
CS T42 MICROPROCESSOR AND
MICROCONTROLLER 2 MARKS Q&A

Y2/S4

UNIT I

Intel 8085 Microprocessor: Introduction - Need for Microprocessors – Evolution

– Intel 8085 Hardware - Architecture – Pin description - Internal Registers –

Arithmetic and Logic Unit – Control Unit – Instruction word size - Addressing

modes – Instruction Set – Assembly Language Programming - Stacks and

Subroutines - Timing Diagrams. Evolution of Microprocessors – 16-bit and 32-bit

microprocessors.

A microprocessor is a multipurpose, programmable, register based; clock-driven,

electronic device that reads binary instructions from a storage device called memory accepts

binary data as input and processes data according to those instructions and provides result as

output. The power supply of 8085 is +5V and clock frequency in 3MHz.

A memory that stores binary information permanently. The information can be read from

this memory but cannot be altered.

It is used:

 For measurements, display and control of current, voltage, temperature, pressure, etc.

 For traffic control and industrial tool control.

 For motor speed control of machines.

 For data acquisition system etc.

A computer program that translate an assembly language program from mnemonics to the

binary machine code of a computer.

1. What is microprocessor? ****

2. Define ROM?

3. List few applications of microprocessor-based system. ****

4. What is an Assembler?

CS T42 MICROPROCESSOR AND
MICROCONTROLLER 2 MARKS Q&A

Y2/S4

1. Memory read

2. Memory write

3. I/O read

4. I/O write

A group of lines that are used to send a memory address or a device address from the

MPU to the memory location or a peripheral. The 8085 microprocessor has 16 address lines.

The 8085 MPU with its 14-bit address is capable of addressing 214=16,384 (ie) 16K

memory locations.

The data bus is bi-directional because the data flow in both directions between the MPU

and memory and peripheral devices.

The accumulator is the register associated with the ALU operations and sometimes I/O

operation s. It is an integral part of ALU. It holds one of data to be processed b y ALU. It also

temporarily stores the result of the operation performed by the ALU.

This is single line that is generated by the MPU to provide timing of various operations.

The data conditions, after arithmetic or logical operations, are indicated by setting or

resetting the flip-flops called flags.

The 8085 has nine flags and they are

5. What are the four primary operations of a MPU? **

6. What do you mean by address bus? ****

7. How many memory locations can be addressed by a microprocessor with 14 address lines?

8. Why is the data bus bi-directional?

9. What is the function of the accumulator? ****

10. Define control bus? ***

11. What is a flag? Write the flags of 8085. ****

CS T42 MICROPROCESSOR AND
MICROCONTROLLER 2 MARKS Q&A

Y2/S4

1. Carry Flag (CF)

2. Parity Flag (PF)

3. Auxiliary carry Flag (AF)

4. Zero Flag (ZF)

5. Sign Flag (SF)

Memory locations for the program counter and stack pointer have 16-dit address. So the

PC and SP have 16-bit registers.

The number of bits stored in a register is called a memory word.

The ALU signal goes high at the beginning of each machine cycle indicating the

availability of the address on the address bus, and the signal is used to latch the low-order

address bus. The IO/M signal is a status signal indicating whether the machine cycle is I/O or

memory operation. The IO/M signal is combined with the RD and WR control signals to

generate IOR, IOW, MEMW, MEMR.

 Two control signals and three status signals

 Control signals: RD and WR

 Status signals: IO/M, S1, and S2

Machine cycle is defined, as the time required completing one operation of accessing

memory, I/O, or acknowledging an external request.

T-state is defined as one subdivision of the operation of performed in one clock period.

12. Why are the program counter and the stack pointer 16-bit registers? ****

13. Define memory word?

14. Explain the function of ALU and IO/M signals in the 8085 architecture? ****

15. Write down the control and status signals? ****

16. Define machine cycle? ****

17. Define T-state? *

CS T42 MICROPROCESSOR AND
MICROCONTROLLER 2 MARKS Q&A

Y2/S4

Instruction cycle is defined, as the time required completing the execution of the
instruction.

 B-C register pair

 D-E register pair

 H-L register pair

 SID (Serial input data line):

 It is an input line through which the microprocessor accepts serial data.

 SOD (Serial output data line):

 It is an output line through which the microprocessor sends output serial data.

The part of the instruction that specifies the operation to be performed is called the

operation code or opcode.

It is a status signal. It is used to differentiate between memory locations and I/O

operations. When this signal is low (IO/M = 0) it denotes the memory related operations. When

this signal is high (IO/M = 1) it denotes an I/O operation.

 Data transfer group – MOV, MVI, LXI.

 Arithmetic group – ADD, SUB, INR.

 Logical group –ANA, XRA, CMP.

18. Give the bit positions reserved for the flags? *

19. Define instruction cycle? *

20. List the allowed register pairs of 8085.

21. Mention the purpose of SID and SOD lines *

22. What is an Opcode?

23. What is the function of IO/M signal in the 8085?

24. List out the five categories of the 8085 instructions. Give examples of the instructions for

each group. *

CS T42 MICROPROCESSOR AND
MICROCONTROLLER 2 MARKS Q&A

Y2/S4

 Branch group – JMP, JNZ, CALL

 Stack I/O and Machine control group – PUSH, POP, IN, HLT.

A JMP instruction permanently changes the program counter. A CALL instruction leaves

information on the stack so that the original program execution sequence can be resumed.

The IN instruction is used to move data from an I/O port into the accumulator. The OUT

instruction is used to move data from the accumulator to an I/O port. The IN & OUT instructions

are used only on microprocessor, which use a separate address space for interfacing.

A rotate instruction is a closed loop instruction. That is, the data moved out at one end is put

back in at the other end. The shift instruction loses the data that is moved out of the last bit

locations.

This state is used by slow peripheral devices. The peripheral devices can transfer the data

to or from the microprocessor by using READY input line. The microprocessor remains in wait

state as long as READY line is low. During the wait state, the contents of the address,

address/data and control buses are held constant.

Instruction cycle is defined, as the time required completing the execution of an

instruction. Machine cycle is defined as the time required completing one operation of accessing

memory, I/O or acknowledging an external request. T-cycle is defined as one subdivision of the

operation performed in one clock period.

The ALE is used to latch the lower order address so that it can be available in T2 and T3

and used for identifying the memory address. During T1 the ALE goes high, the latch transparent

ie, the output changes according to the input data, so the output of the latch is the lower order

address. When ALE goes low the lower order address is latched until the next ALE.

25. Explain the difference between a JMP instruction and CALL instruction. **

26. Explain the purpose of the I/O instructions IN and OUT.

27. What is the difference between the shifts and rotate instructions?

28. What is meant by Wait State? ***

29. Define instruction cycle, machine cycle and T-state ****

30. What is the use of ALE ****

CS T42 MICROPROCESSOR AND
MICROCONTROLLER 2 MARKS Q&A

Y2/S4

The 8085 have seven machine cycles. They are

 Opcode fetch

 Memory read

 Memory write

 I/O read

 I/O write

 Interrupt acknowledge

 Bus idle

HOLD indicates that a peripheral such as DMA controller is requesting the use of address

bus, data bus and control bus. READY is used to delay the microprocessor read or write cycles

until a slow responding peripheral is ready to send or accept data. SID is used to accept serial

data bit by bit.

LDA copies the data byte into accumulator from the memory location specified by the

16-bit address. STA copies the data byte from the accumulator in the memory location specified

by 16-bit address. DAA changes the contents of the accumulator from binary to 4-bit BCD

digits.

The instruction set is grouped into the following formats

 One byte instruction MOV C,A

 Two byte instruction MVI A,39H

 Three byte instruction JMP 2345H

The various formats of specifying the operands are called addressing modes, it is used to

access the operands or data. The different types are as follows

 Immediate addressing

 Register addressing

 Direct addressing

 Indirect addressing

 Implicit addressing

31. How many machine cycles does 8085 have, mention them *****

32. Explain the signals HOLD, READY and SID. *

33. Explain LDA, STA and DAA instructions

34. Explain the different instruction formats with examples. **

35. What is the use of addressing modes, mention the different types

CS T42 MICROPROCESSOR AND
MICROCONTROLLER 2 MARKS Q&A

Y2/S4

It is used to increase the driving capacity of the data bus. The data bus of a

microcomputer system is bi-directional, so it requires a buffer that allows the data to flow in both

directions.

The stack is a group of memory locations in the R/W memory that is used for the

temporary storage of binary information during the execution of the program. The stack related

instructions are PUSH & POP.

CALL
PUSH

When CALL is executed the microprocessor

automatically stores the 16-bit address of the

instruction next to CALL on the stack

The programmer uses the instruction

PUSH to save the contents of the

register pair on the stack

When CALL is executed the stack pointer
is decremented by two

When PUSH is executed the stack
pointer register is decremented by two.

Microcontroller is a device that includes microprocessor; memory and I/O signal lines on

a single chip, fabricated using VLSI technology. Microcomputer is a computer that is designed

using microprocessor as its CPU. It includes microprocessor, memory and I/O.

36. What is the use of bi-directional buffers?

37. Define stack and explain stack related instructions **

38. Compare CALL and PUSH instructions *****

39. What is Microcontroller and Microcomputer. **

40. Compare RET and POP. ****

CS T42 MICROPROCESSOR AND
MICROCONTROLLER 2 MARKS Q&A

Y2/S4

Assembly language programming is a program written in a mnemonics or set of

instruction.

ALP contain 4 fields,

 Label

 Opcode

 Operand

 Comments

41. What is assembly language programming (ALP)? List its field.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

Unit: I

Intel 8085 Microprocessor: Introduction - Need for Microprocessors – Evolution – Intel 8085

Hardware - Architecture – Pin description - Internal Registers – Arithmetic and Logic Unit –

Control Unit – Instruction word size - Addressing modes – Instruction Set – Assembly

Language Programming - Stacks and Subroutines - Timing Diagrams - Evolution of

Microprocessors – 16-bit and 32 - bit microprocessors.

Definition of the Microprocessor:

1. Introduction

The microprocessor is a programmable device that takes in numbers, performs on

them arithmetic or logical operations according to the program stored in memory and then

produces other numbers as a result.

“CPU is in the form of chip”. The major component of microprocessor is CPU, memory,

input and output devices.

Basic Concepts of Microprocessors & Differences between:

Microcomputer –a computer with a microprocessor as its CPU. Includes memory, I/O etc.,

Microprocessor –silicon chip which includes ALU, register circuits & control circuits.

Microcontroller –silicon chip which includes microprocessor, memory & I/O in a single

package.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

1.1 GENERAL ARCHITECTURE OF MICROPROCESSOR

Organization of Microprocessor

The microprocessor is sometimes referred to as the 'brain' of the personal computer, and is

responsible for the processing of the instructions which make up computer software. It houses

the central processing unit, commonly referred to as the CPU.

CPU Structure This section, using a simplified model of a central processing unit as an

example, takes you through the role of each of the major constituent parts of the CPU.

The simplified model consists of five parts, which are:

Arithmetic & Logic Unit (ALU) The part of the central processing unit that deals with

operations such as addition, subtraction, and multiplication of integers and Boolean operations.

It receives control signals from the control unit telling it to carry out these operations. For more,

click the title above.

Control Unit (CU) This controls the movement of instructions in and out of the processor, and

also controls the operation of the ALU. It consists of a decoder, control logic circuits, and a

clock to ensure everything happens at the correct time. It is also responsible for performing the

instruction execution cycle.

