42 + 62 =  √16 + 36 =  √52 = 7.21 units/sec. 

Velocity potential function  

We know   
𝜕

𝜕𝑥
 = -u = -(-2x) = 2x   ………..(i) 

   
𝜕

𝜕𝑦
 = -v =  -2y    ………...(ii) 

Integrating equation (i), we get 

  ∫ 𝑑 = ∫ 2𝑥𝑑𝑥 

or          = 
2𝑥2

2
 = + C = x2 + C   …………(iii) 

where C is a constant which is independent of x but can be a function of y. 

Differentiating equation (iii) w.r.t. ‘y’, we get  
𝜕

𝜕𝑦
 = 

𝜕𝐶

𝜕𝑦
 

But from (ii), 
𝜕

𝜕𝑦
 = -2y 

   
𝜕𝐶

𝜕𝑦
 = -2y 

Integrating this equation, we get C = ∫ −2𝑦 𝑑𝑦 = - 
2𝑦2

2
 = y2 

Substituting this value of C in equation (iii), we get  = x2-y2. 

---------------------------------------------------------------------------------------------------------------------------- 

The velocity components in a two-dimensional flow field for an incompressible fluid are as 

follows:  u = 
𝒚𝟑

𝟑
 + 2x – x2y and v = xy2 – 2y – x3/3 , obtain an expression for the stream function 

. 

Solution: Given: u = y3/3 + 2x – x2y 

   v = xy2 – 2y – x3/3 

The velocity components in terms of stream function are 

  
𝜕

𝜕𝑥
 = v = xy2-2y-x3/3    …………(i) 

  
𝜕

𝜕𝑦
 = -u = -y3/3 -2x + x2y   …………(ii) 

Integrating (i) w.r.t. x, we get  = ∫(𝑥𝑦2 − 2𝑦 − 𝑥3 3⁄ )/dx 



or     = 
𝑥2𝑦2

2
 - 2xy - 

𝑥4

4 x 3
+ 𝑘  …………..(iii) 

where k is a constant of integration which is independent of x but can be a function of y. 

Differentiating equation (iii) w.r.t y, we get 

  
𝜕

𝜕𝑦
 = 

2𝑥2𝑦

2
 - 2x +

𝜕𝑘

𝜕𝑦
  = 𝑥2𝑦 − 2𝑥 +

𝜕𝑘

𝜕𝑦
 

But from (ii),   
𝜕

𝜕𝑦
 = 

𝑦3

3
 - 2x + 𝑥2𝑦  

Comparing the value of 
𝜕

𝜕𝑦
 , we get 𝑥2𝑦 − 2𝑥 +

𝜕𝑘

𝜕𝑦
 = 

𝑦3

3
 - 2x + 𝑥2𝑦 

    
𝜕𝑘

𝜕𝑦
  =  −

𝑦3

3
 

Integrating, we get   k = ∫(−𝑦3 3⁄ )𝑑𝑦= 
−𝑦4

4 x 3
 = 

−𝑦4

12
 

Substituting this value in (iii), we get 

     =  
𝑥2𝑦2

2
 - 2xy - 

𝑥4

12
− 

𝑦4

12
 

---------------------------------------------------------------------------------------------------------------------------- 

TYPES OF MOTION 

 A fluid particle while moving may undergo anyone or combination of following four types of 

displacements: 

(i) Linear Translation or Pure Translation 

(ii) Linear Deformation 

(iii) Angular Deformation and 

(iv) Rotation 

Linear Translation. It is defined as the movement of a fluid element in such a way that it moves bodily 

from one position to another position and the two axes ab and cd represented in new positions by ab 

and cd are parallel as shown in Fig. (a) 

Linear Deformation. It is defined as the deformation of a fluid element in linear direction when the 

element moves. The axes of the element in the deformed position and un-deformed position are parallel, 

but their lengths change as shown in Fig. (b). 

Angular Deformation or Shear Deformation. It is defined as the average change in the angle 

contained by two adjacent sides. Let ∆1𝑎𝑛𝑑 ∆2 is the change in angle between two adjacent sides of 

a fluid element as shown in Fig. (c) , then angular deformation or shear strain rate. 

    
1

2
 [∆1 + ∆2] 

Now    ∆1 =  
𝜕𝑣

𝜕𝑥
 x 

∆𝑥

∆𝑥
 =  

𝜕𝑣

𝜕𝑥
 and ∆2 = 

𝜕𝑢

𝜕𝑦
 . 

∆y

∆y
=  

𝜕𝑢

𝜕𝑦
 

  Angular deformation = 
1

2
 [∆1 +  ∆2] 

or  shear strain rate = 
1

2
 [ 

𝜕𝑣

𝜕𝑥
+  

𝜕𝑢

𝜕𝑦
]    

Rotation. It is defined as the movement of a fluid element in such a way that both of its axes (horizontal 

as well as vertical) rotate in the same direction as shown in Fig.(d). It is equal to     
1

2
 [ 

𝜕𝑣

𝜕𝑥
+  

𝜕𝑢

𝜕𝑦
]  for a 

two-dimensional element in x-y plane. The rotational components are  



 

   z = 
1

2
 [ 

𝜕𝑣

𝜕𝑥
+  

𝜕𝑢

𝜕𝑦
] 

 

   x = 
1

2
 [ 

𝜕𝑤

𝜕𝑦
+  

𝜕𝑣

𝜕𝑧
]    

   y = 
1

2
 [ 

𝜕𝑢

𝜕𝑧
+ 

𝜕𝑤

𝜕𝑥
] 

Vorticity. It is defined as the value twice of the rotation and hence it is given as 2.  

 

 

Fig.  Displacement of a fluid element. 

---------------------------------------------------------------------------------------------------------------------------- 

A fluid flow is give by V = 8x3i – 10x2yj.  Find the shear strain rate and state whether the flow is 

rotational or irrotational. 

Given V = 8x3i – 10x2yj 

    u = 8x3, 
𝜕𝑢

𝜕𝑥
 = 24x2, 

𝜕𝑢

𝜕𝑦
 = 0 

and    v = -10x2y, 
𝜕𝑣

𝜕𝑥
 = 20xy, 

𝜕𝑣

𝜕𝑦
 = -10x2 

Solution: 

(i) Shear strain rate is given by equation  as 

  = 
1

2
 [ 

𝜕𝑣

𝜕𝑥
+ 

𝜕𝑢

𝜕𝑦
] = 

1

2
 (-20xy+0) = -10x. 

(ii) Rotation in x-y plane is given by equation  

   z = 
1

2
 [ 

𝜕𝑣

𝜕𝑥
+  

𝜕𝑢

𝜕𝑦
] = 

1

2
 (-20xy-0) = -10xy. 

As rotation z ≠ 0. Hence flow is rotational. 

---------------------------------------------------------------------------------------------------------------------------- 



VORTEX FLOW 

 Vortex flow is defined as the flow of a fluid along a curved path or the flow of a rotating mass of 

fluid is known a ‘Vortex Flow’. The vortex flow is of two types namely: 

1. Forced vortex flow and 

2. Free vortex flow 

Forced Vortex Flow. Forced vortex flow is defined as that type of vortex flow, in which some external 

torque is required to rotate the fluid mass. The fluid mass in this type of flow, rotates at constant angular 

velocity, . The tangential velocity of any fluid particle is given by 

   v =  x r  …………..(5.18) 

where r = Radius of fluid particle from the axis of rotation. 

Hence angular velocity  is given by 

    = 
𝑣

𝑟
 = Constant  ………….(5.19) 

Examples of forced vortex are: 

1. A vertical cylinder containing liquid which is rotated about its central axis with a constant angular 

velocity  , as shown in Fig. 5.12 

2. Flow of liquid inside the impeller of a centrifugal pump 

3. Flow of water through the runner of a turbine. 

---------------------------------------------------------------------------------------------------------------------------- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



EULER'S EQUATION OF MOTION 

This is equation of motion in which the forces due to gravity and pressure are taken into consideration. 

This is derived by considering the motion of a fluid element along a stream-line as: 

Consider a stream-line in which flow is taking place in s-direction as shown in Fig. Consider a cylindrical 

element of cross-section dA and length ds. The forces acting on the cylindrical element arc:  

I. Pressure force pdA in the direction of flow. 

2. Pressure force (p+ 
𝜕𝑝

𝜕𝑠
 ds) dA opposite to the direction of flow. 

3. Weight of element ρgdAds. 

 

Let θ is the angle between the direction of flow and the line of action of the weight of element. The 

resultant force on the fluid element in the direction of s must be equal to the mass of fluid element x 

acceleration in the direction s. 

pdA - (p+ 
𝜕𝑝

𝜕𝑠
 ds)dA – ρgdAds cosθ 

= ρgdAds x as       --------- (1) 

where, as is the acceleration in the direction of s 

Now    as =  
𝑑𝑣

𝑑𝑡
 ,       where v is a function of s and t, 

𝑑𝑣

𝑑𝑠
 
𝑑𝑠

𝑑𝑡
 + 

𝑑𝑣

𝑑𝑡
  =  

𝑣𝑑𝑣

𝑑𝑠
 +

𝑑𝑣

𝑑𝑡
         {

 𝑑𝑠

𝑑𝑡
 = v} 

If the flow is steady,             

   
𝑑𝑣

𝑑𝑡
= 0 



as =  
𝑣𝑑𝑣

𝑑𝑠
 ,        

Substituting the value of as in equation (1) and simplifying the equation, we get 

−
𝜕𝑝

𝜕𝑠
 dsdA - ρg dAds cos θ = ρdAds  x  

𝑑𝑣

𝑑𝑠
 

Dividing by ρdsdA, 

  −
𝜕𝑝

𝜌𝜕𝑠
 -  g cos θ =  

𝑣𝑑𝑣
𝑑𝑠

     (Or) 

𝜕𝑝

𝜌𝜕𝑠
 + g cos θ +  

𝑣𝑑𝑣

𝑑𝑠
 = 0 

But from Fig. 6.1 (b), we have cos θ= 
𝑑𝑧

𝑑𝑠
 

1

𝜌
 
𝑑𝑝

𝑑𝑠
+ 𝑔 

𝑑𝑧

𝑑𝑠
+ 

𝑣𝑑𝑣

𝑑𝑠
= 0     (or) 

 
𝑑𝑝

𝜌
+ 𝑔 𝑑𝑧 +  𝑣𝑑𝑣 = 0    --------- (2)  

Equation (2) is known as Euler's equation of motion. 

BERNOULLI'S EQUATION FROM EULER'S EQUATION 

Bernoulli's equation is obtained by integrating the Euler's equation of motion (2) as  

∫
𝑑𝑝

𝜌
+ ∫ 𝑔𝑑𝑧 +  ∫ 𝑣𝑑𝑣 = constant 

If flow is incompressible, ρ is constant and 

𝑝

𝜌
+ 𝑔𝑧 +V2 /2  = constant 

𝑝

𝜌𝑔
+ 𝑧 +V2 / 2g  = constant 

𝑝

𝜌𝑔
+ V2 / 2g + z   = constant 

The above equation is a Bernoulli's equation in which, 

𝑝

𝜌𝑔
 = pressure energy per unit weight of fluid or pressure head.  



V2/2g = kinetic energy per unit weight or kinetic head.  

z = potential energy per unit weight or potential head. 

ASSUMPTIONS BERNOULLI'S EQUATION: 

The following are the assumptions made in the derivation of Bernoulli's equation:  

(i) The fluid is ideal, i.e., viscosity is zero  

(ii) The flow is steady  

(iii) The flow is incompressible  

(iv) The flow is irrotational. 

----------------------------------------------------------------------------------------------------------------------------------- 

Water is flowing through a pipe of 5 cm diameter under a pressure of 29.43 N/cm2 (gauge) and 

with mean velocity of 2.0 m/s. Find the total head or total energy per unit weight of the water at 

a cross-section, which is 5 m above the datum line.  

Solution: Given: 

   Diameter of pipe =   5 cm     = 0.5 m 

   Pressure,          p =  29.43 N/cm2  = 29.43 x 104 N/m2 

   Velocity,          v =  2.0 m/s 

   Datum head,         z =  5 m 

   Total head             =   [ pressure head + kinetic head + datum head ] 

   Pressure head         =    
𝑝

𝜌𝑔
  =  

29.43 𝑋 104

1000  𝑋 9.81
  =  30m 

   Kinetic head             =     
𝑣2

2𝑔
   =   

2 𝑋 2

2  𝑋 9.81
    = 0.204 m 

   Total head  =  
𝑝

𝜌𝑔
 + 

𝑣2

2𝑔
  + z   = 30 + 0.204 + 5  

= 35.204 m. Ans 

--------------------------------------------------------------------------------------------------------------------------------------- 

A pipe, through which water is flowing, is having diameters, 20 cm and 10 cm at the cross-

sections 1 and 2 respectively. The velocity of water at section 1 is given 4.0 m/s. Find the velocity 

head at sections 1 and 2 and also rate of discharge. 

          D1  =  20 cm =  0.2 m 

         Area,  A1 =  
𝜋

4
 𝐷1

2
=  

𝜋

4
 (0.22) = 0.0314 m2 



V
1   =  4.0 m/s 

           D2  =  0.1 m 

         A1 =  
𝜋

4
 𝐷2

2  =   (0.12) = 0.0785 m2 
 

 

Solution 

(i)Velocity head at section 1, 

  𝑉1
2

2𝑔
  = 

4.0 𝑋 4.0

2  𝑋 9.81
 = 0.815 m 

(ii) Velocity head at section 2,     
  𝑉2

2

2𝑔
 

To find V2 , apply continuity equation at 1 and 2, 

A1V1 = A2V2  (or)     

V
2

 =  𝐴1𝑉1 

𝑉2

  = 0.314

.00785
 x 4.0  

    V
2 

=  16.0 m/s 

Velocity head at section 2,     
  𝑉2

2

2𝑔
 =    

16.0 𝑋 16.0 

2 X 9.81

     =  83.047 m  

(iii)Rate of discharge , (Q) =    A1V1   (or )   A2V2  

           =   0.0314 x 4.0 = 0.1256 m3/s 

       Q = 0.1256 m3/s 

----------------------------------------------------------------------------------------------------------------------------- ----------------------- 

The water is flowing through a pipe having diameters 20 cm and 10 cm at sections 1 and 2 

respectively. The rate of flow through pipe is 35 litres/s. The section 1 is 6 m above datum and 

section 2 is 4 m above datum. If the pressure at section 1 is 39.24 N/cm2, find the intensity of 

pressure at section 2. 

Given: 

At Section 1         

D1  =  20 cm =  0.2 m 



Area,  A1 =  
𝜋

4
 𝐷1

2
=  

𝜋

4
 (0.22) = 0.0314 m2 

P1   =  39.24 N/cm2 

      =  39.24 x 104  N/m2 

Z1  = 6.0 m  

At Section 2         

D2  =  10 cm =  0.1 m 

Area,  A2 =  
𝜋

4
 𝐷2

2
=  

𝜋

4
 (0.12) = 0.00785 m2 

Z2  = 4.0 m 

P2 = ? 

Solution:   

Rate of flow,  Q  = 35 lit /s  =  
35

1000
 = 0.35 m3/s    Q  = 0.35 m3/s 

Now ,    Q  =  A1V1   =  A2V2  

V
1

   =     Q 

𝐴1

  =    
.035

.0314
    = 1.114 m/s    V

1
 =  1.114 m/s 

V
2

   =    
 Q 

 𝐴2

  =    
35

 .00785
  =4.456 m/s    V

2 =  4.456 m/s 

Applying Bernoulli's equation at sections 1 and 2, we get, 

𝒑𝟏

𝝆𝒈
 + 

𝒗𝟏
𝟐

𝟐𝒈
  + z1   = 

𝒑𝟐

𝝆𝒈
 + 

𝒗𝟐
𝟐

𝟐𝒈
  + z2    

39.24 𝑋 104

1000  𝑋 9.81
  + 

(1.114)2

2 𝑋 9.81
  + 6.0 =  

p2

1000  X 9.81
  + 

(4.456)2

2 𝑋 9.81
  + 4.0 

40 + 0.063 + 6.0 =  
p2

9810
 + 1.012 +4.0 

46.063  =   
p2

9810
 + 5.012 

p2

9810
 =    46.063 – 5.012 =   41.051 



P2 = 41.051 x 9810 N/ cm2 

      =  
𝟒𝟏.𝟎𝟓𝟏 𝐱 𝟗𝟖𝟏𝟎 

104  N/cm2 

P2 = 40.27 N/cm2 

--------------------------------------------------------------------------------------------------------------------------------------- 

 

 

 

Water is flowing through a pipe having diameter 300 mm and 200 mm at the bottom and upper 

end respectively. The intensity of pressure at the bottom end is 24.525 N/cm2 and the pressure 

at the upper end is 9.8/ N/cm2. Determine the difference in datum head if the rate of flow through 

pipe is 40 lit/s. 

Given: 

At Section 1         

D1  =  300 mm =  0.3 m 

P1   =  24.525 N/cm2  = 24.525 x 104  N/m2   

At Section 2    
     

D2  =  200 mm =  0.2 m 

P1   =  9.81 N/cm2  = 9.81 x 104  N/m2   

Solution:   

Rate of flow (Q) = 40 litres 

Q  =  
40

 1000  = 0.04 m3/s 

A1V1   =  A2V2  = Rate of flow (Q) = 0.04 

V
1

   =     Q 

𝐴1

  =  
0.04 

𝐴1

  =   0.566 m/s    { A =  
𝜋

4
 D2 } 

V
2

   =     Q 

𝐴2

  =  
0.04 

𝐴2

  = 1.274 m/s 

Applying Bernoulli's equation at sections (1) and (2), we get 

𝒑𝟏

𝝆𝒈
 + 

𝒗𝟏
𝟐

𝟐𝒈
  + z1   = 

𝒑𝟐

𝝆𝒈
 + 

𝒗𝟐
𝟐

𝟐𝒈
  + z2    



24.524 𝑋 104

1000  𝑋 9.81
  + 

(.566)2

2 𝑋 9.81
  + Z1 =  

9.81 X 104

1000  X 9.81
  + 

(1.274)2

2 𝑋 9.81
  + Z2 

25 + 0.32 + Z1 = 10 + 1.623 + Z2 

25.32 + Z1 = 11.623 + Z2 

Z2 - Z1  =  25.32 - 11.623 = 13.697m 

Difference in Datum head,       Z2 - Z1  =  13.70 m 

---------------------------------------------------------------------------------------------------------------------------- 

PRACTICAL APPLICATIONS OF BERNOULLI'S EQUATION 

Bernoulli's equation is applied in all problems of incompressible fluid flow where energy considerations 

are involved. But we shall consider its application to the following measuring devices: 

 Venturimeter 

 Orifice meter 

 Pitot-tube 

VENTURIMETER: 

 A venturimeter is a device used for measuring the rate of a flow of a fluid flowing through a pipe. It 

consists of three parts: 

(i) A short converging part, (ii) Throat, and (iii) Diverging part. It is based on the Principle of Bernoulli's 

equation 

 

Expression for rate of flow through venturimeter 

Consider a venturimeter fitted in a horizontal pipe through which a fluid is flowing (say water), as shown 

in Fig. 