Register Array This is a small amount of internal memory that is used for the quick storage and

retrieval of data and instructions. All processors include some common registers used for

specific functions, namely the program counter, instruction register, accumulator, memory

address register and stack pointer.

System Bus This is comprised of the control bus, data bus and address bus. It is used for

connections between the processor, memory and peripherals, and transfers of data between the

various parts.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

Memory The memory is not an actual part of the CPU itself, and is instead housed elsewhere on

the motherboard. However, it is here that the program being executed is stored, and as such is a

crucial part of the overall structure involved in program execution.

2. EVOLUTION OF MICROPROCESSORS

 4-bit Microprocessors

The first microprocessor was introduced in 1971 by Intel Corp. It was named Intel 4004 as it

was a 4 bit processor. It was a processor on a single chip. It could perform simple arithmetic and

logic operations such as addition, subtraction, boolean AND and boolean OR. It had a control

unit capable of performing control functions like fetching an instruction from memory, decoding

it, and generating control pulses to execute it. It was able to operate on 4 bits of data at a time.

This first microprocessor was quite a success in industry. Soon other microprocessors were also

introduced. Intel introduced the enhanced version of 4004, the 4040. Some other 4 bit

processors are International’s PPS4 and Thoshiba’s T3472.

 8-bit Microprocessors

The first 8 bit microprocessor which could perform arithmetic and logic operations on 8 bit

words was introduced in 1973 again by Intel. This was Intel 8008 and was later followed by an

improved version, Intel 8088. Some other 8 bit processors are Zilog-80 and Motorola M6800.

 16-bit Microprocessors

The 8-bit processors were followed by 16 bit processors. They are Intel 8086 and 80286.

 32-bit Microprocessors

The 32 bit microprocessors were introduced by several companies but the most popular one is

Intel 80386.

 Pentium Series

Instead of 80586, Intel came out with a new processor namely Pentium processor. Its

performance is closer to RISC performance. Pentium was followed by Pentium Pro CPU.

Pentium Pro allows allow multiple CPUs in a single system in order to achive multiprocessing.

The MMX extension was added to Pentium Pro and the result was Pentiuum II. The low cost

version of Pentium II is celeron.

The Pentium III provided high performance floating point operations for certain types of

computations by using the SIMD extensions to the instruction set. These new instructions make

the Pentium III faster than high-end RISC CPUs.

We divide the years of development of microprocessors as 5 generations.

http://www.worldofcomputing.net/processor/microprocessor.html
http://www.worldofcomputing.net/processor/microprocessor.html
http://www.worldofcomputing.net/processor/microprocessor.html

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 First generation (1971 – 73)

Intel Corporation introduced 4004, the first microprocessor in 1971. It is evolved from the

development effort while designing a calculator chip.

There were three other microprocessors in the market during the same period:

 Rockwell International’s PPS-4 (4 bits)

 Intel’s 8008 (8 bits)

 National Semiconductor’s IMP-16 (16 bits)

They were fabricated using PMOS technology which provided low cost, slow speed and low

output currents. They were not compatible with TTL.

 Second Generation (1974 – 1978)

Some of the popular processors were:

 Motorola’s 6800 and 6809

 Intel’s 8085

 Zilog’s Z80

They were manufactured using NMOS technology. This technology offered faster speed and

higher density than PMOS It is TTL compatible

 Third generation microprocessors (1979 – 80)

This age is dominated by 16 – bits microprocessor some of them were:

 Intel’s 8086/80186/80286

 Motorola’s 68000/68010

They were designed using HMOS technology HMOS provides some advantages over NMOS as

Speed-power-product of HMOS is four times better than that of NMOS HMOS can

accommodate twice the circuit density compared to NMOS Intel used HMOS technology to

recreate 8085A and named it as 8085AH with a higher price tag.

 Fourth Generation (1981 – 1995)

 This era marked the beginning of 32 bits microprocessors.

 Intel introduced 432, which was bit problematic

 Then a clean 80386 in launched.

 Motorola introduced 68020/68030.

They were fabricated using low-power version of the HMOS technology called HCMOS.

Motorola introduced 32-bit RISC processors called MC88100.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 Fifth Generation (1995 – till date)

This age the emphasis is on introducing chips that carry on-chip functionalities and

improvements in the speed of memory and I/O devices along with introduction of 64-bit

microprocessors. Intel leads the show here with Pentium, Celeron and very recently dual and

quad core processors working with up to 3.5GHz speed.

3. HARDWARE ARCHITECTURE OF INTEL -8085

ACCUMULATOR:

 Accumulator is an 8-bit register.

 The accumulator is also called as A-register.

 It holds one of the data to be processed by ALU.

 It stores the result of the operation.

 The accumulator is connected to the 8 – bit internal data bus.

 The two-state output of the accumulator drives the ALU.

TEMPORARY REGISTER:

 The temporary register receives one of the data to be processed by ALU from external

memory or general purpose registers.

 The other input for the ALU comes from the temporary register. This 8-bit register stores

the operands of arithmetic – logic operations.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 For instance, during an ADD C the contents of the C register are copied in the temporary

register during one T state and added to accumulator contents during another T state.

GENERAL PURPOSE REGISTERS:

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 In INTEL 8085 microprocessor, there are six 8 –bit general – purpose registers.

 They are B, C, D, E, H And L.

 They may be used individually or combined as register pairs to perform some 16 – bit

operations.

 The permitted combinations of register pairs are B –C, D-E and H-L. The H-L registers

pair, which is normally used to form a 16-bit memory pointer.

 The register array (B, C, D, E, H and L) is like a small on-chip RAM with addressable

memory locations.

 Control signals select the register for a read or write operation. This means that the CPU

can wither load or read a register contents to this data bus.

STACK POINTER (SP):

 Stack Pointer is a 16-bit register used as a memory pointer.

 It maintains the address of the last byte entered into the stack.

 The stack pointer is decremented each time when data is loaded into the stack and is

incremented when data is retrieved from the stack.

PROGRAM COUNTER (PC):

 This 16-bit register deals with sequencing the execution of instruction.

 The register is also a memory pointer.

 Memory locations have 16-bit address, and hence it is a 16-bit register.

 The microprocessor uses this register to sequence the execution of the instructions.

 The function of the program counter is to point to the address of the next instruction to

be executed.

 At the end of the execution of an instruction, the program counter is incremented by 1,

pointing to the next memory location where the next instruction is available.

INCREMENTER/DECREMENTER:

 It can add 1 or subtract 1 from the contents of the Stack Pointer or Program Counter.

ALU:

 The ALU carries out the arithmetic and logic operations on 8-bit words.

 The contents of the accumulator and the temporary register are the inputs to the ALU.

 It can perform arithmetic operations such as addition, subtraction and logical operations

such as AND, OR and EX-OR. The ALU result is then stored back in the accumulator.

FLAGS:

Flag register is a group of five individual flip-flops. The content of the flag register will change

(0 or 1) after the execution of arithmetic and logic operations.

1. The carry flag bit (CY) is set if a carry or borrow occurs during the arithmetic operation. The

carry flag indicates that the operation resulted in overflow.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

2. The parity flag bit (P) is set if the result has an even number of 1s, otherwise it will be reset

(made zero).

3. The sign flag bit (S) is set if the bit D7 of the result is 1, otherwise it is reset. The sign bit

indicates the sign of the number (Positive or Negative) and becomes useful in the signed binary

number system.

4. The zero flag bit (Z) is set if the result of the operation becomes 0. For all other values of the

result the bit is reset.

5. The auxiliary carry flag bit (AC) is set, when a carry is generated at digit D3 position, and

passed on to digit D4. The flag is used only internally for Binary Coded Decimal(BCD)

operations.

The bit position of different flag register is shown in table.

INSTRUCTION REGISTER AND DECODER

 Instruction register and decoder is an 8-bit register.

 When an instruction is fetched from memory, it is loaded in the instruction register.

 The instruction decoder decodes the contents of the instruction register.

 It also determines the operation to be followed in executing the entire instruction and

directs the timing and control unit accordingly.

 During the fetch cycle, the opcode of an instruction is stored in the instruction register.

This opcode then drives the instruction decoder and machine- cycle encoder.

TIMING AND CONTROL

 The timing and control section of microprocessor includes an oscillator and controller-

sequencer.

 The oscillator generates the two – phase clock signals (CLK and) that synchronize all

registers. CLK

 The controller-sequencer also produces the control signals needed for internal and

external control.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 The controller – sequencer is micro programmed; it has a ROM that stores all the micro

routines needed for executing the instruction.

 After each instruction is fetched and stored in the instruction register, the opcode is

decoded to get the starting address of the desired micro routine.

 As each microinstruction is read out of the control ROM, control signals are sent to the

internal and external data buses.

 The effect is to move data between registers, to perform arithmetic and logic operations,

to input or output data, etc.

 The control ROM is sometimes called the control store.

INTERRUPT CONTROL

 Sometimes it is necessary to interrupt the execution of the main program to answer a

request from an I/O device.

 For instance, an I/O device may send an interrupt signal to the interrupt control unit to

indicate that data is ready for input.

 The computer temporarily stops the execution of main program, inputs the data, and then

returns to the main program.

 The interrupt concept is analogous to reading a book (main program), hearing the phone

(interrupt), answering the phone (servicing the interrupt), then returning back to reading

(main program).

SERIAL I/O CONTROL

Sometimes, I/O devices work with serial data rather than parallel. In this case, the serial data

stream from an input device must convert to 8-bit parallel data before the computer can use it.

Likewise, the 8-bit data out of a computer mus t be converted to serial form before a serial

output device can use it.

The Serial Input Data enters 8085 through pin 5 (SID – Serial Input Data) and leaves through

pin 4 (SOD – Serial Input Data) and leaves through pin 4 (SOD – Serial Output Data). Two new

instructions known as SIM and RIM allows us to perform the serial- parallel conversion needed

for serial I/O devices.

ADDRESS, DATA, AND CONTROL BUSES

Near the top of the Figure is an 8-bit internal data bus. This carries instructions and data

between the CPU registers. The external buses are the ones we have to connect to otherchips

like memory I/O and so forth. Near the bottom left of the Figure is the external control bus (,

ALE). On the bottom right are the external address- data buses. WR RD,

The upper 8 address bits are on a separate bus always used for address bits; this upper section of

the address bus is designated A15 - A8. The lower 8-bit are multiplexed. This means that the

eight lower bus lines are used for address bits during some T states and for data bits during other

T states. This is why the bus is labeled address-data bus, and designed as AD7 – AD0.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

ADDRESS BUFFER AND ADDRESS DATA-BUFFER

At the bottom right in Figure are two buffer registers called the address buffer and the address –

data buffer. The contents of the stack pointer or program counter can be loaded into the address

buffer and address – data buffer. The put of these buffers then drives the external address bus

and address –data bus. Memory and I/O chips are connected to these buses. In this way, the

CPU can send the address of desired data to the memory or I/O chips.

The 8-bit internal data bus is also connected to the address- data buffer. The bi-directional arrow

indicates a three-state connection that allows the address-data buffer to send or receive data

from the 8-bit internal data bus.

Features Of 8085

1. 8085A is an 8-bit general – purpose microprocessor.

2. It is a 40 pin dual - in – line package single chip integrated circuit.

3. Only one +5v power supply is needed for its operation.

4. It can operate with a 3 MHZ single – phase clock.

5. The 8085A – 2 versions can operate at the maximum frequency of 5MHZ.

6. The width of the data bus is 8-bit. The width of the address bus is 16 –bit. Therefore

maximum of 64 kilobytes of memory locations (i.e. 216=65,536=64KB) can be addressed

directly by the 8085.

7. The multiplexing of address/data bus allows for extra control signals.

8. 8085 has one non- maskable (TRAP) and three maskable – vectored interrupts (RST 7.5, 6.5

& 5.5).

9. It provides Serial Input Data (SID) and Serial Output Data(SOD) lines for simple serial

interface.

10. 8085 has an inbuilt clock oscillator circuit and requires externally only a crystal. The

frequency of the crystal is internally divided by 2.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

Bus Organization of INTEL 8085

4. PIN DIAGRAM AND PIN DESCRIPTION OF 8085

 8085 is a 40 pin IC, DIP.

 The microprocessor is a clock-driven semiconductor device consisting of electronic logic

circuits manufactured by using either a large-scale integration (LSI) or very-large-scale

integration (VLSI) technique.

 The microprocessor is capable of performing various computing functions and making

decisions to change the sequence of program execution.

 In large computers, a CPU implemented on one or more circuit boards performs these

computing functions.

 The microprocessor is in many ways similar to the CPU, but includes the logic circuitry,

including the control unit, on one chip.

 The microprocessor can be divided into three segments for the sake clarity,

arithmetic/logic unit (ALU), register array, and control unit.

POWER SUPPLY AND CLOCK FREQUENCY SIGNALS:

 Vcc + 5 volt power supply

 Vss Ground

 X1, X2 : Crystal or R/C network or LC network connections to set the frequency of

internal clock generator.

 The frequency is internally divided by two. Since the basic operating timing frequency is

3 MHz, a 6 MHz crystal is connected externally.

 CLK (output)-Clock Output is used as the system clock for peripheral and devices

interfaced with the microprocessor.

The signals from the pins can be grouped as follows:

1. Power supply and clock signals

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

2. Address bus

3. Data bus

4. Control and status signals

5. Interrupts and externally initiated signals

6. Serial I/O ports

ADDRESS BUS

 A8 - A15 (output; 3-state)

 It carries the most significant 8 bits of the memory address or the 8 bits of the I/O

address;

Fig - Pin Diagram of 8085

MULTIPLEXED ADDRESS / DATA BUS

 AD0 - AD7 (input/output; 3-state)

 These multiplexed set of lines used to carry the lower order 8 bit address as well as data

bus.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 During the opcode fetch operation, in the first clock cycle, the lines deliver the lower

order address A0 - A7.

 In the subsequent IO / memory, read / write clock cycle the lines are used as data bus.

The CPU may read or write out data through these lines

CONTROL AND STATUS SIGNALS

 ALE (output) - Address Latch Enable.

 This signal helps to capture the lower order address presented on the multiplexed address

/ data bus.

 RD (output 3-state, active low) - Read memory or IO device.

 This indicates that the selected memory location or I/O device is to be read and that the

data bus is ready for accepting data from the memory or I/O device.

 WR (output 3-state, active low) - Write memory or IO device.

 This indicates that the data on the data bus is to be written into the selected memory

location or I/O device.

 IO/M (output) - Select memory or an IO device.

 This status signal indicates that the read / write operation relates to whether the memory

or I/O device.

 It goes high to indicate an I/O operation.

 It goes low for memory operations.

STATUS SIGNALS

 It is used to know the type of current operation of the microprocessor.

INTERRUPTS AND EXTERNALLY INITIATED OPERATIONS

 They are the signals initiated by an external device to request the microprocessor to do a

particular task or work.

 There are five hardware interrupts called,

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 On receipt of an interrupt, the microprocessor acknowledges the interrupt by the active

low INTA (Interrupt Acknowledge) signal.

Reset In (input, active low)

 This signal is used to reset the microprocessor.

 The program counter inside the microprocessor is set to zero.

 The buses are tri-stated.

Reset Out (Output)

 It indicates CPU is being reset.

 Used to reset all the connected devices when the microprocessor is reset.

5. DIRECT MEMORY ACCESS (DMA)

Tri state devices:

 3 output states are high & low states and additionally a high impedance state.

 When enable E is high the gate is enabled and the output Q can be 1 or 0 (if A is 0, Q is

1, otherwise Q is 0). However, when E is low the gate is disabled and the output Q enters

into a high impedance state.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 For both high and low states, the output Q draws a current from the input of the OR gate.

 When E is low, Q enters a high impedance state; high impedance means it is electrically

isolated from the OR gate's input, though it is physically connected. Therefore, it does

not draw any current from the OR gate's input.

 When 2 or more devices are connected to a common bus, to prevent the devices from

interfering with each other, the tri state gates are used to disconnect all devices except

the one that is communicating at a given instant.

 The CPU controls the data transfer operation between memory and I/O device. Direct

Memory Access operation is used for large volume data transfer between memory and an

I/O device directly.

 The CPU is disabled by tri-stating its buses and the transfer is effected directly by

external control circuits.

 HOLD signal is generated by the DMA controller circuit. On receipt of this signal, the

microprocessor acknowledges the request by sending out HLDA signal and leaves out

the control of the buses. After the HLDA signal the DMA controller starts the direct

transfer of data.

READY (input)

 Memory and I/O devices will have slower response compared to microprocessors.

 Before completing the present job such a slow peripheral may not be able to handle

further data or control signal from CPU.

 The processor sets the READY signal after completing the present job to access the data.

 The microprocessor enters into WAIT state while the READY pin is disabled.

Single Bit Serial I/O Ports

 SID (input) - Serial input data line

 SOD (output) - Serial output data line

 These signals are used for serial communication.

6. INSTRUCTION WORD SIZE

The 8085 instruction set is classified into the following three groups according to word size:

1. One-word or 1-byte instructions

2. Two-word or 2-byte instructions

3. Three-word or 3-byte instructions

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

In the 8085, "byte" and "word" are synonymous because it is an 8-bit microprocessor.

However, instructions are commonly referred to in terms of bytes rather than words.

One-Byte Instructions

A 1-byte instruction includes the opcode and operand in the same byte. Operand(s) are

internal register and are coded into the instruction

For example:

Task Opcode Operand Binary

Code

Hex

Code

Copy the contents of the accumulator in

the register C.

MOV C,A 0100 1111 4FH

Add the contents of register B to the

contents of the accumulator.

ADD B 1000 0000 80H

Invert (compliment) each bit in the

accumulator.

CMA 0010 1111 2FH

These instructions are 1-byte instructions performing three different tasks. In the first

instruction, both operand registers are specified. In the second instruction, the operand B is

specified and the accumulator is assumed. Similarly, in the third instruction, the accumulator

is assumed to be the implicit operand. These instructions are stored in 8- bit binary format in

memory; each requires one memory location.

MOV rd, rs

rd <-- rs copies contents of rs into rd.

Coded as 01 ddd sss where ddd is a code for one of the 7 general registers which is the

destination of the data, sss is the code of the source register.

Example: MOV A,B

Coded as 01111000 = 78H = 170 octal (octal was used extensively in instruction design of

such processors).

ADD r

A <-- A + r

Two-Byte Instructions

In a two-byte instruction, the first byte specifies the operation code and the second byte

specifies the operand. Source operand is a data byte immediately following theopcode.

For example

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

Task Opcode Operand Binary

Code

Hex Code

Load an 8-bit

data

byte in the

accumulator.

MVI A, Data 0011 1110 3E

Data
First Byte

Second Byte

DATA

Assume that the data byte is 32H. The assembly language instruction is written as

Mnemonics Hex code

MVI A, 32H 3E 32H

The instruction would require two memory locations to store in memory.

MVI r,data

r <-- data

Example: MVI A,30H coded as 3EH 30H as two contiguous bytes. This is an example of

immediate addressing.

ADI data

A <-- A + data

OUT port

where port is an 8-bit device address. (Port) <-- A. Since the byte is not the data but points

directly to where it is located this is called direct addressing.

Three-Byte Instructions

In a three-byte instruction, the first byte specifies the opcode, and the following two bytes

specify the 16-bit address. Note that the second byte is the low-order address and the third

byte is the high-order address.

opcode + data byte + data byte

For example:

Task Opcode Operand Binary code Hex Code

Transfer the JMP 2085H 1100 0011 C3
85

20

First byte
Second Byte

Third Byte

program

1000 0101 sequence to

the memory

0010 0000 location

2085H.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

This instruction would require three memory locations to store in memory.

Three byte instructions - opcode + data byte + data byte

LXI rp, data16

rp is one of the pairs of registers BC, DE, HL used as 16-bit registers. The two data

bytes are 16-bit data in L H order of significance.

rp <-- data16

Example:

LXI H,0520H coded as 21H 20H 50H in three bytes. This is also immediate addressing.

LDA addr

A <-- (addr) Addr is a 16-bit address in L H order. Example: LDA 2134H coded as 3AH

34H 21H. This is also an example of direct addressing.

7. ADDRESSING MODES OF 8085

 Every instruction of a program has to operate on a data.

 The method of specifying the data to be operated by the instruction is called Addressing.

 The various ways of specifying the operand in the operand field of an instruction are

called the addressing modes.

The various addressing modes are:

1. Direct addressing mode

2. Immediate addressing mode

3. Register direct addressing mode

4. Register indirect addressing mode

5. Implicit addressing mode

6. Stack addressing mode

7. Indirect addressing mode

8. Indexed addressing mode

9. Relative addressing mode

1) DIRECT ADDRESSING MODE:

In direct addressing mode, the address of the operand is directly specified in the

instruction. Except IN and OUT instructions all other direct addressing modes are 3-

bytes long.

Examples:

a) STA 16-bit Address – The contents of the accumulator are copied to a memory

location whose address is specified.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

b) LDA 16-bit Address – The contents of the memory location whose address is

specified in byte 2 and byte 3 of the instructions are copied to the Accumulator. It

is 3-byte instruction.

2) IMMEDIATE ADDRESSING MODE:

In immediate addressing mode, the actual data (8-bit or 16-bit) is part of the instruction.

The length of the instruction may be two or three bytes. The first byte specifies opcode. If it

is a two byte instruction, the second byte specifies an 8-bit data. If it is a three byte

instruction, the second and third bytes specify 16-bit data.

Examples:

a) MVI R, 8-bit Data

It is a 2 byte instruction. Byte 2 (8-bit data) of the instruction is immediately

moved to register R (R may be A, B, C, D, E, H, L).

b) LXI RP, 16-bit Data

It is a 3-byte instruction. Byte 2 of the instruction is immediately moved into

the low-order register of the register pair Rp and byte 3 of the instruction

immediately moved into the high-order register of the register pair.

3) REGISTER DIRECT ADDRESSING MODE:

In some instructions, general-purpose registers are specified as the address of the

operands. Such instructions are called as register direct addressing mode instructions.

These instructions are one byte long. Since the microprocessor need not fetch data from

memory, this mode of addressing is faster than direct addressing mode. This mode of

addressing is called as register addressing mode.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

Examples:

a) MOV Rd, Rs

The contents of the source register (Rs) are moved to the destination register

(Rd). It is a single byte instruction (Rd and Rs are general purpose registers).

b) ADD R

It is a single byte instruction. The contents of the register pair ‘Rp’. (Rp may be

BC, DE, HL) are incremented by 1.

4) REGISTER INDIRECT ADDRESSING MODE:

In register indirect addressing mode the contents of the specified register pair is used as

the address of the operand. The register pair contains the 16-bit address of the memory

location where the actual operand is stored. Usually the memory pointer (HL-register

pair) contains the address of the memory location.