Let  d1 = diameter at inlet or at section (1) 

p1 = pressure at section (1) 



v1 = velocity of fluid at section (1) 

 a1 = area at section (1) = 
𝜋

4
 𝑑1

2  

and d2, p2, v2 and a2 are corresponding values at section (2). Applying Bernoulli's equation at sections 

(1) and (2), 

𝑝1

𝜌𝑔
 + 

𝑣1
2

2𝑔
  + z1   = 

𝑝2

𝜌𝑔
 + 

𝑣2
2

2𝑔
  + z2    

As pipe is horizontal, hence  Z1 = Z2 

Q = 
𝑎1  𝑎2

√𝑎1
2−𝑎2

2
   x   √2𝑔ℎ 

The above equation gives the discharge under ideal conditions and is called, theoretical discharge. 

Actual discharge will be less than theoretical discharge. 

Qact = Cd  x  
𝒂𝟏  𝒂𝟐

√𝒂𝟏
𝟐−𝒂𝟐

𝟐
   x   √𝟐𝒈𝒉 

where Cd = Co-efficient of venturimeter and its value is less than 1. 

 

Value of 'h' given by differential U-tube manometer 

Case I: Let the differential manometer contains a liquid which is heavier than the liquid flowing through 

the pipe. Let, 

Sh = Sp. gravity of the heavier liquid  

Sa = Sp. gravity of the liquid flowing through pipe 

 x = Difference of the heavier liquid column in U-tube  

then, 

   h = x [ 
𝒔𝒉

𝒔𝒐
 – 1] 

Case II: If the differential manometer contains a liquid which is lighter than the liquid flowing through 

the pipe, the value of h is given by 

h = x [1- 
𝒔𝒍

𝒔𝒐
 ] 

where, 

 Sl   = Sp. gr. of lighter liquid in U-Tube  

 So  = Sp. gr. of fluid flowing through pipe . 

  x   = Difference of the lighter liquid columns in U-tube. 

 



Case III: Inclined Venturimeter with Differential U-tube manometer. The above two cases are given for 

a horizontal venturimeter. This case is related to inclined venturimeter having differential U-tube 

manometer. Let the differential manometer contains heavier liquid then h is given as 

         h = (  
𝑝1

𝜌𝑔
+ 𝑍1  ) − (  

𝑝2

𝜌𝑔
+ 𝑍2  )  =  x [ 

𝒔𝒉

𝒔𝒐
 – 1] 

Case IV: Similarly, for inclined venturimeter in which differential manometer contains a liquid which is 

lighter than the liquid flowing through the pipe, the value of h is given as 

h = (  
𝑝1

𝜌𝑔
+ 𝑍1  ) −  (  

𝑝2

𝜌𝑔
+ 𝑍2  )  =  x [1- 

𝒔𝒍

𝒔𝒐
 ] 

---------------------------------------------------------------------------------------------------------- 

A horizontal venturimeter with inlet and throat diameters 30 cm and 15 cm respectively is used 

to measure the flow of water. The reading of differential manometer connected to the inlet and 

the throat is 20 cm of mercury. Determine the rate of flow. Take Cd = 0.98.  

Solution: 

Given : 

Diameter at inlet,      d1  =  30 cm =  0.3 m 

Area at inlet ,           a1 =  
𝜋

4
 𝑑1

2
=  

𝜋

4
 (302) = 706.85 cm2 

Diameter at throat,  d2 = 15m = 0.15m 

  a2 =  
𝜋

4
 𝑑2

2
=  

𝜋

4
 (152) = 176.7 cm2 

 Cd = 0.98 

Reading of differential manometer = x =20 cm of mercury 

Difference of pressure head is , h = x [ 
𝑠ℎ

𝑠𝑜
 – 1] 

Where,  

Sh = Sp. gravity of mercury = 13.6 

So  = Sp. Gravity of water = 1 

h = 20 [  
13.6

1
 – 1] = 20 x12.6cm = 252 cm of water 

The discharge through venturimeter is given by eqn. 

Q = Cd  x  
𝒂𝟏  𝒂𝟐

√𝒂𝟏
𝟐−𝒂𝟐

𝟐
   x   √2𝑔ℎ 

    = 0.98  x  
𝟕𝟎𝟔.𝟖𝟓 ∗ 𝟏𝟕𝟔.𝟕

√(𝟕𝟎𝟔.𝟖𝟓)𝟐−(𝟏𝟕𝟔.𝟕)𝟐
   x   √2 ∗ 9.81 ∗ 252 



     = 
86067593.36

√499636.9−31222.9
 = 

86067593.36

684.4
 

     =  125756 cm3/s =  
125756

1000
 lit/s 

  Q =  125.756 lit/sec 

--------------------------------------------------------------------------------------------------------------------------------------- 

An oil of sp. gr. 0.8 is flowing through a venturimeter having inlet diameter 20 cm and throat 

diameter 10 cm. The oil-mercury differential manometer shows a reading of 25 cm. Calculate the 

discharge of oil through the horizontal venturimeter. Take Cd = 0.98.  

Solution. Given : 

Sp. gr. of oil, So = 0.8 

Sp. gr. of mercury, Sh = 13.6 

Reading of differential manometer, x = 25 cm 

Difference of pressure head,  h = x [ 
𝒔𝒉

𝒔𝒐
 – 1] 

  = 25 [ 
𝟏𝟑.𝟔

𝟎.𝟖
 – 1] cm of oil = 25 [17-1] 

         h = 400 cm of oil 

diameter at inlet,  d1 = 20 cm 

a1 =  
𝜋

4
 𝑑1

2
 = 

𝜋

4
 x 202 = 314.16 cm2 

d2 = 10 cm 

a2 =  
𝜋

4
 𝑑2

2
 = 

𝜋

4
 x 102 = 78.54 cm2             Cd = 0.98  

The discharge Q is given by equation  

Q = Cd  x  
𝒂𝟏  𝒂𝟐

√𝒂𝟏
𝟐−𝒂𝟐

𝟐
   x  √2𝑔ℎ 

    = 0.98  x  
𝟑𝟏𝟒.𝟏𝟔 ∗ 𝟕𝟖.𝟓𝟒

√(𝟑𝟏𝟒.𝟏𝟔)𝟐−(𝟕𝟖.𝟓𝟒)𝟐
   x   √2 ∗ 9.81 ∗ 400 

     = 
21421375.68

√98696−6168
 = 

21421375.68

304
 cm3/s 

      =  70465 cm3/s   Q =  70.465 litres/sec 

--------------------------------------------------------------------------------------------------------------------------------------- 



A horizontal venturimeter with inlet diameter 20 cm and throat diameter 10 cm is used to 

measure the flow of oil of sp. gr. 0.8. The discharge of oil through venturimeter is 60 litres/s. 

Find the reading of the oil-mercury differential manometer. Take Cd = 0.98. 

--------------------------------------------------------------------------------------------------------------------------------------- 

A horizontal venturimeter with inlet diameter 20 cm and throat diameter 10 cm is used to 

measure the flow of water. The pressure at inlet is 17.658 N/cm2 and the vacuum pressure at the 

throat is 30 cm of mercury. Find the discharge of water through venturimeter. Take Cd = 0.98. 

--------------------------------------------------------------------------------------------------------------------------------------- 

The inlet and throat diameters of a horizontal venturimeter are 30 cm and 10 cm respectively. 

The liquid flowing through the meter is water. The pressure intensity at inlet is 13.734 N/cm2 

while the vacuum pressure head at the throat is 37 cm of mercury. Find the rate of flow. Assume 

that 4% of the differential head is lost between the inlet and throat. Find also the value of Cd for 

the venturimeter. 

--------------------------------------------------------------------------------------------------------------------------------------- 

PROBLEMS ON INCLINED VENTURIMETER 

A 20 cm x 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp. gr. 0.8, the flow of 

oil is in upward direction. The difference of levels between the throat and inlet section is 50 cm. 

The oil mercury differential manometer gives a reading of 30 cm of mercury. Find the discharge 

of oil. Neglect losses. 

Solution: Given: 

Diameter at inlet,      d1  =  20 cm =  0.2 m 

Area at inlet ,           a1 =  
𝜋

4
 𝑑1

2
=  

𝜋

4
 (202) = 314.16 cm2 

Diameter at throat,  d2 = 10 cm = 0.10 m 

  a2 =  
𝜋

4
 𝑑2

2
=  

𝜋

4
 (102) = 78.54 cm2      ,    Cd = 1.0 

Specific gravity of oil, So = 0.8 

Specific gravity of mercury, Sh = 13.6 

Reading of differential manometer, x = 30 cm 

h = (  
𝑝1

𝜌𝑔
+ 𝑍1  ) −  (  

𝑝2

𝜌𝑔
+ 𝑍2  )  =  x [ 

𝒔𝒈

𝒔𝒐
 – 1] 

   = 30 [ 
𝟏𝟑.𝟔

𝟎.𝟖
 –  1]  = 30 [17-1] = 30 x 16  

h = 480 cm of oil 

The discharge,  



 Q = Cd  x  
𝑎1  𝑎2

√𝑎1
2−𝑎2

2
   x  √2𝑔ℎ 

    = 1.0  x  
314.16 ∗ 78.54

√(314.16)2−(78.54)2
   x   √2 ∗ 981 ∗ 480 cm3/s 

    =  
23932630.7

304
   

    =  78725.75 cm3/s      =  78.725 litres/s 

--------------------------------------------------------------------------------------------------------------------------------------- 

A 30 cm x 15 cm venturimeter is inserted in a vertical pipe carrying water, flowing in the upward 

direction. A differential mercury manometer connected to the inlet and throat gives a reading of 

20 cm. Find the discharge. Take Cd = 0.98 

--------------------------------------------------------------------------------------------------------------------------------------- 

ORIFICE METER (OR) ORIFICE PLATE 

 It is a device used for measuring the rate of flow of a fluid through a pipe. It is a cheaper device as 

compared to venturimeter.  

 It also works on the same principle as that of venturimeter. It consists of a flat circular plate which 

has a circular sharp edged hole called orifice, which is concentric with the pipe.  

 The orifice diameter is kept generally 0.5 times the diameter of the pipe, though it may vary from 0.4 

to 0.8 times the pipe diameter. 

 

A differential manometer is connected at section (1), which is at a distance of about 1.5 to 2.0 times the 

pipe diameter upstream from the orifice plate, and at section (2), which is at a distance of about half the 

diameter of the orifice on the downstream side from the orifice plate. 

p1 = pressure at section (1) 

v1 = velocity at section (1) 

 a1 = area of the pipe at section (1) = 
𝜋

4
 𝑑1

2  



and d2, p2, v2 and a2 are corresponding values at section (2). Applying Bernoulli's equation at sections 

(1) and (2), we get 

𝑝1

𝜌𝑔
 + 

𝑣1
2

2𝑔
  + z1   = 

𝑝2

𝜌𝑔
 + 

𝑣2
2

2𝑔
  + z2    

Q = 
𝑪𝒅 𝒂𝟎𝒂𝟏 √𝟐𝒈𝒉 

√1−(
𝑎0
𝑎1

)
   =  

𝑪𝒅 𝒂𝟎𝒂𝟏 √𝟐𝒈𝒉 

√𝑎1
2−𝑎0

2
    

Cd = coefficient of discharge for orifice meter 

---------------------------------------------------------------------------------------------------------- 

An orifice meter with orifice diameter 10 cm is inserted in a pipe of 20 cm diameter. The pressure 

gauges fitted upstream and downstream of the orifice meter gives readings of 19.62 N/cm2 and 

9.81 N/cm2 respectively. Co-efficient of discharge for the orifice meter is given as 0.6. Find the 

discharge of water through pipe. 

Given: 

Diameter at inlet,    d0  =  10 cm =  0.1 m 

Area at inlet ,           a0 =  
𝜋

4
 𝑑0

2
=  

𝜋

4
 (102) =  78.54 cm2 

Diameter at pipe,    d1 = 20 cm = 0.20 m 

  a1 =  
𝜋

4
 𝑑2

2
=  

𝜋

4
 (202) = 314.16 cm2 

 Cd = 0.6 

P1 = 19.62 N/cm2 =  19.62 x 104 N/m2 

P2 =  9.81  N/cm2  =   9.81  x 104  N/m2 

Solution: 

p1

ρg
 = 

19.62∗104

1000∗9.81
  = 20 m of water 

p2

ρg
 = 

9.81∗104

1000∗9.81
  = 10 m of water 

h = 
p1

ρg
− 

p2

ρg
 = 20.0 – 10.0  

   = 10 m of water 



   = 1000 cm of water 

The discharge, Q is given by equation, 

     Q = Cd  x  
𝑎0𝑎1  

√𝑎1
2−𝑎0

2
   x  √2𝑔ℎ 

         = 0.6  x  
78.54 ∗ 314.16

√(314.16)2−(78.54)2
   x   √2 ∗ 981 ∗ 1000 cm3/s 

          = 
20736838.09

304
  = 68213.28 cm3/s 

       Q = 68213.28 cm3/s.  Ans 

--------------------------------------------------------------------------------------------------------------------------------------- 

An orifice meter with orifice diameter 15 cm is inserted in a pipe of 30 cm diameter. The pressure 

difference measured by a mercury oil differential manometer on the two sides of the orifice 

meter gives a reading of 50 cm of mercury. Find the rate of flow of oil of sp. gr. 0.9 when the 

coefficient of discharge of the orifice meter = 0.64. 

--------------------------------------------------------------------------------------------------------------------------------------- 

PITOT-TUBE 

It is a device used for measuring the velocity of flow at any point in a pipe or a channel. It is based on 

the principle that if the velocity of flow at a point becomes zero, the pressure there is increased due to 

the conversion of the kinetic energy into pressure energy. In its simplest form, the pitot-tube consists of 

a glass tube, bent at right angles as shown in Fig.  

 

The lower end, which is bent through 90° is directed in the up-stream direction as shown in Fig. The 

liquid rises up in the tube due to the conversion of kinetic energy into pressure energy. The velocity is 

determined by measuring the rise of liquid in the tube.  



Consider two points (1) and (2) at the same level in such a way that point (2) is just as the inlet of the 

pitot-tube and point (1) is far away from the tube. 

Let  

p1 = intensity of pressure at point (1) 

V1= velocity of flow at (I)  

p2 = pressure at point (2)  

v2 = velocity at point (2), which is zero  

H = depth of tube in the liquid  

h = rise of liquid in the tube above the free surface. 

h = 
𝑉1

2

2𝑔
   (or)  V1 = √2𝑔ℎ 

 

This is theoretical velocity. Actual velocity is given by, 

(V1)act = Cv √2𝑔ℎ 

Cv = co-efficient of pitot tube 

velocity at any point V = Cv √2𝑔ℎ 

 

Velocity of flow in a pipe by pitot-tube: 

 For finding the velocity at any point in a pipe by pitot- tube, the following arrangements are adopted : 

1. Pitot-tube along with a vertical piezometer tube as shown in Fig. (a) 

2. Pitot-tube connected with piezometer tube as shown in Fig. (b) 

3. Pitot-tube and vertical piezometer tube connected with a differential U-tube manometer as shown in 

    Fig. (c) 

4. Pitot-static tube, which consists of two circular concentric tubes one inside the other with some 

annular space in between as shown in Fig.(d).  

The outlet of these two tubes are connected to the differential manometer where the difference of 

pressure head ‘h’ is measured by knowing the difference of the levels of the manometer liquid say x.  

Then,       h = x [ 
𝑆𝑔

𝑆𝑜
− 1] 



 

-------------------------------------------------------------------------------------------------------------------------------------- 

A pitot-static tube placed in the centre of a 300 mm pipe line has one orifice pointing upstream 

and other perpendicular to it. The mean velocity in the pipe is 0.80 of the central velocity. Find 

the discharge through the pipe if the pressure difference between the two orifices is 60 mm of 

water. Take the co-efficient of pi tot tube as Cv = 0.98 

Given : 

Dia. of pipe, d = 300 mm = 0.30 m 

Diff. of pressure head, h = 60 mm of water = .06 m of water  

Cv = 0.98 

Mean velocity, 𝑉 = 0.80 x Central velocity 

Solution: 

Central velocity is given by equation, 

    v = Cv √2𝑔ℎ= 0.98 x tJ2 x 9.81 x .06  

               v = 1.063 m/s 

therefore,  V = 0.80 x 1.063  = 0.8504 m/s 

discharge,    Q = area of the pipe x V 

       = 
𝜋

4
 (𝑑2) x V 

       = 
𝜋

4
 (0.302) x 0.8504 

             Q =  0.06 m3/s 

-------------------------------------------------------------------------------------------------------------------------------------- 

Find the velocity of the flow of an oil through a pipe, when the difference of mercury level in a 

differential U-tube manometer connected to the two tappings of the pitot-tube is 100 mm. Take 

co-efficient of pitot-tube 0.98 and sp. gr. of oil = 0.8. 



--------------------------------------------------------------------------------------------------------------------------------------- 

A sub-marine moves horizontally in sea and has its axis 15 m below the surface of water. A pitot-

tube properly placed just in front of the sub-marine and along its axis is connected to the two 

limbs of a U-tube containing mercury. The difference of mercury level is found to be 170 mm. 

Find the speed of the sub-marine knowing that the sp. gr. of mercury is 13.6 and that of sea-

water is 1.026 with respect of fresh water. 

--------------------------------------------------------------------------------------------------------------------------------------- 

THE MOMENTUM EQUATION 

It is based on the law of conservation of momentum or on the momentum principle, which states that 

the net force acting on a fluid mass is equal to the change in momentum of flow per unit time in that 

direction. The force acting on a fluid mass 'm' is given by the Newton's second law of motion, 

      F = m x a 

where,  a  is the acceleration acting in the same direction as force F. 

but,  a =  
𝑑𝑣

𝑑𝑡
 

F = m 
𝑑𝑣

𝑑𝑡
 

                        F =  
𝒅(𝒎𝒗)

𝒅𝒕
   [m is constant and can be taken inside the differential} 

The above equation is known as the momentum principle. 