Examples

a) MOV Rd ,M

It is a single byte instruction. The contents of the memory location whose address

is specified by the contents of the HL-register pair are moved to the destination

register Rd (Rd may be any one of the general purpose register).

b) ADD M

It is a single byte instruction. The contents of the memory location whose address

is specifies by the contents of the memory pointer (HL – register pair) are added

with the contents of the accumulator and the result is placed in the accumulator.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

5) IMPLICIT ADDRESSING MODE

In implicit addressing mode, the address of a register (Accumulator in the case of 8085

containing the operand data) is implicitly stated in the opcode itself. In this addressing

mode, the instructions are one byte long since the operand is in the accumulator.

Examples

a) CMA – It is a single byte instruction. The content of the accumulator is

completed. There the operand (data) which is nothing but the contents of

accumulator is specified within the instruction.

b) RLC – It is a single byte instruction. The contents of the accumulator are rotated

left by one position.

6) STACK ADDRESSING MODE

In this addressing the content of the stack pointer (16-bit register) is the address of the

operand (data). It is similar to register addressing mode. Here the stack pointer content is

the address of the stack memory.

Examples

POP Rp – It is a single byte instruction. The contents of the memory location

pointed by the stack pointer are copied to the low-order-register. The stack pointer

is incremented by 1 and contents of that memory location are copied to the high

order register.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

7. INDIRECT ADDRESSING MODE:

In Indirect addressing mode, the instruction points to an Address where the exact address

of the operand is present.

Examples

ADD A, 2050 – In this instruction the contents of the accumulator are added with the

content of memory location, whose Address is specified by the operand of the

instruction.

8. INDEXED ADDRESSING MODE

In this Addressing mode the Address of the operand is specified in relation to the

contents of a 16-bit register called “Index Register”. A displacement, which is to be

added with the contents of the index, register is also given in the instruction itself. This

type of Addressing mode is used in Z-80 microprocessor.

Examples

a) LD R, (IX + d) – This instruction will move the contents of the memory

location specified by (IX + d) into specified register.

b) ADD A, (IX +d) – This instruction will add the contents of the memory location

specified by (IX + d) with the contents of the accumulator.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

8. RELATIVE ADDRESSING MODE

In this type of addressing mode, in order to find the effective address the address specified in the

instruction (referred as offset) is added with the contents of PC. This mode of addressing is used

in Motorola 6800 and Z – 80 microprocessor.

Offset is the displacement of the branching location from the Branch instruction.

Offset = address of the loop – address of next instruction to the branch

instruction

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

MSB LSB

8. INSTRUCTION SET OF 8085

The 8085A implements a group of instructions that move data between registers, between

a register and memory, and between registers and an I/O Port. It also has arithmetic and logic

instructions, conditional branch instructions. The CPU recognizes these instructions only when

they are coded in binary form.

Instruction and Data Formats

Data in the 8085A is stored in the form of 8-bit values.

D7 D6 D5 D4 D3 D2 D1 D0

The complete 8085 instruction set is described, grouped under five different functional

headings, as follows

1. DATA TRANSFER INSTRUCTIONS

It includes the instruction that moves (copies) data between memory location and

register. In all data transfer operations the content of source register / memory is not

altered. Hence the data transfer is copying instruction.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

Opcode Operand Description

Copy from source to destination

MOV Rd, Rs This instruction copies the contents of the source

 M, Rs register into the destination register; the contents of

 Rd, M the source register are not altered. If one of the operands is a

 memory location, its location is specified by the contents of

the HL registers.

Example: MOV B, C or MOV B, M

Load accumulator

LDA 16-bit address The contents of a memory location, specified by a

 16-bit address in the operand, are copied to the accumulator.

The contents of the source are not altered.

Example: LDA 2034H

Store accumulator direct

STA 16-bit address The contents of the accumulator are copied into the memory

 location specified by the operand. This is a 3-byte instruction,

the second byte specifies the low-order address and the third

byte specifies the high-order address.

Example: STA 4350H

Exchange H and L with D and E

XCHG none The contents of register H are exchanged with the contents of

 register D, and the contents of register L are exchanged with

the contents of register E.

Example: XCHG

Push register pair onto stack

PUS Reg. pair The contents of the register pair designated in the operand are

 copied onto the stack in the following sequence. The stack

pointer register is decremented and the contents of the high-

order register (B, D, H, A) are copied into that location. The

stack pointer register is decremented again and the contents of

the low-order register (C, E, L, flags) are copied to that

location.

Example: PUSH B or PUSH A

Pop off stack to register pair

POP Reg. pair The contents of the memory location pointed out by the stack

 pointer register are copied to the low-order register (C, E, L,

status flags) of the operand. The stack pointer is incremented

by 1 and the contents of that memory location are copied to

the high-order register (B, D, H, A) of the operand. The stack

pointer register is again incremented by 1.

Example: POP H or POP A

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

Output data from accumulator to a port with 8-bit address

OUT 8-bit port address The contents of the accumulator are copied into the I/O

 port specified by the operand.

Example: OUT F8H

2. ARITHMETIC INSTRUCTIONS

It includes the instruction which performs addition, subtraction, increment,

decrement operations. The flag conditions are altered after execution of an

instruction in this group.

Opcode Operand Description

Add register or memory to accumulator

ADD R The contents of the operand (register or memory) are

ADD M added to the contents of the accumulator and the result is

 stored in the accumulator. If the operand is a memory

location, its location is specified by the contents of the HL

registers. All flags are modified to reflect the result of the

addition.

Example: ADD B or ADD M

Subtract immediate from accumulator

SUI 8-bit data The 8-bit data (operand) is subtracted from the contents of the

 accumulator and the result is stored in the accumulator. All

flags are modified to reflect the result of the subtraction.

Example: SUI 45H

Decimal adjust accumulator

DAA

none

The contents of the accumulator are changed from a binary

value to two 4-bit binary coded decimal (BCD) digits. This is

the only instruction that uses the auxiliary flag to perform the

binary to BCD conversion, and the conversion procedure is

described below. S, Z, AC, P, CY flags are altered to reflect

the results of the operation.

If the value of the low-order 4-bits in the accumulator is

greater than 9 or if AC flag is set, the instruction adds 6 to the

low-order four bits.

If the value of the high-order 4-bits in the accumulator is

greater than 9 or if the Carry flag is set, the instruction adds6

to the high-order four bits.

Example: DAA

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

Increment register pair by 1

INX R The contents of the designated register pair are incremented

 by 1 and the result is stored in the same place.

Example: INX H

3. BRANCHING INSTRUCTIONS

The instructions which performs the logical operations like AND, OR, EX-OR,

complement, compare and rotate instructions are grouped under this heading. The

flag conditions are altered after the execution of an instruction in this group.

Opcode Operand Description

Jump unconditionally

JMP R The program sequence is transferred to the memory location

 specified by the 16-bit address given in the operand.

Example: JMP 2034H or JMP XYZ

Opcode Description Flag Status

JC Jump on Carry CY = 1

JNC Jump on no Carry CY = 0

JP Jump on positive S = 0

JM Jump on minus S = 1

JZ Jump on zero Z = 1

JNZ Jump on no zero Z = 0

JPE Jump on parity even P = 1

JPO Jump on parity odd P = 0

Unconditional subroutine call

CALL 16-bit address The program sequence is transferred to the memory location

 specified by the 16-bit address given in the operand. Before

the transfer, the address of the next instruction after CALL

(the contents of the program counter) is pushed onto the stack.

Example: CALL 2034H or CALL XYZ

Opcode Description Flag Status

CC Call on Carry CY = 1

CNC Call on no Carry CY = 0

CP Call on positive S = 0

CM Call on minus S = 1

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

CZ Call on zero Z = 1

CNZ Call on no zero Z = 0

CPE Call on parity even P = 1

CPO Call on parity odd P = 0

4. LOGICAL INSTRUCTIONS

The instructions that are used to transfer the program control from one memory

location to another memory location are grouped under this heading.

Opcode Operand Description

Compare register or memory with accumulator

CMP R The contents of the operand (register or memory) are compared

with the contents of the accumulator. Both contents are

preserved. The result of the comparison is shown by setting

the flags of the PSW as follows:

if (A) < (reg/mem):

carry flag is

set if (A) = (reg/mem):

zero flag is set

if (A) > (reg/mem): carry and zero flags are reset

Example: CMP B or CMP M

 M

Logical AND register or memory with accumulator

ANA R The contents of the accumulator are logically ANDed with
 M the contents of the operand (register or memory), and the

 result is placed in the accumulator. If the operand is a

memory location, its address is specified by the contents of

HL registers. S, Z, P are modified to reflect the result of the

operation. CY is reset. AC is set.

Example: ANA B or ANA M

Exclusi0ve OR register or memory with accumulator

XRA R The contents of the accumulator are Ex-ORed with
 M the contents of the operand (register or memory), and the

 result is placed in the accumulator. If the operand is a

memory location, its address is specified by the contents of

HL registers. S, Z, P are modified to reflect the result of the

operation. CY and AC are reset.

Example: XRA B or XRA M

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

5. MACHINE CONTROL INSTRUCTIONS

It includes the instructions related to interrupts and the instructions used to halt

program execution.

Opcode Operand Description

Halt and enter wait state

HLT none The CPU finishes executing the current instruction and halts

 any further execution. An interrupt or reset is necessary to

exit from the halt state.

Example: HLT

Enable interrupts

EI none The interrupt enable flip-flop is set and all interrupts are

 enabled. No flags are affected. After a system reset or the

acknowledgement of an interrupt, the interrupt enable flip-

flop is reset, thus disabling the interrupts. This instruction is

necessary to reenable the interrupts (except TRAP).

Example: EI

Read interrupt mask

RIM none This is a multipurpose instruction used to read the status of

 interrupts 7.5, 6.5, 5.5 and read serial data input bit. The

instruction loads eight bits in the accumulator with the

following interpretations.

Example: RIM

9. ASSEMBLY LANGUAGE PROGRAMMING:

Assembler:

It is software that converts assembly language program code to machine language code.

Assembly language instructions have the format:

ADDRESS LABEL MNEMONICS OPERAND COMMENTS

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

Address

o Specify the address of an instruction.

Instruction Label (optional)

o Marks the address of an instruction, must have a colon :

o Used to transfer program execution to a labeled instruction

Mnemonic

o Identifies the operation (e.g. MOV, ADD, SUB, JMP, CALL)

Operands

o Specify the data required by the operation

o Executable instructions can have zero to three operands

o Operands can be registers, memory variables, or constants

No operands

stc ; set carry flag

One operand

inc eax ; increment register eax

call Clrscr ; call procedure Clrscr

jmp L1 ; jump to instruction with label L1

Two operands

add ebx, ecx ; register ebx = ebx + ecx

sub var1, 25 ; memory variable var1 = var1 – 25

Three operands

imul eax,ebx,5 ; register eax = ebx * 5

Identifiers

 Identifier is a programmer chosen name

 Identifies variable, constant, procedure, code label

 May contain between 1 and 247 characters

 Not case sensitive

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 First character must be a letter (A..Z, a..z), underscore(_), @, ?, or $.

 Subsequent characters may also be digits.

 Cannot be same as assembler reserved word.

Comments

 Comments are very important!

o Explain the program's purpose

o When it was written, revised, and by whom

o Explain data used in the program

o Explain instruction sequences and algorithms used

o Application-specific explanations

 Single-line comments

o Begin with a semicolon ; and terminate at end of line

 Multi-line comments

o Begin with COMMENT directive and a chosen character

o End with the same chosen character

Arithmetic Operation:

Program in C:

void main()

{

int a=5,b=6,c; // define the data type for variable a,b& cand intialize the value for variable a

& b respectively.

c=a+b; // add the varible a & b and place the result in C

printf(“%d”,c); // display the value of variable c

}

Program in Microprocessor (immediate addressing):

MVI A, 05 // assign the value 05 to accumulator

MVI B, 06 // assign the value 06 to B register

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

ADD B // add the content in B register with accumulator and place the result in

accumulator

STA 4200 // store the result to the memory location 4200. HLT // stop the program

Program in C:

Void main()

{

Int a, b, c; \\define the data type for variable

Printf(“enter the value for a & b”);

Scanf(“%d%d”&a,&b); // get the number and place it to the memory respectively.

C=a+b; // add the variable a & b and place the result into c.

Printf(“reult is %d”c); // display the value of c;

}

Program in Microprocessor (direct addressing):

LDA 4500 // load the content of memory location 4500 to accumulator. MOV B,A // move

the content from accumulator to B register.

LDA 4501 // load the content of memory location 4501 to accumulator

ADD B // add the content in B register with accumulator and place the result in

accumulator

STA 4502 // store the result to the memory location 4200.

HLT // stop the program.

Logic operation:

//C program for Arranging 5 Numbers in Ascending Order

#include<stdio.h>

#include<conio.h>

void main()

{

int a[5],i,j,t; // define the variables.

clrscr();

printf("Enter 5 nos.\n\n");

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

for (i=0;i<5;i++) // perform loop operation.

scanf("%d",&a[i]); // get the given number to store it in the respective address .

for (i=0;i<5;i++) // perform loop operation.

{ for(j=i+1;j<5;j++) // perform inner loop operation.

{ if(a[i]>a[j]) // compare the numbers a[i] & a[j] respectively

{ t=a[i]; // use the temporary variable for making swap operation.

a[i]=a[j];

a[j]=t;

} } }

printf("Ascending Order is:");

for(j=0;j<5;j++) // perform the loop operation for display the number in ascending order.

printf("\n%d",a[j]);

getch();

}

ASCENDING ORDER

Aim:

To write a program to sort given 'n' numbers in ascending order

Algorithm:

1. Load the count value from memory to A-reg and save it in B-reg.

2. Decrement B-reg (B is a count for (N-1) repetitions)

3. Set HL pair as data address pointer.

4. Set C-reg as counter for(N-1) comparisons.

5. Load a data of the array in accumulator using the data address pointer.

6. Increment the HL pair(data address pointer).

7. Compare the data pointed by HL with accumulator.

8. If Carry flag is set(if the content of accumulator is smaller than memory)then goto

step10,otherwise go to next step.

9. Exchange the content of memory pointed by HL and the accumulator.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

10. Decrement C-register. If zero flag is reset go to step 6 otherwise go to next step.

11. Decrement B-register. If zero flag is reset go to step 3 otherwise go to next step.

12. Stop.

Program:

ADDRESS LABEL MNEMONICS OPCODE COMMENTS

4100 LDA 4200 3A,00,42 Load the count value in A-reg.

4103 MOV B, A 47 Set counter for (N-1) repetition of

 (N-1) comparisons.

4104 DCR B 05

4105 LOOP2: LXI H, 4200H 21,00,42 Set pointer for array

4108 MOV C, M 4E Set counter for of (N-1)

comparisons.

4109 DCR C 0D Decrement the content of C-reg.

410A INX H 23 Increment the HL-reg pair.

410B LOOP1: MOV A,M 7E Move the content of memory

pointer to accumulator.

410C INX H 23 Increment the HL-reg pair.

410D CMP M BE Compare the accumulator with

memory.

410E JC AHEAD DA,16,41 If the content of A-reg is less than

memory address of HL-reg pair then

go to AHEAD.

4111 MOV D, M 56 If the content of A-reg is greater

than the memory address of HL- reg

pair, then exchange the

content of memory pointed by HL

and previous location.

4112 MOV M, A 77

4113 DCX H 2B

4114 MOV M,D 72

4115 INX H 23 Increment the HL-reg pair.

4116 AHEAD: DCR C 0D Decrement the content of C-reg.

4117 JNZ LOOP1 C2,0B,41 Repeat comparisons until C count

is zero.

411A DCR B 05

411B JNZ LOOP2 C2,05,41 Repeat until B count is zero.

411E HLT 76 Stop the program

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

10.THE STACK

 The stack is an area of memory identified by the programmer for temporary storage of

information.

 The stack is a LIFO structure.

-Last In First Out.

 The stack normally grows backwards into memory.

-In other words, the programmer defines the bottom of the stack and the stack

grows up into reducing address range.

 Given that the stack grows backwards into memory, it is customary to place the bottom

of the stack at the end of memory to keep it as far away from user programs as possible.

 In the 8085, the stack is defined by setting the SP (Stack Pointer) register.

LXI SP, FFFFH

 This sets the Stack Pointer to location FFFFH (end of memory for the 8085).

Saving Information on the Stack

 Information is saved on the stack by PUSHing it on. It is retrieved from the stack by

POPing it off.

 The 8085 provides two instructions:

o PUSH and POP for storing information on the stack and retrieving it back.

o Both PUSH and POP work with register pairs ONLY.

The PUSH Instruction

 PUSH B

o Decrement SP

o Copy the contents of register B to the memory location pointed to by SP

o Decrement SP

o Copy the contents of register C to the memory location pointed to by SP

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

The POP Instruction

 POP D

o Copy the contents of the memory location pointed to by the SP to register E

o Increment SP

o Copy the contents of the memory location pointed to by the SP to register D

o Increment SP

Operation of the Stack

 During pushing, the stack operates in a “decrement then store” style.

o The stack pointer is decremented first, then the information is placed on the
stack.

 During poping, the stack operates in a “use then increment” style.

o The information is retrieved from the top of the the stack and then the pointer is
incremented.

 The SP pointer always points to “the top of the stack”.

LIFO

 The order of PUSHs and POPs must be opposite of each other in order to retrieve

information back into its original location.

PUSH B

PUSH D

......

POP D

POP B

The PSW Register Pair

 The 8085 recognizes one additional register pair called the PSW (Program Status Word).

o This register pair is made up of the Accumulator and the Flags registers.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 It is possible to push the PSW onto the stack, do whatever operations are needed, then

POP it off of the stack.

o The result is that the contents of the Accumulator and the status of the Flags are
returned to what they were before the operations were executed.

11. SUBROUTINES

 A subroutine is a group of instructions that will be used repeatedly in different locations

of the program.

o Rather than repeat the same instructions several times, they can be grouped into a
subroutine that is called from the different locations.

 In Assembly language, a subroutine can exist any where in the code.

o However, it is customary to place subroutines separately from the main program.

 The 8085 has two instructions for dealing with subroutines.

o The CALL instruction is used to redirect program execution to the subroutine.

o The RTE instruction is used to return the execution to the calling routine.

The CALL Instruction

 CALL 4000H

o Push the address of the instruction immediately following the CALL onto the
stack

o Load the program counter with the 16-bit address supplied with the CALL
instruction.

The RTE Instruction

 RTE

o Retrieve the return address from the top of the stack

o Load the program counter with the return address.

 PUSH and POP should be used in op

 There has to be as many POP’s as the

o If not, the RET statement will
stack and the program will fail

 It is not advisable to place PUSH or P

Conditional CALL and RTE Instructions

 The 8085 supports conditional CALL

o The same conditions used wit
 CC, call subroutine if
 CNC, call subroutine if

 RC, return from subro

 RNC, return from subr

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 The CALL instruction places the return address at the two memory locations

immediately before where the Stack Pointer is pointing.

o You must set the SP correctly BEFORE using the CALL instruction.

 The RTE instruction takes the contents of the two memory locations at the top of the

stack and uses these as the return address.
o Do not modify the stack pointer in a subroutine. You will loose the return

address.

Passing Data to a Subroutine

 In Assembly Language data is passed to a subroutine through registers.

o The data is stored in one of the registers by the calling program and the
subroutine uses the value from the register.

 The other possibility is to use agreed upon memory locations.

o The calling program stores the data in the memory location and the subroutine
retrieves the data from the location and uses it.

Call by Reference and Call by Value

 If the subroutine performs operations on the contents of the registers, then these

modifications will be transferred back to the calling program upon returning from a

subroutine.

o Call by reference.

 If this is not desired, the subroutine should PUSH all the registers it needs on the stack

on entry and POP them on return.

o The original values are restored before execution returns to the calling program.

Cautions with PUSH and POP
posite order.

re are PUSH’s.

pick up the wrong information from the top of the

.

OP inside a loop.

and conditional RTE instructions.
h conditional JUMP instructions can be used.

Carry flag is set.

Carry flag is not set.

utine if Carry flag is set.

outine if Carry flag is not set Etc.

12. TIMING DIAGRAM

OPCODE FETCH MACHINE CYCLE OF 8085:

 Each instruction of the processor has one byte opcode.

 The opcodes are stored in memory. So, the processor executes the opcode fetch machine

cycle to fetch the opcode from memory.

 Hence, every instruction starts with opcode fetch machine cycle.

 The time taken by the processor to execute the opcode fetch cycle is 4T.

 In this time, the first, 3 T-states are used for fetching the opcode from memory and the

remaining T-states are used for internal operations by the processor.

Fig - Timing Diagram for Opcode Fetch Machine Cycle

MEMORY READ MACHINE CYCLE OF 8085:

 The memory read machine cycle is executed by the processor to read a data byte from

memory.

 The processor takes 3T states to execute this cycle.

 The instructions which have more than one byte word size will use the machine cycle

after the opcode fetch machine cycle.

Fig - Timing Diagram for Memory Read Machine Cycle

I/O WRITE CYCLE OF 8085:

 The I/O write machine cycle is executed by the processor to write a data byte in the I/O

port or to a peripheral, which is I/O, mapped in the system.

 The processor takes 3T states to execute this machine cycle.

Fig - Timing Diagram for I/O Write Machine Cycle

TIMING DIAGRAM OF 8085 INSTRUCTIONS

 The 8085 instructions consist of one to five machine cycles.

 Actually the execution of an instruction is the execution of the machine cycles of that

instruction in the predefined order.

 The timing diagram of an instruction ate obtained by drawing the timing diagrams of the

machine cycles of that instruction, one by one in the order of execution.

Timing Diagram for STA 526AH

 STA means Store Accumulator -The contents of the accumulator is stored in the

specified address (526A).

 The opcode of the STA instruction is said to be 32H. It is fetched from the memory

41FFH (see fig). - OF machine cycle

 Then the lower order memory address is read(6A). - Memory Read Machine Cycle

 Read the higher order memory address (52).- Memory Read Machine Cycle

 The combinations of both the addresses are considered and the content from

accumulator is written in 526A. - Memory Write Machine Cycle

 Assume the memory address for the instruction and let the content of accumulator is

C7H. So, C7H from accumulator is now stored in 526A.

Timing Diagram for IN C0H

 Fetching the Opcode DBH from the memory 4125H.

 Read the port address C0H from 4126H.

 Read the content of port C0H and send it to the accumulator.

 Let the content of port is 5EH.

Timing diagram for INR M

 Fetching the Opcode 34H from the memory 4105H. (OF cycle)

 Let the memory address (M) be 4250H. (MR cycle -To read Memory address and data)

 Let the content of that memory is 12H.