The above equation can be written as,   F.dt = d(mv)  

which is known as the impulse-momentum equation and states that the impulse of a force F acting on 

a fluid of mass m in a short interval of time dt is equal to the change of momentum d(mv) in the direction 

of force. 

--------------------------------------------------------------------------------------------------------------------------------------- 

h = x 

 

   

 

 

 

 

 



UNIT III 

REYNOLDS EXPERIMENT 

 The velocity at which the flow changes from the laminar to turbulent for the case of given fluid at a given 

temperature and given pipe is known as critical velocity.  

 This critical velocity only determines that the flow is either laminar or turbulent. Prof. Osborne Reynolds 

was first to find that the value of critical velocity is governed by the relationship between the inertia force 

and viscous force.  

 He derived a ratio of the lie two forces and obtained a dimensionless number called Reynolds number. 

Reynolds number, Re   =   
I ia Vi   

Inertia force        = Mass x Acceleration 

      =   ρ x Volume x acceleration 

      = ρ x L3 x  (LT-2 )   

      =  ρ2 L2 V2 

        Viscous force    =   Shear stress  x Area 

             = µ (
δVδ ) x L2      

      =   µ V L 

Reynolds number, Re   =  ρ2 L2 V2 /  µ V L     

    = 
�  �µ   =  

  ��    [ 
 µ = � ] 

Where,    ρ = Density of the fluid 

V = Mean velocity of flow 

 L = Characteristic linear dimension = Diameter of the pipe (D) 

µ  = Viscosity of the fluid.  

v= Kinematic viscosity of the fluid. 

 The existence of two types of flow (i.e, Laminar and Turbulent flow) was demonstrated by Prof. 

Reynolds with the help of the following simple experiment. The apparatus used for the experiment is 

shown in Figure. 

 The apparatus consists of (i) A water tank (ii) An arrangement to inject a fine filament of dye into the 

bell mouthed entrance of a glass tube through which water flows and (iii) A valve to control the flow 

through the tube. 

 The water was made to flow from the tank through the glass tube into the atmosphere and the velocity 

of flow was varied by adjusting the regulating and the velocity of flow was varied by adjusting the 

regulating valve.  

 A fine filament of dye was introduced into the glass tube near the entrance of the tube. It was concluded 

that when the flow velocity was low, the dye appeared as a straight line parallel to the tube axis 

characterizing laminar flow. 
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  As the valve was further opened and greater velocities attained, the dye filament became wavy, this 

state is called "Transition state". With further increase in the velocity, the fluctuations in the filament of 

dye became more intense and finally diffusing into the flowing water. Ii shows the turbulent flow. 

 From this experiment, Reynolds found that the occurrence of a laminar and turbulent flow was governed 

by the relative magnitudes of the inertia and the viscous forces.  

 

 At low velocities, viscous forces become predominant and therefore, flow is largely viscous in character. 

At higher velocities, the inertia forces have predominance over the viscous force. 

 After carrying out a series of experiments, Reynolds found that if Reynolds number for a particular flow 

is less than 2000, the flow is a laminar flow. 

 If the Reynolds number is between 2000 and 4000, it is neither laminar flow nor turbulent flow (i.e., 

Transition state). But, if the Reynolds number exceeds 4000, the flow is a turbulent flow. Experimentally, 

the value of the lower critical Reynolds number has been found to be approximately 2000. So, simply 

Re  <  2000                ---> Laminar flow. 

2000  < Re  < 4000    ---> Transition flow. 

Re  >  4000                ---> Turbulent flow. 

---------------------------------------------------------------------------------------------------------------------------- 

FRICTIONAL LOSS IN PIPE FLOW 

 When a liquid is flowing through a pipe, the velocity of the liquid layer adjacent to the pipe wall is zero. 

The velocity of liquid goes on increasing from the wall and thus velocity gradient and hence shear 

stresses are produced in the whole liquid due to viscosity.  

 This viscous action causes loss of energy which is usually known as frictional loss. On the basis of his 

experiments, William Froude gave the following laws of fluid fraction for turbulent flow. 
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The frictional resistance for turbulent flow is: 

 proportional to Vn, where « varies from 1.5 to 2.0 

 proportional to the density of fluid 

 proportional to the area of surface in contact 

 independent of pressure 

 dependent on the nature of the surface in contact. 

---------------------------------------------------------------------------------------------------------------------------- 

METHODS OF DETERMINATION OF CO-EFFICIENT OF VISCOSITY 

The following are the experimental methods of determining the co-efficient of viscosity of a liquid: 

1. Capillary tube method. 

2. Falling sphere resistance method, 

3. By rotating cylinder method, and 

4. Orifice type viscometer. 

The apparatus used for determining the viscosity of a liquid is called viscometer. 

---------------------------------------------------------------------------------------------------------------------------- 

CAPILLARY TUBE METHOD 

 In capillary tube method, the viscosity of a liquid is calculated by measuring the pressure difference for 

a given length of the capillary tube. The Hagen Poiseuille law is used for calculating viscosity Fig.  

Shows the capillary lube viscometer.  

 The liquid whose viscosity is to be determined is filled in a constant head tank. The liquid is maintained 

at constant temperature and is allowed to pass through the capillary tube from the constant head tank. 

Then, the liquid is collected in a measuring tank for a given time.  

 Then the rate of liquid collected in the tank per second is determined. The pressure head '/r is measured 

at a point far away from the tank as shown in Fig. 

 

Then  h = Difference of pressure head for length L. 

The pressure at outlet is atmospheric. 

Let D = Diameter of capillary tube, 

L = Length of tube for which difference of pressure head is known,  

ρ = Density of fluid. 

µ =  
   �  .�  

Measurement of D should be done very accurately. 

---------------------------------------------------------------------------------------------------------------------------- 
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FALLING SPHERE RESISTANCE METHOD 

Theory. This method is based on Stoke's law, according to which the drag force, F on a small sphere 

moving with a constant velocity, U through a viscous fluid of viscosity, µ for viscous conditions is given 

by 

F= 3 π µ Ud  

where   d = diameter of sphere 

U = velocity of sphere 

When the sphere attains a constant velocity U, the drag force is the difference between the weight of 

sphere and buoyant force acting on it.  

Let L = distance travelled by sphere in viscous fluid 

t = time taken by sphere to cover distance l             �� = density of sphere            �  = density of fluid 

         W = weight of sphere 

and FB = buoyant force acting on sphere. 

 
Fig. Falling sphere resistance 

 

µ =  
   ��  [ ��  ] 

where, �� = density of liquid 

Hence in equation , the values of d, U, ρs and  ρf are known and hence the viscosity of liquid can be 

determined. 

Method: Thus this method consists of a tall vertical transparent cylindrical tank, which is filled with the 

liquid whose viscosity is to be determined.  

 This tank is surrounded by another transparent tank to keep the temperature of the liquid in the 

cylindrical tank to be constant. 

 A spherical ball of small diameter‘d’ is placed on the surface of liquid. Provision is made to release this 

ball. After a short distance of travel, the ball attains a constant velocity.  

 The time to travel a known vertical distance between two fixed marks on the cylindrical tank is noted to 

calculate the constant velocity V of the ball. Then with the known values of d, ρs, ρf, the viscosity µ of 

the fluid is calculated by using equation. 

---------------------------------------------------------------------------------------------------------------------------- 
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ROTATING CYLINDER METHOD 

 This method consists of two concentric cylinders of radii R1 and R2 as shown in Fig. The narrow space 

between the two cylinders is filled with the liquid whose viscosity is to be determined.  

 The inner cylinder is held stationary by means of a torsional spring while outer cylinder is rotated at 

constant angular speed w.  

 The torque T acting on the inner cylinder is measured by the torsional spring. The torque on the inner 

cylinder must be equal and opposite to the torque applied on the outer cylinder.  

 The torque applied on the outer cylinder is due to viscous resistance provided by liquid in the annular 

space and at the bottom of the inner cylinder. 

 

µ  =  
 − ℎ �  � [  � ℎ +   − ] 

where,  

T   =  torque measured by the strain of the torsional spring 

R1 and R2 =  radii of inner and outer cylinder 

h   = clearance at the bottom of cylinders 

H  = height of liquid in annular space 

 µ  = co-efficient of viscosity to be determined 

Hence, the value of µ can be calculated from equation. 

---------------------------------------------------------------------------------------------------------------------------- 

ORIFICE TYPE VISCOMETER 

 In this method, the time taken by a certain quantity of the liquid whose viscosity is to be determined, to 

flow through a short capillary tube is noted down.  

 The co-efficient of viscosity is then obtained by comparing with the co-efficient of viscosity of a liquid 

whose viscosity is known or by the use conversion factors. 

 Viscometers such as Saybolt. Redwood or Engler are usually used. The principle for all the three 

viscometer is same. In the United Kingdom, Redwood viscometer is used while in U.S.A.. Saybolt 

viscometer is commonly used.  

 Fig. shows that Say bolt viscometer, which consists of a tank at the bottom of which a short capillary 

tube is fitted.  
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 In this tank the liquid whose viscosity is to be determined is filled. This tank is surrounded by another 

tank, called constant temperature bath.  

 The liquid is allowed to flow through capillary lube at a standard temperature. The time taken by 60 c.c. 

of the liquid lo flow through the capillary tube is noted down. The initial height of liquid in the tank is 

previously adjusted to a standard height. From the time measurement, the kinematic viscosity of liquid 

is known from the relation, 

 

Saybolt viscometer 

     v = A t - 
�
 

where,  A = 0.24 , B = 190  

t  = time noted in seconds  

v =vkinematic viscosity in stokes 

---------------------------------------------------------------------------------------------------------------------------- 
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FLOW THROUGH A PIPE 

Here the turbulent flow of fluids through pipes running full will be considered. It the pipes are partially 

full as in the case of sewer lines, the pressure inside the pipe is same and equal to atmospheric 

pressure.  

Then the flow of fluid in the pipe is not under pressure. This case will be taken in the chapter of flow of 

water through open channels. Here we will consider flow of fluids through pipes under pressure only. 

LOSS OF ENERGY IN PIPES 

When a fluid is flowing through a pipe, the fluid experiences some resistance due to which some of the 

energy of fluid is lost. This loss of energy is classified as: 

ENERGY LOSSES  

1. Major Energy Losses. 

This is due to friction and it is calculated by the following formulae: 

(a) Darcy-Weisbach Formula   

(b) Chezy's Formula 

2. Minor Energy Losses 

This is due to 

(а) Sudden expansion of pipe 

(b) Sudden contraction of pipe  

(c) Bend in pipe 

(d) Pipe fittings etc. 

(e) An obstruction in pipe. 

---------------------------------------------------------------------------------------------------------------------------- 

MINOR ENERGY (HEAD) LOSSES 

The loss of head or energy due to friction in a pipe is known as major loss while the loss of energy due 

to change of velocity of die following fluid in magnitude or direction is called minor loss of energy. The 

minor loss of energy (or head) includes the following cases: 

 Loss of head due to sudden enlargement 

 Loss of head due to sudden contraction 

 Loss of head at the entrance of a pipe 

 Loss of head at the exit of a pipe 

 Loss of head due to an obstruction in a pipe 

 Loss of head due to bend in the pipe 

 Loss of head in various pipe fittings 

In case of long pipe the above losses me small as compared with the loss of head due to friction 

and hence they are called minor losses and even may he neglected without serious error. But in case 

of a short pipe, these losses are comparable with the loss of head due to friction. 

---------------------------------------------------------------------------------------------------------------------------- 
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MINOR ENERGY (HEAD) LOSSES 

The loss of head or energy due to friction in a pipe is known as major loss while the loss of energy 

due to change of velocity of the following fluid in magnitude or direction is called minor loss of energy. 

The minor loss of energy (or head) includes the following cases: 

1. Loss of head due to sudden enlargement 

2. Loss of head due to sudden contraction 

3. Loss of head at the entrance of a pipe 

4. Loss of head at the exit of a pipe 

5. Loss of head due to an obstruction in a pipe 

6. Loss of head due to bend in the pipe 

7. Loss of head in various pipe fittings. 

In case of long pipe the above losses are small as compared with the loss of head due to friction and 

hence they are called minor losses and even may be neglected without serious error. But in case of a 

short pipe, these losses are comparable with the loss of head due to friction. 

--------------------------------------------------------------------------------------------------------------------------- 

LOSS OF HEAD DUE TO SUDDEN ENLARGEMENT. 

Consider a liquid flowing through a pipe which has sudden enlargement as shown in Fig. Consider 

two section (1)-(1) and (2)-(2) before and after the enlargement. 

Let  p1 = pressure intensity at section 1.1 

 V1 = velocity of flow at section 1.1 

 A1 =  area of pipe at section 1.1 

P2 , V2 and A2 = corresponding values at section 2.2. 

 

Due to sudden change of diameter of the pipe from D1 to D2 , the liquid flowing from the smaller pipe 

is not able to follow the abrupt change of the boundary. Thus the flow separates from the boundary 

and turbulent eddies are formed as sown in Fig. 11.1. The loss of head (or energy) takes place due to 

the formation of theses eddies. 

Let  p1 = pressure intensity of the liquid eddies on the area (A2 - A1) 
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 he = loss of head due to sudden enlargement 

Applying Bernoulli’s equation at section 1.1 and 2.2 

   + 
�

 + �  =  + 
�

 + � + loss of head due to sudden enlargement 

But   � = �  as pipe is horizontal 

    + 
�

  =  + 
�

 + ℎ  

or    ℎ  = − +  �  − �    …………(i) 

 Consider the control volume of liquid between section 1-1 and 2-2. Then the force acting on 

the liquid in the control volume in the direction of flow is given by 

    �� = �  A1 + p( A2 - A1) - �  A2 

But  experimentally it is found that p= p1 

    �� = �  A1 + p1( A2 - A1) - �  A2 =�  A2 + �  A2  

Momentum of liquid/sec at section 1-1 = mass x velocity 

   = �A1 V1 x V1 = �A1�  

Momentum of liquid/sec at section 2-2 = �A2 V2 x V2 = �A2�  

 Change of momentum/sec = �A2 � −  �A1�  

But from continuity equation, we have 

   A1 V1 = A2 V2 or A1 = 
� ��  

 Change of momentum/sec = �A2 � − � x 
� ��  x �  = �A2 � −  �A2 V1V2 

     = �A2 [� −V1V2] 

Now net force acting on the control volume in the direction of flow must be equal to the rate of change 

of momentum or change of momentum per second. Hence equating (ii) and (iii) 

  (�  – � ) A2 = �A2 [� − V1V2] 

or   
�  – �

 = � − V1V2 

Dividing  by g on both sides, we have 
�  – �

 = 
� −V V

  or 
�  

 - 
�  

 =  � −V V
   

Substituting the value of 
�   −  �    in equation (i), we get 

   ℎ   = 
� −V V

  + 
�

  - 
�

 = 
� − V V +� −�

 

     = 
� +� − V V

 = 
� −�
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   ℎ   = 
� −�

    ……………(11.5) 

--------------------------------------------------------------------------------------------------------------------------- 

SUDDEN CONTRACTION 

Consider two sections 1-1 and 2-2 before and after contraction. As the liquid flows from large pipe to 

smaller pipe, the area of flow goes on decreasing and becomes minimum at a section C-C as sown in 

Fig.. This section C-C is called Vena-contracta. After section C-C a sudden enlargement of the area 

takes place. The loss of head due to sudden contraction is actually due to sudden enlargement from 

Vena-contracta to smaller pipe. 

Let  Ac = Area of flow at section C-C 

 Vc = Velocity of flow at section C-C 

 A2 = Area of flow at section 2-2 

 V2 = Velocity of flow at section 2-2 

 hc  = Loss of head due to sudden contraction 

now  hc = actual loss of head due to enlargement from section C-C to section 2-2 and is given by 

equation as 

 

   = 
� −�

   =  
�

 [�� − ]  

From continuity equation, we have 

  AcVc = A2V2 or 
��  = 

��  = � �⁄  =     [∵  =  �� ] 
Substituting the value of 

��  in (i) we get 

  hc = 
�

 [ − ]     

      = 
��

 , where k = [ − ]  

If the value of  is assumed to be equal to 0.62, then 

   k  = [ . − ]  = 0.375 
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Then hc becomes as   hc = 
��

 = 0.375 
�

 

If the value of Cc is not given then the head loss due to contraction is taken as 

   = 0.5 
�

 or hc = 0.5 
�

   

--------------------------------------------------------------------------------------------------------------------------------------- 

Find the loss of head when a pipe of diameter 200 mm is suddenly enlarged to a diameter of 

400 mm. The rate of flow of water through the pipe is 250 litres/s. 

Solution. Given: 

Dia. Of smaller pipe, D1 = 200 mm = 0.20 m 

  Area,  A1 =   =  (.2)2 = 0.03141 m2 

Dia. Of large pipe, D2 =  �� = 0.4m 

  Area,  A2 =  x (0.4)2 = 0.12564 m2 

Discharge,  Q = 250 litres/s = 0.25 m3/s 

Velocity,  V1= � = ..  = 7.96 m/s 

Velocity,  V2= � = ..  = 1.99 m/s 

Loss of head due to enlargement is given by equation (11.5) as 

    he= 
� −�

 =  . − .
 = 1.816 m of water. 

--------------------------------------------------------------------------------------------------------------------------------------- 

At a sudden enlargement of a water main from 240 mm to 480 mm diameter, the hydraulic 

gradient rises by 10 mm. Estimate the rate of flow. 

Solution. Given: 

Dia. Of smaller pipe,  D1 = 240 mm = 0.24 m 

  Area,   A1 =   =  (.24)2  

Dia. Of large pipe, D2 =  �� = 0.48 m 

  Area,  A2 =  x (0.48)2  

Rise of hydraulic gradient*, i.e., [� + � ] - [� + � ] = 10 mm = =   m 

Let the rate of flow = Q 

Applying Bernoulli’s equation to both section, i.e., smaller pipe section, and large pipe section 

� + �
 + �  = 

� + �
 + �  + Head loss due to enlargement 
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But head loss due to enlargement, 

   he= 
� −�

  

From continuity equation, we have � �  = � �  

  �  = 
� ��  = 

�   V�  =  x V2 = 
..  x V2 = 22 x V2 = 4V2 

Substituting this value in (ii), we get 

  he= 
� −�

 = 
�

  = �
  

Now substituting the value of he and V1in equation (i), 

�  +  �
 + �  = 

� + �
 + �  +

�
 

  
�

  - 
�

 - 
�

 = [� + � ] - [�  + � ] 
But hydraulic gradient rise = [� + � ] - [�  + � ] =  

   
�

  - 
�

 - 
�

 =  or 
�

 =  

    V2 = √   .   = 0.1808 = 0.181 m/s. 