 Increment the memory content from 12H to 13H. (MW machine cycle)

Timing diagram for MVI B, 43H

 Fetching the Opcode 06H from the memory 2000H. (OF machine cycle)

 Read (move) the data 43H from memory 2001H. (memory read)

13. EVOLUTION OF 16-BIT & 32-BIT MICROPROCESSOR:

EVOLUTION OF 16-BIT MICROPROCESSORS:

The 16-bit processors: MCS-86 family

1. 8086

Introduced June 8, 1978

Clock rates:

 5 MHz with 0.33 MIPS

 8 MHz with 0.66 MIPS

 10 MHz with 0.75 MIPS

The memory is divided into odd and even banks; it accesses both banks concurrently to read 16

bits of data in one clock cycle

 Bus width 16 bits data, 20 bits address

 Number of transistors 29,000 at 3 μm

http://en.wikipedia.org/wiki/16-bit
http://en.wikipedia.org/wiki/Intel_8086

 Addressable memory 1 megabyte

 Up to 10X the performance of 8080

First used in the Compaq Deskpro IBM PC-compatible computers. Later used in portable

computing, and in the IBM PS/2 Model 25 and Model 30. Also used in the AT&T PC6300 /

Olivetti M24, a popular IBM PC-compatible (predating the IBM PS/2 line).

Used segment registers to access more than 64 KB of data at once, which many programmers

complained made their work excessively difficult.

The first x86 CPU.

Later renamed the iAPX 86[4]

2. 8088

Introduced June 1, 1979

Clock rates:

 4.77 MHz with 0.33 MIPS

 8 MHz with 0.66 MIPS[3]

Internal architecture 16 bits

External bus Width 8 bits data, 20 bits address

Number of transistors 29,000 at 3 μm

Addressable memory 1 megabyte

Later renamed the iAPX 88

3. 80186

Introduced 1982

Clock rates

 6 MHz with > 1 MIPS

Included two timers, a DMA controller, and an interrupt controller on the chip in addition to the

processor (these were at fixed addresses which differed from the IBM PC, although it was used

by several PC compatible vendors such as Australian company Cleveland).

Added a few opcodes and exceptions to the 8086 design; otherwise identical instruction set to

8086 and 8088

BOUND, ENTER, LEAVE

INS, OUTS

http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Olivetti_M24
http://en.wikipedia.org/wiki/Olivetti_M24
http://en.wikipedia.org/wiki/Segment_register
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#cite_note-intel2-4
http://en.wikipedia.org/wiki/Intel_8088
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#cite_note-intel1-3
http://en.wikipedia.org/wiki/Intel_80186
http://en.wikipedia.org/wiki/DMA_controller
http://en.wikipedia.org/wiki/Interrupt_controller

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

IMUL imm, PUSH imm, PUSHA, POPA

RCL/RCR/ROL/ROR/SHL/SHR/SAL/SAR reg,imm

Address calculation and shift operations are faster than 8086

Later renamed the iAPX 186

4. 80188

A version of the 80186 with an 8-bit external data bus

Later renamed the iAPX 188

5. 80286

Introduced February 2, 1982

Clock rates:

 6 MHz with 0.9 MIPS

 8 MHz, 10 MHz with 1.5 MIPS

 12.5 MHz with 2.66 MIPS

 16 MHz, 20 MHz and 25 MHz available.

Bus width: 16 bits data, 24 bits address.

EVOLUTION OF 32-BIT MICROPROCESSORS:

32- bit processors: the non-x86 microprocessors

 iAPX 432

 i960 aka 80960

 i860 aka 80860

 XScale

32- bit processors: the 80386 range

 80386DX

 80386SX

 80376

 80386SL

 80386EX

32- bit processors: the 80486 range

http://en.wikipedia.org/wiki/Intel_80188
http://en.wikipedia.org/wiki/Intel_80286
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#32-bit_processors%3A_the_non-x86_microprocessors
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#iAPX_432
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#i960_aka_80960
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#i860_aka_80860
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#XScale
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#32-bit_processors%3A_the_80386_range
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#80386DX
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#80386SX
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#80376
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#80386SL
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#80386EX
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#32-bit_processors%3A_the_80486_range

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 80486DX

 80486SX

 80486DX2

 80486SL

 80486DX4

32- bit processors: P5 microarchitecture

 Original Pentium

 Pentium with MMX Technology

32- bit processors: P6/Pentium M microarchitecture

 Pentium Pro

 Pentium II

 Celeron (Pentium II-based)

 Pentium III

 Pentium II and III Xeon

 Celeron (Pentium III Coppermine-based)

 Celeron (Pentium III Tualatin-based)

 Pentium M

 Celeron M

 Intel Core

 Dual-Core Xeon LV

32- bit processors: NetBurst microarchitecture

 Pentium 4

 Xeon

 Mobile Pentium 4-M

 Pentium 4 EE

 Pentium 4E

 Pentium 4F

http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#80486DX
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#80486SX
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#80486DX2
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#80486SL
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#80486DX4
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#32-bit_processors%3A_P5_microarchitecture
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Original_Pentium
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Pentium_with_MMX_Technology
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#32-bit_processors%3A_P6.2FPentium_M_microarchitecture
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Pentium_Pro
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Pentium_II
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Celeron_.28Pentium_II-based.29
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Pentium_III
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Pentium_II_and_III_Xeon
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Celeron_.28Pentium_III_Coppermine-based.29
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Celeron_.28Pentium_III_Tualatin-based.29
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Pentium_M
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Celeron_M
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Intel_Core
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Dual-Core_Xeon_LV
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#32-bit_processors%3A_NetBurst_microarchitecture
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Pentium_4
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Xeon
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Mobile_Pentium_4-M
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Pentium_4_EE
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Pentium_4E
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors#Pentium_4F

CS T42 MICROPROCESSOR & MICROCONTROLLER
2 MARKS Q&A

Y2/S4

UNIT – 2
Intel 8085 Interrupts and DMA: 8085 Interrupts – Software and Hardware

Interrupts – 8259 Programmable Interrupt Controller - Data Transfer Techniques –

Synchronous, Asynchronous and Direct Memory Access (DMA) and 8237 DMA

Controller- 8253 Programmable Interval Timer.

Hardware: An external device initiates the hardware interrupts and placing an appropriate

signal at the interrupt pin of the processor.If the interrupt is accepted then the processor

executes an interrupt service routine. Example: TRAP, RST 7.5,6.5& 5.5

Software: The software interrupts are program instructions. These instructions are inserted
at desired locations in a program.The 8085 has eight software interrupts from RST 0 to RST

7. The vector address is calculated by Interrupt number * 8 = vector address. Example: For

RST 5, 5 * 8 = 40 = 28H

 All request are vectored to memory location on00H, which is reserved for ROM
or EPROM and access to this location is difficult often the system has been

designed

 Process of determining the priorities are limited and the extra hardware is
required to insert the restart instruction.

 This interrupt is a non-maskable interrupt. It is unaffected by any mask or interrupt
enable

 In sudden power failure, it executes a ISR and send the data from main memory to

backup memory.

1. Define Hardware and Software Interrupt ***

2. Give the vector interrupt in 8085 and their location ***

3. What are the disadvantages of using 8259? ***

4. Uses of TRAP ***

CS T42 MICROPROCESSOR & MICROCONTROLLER
2 MARKS Q&A

Y2/S4

Maskable Interrupt Non-Maskable Interrupt

1. This interrupt can be turned off by
the programmer

1. It cannot
programmer

be turned off by the

2. RST 7.5,
interrupt

6.5, 5.5 are maskable 2. TRAP is
interrupt.

the only non-maskable

Interrupt is an signal send by an external device to the processor so as to repeat processor to
perform a particular task or work.

 ISR is used to store information about the interrupts currently being serviced

 OCWs Operation Control Word

 TRAP bas the highest priority and vectored interrupt

 The RST 7.5 interrupt is a maskable interrupt.

 The RST 6.5 has the third priority whereas RST 5.5 has the fourth priority.

 INTR is the low priority interrupt

Synchronous Data Transfer Asynchronous Data Transfer

1. Simplest data transfer method and

can be used when the speed of the

microprocessor and the I/O devices

matches

1. Data is transferred from the

peripheral to the processor or from the

processor to the peripheral only after

getting a strobe signal from the

peripheral.

2. Data can be transferred from

processor to peripheral using the OUT

instruction

2. Till the handshake signal is received,

the processor is in a loop and cannot

perform any other task. (i.e.) valuable

processor time is wasted.

 8259 manages 8 interrupt requests (IR0 – IR7)
 8259 can solve eight levels of interrupt priorities in a variety of modes.
 With additional 8259 devices, the priority scheme can be expanded to 64 levels.
 8259 is designed to operate only with 8 bit processors. 8259 A is designed to

operate only with 8 bits as well as 16 bit processors.

5. Difference between maskable and non-maskable interrupt***

6. Define Interrupt service routine. ***

7. Give the priorities of 8085 interrupts

8. Difference between synchronous and asynchronous data transfer ***

9. What are the primary features of 8259?

CS T42 MICROPROCESSOR & MICROCONTROLLER
2 MARKS Q&A

Y2/S4

The interrupt I/O is a process of data transfer whereby an external device or a

peripheral can inform the processor that it is ready for communication and it requests

attention

EI
MVI A,08H .

SIM

The most significant bits D15 and D14 of the count register are used to specify DMA
function and the remaining fourteen bits are used to specify the number of bytes to be

transferred.

The Signals are:

 HLDA

 DMA request

 DMA acknowledge

 AEN – address enable

 ADSTB- address strobe

 Input triggering

 Interrupt Status

 Poll Method

The signals are classified in to two groups.
i. One group of signals are used for interfacing with the MPU

ii. Second group for communicating with the peripherals.

The INTR pulse can remain high until the interrupt flip-flop is set by the EI
instruction in the service routine.

 NON-specific EOI command

 Specific EOI command

 Automatic interrupt

13. What are the signals used by the DMA controller? ***

10. What is an interrupt I/O?

11. Write an instruction to enable all the interrupts in an 8085 system? ***

12. How the 8327 DMA controller transfers 64K bytes of data per channel with

Address lines?

14. Give the additional features of 8259A controller?

15. How the signals of the 8237 are classified? ***

16. How long the INTR pulse stays high?

17. Give the three formats of END of Interrupt? ***

CS T42 MICROPROCESSOR & MICROCONTROLLER
2 MARKS Q&A

Y2/S4

Slave Mode, Master mode

This has two pins. INT as an output, and INTA as an input. The INT isconnected to the
interrupt pin of the MPU.

 Fully Nested mode

 Automatic rotation mode

 Specific rotation mode

RIM: Read Interrupt Mask Used for three functions
a. To read interrupt mask

b. To identify the pending interrupt

c. To receive serial data

SIM: Set interrupt Mask. It is a 1-byte instruction. Used for three functions
a. To set the Mask

b. To reset the flip flop

c. Implement the I/O

 Fully Nested Mode
 End of Interrupt (EOI)

 Automatic Rotation

 Automatic EOI Mode

 Specific Rotation

 Special Mask Mode

 Edge and level Triggered Mode

 Reading 8259 Status

 Poll command

 Special Fully Nested Mode

 Buffered mode

 Cascade mode

 Initialization command word &
 Operation command word

18. What are the two modes of DMA execution? ***

19. What do you mean by control logic?

20. Give the commonly used priority modes?

21. What is RIM? ***

22. What is SIM? ***

23. Give the operating modes of 8259a?

24. List the command words of 8259A?

CS T42 MICROPROCESSOR & MICROCONTROLLER
2 MARKS Q&A

Y2/S4

 Mode 0:interrupt on terminal count
 Mode 1:hardware re -triggerable one-shot

 Mode 2 :rate generator

 Mode3:square wave rate generator

 Mode 4:software triggered strobe

 Mode 5:hardware triggered strobe

Interrupt is an external signal that causes a microprocessor to jump to a specific
subroutine (ie. Program counter is modified to address specified in the ISR).

25. Name the 6 modes of operations of an 8253 programmable interval timer.***

26. What is meant by interrupt? **

Unit II

Intel 8085 Interrupts and DMA: 8085 Interrupts – Software and Hardware Interrupts –

8259 Programmable Interrupt Controller - Data Transfer Techniques – Synchronous,

Asynchronous and Direct Memory Access (DMA) and 8237 DMA Controller- 8253

Programmable Interval Timer.

INTERRUPTS

Definition:

Interrupt is a signal send by an external device to the processor so as to request the processor

to perform a particular task or work.

Interrupt is a process where an external device can get the attention of the microprocessor.

Analogy of interrupt process:

Assume that you are reading an interesting novel at your desk, where there is a telephone. For

you to receive and respond to a telephone call, the following step should occur:

1. The telephone system should be enabled, meaning that the receiver should be on the hook.

2. You should glance at the light at certain intervals to check whether someone is calling.

3. If you see a blinking light, you should pick up the receiver, say hello, and wait for a

response. Once you pick up the phone, the line is busy, and no more calls can be received

until you replace the receiver.

4. Assuming that the caller is your roommate, the request may be: It is going to rain today.

Will you please shut all the windows in my room?

5. You insert a bookmark on the page you are reading.

6. You replace the receiver on the hook.

7. You shut your roommate’s windows.

8. You go back to your book, find your mark, and start reading again.

[Note: steps 6 and 7 may be interchanged, depending on the urgency of the request.]

Classification Of Interrupts:

Interrupts can also be classified into two types:

Maskable Interrupts (Can be delayed or rejected)

Non-Maskable Interrupts (Cannot be delayed or rejected)

Interrupts can also be classified into two types:

Vectored (the address of the service routine is hard-wired)

Non-vectored (the address of the service routine needs to be supplied externally by

the device)

An interrupt is considered to be an emergency signal that may be serviced.

 The Microprocessor may respond to it as soon as possible.

What happens when MP is interrupted?

When the Microprocessor receives an interrupt signal, it suspends the currently

executing program and jumps to an Interrupt Service Routine (ISR) to respond to the

incoming interrupt.

Each interrupt will most probably have its own ISR.

RESPONDING TO INTERRUPTS:

Responding to an interrupt may be immediate or delayed depending on whether the interrupt

is maskable or non-maskable and whether interrupts are being masked or not.

There are two ways of redirecting the execution to the ISR depending on whether the

interrupt is vectored or non-vectored.

 Vectored: The address of the subroutine is already known to the Microprocessor.

 Non Vectored: The device will have to supply the address of the subroutine to the

Microprocessor.

1. THE 8085 INTERRUPTS:

When a device interrupts, it actually wants the MP to give a service which is

equivalent to asking the MP to call a subroutine. This subroutine is called ISR (Interrupt

Service Routine)

 The 'EI' instruction is a one byte instruction and is used to Enable the non-maskable

interrupts.

 The 'DI' instruction is a one byte instruction and is used to Disable the non-maskable

interrupts.

 The 8085 has a single Non-Maskable interrupt.

 The non-maskable interrupt is not affected by the value of the Interrupt Enable flip

flop.

The 8085 Has 5 Interrupt Inputs:

 The INTR input

 The INTR input is the only non-vectored interrupt

 INTR is maskable using the EI/DI instruction pair

 RST 5.5, RST 6.5, RST 7.5 are all automatically vectored

 RST 5.5, RST 6.5, and RST 7.5 are all maskable

 TRAP is the only non-maskable interrupt in the 8085

 TRAP is also automatically vectored

Interrupt Vectors And The Vector Table:

 An interrupt vector is a pointer to where the ISR is stored in memory.

 All interrupts (vectored or otherwise) are mapped onto a memory area called the

Interrupt Vector Table (IVT).

 The IVT is usually located in memory page 00 (0000H - 00FFH).

 The purpose of the IVT is to hold the vectors that redirect the microprocessor to

the right place when an Interrupt arrives

Example: Let, a device interrupts the Microprocessor using the RST 7.5 interrupt line.

Because the RST 7.5 interrupt is vectored, Microprocessor knows, in which

memory location it has to go using a call instruction to get the ISR address. RST7.5 is

knows as Call 003Ch to Microprocessor. Microprocessor goes to 003C location and

will get a JMP instruction to the actual ISR address. The Microprocessor will then,

jump to the ISR location

The 8085 Non-Vectored Interrupt Process:

1. The interrupt process should be enabled using the EI instruction.

2. The 8085 checks for an interrupt during the execution of every instruction.

3. If INTR is high, MP completes current instruction, disables the interrupt and sends INTA

(Interrupt acknowledge) signal to the device that interrupted.

4. INTA allows the I/O device to send a RST instruction through data bus.

5. Upon receiving the INTA signal, MP saves the memory location of the next instruction on

the stack and the program is transferred to 'call' location (ISR Call) specified by the RST

instruction.

6. Microprocessor Performs the ISR.

7. ISR must include the 'EI' instruction to enable the further interrupt within the program.

8. RET instruction at the end of the ISR allows the MP to retrieve the return address from the

stack and the program is transferred back to where the program was interrupted.

The 8085 Recognizes 8 Restart Instructions:

RST0 - RST7.

Each of these would send the execution to a predetermined hard-wired memory location:

Restart Instruction Equivalent to
RST0 CALL 0000H

RST1 CALL 0008H

RST2 CALL 0010H

RST3 CALL 0018H

RST4 CALL 0020H

RST5 CALL 0028H

RST6 CALL 0030H

RST7 CALL 0038H

1.2 SOFTWARE INTERRUPTS OF 8085:

1. The software instructions are program instructions. When a software interrupt instruction is

executed, the processor executes an interrupt service subroutine (ISR) stored in the vector

address of that software interrupt instruction.

2. The software interrupts of 8085 are RSR 0, RST 1, RST 2, RST 3, RST 4, RST 5, RST 6

and RST 7. The software interrupts of 8085 are vectored interrupts. The software interrupts

cannot be masked and they cannot be disabled.

3. The vector addresses of software interrupt are given in the table.

4. The software interrupt instructions are included at the appropriate (or required) place in

the main program.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

5. When the processor encounters the software instruction, it pushes the content of the PC (

program counter) to stack.

6. Then loads the vector address in PC and starts executing an ISR stored in this address.

7. The last instruction of ISR will be RET instruction. When the RET instruction is executed,

the

8. Processor POP the content of the top of stack to PC.

Hence the processor control returns to the main program after receiving the interrupt.

1.3 HARDWARE INTERRUPTS OF 8085:

The hardware interrupts of 8085 are initiated by an external device by placing an appropriate

signal at the interrupt pin of the processor.

 The processor keeps on checking the interrupt pins at the second T-state of last

machine cycle of every instruction.

 If the processor finds a valid interrupt signal and if the interrupt is unmasked and

enabled; then the processor accepts the interrupt. The acceptance of the hardware

interrupt is acknowledged by sending an INTA signal to the interrupting device.

 When the interrupt is accepted; the processor saves the content of PC into the stack.

 The hardware interrupts of 8085 are TRAP, RST 7.5, RST 6.5, RST 5.5 and INTR.

except INTR all are vectored interrupts.

 In vectored interrupts the address to which the program control is transferred is fixed

by the manufacturer.

 The vector addresses of hardware interrupts are given in table.

 TRAP is edge and level sensitive. Hence to initiate TRAP, the interrupt signal has to

make a low to high transition and then it has to remain high until the interrupt is

recognized.

 The RST 7.5 is edge sensitive. , and in order to initiate it ,the interrupt signal has to

make a low to high transition and then it need not remain high until the interrupt is

recognized.

 The RST 7.5, RST 6.5, RST 5.5 and INTR are level sensitive. Hence these interrupts

should remain high, until it is recognized.

 The Trap is non maskable interrupt and RST 7.5, RST 6.5, RST 5.5 are maskable

interrupt using SIM instruction. The status of maskable interrupts can be read into the

accumulator by executing RIM instruction.

 All the interrupts except TRAP are disabled when the processor is resettled or can

also be disabled by executing DI instruction.

 In order to enable them the processor has to execute EI instruction.

1.4 MULTIPLE INTERRUPTS & PRIORITIES:

 The microprocessor can only respond to one signal on INTR at a time. Therefore, we

must allow the signal from only one of the devices to reach the microprocessor.

 We must assign some priority to the different devices and allow their signals to reach

the microprocessor according to the priority.

The Priority Encoder

• The solution is to use a circuit called the priority encoder (74LS148).

– This circuit has 8 inputs and 3 outputs.

– The inputs are assigned increasing priorities according to the increasing index of the

input.

• Input 7 has highest priority and input 0 has the lowest.

– The 3 outputs carry the index of the highest priority active input.

– Below figure shows how this circuit can be used with a Tri-state buffer to

implement an interrupt priority scheme.

Multiple Interrupts & Priorities:

• Note that the opcodes for the different RST instructions follow a set pattern.

o Bit D5, D4 and D3 of the opcodes change in a binary sequence from RST 7

down to RST 0.

o The other bits are always 1.

o This allows the code generated by the 74366 to be used directly to choose the

appropriate RST instruction.

The one drawback to this scheme is that the only way to change the priority of the devices

connected to the 74366 is to reconnect the hardware.

The 8085 Maskable/Vectored Interrupts:

• The 8085 has 4 Masked/Vectored interrupt inputs.

– RST 5.5, RST 6.5, RST 7.5

o They are all maskable.

o They are automatically vectored according to the following table:

The vectors for these interrupt fall in between the vectors for the RST instructions.

That’s why they have names like RST 5.5 (RST 5 and a half).

Masking RST 5.5, RST 6.5 And RST 7.5:

• These three interrupts are masked at two levels:

1. Through the Interrupt Enable flip flop and the EI/DI instructions.

o The Interrupt Enable flip flop controls the whole maskable interrupt process.

2. Through individual mask flip flops that control the availability of the individual

interrupts.

o These flip flops control the interrupts individually.

Maskable Interrupts and vector locations

The 8085 Maskable/Vectored Interrupt Process:

1. The interrupt process should be enabled using the EI instruction.

2. The 8085 checks for an interrupt during the execution of every instruction.

3. If there is an interrupt, and if the interrupt is enabled using the interrupt mask, the

microprocessor will complete the executing instruction, and reset the interrupt flip flop.

4. The microprocessor then executes a call instruction that sends the execution to the

appropriate location in the interrupt vector table.

5. When the microprocessor executes the call instruction, it saves the address of the next

instruction on the stack.

6. The microprocessor jumps to the specific service routine.

7. The service routine must include the instruction EI to re-enable the interrupt process.

8. At the end of the service routine, the RET instruction returns the execution to where the

program was interrupted.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

2. 8259 PROGRAMMABLE INTERRUPT CONTROLLER

The following are the features of 8259A:

1. 8259A handles up to 8-vectored priority interrupts for the CPU

2. It is cascadable for up to 64-vectored priority interrupts without additional

circuiting.

3. The priority modes can be changed or reconfigured dynamically at any time during

the main program.

4. 8259 can be used with 8080/8085 or 8086/8088 microprocessors.

5. The various interrupt modes it can operate are:

o Fully nested mode

o Rotating priority mode

o Special mask mode

o Polled mode

6. 8259A supports both edge & level triggered mode of interrupted.