  Discharge,  Q = A2 x V2 

         =      x V2 =   (.48)2 x .181 

 = 0.03275 m3/s. 

       = 32.75 litres/s. 

--------------------------------------------------------------------------------------------------------------------------------------- 

FLOW THROUGH PIPES IN SERIES OR FLOW THROUGH COMPOUND PIPES 

 Pipes in series or compound pipes are defined as the pipes of different lengths and different 

diameters connected end to end (in series) to from a pipe line as shown in Fig. 11.16. 

Let  L1, L2, L3 =  length of pipes 1, 2 and 3 respectively 

 d1, d2, d3  =  diameter of pipes 1, 2 and 3 respectively 

 V1, V2, V3  =  velocity of flow through pipes 1,2,3 

 f1, f2, f3  =  co-efficient of frictions for pipes 1,2,3 

  H =  difference of water level in the two tanks 

The discharge passing through each pipe is same. 

  Q = A1 V1  = A2 V2 = A2 V3 
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The difference in liquid surface levels is equal to the sum of the total head loss in the pipes. 

    H =  
. �

 + 
� �   + 

. �
 + 

� �   + 
� −�

 + 
� �   + 

�   ………….(11.12) 

If minor losses are neglected, then above equation becomes as 

  H =   
� �   +  

� �   + 
� �       ………….(11.13) 

If the co-efficient of friction is same for all pipes 

i.e.,    f1 =  f2 = f3 =  f then  equation (11.13) becomes as 

  H =   
� �   +  

� �   + 
� �        

      =     [� �  +  � �  +  � �  ]    ………….(11.14) 

--------------------------------------------------------------------------------------------------------------------------------------- 

The difference in water surface levels in two tanks, which are connected by three pipes in series 

of lengths 300 m , 170 m and 210 m and of diameters 300 mm , 200 mm and 400 mm respectively, 

is 12 m. Determine the rate of flow of water if co-efficient of friction are .005 , .0052 and .0048 

respectively, considering: (i) minor losses also (ii) neglecting minor losses. 

Solution. Given: 

Difference of water level, H = 12 m 

Length of pipe 1,   L1 = 300 m and dia., d1 = 300 mm = 0.3 m 

Length of pipe 2,   L2 = 170 m and dia., d2 = 200 mm = 0.2 m 

Length of pipe 3,   L3 = 210 m and dia., d3 = 400 mm = 0.4 m 

Also,   f1 = .005 ,   f2 = .0052 and  f3 = .0048 

(i) Considering Minor Losses. Let V1 , V2 and V3 are the velocities in the 1st , 2nd and 3rd pipe 

respectively, 

 From continuity, we have A1V1 = A2V2 = A3V3 

   V2 =  
� ��    

� �  V1 =  
   V1 = 

..  x V1 = 2.25 V1  

and    V2 =  
� ��    =  

   V1 = 
..  x V1 = 0.5625 V1  

Now using equation (11.12), we have  
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   H =  
. �

 + 
� �   + 

. �
 + 

� �   + 
� −�

 + 
� �   + 

�    

Substituting V2 and V3  12.0 = 
. �

 + 
. �.   + 

. + . �
 + 4x0.0052x170 x 

 . �
 

 + 
. � −. �

 + 
. �.   + 

 . �
 

or   12.0 = 
 �

 [0.5+20.0+2.53+89.505+2.847+3.189+0.316] 

          = 
 �

 [118.887] 

   V1   = √ + + ..  = 1.407 m/s 

 

 Rate of flow, Q = Area x Velocity = A1 x V1 

  =     �  x V1 =   (.3)2 x 1.407 = 0.09945 m3/s. 

  = 99.45 litres/s. 

(ii) Neglecting Minor Losses. Using equation (11.13), we have 

  H =   
� �   +  

� �   + 
� �     

or   12.0 =   
 �

 [ . . +   .    ..  +    .    ..  ] 
          =   

 �
 [20.0 + 89.505+3.189] =   

 �
 x 112.694 

   V1   = √ . ..  = 1.445 m/s 

 

 Discharge, Q =  V1 x A1= 1.445 x     (.3)2 = 0.1021 m3/s = 102.1 litres/s.  

--------------------------------------------------------------------------------------------------------------------------------------- 

Three pipes of 400mm and 300 mm diameters have lengths of 400 m, 200 m and 300 m 

respectively. They are connected in series to make a compound pipe. The ends of this 

compound pipe are connected with two tanks whose difference of water levels is 16 m. If co-

efficient of friction for these pipes is same and equal to 0.005, determine the discharge through 

the compound pipe neglecting first the minor losses and then including them. 

Solution. Given: 

Difference of water levels, H = 16 m 

Length and dia. of pipe 1, L1 = 400 m and , d1 = 400 mm = 0.4 m 

Length and dia. of pipe 2, L2 = 200 m and  d2 = 200 mm = 0.2 m 

Length and dia. of pipe 3, L3 = 300 m and  d3 = 300 mm = 0.3 m 

Also,   f1 =  f2 =  f3 = 0.005 

(i) Discharge through the compound pipe first neglecting minor losses. 

Let V1 , V2 and V3 are the velocities in the 1st , 2nd and 3rd pipe respectively, 

From continuity, we have A1V1 = A2V2 = A3V3 
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   V2 =  
� ��    

� �  x V1 =  
   V1 = 

..  x V1 = 4 V1  

and    V2 =  
� ��    =  

 ��  x V1 = 
   V1 

..  x V1 = 1.77V1  

Now using equation (11.13) we have 

 H =   
� �   +  

� �   + 
� �     

or  16 = 
  .     �.     .  + 

  .     �.     .  + 
  .    .     .  x . �  

      =
 �   .  [   .   .  +    .     .   +    .     .  .   ] 

  16 = 
 �   .  (20+320+63.14) = 

 �   .  x 403.14 

   V1   = √ � � ..  = 0.882 m/s 

 

 Discharge, Q =  V1 x A1=    (0.4)2 x 0.882 = 0.1108 m3/s. 

(ii) Discharge through the compound pipe considering minor losses also. 

Minor losses are: 

(a) At inlet,   hi = 
 .  �

   

(b) Between 1st pipe and 2nd pipe, due to contraction, 

   Hc = 
 .  �

 = 
 .  �

       (∵ � = � ) 

        = 
 .     �

 = 8 x 
 �

 

(c) Between 2nd pipe and 3rd pipe, due to sudden enlargement, 

  he = 
 � −�   =  

 � − . �
      (∵ � = . � ) 

       = (2.23)2 x 
 �

 = 4.973 
 �

 

(d) At the outlet of 3rd pipe, ho = 
 �

 = 
 . �

  

      = 1.772 x 
 �

 = 3.1329 
 �

 

The major losses are =  
� �   +  

� �   + 
� �     

 = 
  .     �.     .  + 

  .     �.     .  + 
  .    . �  .     .   

  = .  �  �  � .   

 sum of minor losses and major losses 

  =  [ .  � +  �   �  + .  �  +  .   � ] + 403.14
 �

 

  = 419.746 
 �
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But total loss must be equal to H (or 16m) 

   419.746 x 
 �

 =16      V1   = √ ..  = 0.864 m/s 

 Discharge, Q =  A1 x V1=    (0.4)2 x 0.864 = 0.1085 m3/s. 

--------------------------------------------------------------------------------------------------------------------------- 

EQUIVALENT PIPE 

 This is defined as the pipe of uniform diameter having loss of head and discharge equal to the 

loss of head and discharge of a compound pipe consisting of several pipes of different lengths and 

diameters. The uniform diameter of the equivalent pipe is called equivalent size of the pipe. The length 

of equivalent pipe is equal to sum of lengths of the compound pipe consisting of different pipes. 

Let  L1 = length of pipe 1 and d1 = diameter of pipe 1 

 L2 = length of pipe 2 and d2 = diameter of pipe 2 

 L3 = length of pipe 3 and d3 = diameter of pipe 3 

 H = total head loss 

 L = length of equivalent pipe 

 d = diameter of the equivalent pipe 

Then  L = L1 + L2 + L3 

Total head loss in the compound pipe, neglecting minor losses 

  H =   
� �   +  

� �   + 
� �      

Assuming  f1 =  f2 =  f3  =  f 

Discharge,  Q =  A1V1 =  A2V2 = A3V3  =  � �  =  � �  =  � �   

  V1 =  , V2 =  , V3 =  

Substituting these values in equation (11.14A), we have 

 H = 
�  ( �� )

   + 
�  ��   + �  ��   

    =  
  π   [� + � + � ]      

Head loss in the equivalent pipe, H = 
 .  � .  �   [Taking same value of f as in compound pipe] 

where  V = � = �  =  

   H  =  
 .�.[ �� ]   = 

  
 [ � ]   

Head loss in compound pipe and in equivalent pipe is same equating equations (11.15) and (11.16) we 

have 

   
  

 [� + � + � ]  =  
  

 [ � ] 
or   

� + � + �
 = 

�
 or 

�
 =

� + � + �
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Equation is known as Dupuit’s equation. In this equation L = L1+L2 +L3 and d1, d2 and d3 are known. 

Hence the equivalent size of the pipe, i.e. value of d can be obtained.  

--------------------------------------------------------------------------------------------------------------------------------------- 

Three pipes of lengths 800 m , 500 m and 400 m and of diameters 50 mm, 40mm and 300 mm 

respectively are connected in series. These pipes are to be replaced by a single pipe of length 

1700 m. Find the diameter of the single pipe. 

Solution. Given: 

Length of pipe 1, L1 = 800 m and dia., of d1 = 500mm = 0.5 m 

Length of pipe 2, L2 = 500 m and dia., of d2 = 400mm = 0.4 m 

Length of pipe 3, L3 = 400 m and dia., of d3 = 300mm = 0.3 m 

Length of single pipe,  L = 1700 

Let the diameter of equivalent single pipe = d 

Applying equation(11.17),  
�

 =
� + � + �

  

or     = . + . + .  = 25600 + 48828.125+164609 = 239037 

    �  =  = .007118 

   d = . .   

  = 0.3718 = 371.8 mm. 

--------------------------------------------------------------------------------------------------------------------------------------- 
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UNIT IV 

DIMENSIONAL AND MODEL ANALYSIS 

INTRODUCTION 

Dimensional analysis is a method of dimensions. It is a mathematical technique used in research work for 

design and for conducting model tests. It deals with the dimensions of the physical quantities involved in 

the phenomenon.  

All physical quantities are measured by comparison, which is made with respect to an arbitrarily fixed value. 

Length L, mass M and time T are three fixed dimensions which are of importance in Fluid Mechanics.  

If in any problem of fluid mechanics, heat is involved then temperature is also taken as fixed dimension. 

These fixed dimensions are called fundamental dimensions or fundamental quantity. 

SECONDARY OR DERIVED QUANTITIES 

Secondary or derived quantities are those quantities which possess more than one fundamental 

dimension. For example, velocity is denoted by distance per unit time (L/T), density by mass per unit volume 

(M/L3) and acceleration by distance per second square (L/T2).  

Then velocity, density and acceleration become as secondary or derived quantities. The expressions (L/T), 

(M/L3) and (L/T2) are called the dimensions of velocity, density and acceleration respectively. The 

dimensions of mostly used physical quantities in Fluid Mechanics are given in Table. 

S. No. Physical Quantity Symbol units Dimensions 

 (a) Fundamental quantities    

1 

2 

3 

Mass 

Length 

Time 

M 

L 

T 

kg 

m 

s 

M 

L 

T 

 

4 

5 

6 

 

7 

8 

9 

 (b)Geometric quantities 

Area 

Volume 

Moment of inertia 

(c)Kinetic quantities 

Velocity 

Angular velocity 

Acceleration 

 

A 

V 

I 

 

v 

ω 

a 

 

m2 

m3 

m4 

 

m/s 

rad/sec 

m/s2 

 

L2 

L3 

L4 

 

LT-1 

T-1 

LT-2 



10 

11 

12 

13 

 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

Angular acceleration 

Gravity 

Discharge 

Kinematic viscosity 

(d)Dynamic quantities 

Force 

Weight 

Specific weight 

Density 

Dynamic viscosity 

Pressure Intensity 

Modulus Of Elasticity 

Work 

Energy 

Power 

Torque 

Momentum 

Surface tension 

Shear stress 

α 

g 

Q 

ʋ 

 

F 

W 

w 

ρ 

µ 

p 

K or E 

W 

E 

P 

T 

M 

σ 

τ 

rad/sec2 

m/s2 

m3/s 

m2/s 

 

N (kg.m/s2) 

N (kg.m/s2) 

N/m3 

kg/m3 

N-s/m2 

N/m2 

 

N-m or J 

N-m or J 

watts 

N-m or J 

kg-m/s 

N/m 

T-2 

LT-2 

L3T-1 

L2T-1 

 

MLT-2 

MLT-2 

ML-2 T-2 

ML-3 

ML-1T-l 

ML-1T-2 

ML-1T-2 

ML2T-2 

ML2T-2 

Ml2 T-2 

ML2 T-2 

MLT-1 

ML-2 

ML-1T-2 

 

------------------------------------------------------------------------------------------------------------------------------- 

DIMENSIONAL HOMOGENEITY 

The law of Fourier principle of dimensional homogeneity states "an equation which expresses a physical 

phenomenon of fluid flow should be algebraically correct and dimensionally homogeneous". 

Dimensionally homogeneous means, the dimensions of the terms of left hand side should be same as the 

dimensions of the terms on right hand side. 

Let us consider the equation,         V=√2𝑔ℎ 

Dimension of L.H.S,          V= 
𝐿

𝑇
  =  LT-1 

Dimension of R.H.S,  √2𝑔ℎ  =  √
𝐿

T2
 x L =  √

𝐿2

T2
  = 

𝐿

𝑇
  = LT-1 

Dimension of L.H.S = Dimension of R.H.S =   LT-1 

Therefore equation,  



V=√2𝑔ℎ  is dimensionally homogeneous. So it can be used in any system of units. 

Uses of Dimensional Homogeneity 

 To check the dimensional homogeneity of the given equation.  

 To determine the dimension of a physical variable. 

 To convert units from one system to another through dimensional homogeneity.  

 It is a step towards dimensional analysis  

 

Points to Be Remembered While Deriving Expressions Using Dimensional Analysis  

1. First, the variables controlling the phenomenon should be identified and expressed in terms of 

primary dimensions. 

2. Any mathematical equation should be dimensionally homogeneous. 

3. In typical cases, a suitable mathematical model is constructed to simplify the problem with suitable 

assumptions. 

------------------------------------------------------------------------------------------------------------------------------- 

METHODS OF DIMENSIONAL ANALYSIS 

There are two methods of dimensional analysis used. 

(i) Rayleigh's method 

(ii) Buckingham π Theorem 

RAYLEIGH'S METHOD 

In this method, the expression is determined for a variable depending upon maximum three or four variables 

only. If the number of independent variables becomes more than four, it is very difficult to find the 

expression for the dependent variable. So, a functional relationship between variables is expressed in 

exponential form of equations. 

Steps involved in Rayleigh's method  

1. First, the functional relationship is written with the given data. , 

Consider X as a variable which depends on X1, X2, X3,… Xn 

So, the functional equation is written  

              X=f(X1, X2, X3,…Xn)  

2 .  Then the equation is expressed in terms of a constant with exponents like powers of a, b, c ... 

Therefore, the equation is again written as  



X=ϕ(X1
a,X2

b,X3
c, ...Xn

z)  

Here, (ϕ)= Constant 

                 a, b, c, ... z = Arbitrary powers 

3. The values of a, b, c, ... z are determined with the help of dimensional homogeneity. It means, the 

powers of the fundamental dimensions on both sides are compared to obtain the values of exponents. 

4. Finally, these exponents/power values are substituted in the functional equation and simplified to 

obtain the suitable form. 

------------------------------------------------------------------------------------------------------------------------------- 

BUCKINGHAM Π THEOREM 

 Rayleigh method is not helpful when the number of independent variables is more than three or four. This difficulty 

is eliminated in Buckingham π Theorem 

  It states that if there are ‘n’ variables in a dimensionally homogeneous equation and if 

these variables contain 'm' fundamental dimensions (M, L, T), then they are grouped into (n - m), 

dimensionless independent π-terms. 

Let X1, X2, X3, ..., Xn are the variables involved in a physical phenomenon. Let  X1 be the 

variables involved in a physical phenomenon. Let  X1 be the dependent variables and X2, X3, ... Xn 

are the independent variables on which X1 depends. Then X1 is a function of X2, X3, ... Xn and 

mathematically, it is expressed as 

             X l = f ( X 2 ,  X 3 , . . .  Xn)                ……..      (1) 

Equation (1) can also be written as 

             F 1  ( X 1 , X 2 ,  X 3 , . . . X n ) = 0             ………       (2) 

This equation is a dimensionally homogeneous equation. It contains  n variables. If there 

are ‘m’ fundamental dimensions then according to Buckingham-π-theorem, equation (2) can be 

written interms in which number of  π -terms is equal to (n - m). Hence, equation (2) becomes 

            F (π 1, π 2,.... πn-m) = 0                   ……..     (3) 

Each of π terms is dimensionless and independent of the system. Division or multiplication 

by a constant does not change the character of the π  term. Each of π term contains (m +1) 

variables, where m is the number of Fundamental dimensions and is also called  repeating variables. 

Let ‘m’ in the above case X2, X3 and X4 are repeating variables, if the fundamental dimensions 

(M, L, T) = 3 then each π term is written as 

π1 = X 2 a 1 , X 3 b 1 ,  X 4 c 1  .  X 1  

π1 = X 2 a 2 , X 3 b 2 ,  X 4 c 2  .  X 5   



            ……………. 

            ……………. 

πn-m = X 2 a n - m , X 3 b n - m ,  X 4 c n - m  .  X n   ……….        (4) 

Each equation is solved by the principle of dimensional homogeneity and values of  a1, b1, c1 

etc. are obtained. These values are substituted in equation (4) and values of π1, π2, π3...... πn-m are 

obtained. These values of π's are substituted in equation (3). The final equation for the 

phenomenon is obtained by expressing any one of the π -terms as a function of others as 

   Π1 = φ [π2, π3, …… πn-m]  

   Π2 = φ [π1, π3, …… πn-m] 

------------------------------------------------------------------------------------------------------------------------------- 

SELECTION OF REPEATING VARIABLES 

There is no separate rule for selecting repeating variables. Hut the number of repeating 

variables is equal to the fundamental dimensions of the problem. Generally, ρ, υ, l or ρ, υ, D) are 

choosen as repeating variables. 

 It means, one refers to fluid property (ρ), one refers to flow property (υ) and the other one 

refers to geometric property (l or D). In addition to this, the following points should be kept in 

mind while selecting the repeating variables:  

1. No variables should be dimensionless.  

2. The selected two repeating variables should not have the same dimensions.  

3. The selected repeating variables should be independent as far as possible.  

 ------------------------------------------------------------------------------------------------------------------------------ 

STEPS TO BE FOLLOWED IN BUCKINGHAM Π METHOD  

1. First, the variables involved in a given analysis are listed to study about given phenomenon 

thoroughly. 

2. Then, these variables are expressed in terms of primary dimensions.  

3. Next, the repeating variables are chosen according to the hint given in selection of repeating 

variables. Once, the repeating variables should be checked either those are independent or 

dependent variables because all should be independent variables.   

4. Then the dimensionless parameters are obtained by adding one at a time repeating variables.  

5. The number of π-terms involved in dimensional analysis is calculated using, n - m = Number 

of π terms. 

Where,   n = Total number of variables involved in given analysis.  



               m = Number of fundamental variables.  

6. Finally, each equation in exponential form is solved which means the coefficients of exponents 

are found by comparing both sides exponents. Then these dimensionless parameters are 

recombined and arranged suitably. 

In most of the fluid mechanics problems, the choice of repeating variables may be (i) d, v, ρ   (ii) l, 

v, ρ  (iii) l, v, µ    or  (iv) d, v, µ     

------------------------------------------------------------------------------------------------------------------------------- 

The efficiency ɳ of a fan depends on density ρ, dynamic viscosity µ of the fluid, angular velocity ω, 

diameter D of the rotor and the discharge Q. Express ɳ in terms of dimensionless parameters. 

Solution: 

ɳ is a function of ρ, µ,ω,D and Q 

ɳ  = f (ρ, µ,ω, D, Q) or  f 1(ɳ ,ρ, µ,ω, D, Q) = 0              …..... (i) 

Hence total number of variables, n = 6. 

The value of m, i.e., number of fundamental dimensions for the problem is obtained by writing dimensions 

of each variable.  

Dimensions of each variable are,    

ɳ = Dimensionless,  

  [ ρ = ML-3,  µ = ML-1 T-1,  ω = T -l,  D = L  and  Q = L-3 T-1 ] 

Number of π-terms = n - m = 6 - 3 = 3 

Equation (i) is written as  (π 1, π 2, π3) = 0      ……. (ii)  

Each π -term contains (m + 1) variables, where m is equal to three and is also repeating variable. 

Choosing D, ω and ρ as repeating variables, we have 

π 1 =    D
a1. ωb1 . ρc1 . ɳ 

π 2 =   D
a2. ωb2 . ρc2 . µ 

π3   =    D
a3. ωb3 . ρc3 . Q 

First π – Term   

π 1 =    Da1. ωb1 . ρc1 . ɳ 

Substituting dimensions on both sides of π1, 

M0 L0T0  = La1 . (T-1)b1 . (ML-3)c1 . M0 L0T0   

Equating the powers of M, L, T on both sides  

Power of M,  0 = c1 + 0,   c1 = 0 

Power of L,  0 = a1 + 0,   a1 = 0 



Power of T,  0 = - b1 + 0,   b1 = 0 

Substituting the values of a1, b1 and c1 in π1, we get 

 π 1 =    D
0. ω0 . ρ0 . ɳ  =  ɳ 

[ If a variable is dimensionless, it itself is a π - term. Here the variable ɳ is a dimensionless and hence ɳ is 

a π- term. As it exists in first π- term and hence π 1 = ɳ .Then there is no need of equating the powers. 

Directly the value can be obtained.] 

Second π- Term 

π 2 =   Da2. ωb2 . ρc2 . µ 

Substituting dimensions on both sides of π2, 

M0 L0T0  = La2 . (T-1)b2 . (ML-3)c2 . M L-1T-1   

Equating the powers of M, L, T on both sides  

Power of M,  0 = c2 + 1,   c1 = -1    c1 = -1 

Power of L,  0 = a2 -3c2 -1,   a2 =  3c2 +1 = -3+1 = -2  a2 = -2 

Power of T,  0 = - b2 + -1,   b1 = -1    b1 = -1 

Substituting the values of a2, b2 and c2 in π2, we get 

 π 2 =    D-2. ω-1 . ρ-1 . µ =   
µ

𝑫𝟐 𝛚  𝛒 
 

Third π- Term 

π3   =    Da3. ωb3 . ρc3 . Q 

Substituting dimensions on both sides of π3, 

M0 L0T0  = La3 . (T-1)b3 . (ML-3)c3 .  L-3T-1   

Equating the powers of M, L, T on both sides  

Power of M,  0 = c3,      c3 = 0    c3 = 0 

Power of L,  0 = a3 - 3c3 +3,   a3 =  3c3 -3 = -3   a3 = -3 

Power of T,  0 = - b3  -1,   b3 = -1    b3 = -1 

Substituting the values of a2, b2 and c2 in π2, we get 

 π 3 =    D-3. ω-1 . ρ0 . Q =   
𝐐

 𝑫𝟐 𝛚   
 

Substituting the values of π1, π2 and π 3 in equation (ii), we get 

f1( ɳ , 
µ

𝐷2 ω  ρ 
 , 

Q

 𝐷2 ω   
 ) = 0       

ɳ  = Ф (
µ

𝑫𝟐 𝛚  𝛒 
 , 

𝐐

 𝑫𝟐 𝛚   
)  Ans 



------------------------------------------------------------------------------------------------------------------------------- 

The pressure difference Δp in a pipe of diameter D and length l due to the turbulent flow depends 

on the velocity V, viscosity μ, density ρ and roughness k. Using Buckingham's π –theorem, obtain 

the expression for Δp. 

Solution: 

Δp  is a function of D, l, V, µ, ρ, k 

Δp  = f (D, l, V, µ, ρ, k)   (or)   f 1(Δp, D, l, V, µ, ρ, k) = 0             …..... (i) 

Hence total number of variables, n = 7. 

Number of fundamental dimensions, m = 3. 

Writing dimensions of each variable, 

Dimension of,  [ Δp = ML-1 T-2 ,     D = l ,    l = L,      V = L T -1 ,      

µ = ML-1 T-1       ρ = ML-3,    k = L  ] 

Number of π-terms = n - m = 7 - 3 = 4. 

Now equation (i), can be grouped in 4 π terms as, 

Equation (i) is written as  (π 1, π 2, π3, π4) = 0      ……. (ii) 

Each π -term contains (m + 1) variables or 3+1 variables, out of four variables, three are repeating 

variable. Choosing D, V and ρ as repeating variables, we have four π terms as, 

π 1 =    Da1. Vb1 . ρc1 . Δp 

π 2 =   Da2. Vb2 . ρc2 . l 

π3   =    Da3. Vb3 . ρc3 . µ 

π4  =   Da4. Vb4 . ρc4 . k 

 

First π – Term   

π 1 =    Da1. Vb1 . ρc1 . Δp 

Substituting dimensions on both sides of π1, 

M0 L0T0  = La1 . (LT-1)b1 . (ML-3)c1 . ML-1 T-2 

Equating the powers of M, L, T on both sides  

Power of M,  0 = c1 + 1,    c1 = -1 

Power of L,  0 = a1 + b1-3c1-1   a1 = - b1+3c1-1 = 2-3+1 = 0 

Power of T,  0 = - b1 -2,    b1 = -2 



Substituting the values of a1, b1 and c1 in π1, we get 

   π 1 =    D
0. V-2 . ρ-1 . Δp 

   π 1 =    
𝚫𝐩

 𝛒𝑽𝟐 

Second π- Term 

π 2 =   Da2. Vb2 . ρc2 . l 

Substituting dimensions on both sides of π2, 

M0 L0T0  = La2 . (LT-1)b2 . (ML-3)c2 . L 

Equating the powers of M, L, T on both sides  

Power of M,  0 = c2 ,     c1 = 0    c1 = 0 

Power of L,  0 = a2 –b2 -3c2 +1,   a2 =  b2+ 3c2 -1 = -1  a2 = -1 

Power of T,  0 = - b2      b2 = 0    b2 = 0 

Substituting the values of a2, b2 and c2 in π2, we get 

 π 2 =    D-1. V0 . ρ0 . l =   
𝐥

𝐃 
 

Third π- Term 

π3   =    Da3. Vb3 . ρc3 . µ 

Substituting dimensions on both sides of π3, 

M0 L0T0  = La3 . (LT-1)b3 . (ML-3)c3 .  ML-1 T-1 

Equating the powers of M, L, T on both sides  

Power of M,  0 = c3 +1,     c3 = -1    c3 = -1 

Power of L,  0 = a3 +b3- 3c3 -1,  a3 = -b3 +3c3 +1 = 1-3+1= -1  a3 = -1 

Power of T,  0 = - b3  -1,   b3 = -1     b3 = -1 

Substituting the values of a3, b3 and c3 in π3, we get 

 π 3 =    D
-1. V-1 . ρ-1 . µ =    

𝐐

𝐃𝐕𝛒   
 

Fourth π- Term 

π4  =    Da4. Vb4 . ρc4 . k 

Substituting dimensions on both sides of π3, 

M0 L0T0  = La4 . (LT-1)b4 . (ML-3)c4 .  L 

Equating the powers of M, L, T on both sides  

Power of M,  0 = c4,      c4= 0     c4 = 0 



Power of L,  0 = a4 - b4- 3c4 +1,  a3 = b4 +3c4 -1 = -1   a4 = -1 

Power of T,  0 = - b4 ,   b4 = 0     b4 = 0 

Substituting the values of a3, b3 and c3 in π4, we get 

 π 4 =    D-1. V0. Ρ0 . k =    
𝐤

  𝐃  
 

 

Substituting the values of π1, π2, π3 and π 4 in equation (ii), we get 

f1 (
Δp

 ρ𝑉2
,

l

  D   
.

𝐐

𝐃𝐕𝛒   
 . 

𝐤

  𝐃  
 ) = 0       

Δp

 ρ𝑉2  = Ф (
l

  D   
,

𝐐

𝐃𝐕𝛒   
 , 

𝐤

  𝐃  
 )  Ans 

------------------------------------------------------------------------------------------------------------------------------ 

The pressure difference Δp in a pipe of diameter D and length l due to the viscous flow depends on 

the velocity V, viscosity μ, density ρ. Using Buckingham's π –theorem, obtain the expression for 

Δp. 

------------------------------------------------------------------------------------------------------------------------------- 

Using Buckingham's π –theorem, show that the velocity through a circular orifice is given by  V = 

√𝟐𝒈𝑯 Ф [ 
𝑫 

𝑯
 ,

 µ

𝝆 𝑽 𝑯
  ], where H is the head causing flow, D is the diameter of the orifice, µ is the 

coefficient of viscosity, ρ is  mass density, g  is the acceleration due to gravity. 

Solution: 

V  is a function of  (H, D, µ, ρ, g) 

V  = f (H, D, µ, ρ, g)   (or)   f 1(V, H, D, µ, ρ, g) = 0         …..... (i) 

Hence total number of variables, n = 6. 

Number of fundamental dimensions, m = 3. 

Writing dimensions of each variable, 

Dimension of,  [ V = LT-1 ,     H = L ,    D = L,      ρ = ML-3 ,  

µ = ML-1 T-1 ,       g = LT-2  ] 

Total Number of π-terms = n - m = 6 - 3 = 3. 

Now equation (i), can be grouped in 3 π terms as, 

Equation (i) is written as  (π 1, π 2, π3) = 0      ……. (ii) 



Each π -term contains (m + 1) variables or 3+1 variables, (m = 3) and also is equal to repeating 

variables.  Choosing H, g and ρ as repeating variables, we have three π terms as, 

π 1 =    Ha1. gb1 . ρc1 . V 

π 2 =   Ha2. gb2 . ρc2 . D 

π3   =    Ha3. gb3 . ρc3 . µ 

 

First π – Term   

π 1 =    Ha1. gb1 . ρc1 . V 

Substituting dimensions on both sides of π1, 

M0 L0T0  = La1 . (LT-2)b1 . (ML-3)c1 . (LT-1) 

Equating the powers of M, L, T on both sides  

Power of M,  0 = c1 ,     c1 = 0    c1 = 0 

Power of L,  0 = a1 + b1 - 3c1 +1   a1 = - b1 + 3c1 -1= 
1

2
 - 1 a1 =  - 

𝟏
 𝟐

 

Power of T,  0 = - 2b1 -1,    b1 = - 
1

2
   b1 = - 

𝟏

𝟐
 

Substituting the values of a1, b1 and c1 in π1, we get 

    π 1 =    H- (1/2). g- (1/2) . ρ0 . V 

               π 1 =    
𝐕

 √𝒈𝑯
 

Second π- Term 

π 2 =   Ha2. gb2 . ρc2 . D 

Substituting dimensions on both sides of π2, 

M0 L0T0  = La2 . (LT-2)b2 . (ML-3)c2 . L 

Equating the powers of M, L, T on both sides  

Power of M,  0 = c2  ,    c1 = 0               c1 = 0 

Power of L,  0 = a2+b2-3c2 +1,   a2 = b2 +3c2 -1= -1  a2 = -1 

Power of T,  0 = - 2b2      b2 = 0    b2 = 0 

Substituting the values of a2, b2 and c2 in π2, we get 

π 2 =   H-1. g0 . ρ0 . D 

              π 2   =   
𝐃

𝐇
 



Third π- Term 

π3   =    Ha3. gb3 . ρc3 . µ 

Substituting dimensions on both sides of π3, 

M0 L0T0  = La3 . (LT-2)b3 . (ML-3)c3 .  ML-1 T-1 

Equating the powers of M, L, T on both sides  

Power of M,  0 = c3 +1,     c3 = -1    c3 = -1 

Power of L,  0 = a3 +b3 - 3c3-1,    a3 =  - b3 +3c3 +1= 
1

2
  - 3+1   a3 = -  

𝟑
𝟐
 

Power of T,  0 = - 2b3  -1,     b3 = -  
1

 2
    b3 = - 

𝟏

 𝟐
 

Substituting the values of a3, b3 and c3 in π3, we get 

π3   =    H-(3/2). g-(1/2) . ρ-1 . µ 

         =    
µ

𝑯(𝟑/𝟐)𝛒 √𝐠   
 =   

 µ

𝑯 𝛒  √𝐠𝐇   
       (multiply and divide by V) 

        =  
 µ V

𝑯 𝛒𝐕  √𝐠𝐇   
      =   

 µ 

𝑯 𝛒𝐕 
. π1    

 V

√𝐠𝐇   
 = π1 

Substituting the values of π1, π2 and π3  in equation (ii), we get 

f1 (
 V

√gH   
,
D

H
, 𝜋1

 µ 

𝐻 ρV 
) = 0       

 V

√gH   
  =  Ф [  

D

H
, 𝜋1

 µ 

𝐻 ρV 
 ]   

V = √𝟐𝒈𝑯 Ф [ 
𝑫 

𝑯
 ,

 µ

𝝆 𝑽 𝑯
  ] Ans 

[ multiplying by a constant does not change the character of π – terms ] 

------------------------------------------------------------------------------------------------------------------------------- 

Using Buckingham's π –theorem, show that the discharge Q consumed by an oil ring is given by,

      𝑸 = 𝑵𝒅𝟑 Ф [
𝝁

𝝆𝑵𝒅𝟐
 ,

𝝈

𝝆𝑵𝟐𝒅𝟑
,

𝝎

𝝆𝑵𝟐𝒅
]  

where d is the internal diameter of the ring, N id rotational speed, ρ is density, viscosity μ, σ is 

surface tension and ω is the specific  weight of oil. 

Solution: 

Q  is a function of  (d, N, ρ, µ, σ, ω) 

Q  = f (d, N, ρ, µ, σ, ω)   (or)   f 1(Q, d, N, ρ, µ, σ, ω ) = 0         …..... (i) 

Hence total number of variables, n = 7. 



Number of fundamental dimensions, m = 3. 

Writing dimensions of each variable, 

Dimension of,  [ Q = L3 T-1 ,     d = L ,    N = T-1,      ρ = ML-3 ,  

µ = ML-1 T-1 ,       σ = MT-2  ,    ω = ML-2 T-2  ] 

Total Number of π-terms = n - m = 7 - 3 = 4. 

Now equation (i), can be grouped in 4 π terms as, 

Equation (i) is written as  (π 1, π 2, π3, π4) = 0      ……. (ii) 

Each π -term contains (m + 1) variables or 3+1 variables, out of four variables, three are repeating 

variable. Choosing d, N and ρ as repeating variables, we have four π terms as, 

π 1 =    da1. Nb1 . ρc1 . Q 

π 2 =   da2. Nb2 . ρc2 . µ 

π3   =    da3. Nb3 . ρc3 . σ 

π4  =    da4. Nb4 . ρc4 . ω 

 

First π – Term   

π 1 =    da1. Nb1 . ρc1 . Q 

Substituting dimensions on both sides of π1, 

M0 L0T0  = La1 . (T-1)b1 . (ML-3)c1 . L-3 T-1 

Equating the powers of M, L, T on both sides  

Power of M,  0 = c1 ,     c1 = 0    c1 = 0 

Power of L,  0 = a1 - 3c1 +3    a1 = 3c1-3 = 0-3 = -3  a1 = -3 

Power of T,  0 = - b1 -1,    b1 = -1    b1 = -1 

Substituting the values of a1, b1 and c1 in π1, we get 

   π 1 =    d-3. N-1 . ρ0. Q 

   π 1 =    
𝐐

 𝒅𝟑 𝑵
 

Second π- Term 

π 2 =   da2. Nb2 . ρc2 . µ 

Substituting dimensions on both sides of π2, 

M0 L0T0  = La2 . (T-1)b2 . (ML-3)c2 . ML-1T-1 



Equating the powers of M, L, T on both sides  

Power of M,  0 = c2 +1 ,    c1 = -1    c1 = -1 

Power of L,  0 = a2 -3c2 -1,    a2 = 3c2 +1 = -3+1  a2 = -2 

Power of T,  0 = - b2 -1    b2 = -1    b2 = -1 

Substituting the values of a2, b2 and c2 in π2, we get 

 π 2 =    d-2. N-1 . ρ-1. µ =   
µ

𝛒𝐍𝒅𝟐 
 

Third π- Term 

π3   =    da3. Nb3 . ρc3 . σ 

Substituting dimensions on both sides of π3, 

M0 L0T0  = La3 . (T-1)b3 . (ML-3)c3 .  ML T-2 

Equating the powers of M, L, T on both sides  

Power of M,  0 = c3 +1,     c3 = -1    c3 = -1 

Power of L,  0 = a3 - 3c3,      a3 =  3c3 = -3    a3 = -3 

Power of T,  0 = - b3  -2,     b3 = -2    b3 = -2 

Substituting the values of a3, b3 and c3 in π3, we get 

 π 3 =    d-2. N-1 . ρ-1. σ =    
𝛔

𝒅𝟑𝑵𝟐𝛒   
 

Fourth π- Term 

π4  =    da4. Nb4 . ρc4 . ω 

Substituting dimensions on both sides of π3, 

M0 L0T0  = La4 . (T-1)b4 . (ML-3)c4 .  ML-2T-2 

Equating the powers of M, L, T on both sides  

Power of M,  0 = c4 +1,      c4= -1    c4 = -1 

Power of L,  0 = a4 - 3c4 -2,     a4 = 3c4 +2 = -3+2  a4 = -1 

Power of T,  0 = - b4 -2,      b4 = -2   b4 = -2 

Substituting the values of a3, b3 and c3 in π4, we get 

 π4  =    d-1. N-2 . ρ-1 . ω     =    
𝛚

  𝐝 𝑵𝟐𝛒 
 

Substituting the values of π1, π2, π3 and π 4 in equation (ii), we get 

f1 (
Q

 𝑑3 𝑁
,

µ

ρN𝑑2 
.

σ

𝑑3𝑁2ρ   
 . 

ω

  d 𝑁2ρ 
 ) = 0       



Q

 𝑑3 𝑁
  = f1 (

µ

ρN𝑑2 
.

σ

𝑑3𝑁2ρ   
 . 

ω

  d 𝑁2ρ 
  )   

Q  = 𝒅𝟑 𝑵  Ф (
µ

𝛒𝐍𝒅𝟐 
.

𝛔

𝒅𝟑𝑵𝟐𝛒   
 . 

𝛚

  𝐝 𝑵𝟐𝛒 
  ). Ans 

------------------------------------------------------------------------------------------------------------------------------- 

MODEL ANALYSIS 

 For predicting the performance of the hydraulic structures (such as dams, spillways etc.) or hydraulic 

machines (such as turbines, pumps etc.), before actually constructing or manufacturing. 

 Models of the structures or machines are made and tests are performed on them to obtain the desired 

formation. 

 The model is the small scale replica of the actual structure or machine. The actual structure or machine 

is called Prototype. It is not necessary that the models should be smaller than the prototypes (though 

in most of cases it is), they may be larger than the prototype.  

 The study of models of actual machines is called Model analysis. Model analysis is actually an 

experimental method of finding solutions of complex flow problems. Exact analytical solutions are 

possible only for a limited number of flow problems.  

The followings are the advantages of the dimensional and model analysis: 

1. The performance of the hydraulic structure or hydraulic machine can be easily predicted, in advance, 

from its model. 

2. With the help of dimensional analysis, a relationship between the variables influencing a flow probem 

in terms of dimensionless parameters is obtained. This relationship helps in conducting tests on the 

model. 

3. The merits of alternative designs can be predicted with the help of model testing. The most economical 

and safe design may be, finally, adopted. 

4. The tests performed on the models can be utilized for obtaining, in advance, useful information about 

the performance of the prototypes only if a complete similarity exists between the model and the 

prototype. 

------------------------------------------------------------------------------------------------------------------------------------------- 

CLASSIFICATION OF MODELS 

Generally, hydraulic models are classified into two types. 

 Undistorted models. 

 Distorted models 

1. UNDISTORTED MODELS 

The model which is geometrically similar to its prototype is known as undistorted models. In such models, 

the conditions of similitude are fully satisfied. So, the results obtained from the model are used to predict 



the performance of the prototype easily. Based on this, design, construction and interpretation of (he model 

are simpler.  

2. DISTORTED MODELS 

A model which is not geometrically similar to its prototype but it may be similar in appearance with its 

prototype. So, different scale ratios are used for linear dimensions such as length, breadth and height. 

Usually, the following distortions may occur in distorted models: 

 Geometrical distortion. 

 Material distortion. 

 Distortion of hydraulic quantities 

Geometrical distortion. 

The distortion occurs either in dimensions or in configuration. It can be corrected by using different scale 

values for vertical and horizontal dimensions. 

Material distortion: 

It arises due to the use of different materials for the model and  prototype. To avoid this, the same materials 

have to be used as much as possible. 

Distortion of hydraulic quantities: 

Due to uncontrollable hydraulic quantities, the distortion may occur. Example: Velocity, discharge etc. 

Reasons of adopting distorted models 

 To maintain accuracy. 

 To maintain turbulent flow. 

 To accommodate available facilities 

 To obtain suitable bed materials. 

 To obtain required roughness condition. 

Advantages of distorted models 

 Accurate measurements can be possible. 

 Surface tension can be minimized as much as possible. 

 The operation is simplified due to small model size. 

 Reynolds number of flow is increased sufficiently. 

 

Disadvantages of distorted models 

 Exit pressure and velocity distributions are not true. 



 A model wave may differ from that of prototype. 

 Both extrapolation and interpolation of results are difficult. 

------------------------------------------------------------------------------------------------------------------------------- 

SIMILITUDE-TYPES OF SIMILARITIES 

Similitude is defined as the similarity between the model and its prototype in every respect, which means 

that the model and prototype have similar properties or model and prototype are completely similar.  

Three types of similarities must exist between the model and prototype. They are  

1 Geometric Similarity, 2. Kinematic Similarity, and 3. Dynamic Similarity.  

Geometric Similarity: The geometric similarity is said to exist between the model and the prototype. The 

ratio of all corresponding linear dimension in the model and prototype are equal. Let,  

Lm = Length of model,  

bm = Breadth of model,  

Dm - Diameter of model,  

Am - Area of model,  

Vm = Volume of model,  

LP, bp, Dp, Ap, Vp = Corresponding values of the prototype, 

For  geometric similarity between model and prototype, we must have the relation, 

𝐿𝑝

𝐿 𝑚
= 

𝑏𝑝

𝑏 𝑚
 = 

𝐷𝑝

𝐷 𝑚
 = Lr      

Lr  is called the scale ratio. 

 

Kinematic Similarity:  

 Kinematic similarity means the similarity of motion between model and prototype. Thus kinematic similarity 

is said to exist between the model and the prototype if the ratios velocity and acceleration at the 

corresponding points in the model and at the corresponding points in the prototype are the same.  

 Since velocity and acceleration are vector quantities, hence not only the ratio of magnitude of velocity and 

acceleration at the corresponding points in model and prototype should be same, but the directions of 

velocity and accelerations at the corresponding points in the model and prototype also should be parallel. 

 All the direction of the velocities in the model and prototype should be same.  

 

Dynamic Similarity:  

 Dynamic similarity means the similarity of forces between the model and prototype. Thus dynamic similarity 

is said to exist between the model and the prototype if the ratios of the corresponding forces acting at the 

corresponding points are equal.  

 Also the directions of the corresponding forces at the corresponding points should be same.  

------------------------------------------------------------------------------------------------------------------------------------------ 



TYPES OF FORCES ACTING IN MOVING FLUID 

For the fluid flow problems, the forces acting on a fluid mass may be any one, or a combination of the 

several of the following forces: 

 Inertia force, Fi 

 Viscous force, Fv 

 Gravity force, Fg    

 Pressure force, Fp 

 Surface tension force, Fy    

 Elastic force, Fe

 

Inertia force (fv):  

It is equal to the product of mass and acceleration of the flowing fluid and acts in the direction opposite to 

the direction of acceleration. It is always existing in the fluid flow problems. 

Viscous Force (Fv):  

It is equal to the product of shear stress (x) due to viscosity and surface area of the flow. It is present in fluid 

flow problems where viscosity is having an important role to play. 

Gravity Force (Fg):  

It is equal to the product of mass and acceleration due to gravity of the flowing fluid. It is present in case of 

open surface flow. 

Pressure Force (Fp):  

It is equal to the product of pressure intensity and cross-sectional area of -e flowing fluid. It is present in 

case of pipe-flow. 

Surface Tension Force (Fs):  

It is equal to the product of surface tension and length of surface of Lie flowing fluid. 

Elastic Force (Fe):  

It is equal to the product of elastic stress and area of the flowing fluid.  

For a flowing fluid, the above-mentioned forces may not always be present. And also the forces, which are 

present in a fluid flow problem, are not of equal magnitude. There are always one or two forces which 

dominate the other forces. These dominating forces govern the flow of fluid. 

------------------------------------------------------------------------------------------------------------------------------------------ 

DIMENSIONLESS NUMBERS 

Dimensionless numbers are those numbers .which are obtained by dividing the inertia force by viscous force 

or gravity force or pressure force or surface tension force or elastic force. As this is a ratio of one force to 

the other force, it will be a dimensionless number.  

These dimensionless numbers also called non-dimensional parameters. The followings are the important 

dimensionless numbers:  

 Reynold's number   

 Froude's number 

 Euler's number  

 Weber's number 

 Mach's number 



Reynold's Number (Re): It is defined as the ratio of inertia force of a flowing fluid and r viscous force of 

the fluid. The expression for Reynold's number is obtained as, 

Re =    √
𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒
 

Re =    
𝑉∗𝐿

𝑣
   [𝑣 =  

µ

𝜌
] 

In case of pipe flow, the linear dimension L is taken as diameter, d. Hence Reynold's number for pipe flow, 

Re =    
𝑉∗𝑑

𝑣
   ( or )  =    

𝜌𝑉𝑑

µ
  

Froude's Number (Fe): The Froude's number is defined as the square root of the ratio of inertia force of 

a flowing fluid to the gravity force. Mathematically, it is expressed as, 

Fe = √
𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒

𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑓𝑜𝑟𝑐𝑒
     =   √

𝑉
𝐿𝑔

 

Euler's Number (Eu): It is defined as the square root of the ratio of the inertia force of a flowing fluid to 

the pressure force. Mathematically, it is expressed as, 

Eu =  √
𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑓𝑜𝑟𝑐𝑒
         =  

𝑉

√
𝑝

𝜌  

 

Weber's Number (We): It is defined as the square root of the ratio of the inertia force of a flowing fluid to 

the surface tension force. Mathematically, it is expressed as, 

We =  √
𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒
 

    =  
𝑉

√
𝜎

𝜌 𝐿 

 

Mach's Number (M): Mach's number is defined as the square root of the ratio of the inertia force of a 

flowing fluid to the elastic force. Mathematically, it is defined as, 

M =  √
𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒

𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑓𝑜𝑟𝑐𝑒
 

    =  
𝑀

𝐶
 

------------------------------------------------------------------------------------------------------------------------------------------ 

MODEL LAWS OR SIMILARITY LAWS 

 For the dynamic similarity between the model and the prototype, the ratio of the corresponding forces 

acting at the corresponding points in the model and prototype should be equal. The ratio of the forces 

are dimensionless numbers.  



 It means for dynamic similarity between the model and prototype, the dimensionless numbers should 

be same for model and the prototype.  

 But it is quite difficult to satisfy the condition that all the dimensionless numbers (i.e., Re, Fe, We, Eu 

and M) are the same for the model and prototype. Hence models are designed on the basis of ratio of 

the force, which is dominating in the phenomenon.  

The laws on which the models are designed for dynamic similarity are called model laws or laws of 

similarity. The followings are the model laws: Reynold's model law 

 Froude model law 

 Euler model law  

 Weber model law 

 Mach model law 

Reynolds’s Model Law:  

Reynolds’s model law is the law in which models are based on Reynolds’s number. Models based on 

Reynolds’s number includes:  

(i) Pipe flow 

(ii) Resistance experienced by sub-marines, airplanes, fully immersed bodies etc.  

As defined earlier that Reynolds number is the ratio of inertia force and viscous force, and hence fluid flow 

problems where viscous forces alone are predominant, the models are designed for dynamic similarity on 

Reynolds law, which states that the Reynolds number for the model must be equal to the Reynolds number 

for the prototype. 

Let  

Vm = Velocity of fluid in model 

ρm= Density of fluid in model 

Lm = Length or linear dimension of the model 

µm = Viscosity or fluid in model 

And (Vm, 
ρm, Lm and µm) are the corresponding values of velocity, density, linear dimension and 

viscosity of fluid in prototype. Then according to Reynolds’s model law, 

Re(p)   = Re(m) 

Froude Model Law:  

Froude model law is the law in which the models are based on Froude number which means for dynamic 

similarity between the model and prototype, the Froude number for both of them should be equal.  

Froude model law is applicable when the gravity force is only predominant force which controls the flow 

in addition to the force of inertia. Froude model law is applied in the following fluid flow problems: 

 Free surface flows such as flow over spillways, weirs, sluices, channels etc. 

 Flow of jet from an orifice or nozzle, 



 Where waves are likely to be formed on surface, 

 Where fluids of different densities flow over one another. 

(Fe) model = (Fe) prototype 

 

Euler's Model Law: 

Euler's model law is the law in which the models are designed on Euler's number which means for dynamic 

similarity between the model and prototype, the Euler number for model arid prototype should be equal. 

Euler's model law is applicable when the pressure forces are alone predominant in addition to the inertia 

force. According to this law: 

(Eu)model = (Eu)prototype 

If  

Vm = Velocity of fluid in model 

Pm = Pressure of fluid in model  

ρm = Density of fluid in model 

Then   Vm,Pm, ρm  = Corresponding values in prototype 

Vm/√ Pm  =  Vp/√ Pp   

Euler's model law is applied for fluid flow problems where flow is taking place in a closed pipe in which 

case turbulence is fully developed so that viscous forces are negligible and gravity force and surface 

tension force is absent. This law is also used where the phenomenon of cavitation takes place. 

 

Weber Model Law:  

Weber model law is the law in which models are based on Weber's number, which is the ratio of the 

square root of inertia force to surface tension force.  

Hence where surface tension effects predominate in addition to inertia force, the dynamic similarity 

between these model and prototype is obtained by equating the Weber number of the model and its 

prototype.  

Hence according to this law: 

(We)model = (We)prototype 

Where,    We is Weber number and =  V/√σ/ρL 

If  

Vm = Velocity of fluid in model 

 σ m= Surface tensile force in model 

ρm = Density of fluid in model 

Lm = Length of surface in model  

And (Vm,σ m ,ρm, Lm ) = Corresponding values of fluid in prototype. 



Then according to Weber law, we have 

Vm

√σ m/ ρm, Lm
=

V

√σ p/ ρp, Lp
 

Weber model law is applied in following cases: 

 Capillary rise in narrow passages 

 Capillary movement of water in soil 

 Capillary waves in channels 

 Flow over weirs for small head 

 

Mach Model Law:  

Mach model law is the law in which models are designed on Mach number, which is the ratio of the square 

root of inertia force to elastic force of a fluid.  

Hence where the forces due to elastic compression predominate in addition to inertia force, the dynamic 

similarity between the model and its prototype is obtained by equating the Mach number of the model and 

its prototype.  

Hence according to this law: 

(M)model = (M)prototype 

where ,  M = Mach number  =  V/√K/ρ 

  If  

Vm = Velocity of fluid in model 

Km = Elastic stress for model 

 ρ m = Density of fluid in model 

And Vp, KP and ρP= Corresponding values for prototype.  

Then according to Mach law,  

Vm

√Km/ ρm
=

V

√Kp/ ρp
 

 

Mach model law is applied in the following cases: 

 Flow of aeroplane and projectile through air at supersonic speed, ie., at a velocity more than the 

velocity of sound. 

 Aerodynamic testing 

 Under water testing of torpedoes 

 Water hammer problems 

------------------------------------------------------------------------------------------------------------------------------- 

 



 



UNIT V 

BOUNDARY LAYER 

INTRODUCTION  

The variation of velocity from zero to free-stream velocity in the direction normal to the boundary takes 

place in a narrow region in the vicinity of solid boundary.  

This narrow region of the fluid is called boundary layer. The theory dealing with boundary layer flows is 

called boundary layer theory.  

1. A very thin layer of the fluid called the boundary layer in the immediate neighbourhood of the 

solid boundary, where the variation of velocity from zero at the solid boundary to free-stream velocity in 

the direction normal to the boundary takes place.  

2. The remaining fluid which is outside the boundary layer. The velocity outside the boundary 

layer is constant and equal to free-stream velocity.  

Laminar boundary layer:  

 The leading edge of the surface of the plate where the thickness is small, the flow in the boundary layer 

is laminar though the main flow is turbulent.  

 This layer of the fluid is said to be laminar boundary layer.  

Turbulent boundary layer:  

 The laminar boundary layer becomes unstable and motion of fluid within, it is disturbed and 

irregular which leads to a transition from laminar to turbulent boundary layer.  

 This short length over which the boundary layer flow changes from laminar to turbulent is called 

transition zone.  

 Further downstream the transition zone the boundary layer is turbulent and continues to grow 

in thickness. This layer of boundary is called turbulent boundary layer. 

Laminar sub-layer:  

 The region in the turbulent boundary layer zone, adjacent to the solid surface of the plate. In this zone 

the velocity variation is influenced only by viscous effects.  

 Though the velocity distribution would be a parabolic curve in the laminar sub-layer zone but in view of 

the very small thickness. That velocity variation is linear and so the velocity gradient can be considered 

constant.  

 Therefore, the shear stress in the laminar sub-layer would be constant and equal to the boundary shear 

stress 𝜏0.  

Boundary layer thickness:  

 It is defined as the distance from the boundary of the solid body measured in the y-direction to the point, 

where the velocity of the fluid is approximately equal to 0.99 times the free stream velocity of the fluid.  

 It is denoted by the symbol 𝛿.  



Displacement thickness:  

 It is defined as the distance measured perpendicular to the boundary of the solid body by which the 

boundary should be displaced to compensate for the reduction in flow rate on account of boundary layer 

formation. It is denoted by 𝛿*.  

δ* = ∫ [ 1 – (u/U) ] dy 

 

It is also defined as:  

 The distance perpendicular to the boundary by which the free stream is displaced due to the formation 

of boundary layer.  

Momentum thickness:  

 It is defined as the distance, measured perpendicular to the boundary of the solid body, by which the 

boundary should be displaced to compensate for the reduction in momentum of the flowing fluid on 

account of boundary layer formation. It is denoted by 𝜃.  

θ = ∫ [ (u/U) – (u/U)2 ] dy 

Energy thickness:  

 It is defined as the distance measured perpendicular to the boundary of the solid body by which 

the boundary should be displaced to compensate for the reduction in kinetic energy of the 

flowing fluid on account of boundary layer formation. It is denoted by 𝛿**.  

δ** = ∫ [ (u/U) – (u/U)3 ] dy  

Boundary condition for the velocity profiles:  

1. At y = 0,u = 0 and 𝑑𝑢𝑑𝑦 has some finite value.  

2. At y = 𝛿,u=U.  

3. At y = 𝛿, / 𝑑𝑦 = 0  

Turbulent boundary layer on a flat plate:  

 The thickness of the boundary layer, drag force on one side of the plate and co-efficient of drag 

due to turbulent boundary layer on a smooth plate at zero pressure gradient are determined as 

in case of laminar boundary layer provider the velocity profile is known.  

 Blasius on the basis of the experiment given the following velocity profile for a turbulent 

boundary layer. 

𝑢𝑈 = (𝑦𝛿)𝑛  

Where n=1/7 for 𝑅𝑒 < 107 but more than 5× 105  

𝑢𝑈 = (𝑦𝛿)17  



The above equation is not applicable very near the boundary, where the thin laminar sub-layer of 

thickness 𝛿` exist. Here velocity distribution is influenced by viscous effects.  

Analysis of turbulent boundary layer:  

(a) If Reynold number is more than 5×105 and less than 107the thickness of boundary layer and 

drag co-efficient are given as:  

𝛿 = 0.37(𝑅𝑒𝑥)1/5 and 𝐶𝐷 = 0.072(𝑅𝑒𝐿)1/5  

Where x=distance from the leading edge  

𝑅𝑒𝑥 = reynold number for length x  

𝑅𝑒𝑙 = reynold number at the end of the plate  

(b) If reynold number is more than 107 but less than 109 , gave the empirical equation as  

𝐶𝐷 = 0.455(𝑙𝑜𝑔10 𝑅𝑒𝐿) 

----------------------------------------------------------------------------------------------------------------------------- 

SEPARATION OF BOUNDARY LAYER:  

 The loss of kinetic energy is recovered from the intermediate fluid layer in contact with the layer adjacent 

to solid surface through momentum exchange process. Thus the velocity of the layer goes on 

decreasing. 

 

  Along the length of the solid body, at a certain point a stage may come when the boundary 

layer may not be able to keep sticking to the solid body if it can’t provide kinetic energy to 

overcome the resistance offer by the solid body, the boundary layer will be separated from the 

surface.  

 This phenomenon is called boundary layer separation. The point on the body at which the 

boundary layer is on the verge of separation from the surface is called as the point of 

separation.  

----------------------------------------------------------------------------------------------------------------------------- 

 



EFFECT OF PRESSURE GRADIENT ON THE BOUNDARY LAYER SEPARATION:  

 Effect of pressure gradient (𝑑𝑝𝑑𝑥) on the boundary layer separation can be explained by 

considering the flow over a curved surface. The area of flow decreases and hence velocity 

increases. This means that flow gets accelerated in this region. Due to increase in the velocity, 

the pressure decreases in the direction of the flow and hence pressure gradient (𝑑𝑝𝑑𝑥) is 

negative.  

Location of separation point:  

The separation point is determined from the condition, ( )=0=0  

For a given velocity profile, it can be determine whether the boundary layer has separated or verge of 

separation or will not separate from the following condition.  

1.If ( 𝜕𝑢 𝜕𝑦)𝑦=0 is negative…the flow has separated.  

2.If ( 𝜕𝑢 𝜕𝑦)𝑦=0 = 0 the flow is on the verge of separation.  

3.If ( 𝜕𝑢 𝜕𝑦)𝑦=0 is positive ….the flow will not separate or flow will remain attached with the surface.  

Methods of preventing the separation of boundary layer:  

 When the boundary layer separates from the surface, a certain portion adjacent to the surface 

has a back flow and eddies are continuously formed in this region and hence continuous loss 

of energy takes place. Thus separation of boundary layer is undesirable and attempts should 

be made to avoid separation by various methods.  

The following are the methods for preventing the separation of boundary layer:  

1. Suction of the slow moving fluid by a suction slot.  

2. Supplying additional energy from a blower.  

3. Providing a bypass in the slotted wing.  

4. Rotating boundary in the direction of flow.  

5. Providing small divergence in a diffuser.  

6. Providing guide-blades in a bend.  

7. Providing a trip-wire ring in the laminar region for the flow over a sphere.  

 

----------------------------------------------------------------------------------------------------------------------------- 

Find the displacement thickness, the momentum thickness and energy thickness for the velocity 

distribution in the boundary layer given by 
𝐮

𝐔
=

𝐲

𝛅 
 , where u is the velocity at a distance y from 

the plate and u = U at y = 𝛅 , where 𝛅 = boundary layer thickness. Also calculate the value of 𝛅 ∗/𝛉. 

Given: 



Velocity distribution 
u

U
=

y

δ 
 

(i) Displacement thickness 𝛅* is given by equation, 

   δ* =    ∫ (1 −
u

U
)

𝛿

0
𝑑𝑦 = ∫ (1 −

y

δ
)

𝛿

0
𝑑𝑦   {∵  

u

U
=

y

δ 
} 

    =    [𝑦 −
𝑦2

2𝛿
]

0

𝛿

   {𝛿 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑐𝑟𝑜𝑠𝑠 𝑎 𝑠𝑒𝑐𝑡𝑖𝑜𝑛} 

    =    δ- 
𝛿2

2𝛿
    =     𝛿 −

𝛿

2
     

       𝛅*=  
𝜹

𝟐
  

(ii) Momentum thickness, 𝜽 is given by equation,  

   𝜃 =    ∫
u

U
(1 −

u

U
)

𝛿

0
𝑑𝑦 

Substituting the value of  
u

U
=

y

δ 
 , 

𝜃 =    ∫
y

𝛿
(1 −

y

𝛿
)

𝛿

0
𝑑𝑦 = ∫ (

y

𝛿
−

y2

δ2
)

𝛿

0
𝑑𝑦  

 =    [
y2

2δ
−

y3

3δ2]
0

𝛿

 = 
δ2

2δ
−

δ3

3δ2  

=     
δ

2
−

δ

3
 = 

3δ−2δ

6
  

𝜽   =    
𝛅

 𝟔
 

(iii) Energy thickness 𝛅 ** is given by equation, as 

δ ** =    ∫
u

𝑈
(1 −

u2

U2)
𝛿

0
𝑑𝑦 = ∫

y

𝛿
(1 −

y2

δ2)
𝛿

0
𝑑𝑦    {∵  

u

U
=

y

δ 
} 

 =    ∫ [
y

δ 
−

y3

δ3]
𝛿

0
𝑑𝑦 = [

y2

2δ
−

y4

4δ3]
0

𝛿

 = 
δ2

2δ
−

δ4

4δ3 

    =     
δ

2
−

δ

4
 = 

2δ−δ

4
 = 

δ

4
 

(iv)    
𝛿∗

𝜃
 =    

(
δ

2
)

(
δ

6
)
 = 

δ

2
x

6

𝛿
  

          
𝜹∗

𝜽
 = 3 

----------------------------------------------------------------------------------------------------------------------------- 

Find the displacement thickness, the momentum thickness and energy thickness for the velocity 

distribution in the boundary layer given by 
𝐮

𝐔
= 𝟐 [

𝐲

𝛅 
] - [

𝐲

𝛅 
]

𝟐

 

Solution: Given: 

    Velocity distribution   
𝐮

𝐔
= 𝟐 [

𝐲

𝛅 
] - [

𝐲

𝛅 
]

𝟐

 

(i) Displacement thickness 𝛅 * is given by equation, 

   δ * =    ∫ (1 −
u

U
)

𝛿

0
𝑑𝑦 

Substituting the value of      
u

U
=    2 [

y

δ 
] - [

y

δ 
]

2
,  we have 



      δ *     =    ∫ {1 − [2 (
y

δ 
) − (

y

δ 
)

2
]}

𝛿

0
𝑑𝑦 

    =    ∫ {1 − 2 (
y

δ 
) − (

y

δ 
)

2
}

𝛿

0
𝑑𝑦 = [

2𝑦2

2𝛿
+

𝑦3

3𝛿2]
0

𝛿

 

    =    𝛿 - 
𝛿2

𝛿
+

𝛿3

3𝛿2 = 𝛿 − 𝛿 +
𝛿

3
  

 𝛅 *   =   
𝜹

𝟑
        

(ii) Momentum thickness𝜽, is given by equation, 

   𝜃 =    ∫
u

U
(1 −

u

U
)

𝛿

0
𝑑𝑦 = ∫ (

2y

δ 
−  

𝑦2

2𝛿
 )

𝛿

0
 [1 − (

2y

δ 
− 

𝑦2

𝛿2)] dy 

    =    ∫ [
2y

δ 
− 

𝑦2

𝛿2]
𝛿

0
[1 −

2y

δ 
+  

𝑦2

𝛿2] dy 

    =    ∫ [
2y

δ 
− 

4𝑦2

𝛿2 +
2𝑦3

𝛿3 −
𝑦2

𝛿2 
−  

2𝑦3

𝛿3 −
𝑦4

𝛿4] 𝑑𝑦
𝛿

0
 

    =    ∫ [
2y

δ 
− 

5𝑦2

𝛿2 +
4𝑦3

𝛿3 −
𝑦4

𝛿4 
] 𝑑𝑦

𝛿

0
 = [

2𝑦2

2δ 
−  

5𝑦3

3𝛿2 +
4𝑦4

4𝛿3 −
𝑦5

5𝛿4 
]

0

𝛿

 

    =     [
δ2

δ 
−  

5δ3

3𝛿2 +
δ4

𝛿3 −
δ5

5𝛿4 
] = δ - 

5δ

δ 
 + δ - 

5δ

δ 
  

    =     
15δ−25δ+15δ−3δ

15
   =   

30δ−28δ

15
  

      𝜽  = 
𝟐𝛅

𝟏𝟓
 

(ii) (iii) Energy thickness 𝛅** is given by equation, 

   δ** =     ∫
u

U
(1 −

𝑢2

𝑈2)
𝛿

0
𝑑𝑦 = ∫ (

2y

δ 
− 

𝑦2

2𝛿
 )

𝛿

0
 ([1 − (

2y

δ 
−  

𝑦2

𝛿2)]
2

) 𝑑𝑦 

    =      ∫ (
2𝑦

𝛿 
− 

𝑦2

2𝛿
 )

𝛿

0
(1 − [

4𝑦2

𝛿2 +
𝑦4

𝛿4 −
4𝑦3

𝛿3 
])  𝑑𝑦 

    =      ∫ (
2y

δ 
−  

𝑦2

δ2 )
𝛿

0
(1 −

4𝑦2

𝛿2 −
𝑦4

𝛿4 −
4𝑦3

𝛿3 
)  𝑑𝑦 

    =      ∫ (
2y

δ 
−  

8𝑦3

𝛿3 
−

2𝑦5

δ5 +
8𝑦4

𝛿4 −
𝑦2

𝛿2 +
4𝑦4

𝛿4 +
𝑦6

𝛿6 
−

4𝑦5

𝛿5 
)

𝛿

0
 𝑑𝑦 

    =      ∫ (
2y

δ 
−  

𝑦2

𝛿2 −
8𝑦3

𝛿3 
−

12𝑦4

δ4 −
6𝑦5

𝛿5 
+

𝑦6

𝛿6 
) 𝑑𝑦

𝛿

0
 

    =     (
2y

2δ 
−  

𝑦3

3𝛿2 −
8𝑦4

4𝛿3 
−

12𝑦5

5δ4 −
6𝑦6

6𝛿5 
+

𝑦7

7𝛿6 
)

0

𝛿

 

    =     
𝛿2

𝛿
−

𝛿3

3𝛿3 
−

2𝛿4

δ3 +
12𝛿5

5𝛿5 
−

𝛿6

𝛿5 
+

𝛿7

7𝛿6 
  

            =      𝛿 −
δ

3 
− 2δ +

12

5
𝛿 − 𝛿 +

δ

7 
 

               =      - 2𝛿 −
δ

3 
+

12

5
𝛿 +

δ

7 
  

            =      
−210δ−35δ+252δ+15δ

105 
 

               =      
−245δ+267δ

105 
  

    𝛅**  =    
𝟐𝟐𝛅

𝟏𝟎𝟓 
  

----------------------------------------------------------------------------------------------------------------------------- 

 

 



DRAG FORCE ON A FLAT PLATE DUE TO BOUNDARY LAYER 

 Consider the flow of a fluid having free-stream velocity equal to U, over a thin plate a shown in 

Fig. The drag force on the plate can be determined if the velocity profile near the plate is known. Consider 

a small length ∆x of the plate at a distance of x from the leading edge as shown in Fig.(a). The enlarged 

view of the small length of the plate is shown in Fig.(b) 

 

Fig. Drag force on a plate due to boundary layer 

The shear stress 𝜏0 is given by 𝜏0 =  (
𝑑𝑢

𝑑𝑦
)

𝑦=0
, where (

𝑑𝑢

𝑑𝑦
)

𝑦=0
is the velocity distribution near the plate at 

y=0. 

The drag force or shear force on a small distance ∆𝑥 is given by  

  ∆𝐹𝐷 =    shear stress x area 

   =    𝜏0 x ∆𝑥 x b   …………(1) [Taking width of plate = b] 

Where ∆𝐹𝐷=drag force on distance ∆𝑥 

The drag force  ∆𝐹𝐷 must also be equal to the rate of change of momentum over the distance ∆𝑥.  

Consider the flow over the small distance ∆𝑥 . Let ABCD is the control volume of the fluid over the distance 

∆𝑥  as shown in Fig. (b). The edge DC represents the outer edge of the boundary layer.  

Let  u = velocity at any point within the boundary layer 

b = width of plate 

Then mass rate of flow entering through the side AD 

   = ∫ 𝜌 x velocity x area of strip of thickness dy
𝛿

0
 

= ∫ 𝜌 x u x b x dy
𝛿

0
   [∵ 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑠𝑡𝑟𝑖𝑝 = 𝑏x𝑑𝑦] 

= ∫ 𝜌ub. dy
𝛿

0
   

Mass rate of flow leaving the side BC 

   = mass through AD + 
𝜕

𝜕𝑥
 (mass through AD) x ∆𝑥 

= ∫ 𝜌ubdy
𝛿

0
 

𝜕

𝜕𝑥
 [∫ (𝜌ubdy)

𝛿

0
] x  ∆𝑥 

From continuity equation for a steady incompressible fluid flow, we have 

Mass rate of flow entering AD + mass rate of flow entering DC 

      = mass rate of flow leaving BC 

∵ Mass rate of flow entering DC  =  mass rate of flow through BC-mass rate of flow through AD 



= ∫ 𝜌ubdy
𝛿

0
+

𝜕

𝜕𝑥
 [∫ (𝜌ubdy)

𝛿

0
] x ∆𝑥 - ∫ 𝜌ubdy

𝛿

0
 

   = 
𝜕

𝜕𝑥
 [∫ (𝜌ubdy)

𝛿

0
] x ∆𝑥 

The fluid is entering through side DC with a uniform velocity U. 

Now let us calculate momentum flux through control volume. 

Momentum flux entering through AD 

   = ∫ momentum flux through strip of thickness by
𝛿

0
 

   = ∫ mass through strip x velocity 
𝛿

0
 = ∫ (𝜌ubdy)

𝛿

0
xu = ∫ (𝜌u2bdy)

𝛿

0
 

Momentum flux leaving the side BC = ∫ 𝜌u2bdy
𝛿

0
 + 

𝜕

𝜕𝑥
 [∫ 𝜌u2bdy

𝛿

0
] x ∆𝑥 

Momentum flux entering the side DC = mass rate through DC x velocity 

   = 
𝜕

𝜕𝑥
 [∫ 𝜌ubdy

𝛿

0
] x ∆𝑥 x U     ( ∵ Velocity = U) 

   = 
𝜕

𝜕𝑥
 [∫ 𝜌ubdy

𝛿

0
] x ∆𝑥  

As U is constant and so it can be taken inside the differential and integral 

∴ Rate of change of momentum of the control volume 

= Momentum flux through BC – Momentum flux through AD – momentum flux through DC 

= ∫ 𝜌u2bdy
𝛿

0
 + 

𝜕

𝜕𝑥
 [∫ 𝜌u2bdy

𝛿

0
] x ∆𝑥  - ∫ 𝜌u2bdy

𝛿

0
 - 

𝜕

𝜕𝑥
 [∫ 𝜌uUbdy

𝛿

0
] x ∆𝑥  

= 
𝜕

𝜕𝑥
 [∫ 𝜌u2bdy

𝛿

0
] x ∆𝑥 - 

𝜕

𝜕𝑥
 [∫ 𝜌uUbdy

𝛿

0
] x ∆𝑥 

= 
𝜕

𝜕𝑥
 [∫ 𝜌u2bdy

𝛿

0
] -  [∫ 𝜌uUbdy

𝛿

0
] x ∆𝑥 

= 
𝜕

𝜕𝑥
 [∫ (𝜌u2b − 𝜌uUb)dy

𝛿

0
] x ∆𝑥  

= 
𝜕

𝜕𝑥
 [𝜌b ∫ (u2 − uU)dy

𝛿

0
] x ∆𝑥 

     {For incompressible fluid 𝜌 is constant} 

= 𝜌b 
𝜕

𝜕𝑥
 [∫ (u2 − uU)dy

𝛿

0
] x ∆𝑥    ……….(2) 

Now the rate of change of momentum on the control volume ABCD must be equal to the total force on 

the control volume in the same direction according to the momentum principle.  

But for a flat plate 
𝜕𝑝

𝜕𝑥
=0.  

Which means there is no external pressure force on the control volume. Also the force on the side DC is 

negligible as the velocity is constant and velocity gradient is zero approximately.  

The only external force acting on the control volume is the shear force acting on the side AB in the 

direction from B to A as shown in Fig.(b). The value of this force is given by equation (1) as, 

     ∆𝐹𝐷= 𝜏0 x ∆x x b 

∴ The external force in the direction of rate of change of momentum 

         = - 𝜏0 x ∆x x b   ………….(3) 



According to momentum principle, the two values given by equations (3) and (2) should be the same. 

∴       - 𝜏0 x ∆x x b =   𝜌b 
𝜕

𝜕𝑥
 [∫ (u2 − uU)dy

𝛿

0
] x ∆𝑥     

Cancelling ∆x x b , to both sides, we have 

            - 𝜏0 =   𝜌 
𝜕

𝜕𝑥
 [∫ (u2 − uU)dy

𝛿

0
]   

or    𝜏0  =  − 𝜌 
𝜕

𝜕𝑥
 [∫ (u2 − uU)dy

𝛿

0
] =  𝜌 

𝜕

𝜕𝑥
 [∫ (uU −  u2)dy

𝛿

0
] 

         =    𝜌 
𝜕

𝜕𝑥
 [∫ 𝑈2 (

𝑢

𝑈
−

𝑢2

𝑈2) 𝑑𝑦
𝛿

0
] 

         =    𝜌𝑈2 𝜕

𝜕𝑥
[∫

𝑢

𝑈
[1 −

𝑢

𝑈
] 𝑑𝑦

𝛿

0
] 

                  
𝜏0

𝜌𝑈2  =    
𝜕

 𝜕𝑥
 [∫

𝑢

𝑈
[1 −

𝑢

𝑈
] 𝑑𝑦

𝛿

0
]      ……… (4) 

In equation (4), the expression ∫
𝑢

𝑈
[1 −

𝑢

𝑈
]

𝛿

0
 dy is equal to momentum thickness 𝜃. Hence equation (4) is 

also written as 

   
𝜏0

𝜌𝑈2
 = 

𝜕𝜃

𝜕𝑥
      ………..(5) 

Equation (5) is known as Von Karman momentum integral equation for boundary layer flows. 

This is applied to: 

1. Laminar boundary layers 

2. Transition boundary layers and 

3. Turbulent boundary layer flows. 

 For a given velocity profile in laminar zone, transition zone or turbulent zone of a boundary layer, 

the shear stress  𝜏0 is obtained from equation (4) or (5). Then drag force on a small distance ∆𝑥  of the 

plate is obtained from equation (1) as  

∆𝐹𝐷 = - 𝜏0 x ∆x x b  

Then  total drag on the plate of length L on one side is 

𝐹𝐷 = ∫ ∆𝐹𝐷 = ∫ 𝜏0 x  b x 𝑑𝑥
𝐿

0
  {change ∆x  = dx}  ……..(6) 

----------------------------------------------------------------------------------------------------------------------------- 

Local Co-efficient of Drag [𝑪𝑫 ∗].  

It is defined as the ratio of the shear stress 𝜏0 to the quantity  
1

2
  𝜌𝑈2 . It is denoted by 𝐶𝐷

∗  

 Hence   𝐶𝐷
∗ =  

𝜏0
1

2
  𝜌𝑈2 

   ………(7) 

    Where A = Area of the surface (or plate) 

  U = Free-stream velocity 

  𝜌 = Mass density of fluid 

Boundary Conditions for the Velocity Profiles. The followings are the boundary conditions which must 

be satisfied by any velocity profile, whether it is in laminar boundary layer zone, or in turbulent boundary 

layer zone: 



1. At y=0, u=0 and 
𝑑𝑢

𝑑𝑦
  has some finite value 

2. At y=𝛿, u=U 

3. At y=𝛿, 
𝑑𝑢

𝑑𝑦
=0 

----------------------------------------------------------------------------------------------------------------------------- 

For the velocity profile given in, find the thickness of boundary layer at the end of the plate and 

the drag force on one side of a plate 1m long and 0.8m wide when placed in water flowing with a 

velocity of 150 mm per second. Calculate the value of co-efficient of drag also. Take 𝝁 for water = 

0.01 poise. 

Given: 

Length of plate,  L =   1m 

Width of plate,   b =   0.8m 

Velocity of fluid (water) U =  150mm/s = 0.15 m/s 

𝜇 for water             𝜇  =   0.01 poise = 
0.01

10
 

𝑵𝒔

𝒎𝟐 = 0.001 
𝐍𝐬

𝐦𝟐 

Solution: 

Reynold number at the end of the plate i.e., at a distance of 1m from leading edge is given by 

𝑅𝑒𝐿
=  

𝝆𝑼𝑳

𝝁
 = 1000 x 

𝟎.𝟏𝟓 𝐱 𝟏.𝟎

.𝟎𝟎𝟏
     (∵  𝜌 = 1000) 

         =  
𝟏𝟎𝟎𝟎 𝐱 𝟎.𝟏𝟓 𝐱 𝟏.𝟎

𝟎.𝟎𝟎𝟏
 = 150000 

(i) As laminar boundary layer exists upto Reynold number = 2 x 105. Hence this is the case of laminar 

boundary layer. Thickness of boundary layer at  x = 1.0m is given by equation  as, 

      𝛿       =   5.48 
𝒙

√𝑹𝒆𝑳

 = 
𝟓.𝟒𝟖 𝐱 𝟏.𝟎

√𝟏𝟓𝟎𝟎𝟎𝟎
 = 0.01415m = 14.15mm. 

(ii) Drag force on one side of the plate is given by equation,  

     FD  =   0.73 𝑏𝜇U√
𝝆𝑼𝑳

𝝁
 

   =   0.73 x 0.8 x 0.001 x 0.15 x √150000    {∵  
𝜌𝑈𝐿

𝜇
= 𝑅𝑒𝐿

} 

     FD =   0.0338N. 

(iii) Co-efficient of drag. CD is given by equation as, 

  CD =   
𝟏.𝟒𝟔

√𝐑𝐞𝐋

  = 
𝟏.𝟒𝟔

√𝟏𝟓𝟎𝟎𝟎𝟎
 =  0.00376 

      CD    =   0.00376 

----------------------------------------------------------------------------------------------------------------------------- 

 

 

 

 



S.No Velocity Distribution 𝜹 𝑪𝑫 

1 
𝑢

𝑈
 = 2(

𝑦

𝛿
) − (

𝑦

𝛿
)

2

 5.48 𝑥 √𝑅𝑒𝑥
⁄  1.46 √𝑅𝑒𝐿

⁄  

2 
𝑢

𝑈
 = 

3

2
(

𝑦

𝛿
) −

1

2
(

𝑦

𝛿
)

3

 4.64 𝑥 √𝑅𝑒𝑥
⁄  1.292 √𝑅𝑒𝐿

⁄  

3 
𝑢

𝑈
 = 2 (

𝑦

𝛿
) − 2 (

𝑦

𝛿
)

3

+ (
𝑦

𝛿
)

4

 5.84 𝑥 √𝑅𝑒𝑥
⁄  1.36 √𝑅𝑒𝐿

⁄  

4 
𝑢

𝑈
 = 𝑠𝑖𝑛 (

𝜋

2
 
𝑦

𝛿
) 4.79 𝑥 √𝑅𝑒𝑥

⁄  1.31 √𝑅𝑒𝐿
⁄  

5 Blasius’s Solution 4.91 𝑥 √𝑅𝑒𝑥
⁄  1.328 √𝑅𝑒𝐿

⁄  

----------------------------------------------------------------------------------------------------------------------------- 

For the velocity profile in laminar boundary layer as, 
𝒖

𝑼
 = 

𝟑

𝟐
 (

𝒚

𝜹
) −  

𝟏

𝟐
(

𝒚

𝜹
)

𝟑

 find the thickness of the 

boundary layer and the shear stress 1.5m from the leading edge of a plate. The plate is 2m long 

and 1.4 m wide and is placed in water which is moving with a velocity of 200 mm per second. Find 

the total drag force on the plate if 𝝁 for water = 0.01 poise. 

Given: 

   Velocity profile is 
𝐮

𝐔
 = 

𝟑

𝟐
 (

𝐲

𝛅
) −  

𝟏

𝟐
(

𝐲

𝛅
)

𝟑
 

Distance of x from leading edge,  x    =   1.5m 

Length of plate,   L   =   2m 

Width of plate,   b   =   1.4m 

Velocity of plate    U   =   200 mm/s = 0.2 m/s 

Viscosity of water,                𝜇    =   0.01 poise = 
0.01

10
 = 0.001 Ns/m2 

Solution: 

For the given velocity profile, thickness of boundary layer is given by equation as 

    𝛿 = 
4.46 𝑥

√𝑅𝑒𝑥

 

      [Here, 𝑅𝑒𝑥
=

𝜌𝑈𝑥

𝜇
 = 1000 x 

0.2x1.5

0.001
= 300000] 

𝛿 = 
4.46 𝑥 1.5

√300000
= 0.0127 𝑚  

             𝜹 = 12.27 mm. 

 Shear stress (𝝉𝟎) is given by 𝜏0 = 0.323 
𝑈𝑥

𝑥
 √𝑅𝑒𝑥

 

              =    0.323 x 0.001 x 
0.2

1.5
√300000  

𝝉𝟎    =   0.0235 N/m2. 

 



Drag Force (𝑭𝑫) on the side of the plate is given by  as 

   𝑭𝑫  =    0.646 𝝁U √
𝝆𝑼𝑳

𝝁
 x b 

    = 0.646 x 0.001 x 0.2 x √1000x
0.2𝑥2.0

0.001
 x 1.4  

    = .646 x 0.001 x 0.2 x √400000 x 1.4 = 0.1138N 

       𝑭𝑫  = 0.1138N 

 

∴ Total drag force                 = Drag force on both sides of the plate 

                                               = 2x0.1138 = 0.2276 N 

              Total drag force      = 0.2276 N            

----------------------------------------------------------------------------------------------------------------------------- 

Air is flowing over a smooth plate with a velocity of 10 m/s. The length of the plate is 1.2 m and 

width 0.8 m. If laminator boundary layer exists up to a value of Re = 2 x 105, find the maximum 

distance from the leading edge upto which laminar boundary layer exists. Find the maximum 

thickness of laminar boundary layer if the velocity profile is given by 
𝒖

𝑼
 = 𝟐 (

𝒚

𝜹
) −  (

𝒚

𝜹
)

𝟐
 . Take 

kinematic viscosity for air = 0.15 strokes. 

Given: 

Velocity of air, U = 10 m/s 

Length of plate, L = 1.2 m 

Width of plate, b = 0.8 m 

Reynold number upto which laminar boundary exists = 2 x 105 

𝜐 for air = 0.15 stokes = 0.5x10-4 m2/s 

𝜌 = 1.24 kg/m3 

Solution: 

 If 𝑅𝑒𝑥
=2x105 , then x denotes the distance from leading edge upto which laminar boundary layer 

exists 

∴   2x105 = 
10 𝑥 𝑥

0.15𝑥10−4
 

∴   x  =   
2x105x 0.15x10−4

10
  = 0.30 m  

x =  300mm. 

Maximum thickness of the laminar boundary for the velocity profile, 
𝑢

𝑈
 = 2 (

𝑦

𝛿
) − (

𝑦

𝛿
)

2

 is given by 

equation as 

  𝛿  =  
5.48𝑥 𝑥

√𝑅𝑒𝑥

  =  
5.48𝑥0.30

√2𝑥105
  

    = 0.00367 m  

                          𝜹   = 3.67mm 



----------------------------------------------------------------------------------------------------------------------------- 

Air is flowing over a flat plate 500 mm long and 600 mm wide with a velocity of 4 m/s. The 

kinematic viscosity of air is given as 0.15x10-4 m2/s2. Find (i) the boundary layer thickness at the 

end of the plate, (ii) Shear stress at 200mm from the leading edge and (iii) drag force on one side 

of the plate. Take the velocity profile over the plate as 
𝒖

𝑼
 = sin(

𝝅

𝟐
 ,

𝒚

𝜹
) and density of air 1.24 kg/m3. 

Given: 

Length of plate,       L = 500 mm = 0.5m 

Width of plate,       b = 600 mm = 0.6 m 

Velocity of air,      U = 4 m/s 

Kinematic viscosity,     𝜐 = 0.15 x 10-4 m2/s 

Mass density,               𝜌 = 1.24 kg/m3 

For the velocity profile,  
𝑢

𝑈
 = sin(

𝜋

2
 ,

𝑦

𝛿
) , we have 

Solution: 

(i) Boundary layer thickness at the end of the plate means value of 𝜹 at x = 0.5m.  

First find Reynold number. 

𝑅𝑒𝑥
=

ρUx

μ
 = 

Ux

υ 
 = 

4x0.5

0.15x10−4
 = 1.33x105.  

Hence boundary layer is laminar over the entire length of the plate as Reynold number at the end 

of the plate is 1.33x105. 

∴  𝛿 at x = 0.5 m for the given velocity profile is given by equation as 

  𝛿  = 
4.795 𝑥

√𝑅𝑒𝑥

 = 
4.795𝑥0.5

√1.33𝑥105
 = 0.00656 m = 6.56 mm. 

(ii) Shear stress at any distance from leading edge is given by 

     𝝉𝟎 = 0.327 
𝛍𝐔

𝐱
√𝑹𝒆𝒙

 

 At x =200 mm = 0.2 m, 𝑅𝑒𝑥
 = 

𝑈 x 𝑥

𝜐
 = 

4𝑥0.2

0.15𝑥10−4
 = 1.33x105  =  53333 

   τ0 = 
0.327 x μ x 4 x √53333

0.2
 

But   𝜇   =    𝜐 x 𝜌     {∵  𝜐 =  
𝑢

𝜌
 , ∴ 𝜇 =  𝜐x𝜌} 

         =   0.15 x 10-4 x 1.24 = 0.186x10-4 

 𝜏0 = 
0.327 x 0.186 x 10−4 x 4 x √53333

0.2
 = 0.02805 N/m2 

 

(iii) Drag force on one side of the plate is given by equation  

  𝐹𝐷  = 0.655 x 𝜇𝑈 x b x √
𝜌𝑈𝐿

𝜐
 



   = 0.655 x 0.186 x 10-4 x 4.0 x 0.6 x √
𝑈𝐿

𝜐
  {∵  𝜐 =  

𝑢

𝜌
 } 

   = 0.29234x10-4 x √
4 x 0.5

.15 x 10−4
  

       𝑭𝑫 =  0.01086 N 

----------------------------------------------------------------------------------------------------------------------------- 

A thin plate is moving in still atmospheric air at a velocity of 5 m/s. The length of the plate is 0.6m 

and width 0.5m. Calculate (i) the thickness of the boundary layer at the end of the plate, and (ii) 

drag force on one side of the plate. Take density of air as 1.24 kg/m3 and kinematic viscosity 0.15 

stokes. 

Given: 

Velocity of air, U = 5 m/s 

Length of plate, L = 0.6 m 

Width of plate, b = 0.5 m 

Density of air,  𝜌 = 1.24 kg/m3 

Kinematic viscosity, 𝜐 = 0.15 stokes = 0.15x10-4 m2/s 

Solution: 

Reynold number,  𝑅𝑒 = 
𝑈𝐿

𝜐
 = 

5𝑥0.6

0.15𝑥10−4
 = 200000. 

As 𝑅𝑒 is less than 5x105 , hence boundary layer is laminar over the entire length of the plate. 

 

(i) Thickness of boundary layer at the end of the plate by Blasius’s solution is 

  𝛿 = 
4.91 𝑥

√𝑅𝑒𝑥

 = 
4.91 𝐿

√𝑅𝑒𝑥

 = 
4.91 𝑥 0.6  

√200000
  

     = .00658 m  

                             𝜹 = 6.58 mm 

 

(iii) Drag force on one side of the plate is given by equation as, 

    𝐅𝐃 = 
𝟏

𝟐
𝛒𝐀𝐔𝟐 x 𝐂𝐃   

therefoere ,   CD =  
FD

1

2
  ρ A U2

 

Where 𝐶𝐷 from Blasius’s solution, 𝐶𝐷 = 
1.328

√𝑅𝑒𝐿

 = 
1.328

√200000
  

      =   0.002969   

𝑪𝑫  =   .00297 

  FD  =   
1

2
ρAU2 x CD   

       =   
1

2
 x 1.24 x 0.6 x 0.5 x 52 x .002970 

  𝐅𝐃 =  0.013773 N. 



Note. If no velocity profile is given in the numerical problem but boundary layer is laminar, then Blasius’s 

solution is used. 

----------------------------------------------------------------------------------------------------------------------------- 

A plate of 600 mm length and 400 mm wide is immersed in a fluid of sp.gr. 0.9 and kinematic 

viscosity (𝝊=) 10-4 m2/s. The fluid is moving with a velocity of 6 m/s. Determine (i) boundary layer 

thickness (ii) shear stress at the end of the plate, and (iii) drag force on one side of the plate. 

 As no velocity profile is given in the above problem, hence Blasius’s solution will be used. 

Given:  

length of plate, L = 600 mm = 0.60 m 

Width of plate, b = 400 mm = 0.40 m 

Sp.gr.of fluid, S = 0.9 

∴  Density,  𝜌 = 0.9 x 1000 = 900 kg/m3 

Velocity of fluid U = 6 m/s 

Kinematic viscosity  𝜐 = 10-4 m2/s 

Solution:  

Reynold number, 𝑅𝑒𝐿
 = 

𝑈 𝑥 𝐿

𝜐
 = 

6 𝑥 0.6

10−4
 = 3.6 x 104. 

 As 𝑅𝑒𝐿
 is less than 5 x 105, hence boundary layer is laminar over the entire length of the plate.  

(i) Thickness of boundary layer at the end of the plate from Blasius’s solution is 

𝛿 = 
4.91 𝑥

√𝑅𝑒𝑥

  

  where   x = 0.6m and 𝑅𝑒𝑥
= 3.6x104 

    = 
4.91 𝑥 0.6

√3.6 𝑥 10−4
 = 0.0155 m  

𝜹  = 15.5 mm 

(ii) Shear stress at the end of the plate is 

  𝜏0 = 0.33 
𝜌𝑈2

√𝑅𝑒𝐿

   =   
0.332 𝑥 900 𝑥 62

√3.6 𝑥 104
   = 56.6 N/m2. 

(iii) Drag force (𝑭𝑫) on one side of the plate is given by 

   𝐹𝐷 = 
1

2
𝜌𝐴𝑈2 x 𝐶𝐷 

Where from Blasius’s solution is 𝐶𝐷 = 
1.328

√𝑅𝑒𝐿

 = 
1.328

√3.6 𝑥 104
 = 0.00699 

 𝐹𝐷 = 
1

2
𝜌𝐴𝑈2 x 𝐶𝐷 

           = 
1

2
 x 900 x 0.6 x 0.4 x 62 x .00699  [∵ 𝐴 = 𝐿x𝑏 = 0.6x. 4] 

         FD      =  26.78 N 

----------------------------------------------------------------------------------------------------------------------------- 

 