7. The data bus can be buffered.

8. The AEOI can be programmed.

9. The CALL address interval can be programmed to either 4 or 8.

Pin configuration:

 8259A is packed in a 28 pin DIP, using NMOS technology and requires a single +5 V

supply.

 Circulating is static, requiring no check input.

 The pin configuration of 8259A is illustrated in fig.

D0-D7 (Data Bus)

 Bidirectional data is used to transfer control, status and interrupt vector information.

A0 (Address Line)

 This pin acts in conjunction with CS,WR and RD pins.

 It is used by 8259A to decipher various command words.

 The CPU writes to initialize command words and reads the status.

 It is typically connected to the CPU. A1 reads the address line of 8086.

CS (Chip Select)

 A low on this pin enables RD and WR communication between the CPU and the

8259A.INTA functions are independent of CS.

BLOCK DIAGRAM

The internal block diagram of 8259 contains the 4 sections, they are:

1. Interrupts and control logic sectionData bus buffer

2. Read/Write control logic section

3. Cascade Buffer/Comparator Section

Interrupts and Control Logic Section:

This section consists of the following registers:

(a) Interrupt request Register (IRR)

(b) In-Service Register (ISR)

(c) Priority Resolver

(d) Interrupt Mask Register (IMR)

(e) Control logic Block

Block Diagram

Data Bus Buffer

 This 3-state, bidirectional 8-bit data buffer is used to interfere the 8259A to the

system data bus.

 Control words status information are transferred through the data bus buffer.

 INTA functions are independent of CS.

Read/Write Logic

 The function of this block is to accept commands from the CPU.

 Command Word Registers (OCW registers) which are programmed by the processor

to set up the 8259, and to operate This section contains the initialization Command

Word Registers (ICW registers) and the Operation it in various modes.

 This section also accepts Read commands from the CPU to permit the CPU to read

status words.

 When the address line Ao is at logic 0, the controller is selected to write a command

or read a status.

 The chip select logic and Ao determine the port address of the controller.

 The operation command word (OCW) register which store the various control formats

which define the device operation.

 This function block also allows the status of the 8359Ato be transferred onto the data

bus.

The pins associated with this section are described below:

CHIP SELECT:

 This is an active low input which is used to select the device

WRITE:

 This is an active low input and is used to write OCWs and ICWs onto the 8259

READ:

 This is also an active low input.

 It is used by the CPU to read the status of the IRR, ISR, IMR, or the interrupt level.

Cascade Buffer / Comparator

 This function block stores and compares the ID (identification code) of all the

8259A’s used in the system.

 The 8259 can be cascaded with other 8259s in order to expand the interrupt handling

capacity to sixty-four levels.

 In such a case, the former is called a master and the latter are called slaves.

 This block is used to expand the number of interrupt levels.

 The associated 3 I/O pins (CAS0-CAS2) are outputs when the 8259A is used as a

master and are inputs when the 8259A is used as a slave.

 As a master, the 8259A sends the ID of the interrupting slave device on to the CAS0-

CAS2 lines.

The slave thus selected will output the pre-programmed subroutine address onto the data bus

in response to the INTA pulses from the CPU.

Control Logic

 The logic blocks controls the overall operation of the controller.

 This block has an input and output line.

 The 8259, after resolving its input interrupt request priorities, places an interrupt

request to the processor on the INT output.

 This is directly connected to the cpu interrupt input.

 It generates interrupt to the microprocessor and receive INTA signal.

 It enables the data bus buffer to send the required information when ¯ I¯ N¯ T¯ A signal

is obtained.

Interrupt request register (IRR)

 IRR is used to store all the interrupt levels which are requesting service.

 IRR has eight input lines for interrupts.

 The eight interrupt inputs set corresponding bits of the Interrupt request register.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 When these lines go to HIGH, the requests are stored in the register

Priority Resolver (PR)

 The logic block determines the priorities of the bits set in the IRR.

 The highest priority is selected and strobed into the corresponding bit of the ISR in

response to the pulse.

Interrupt Mask Register (IMR)

 The IMR stores the interrupt mask information (i.e., whether each interrupt has to be

enabled/disabled).

 This register can be programmed by an OCW to store the bits which mask interrupts.

 The 8 bits of the IMR are used to disable or enable individual interrupt inputs; writing

0 in the corresponding bit location enables the interrupt.

 An interrupt, which is masked by software (by programming the IMR), will not be

recognized and serviced even if it sets the corresponding bit in the IRR.

 The IMR operates on the IRR. Masking of a higher priority input will not affect the

interrupt requests lines of lower priority interrupts.

Interrupt Service Register (ISR)

 The ISR is used to store all the interrupt levels which are being serviced.

Interrupt Operations:

 First, the 8259 should be initialized by placing control words in the control register.

 It requires two types of control words:

(1)Initialization command words

(2) Operational command words

Priority Interrupt Modes:

 Many types of priority modes are available under software control in the 8259.

 They can be changed dynamically during the program by writing appropriate

command words.

Commonly used priority modes are given below:

1. FULLY NESTED MODE:

 This is a general purpose mode.

 In this mode all IRs (Interrupt Requests) arranged from highest to lowest IRo has the

highest priority and IR7 has the lowest priority.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

2. AUTOMATIC ROTATION MODE:

 In this mode, a device after being serviced, receives the lowest priority .

3. SPECIFIC ROTATION MODE:

 This mode is similar to the automatic rotation maode, expect that the user can select

any IR for the lowest priority , thus fixing all other priorities.

END OF INTERRUPT

 After the completion of the interrupt service, the corresponding ISR bit needs to be

reset to update the information in the ISR.

 This is called the end-of-interrupt (EOI) command.

 It can be issued three formats.

1. Non Specific EOI command

When this command is sent to the 8259 it resets the highest priority ISR bit.

2. Specific EOI command

This command specifies, which ISR bit to reset. 3. AUTOMATIC EOI

 In this mode no command is necessary.

 The major drawback with this mode is that the ISR does not have information on

which IR is being serviced .

 Thus nay IR can interrupt the service routine, irrespective of its priority , if the

interrupt enable Flip-Flop is set.

VECTORING DATA FORMATS

 The eight interrupts levels generate CALLs to eight equally spaced locations in

memory.

 These locations can be programmed to be spaced at an intyerval of four or eight

locations.

 The vectoring table will therefore be either a page of thirty-two bytes , or a page of

sixty- four bytes.

INITIALIZATION COMMAND WORD (ICW1)

 ICW 1 is used to give the information about single or multiple 8259s in the system.

 4 or 8 bytes of interval between the interrupt vector locations .

 The address bit A7- A5 of the CALL instruction.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

IC4

 This is used toi specify whether ICW4 is required or not required.

 If it is set to 0, the 8259 is set in the non-buffered mode.

SIGNAL

 This is used to inform the the 8259 if it is the only 8259 in the system, or if additional

8259s are present.

ADI

 This sets the CALL address interval to either four or eight

LTIM

 This bit determines if the interrupts are to be recognized in the level-triggered mode

or in the edge - triggered mode.

A5 –A7

 A0 – A4 of the vectoring address are automatically inserted the 8259 for all the IR

inputs for an interval spacing of four.

 A0 – A5 are inserted automatically for an interval spacing of eight.

INITIALIZATION COMMAND WORD2 (ICW 2)

 A write command following ICW1 with A0=1, is interpreted as ICW2.

 The format of the byte to be loaded as ICW2

 This is used to lad the high-order byte of the interrupt vector address of all the

interrupts.

 This byte is common for all interrupts.

OPERATION COMMAND WORDS (OCWS)

 After initialization, the 8259 is ready to process interrupt requests.

 Operation Command Words are used to change manner of processing the interrupts

during operation.

 They may be located anytime after the 8259s initialization to dynamically after the

priority modes.

4. DATA TRANSFER TECHNIQUES

The data transfer technique refers to the method of data transfer between the processor and

peripheral devices. In a typical microcomputer, data transfer takes place between any two

devices:

 Microprocessor and memory

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 Microprocessor and I/O devices

 Memory and I/O devices

For effective data transfer between these devices, the timing parameters of the devices should

be matched.

TYPES OF DATA TRANSFER:-

The data transfer techniques have been broadly classified into the following two categories;

 Programmed data transfer

 Direct memory access (DMA) data transfer

PROGRAMMED DATA TRANSFER:

In programmed data transfer, a memory resident request the device for data transfer to or

from one of the processor register. It is used when relatively small amount of data are to be

transferred. They can be further classified into the following three types;

 Synchronous data transfer

 Asynchronous data transfer

 Interrupt driven data transfer

SYNCHRONOUS DATA TRANSFER:

The synchronous data transfer scheme is the simplest of all data transfer schemes. In this

scheme the processor does not check the readiness of the devices. The I/O device or

peripheral should have matched timing parameters. Whenever data is to be obtained from the

device or transferred to the device, the user program can issue a suitable instruction for the

device. At the end of he execution of this instruction, the transfer would have been

completed.

ASYNCHRONOUS DATA TRANSFER:

The asynchronous data transfer scheme is employed when the speed of the processor and I/O

devices does not match. In this scheme the processor sends a request to the device for

read/write operation. Then the processor keeps on polling the status of the devices. Once the

device is ready, the processor executes a data transfer instruction to complete the process.

INTERRUPT DRIVEN DATA TRANSFER:

The interrupt driven data transfer scheme is the best method of data transfer for

efficient utilization of processor time. In this scheme, the processor first initiates the I/O

device for data transfer. After initiating the device, the processor will continue the execution

of instructions in the program. Also at the end of every instruction the processor will check

for a valid interrupt signal. If there is no interrupt then the processor will continue the

execution.

When the I/O device is ready, it will interrupt the processor. On receiving an interrupt

signal the processor will complete the current instruction execution and save the processor

status in stack. Then the processor calls an Interrupt Service Routine (ISR) to service the

interrupting device. At the end of ISR, the processor status is retrieved from the stack and the

processor starts executing its main program.

4. DIRECT MEMORY ACCESS (DMA):

Normally the data transfer from memory to I/O device or I/O device to memory can

be achieved only through microprocessor. When data has to be transferred from memory to

I/O device, first the processor sends address and control signals to memory to read the data

from memory. Then the processor send address and control signals to I/O device to write data

to I/O device. Similarly, the data can be transferred from I/O device to memory.

In the data transfer method described above, the data cannot be directly transferred

between memory and I/O devices, even though they are connected to common bus. This

process is inevitable, because the processor cannot simultaneously select two devices. Hence

a scheme called DMA has been developed in which the I/O device can access the memory

directly for data transfer.

The DMA data transfer will be useful to transfer large amount of data between

memory and I/O device in a short time.

The modes of DMA operations are two types;

 Burst mode

 Cycle stealing

BURST MODE DATA TRANSFER:

As bus control is granted to the device controller, it continues with the controller till the data

transfer is completed. After all the data has been transferred, the device interrupts the

processor to indicate the completion to the user program. During this period the

microprocessor is idling and it is in hold state.

The microprocessor exits from this state only after an interrupt is received or after the DMA

request is withdrawn by the peripheral device. The duration of HOLD depends on I/O device

speed, the memory speed and the number of bytes transferred. This type of DMA transfer is

known as burst mode data transfer.

CYCLE STEALING DATA TRANSFER:

The I/O device uses the concept of cycle stealing. The I/O device requests the processor for

DMA cycle. When request is granted a byte or a word is transferred and DMA request is

withdrawn. After sometime, when the device is again ready for data transfer, it repeats the

above process.

Finally when the last data byte has been transferred, the device interrupts the processor

indicating the end of the requested I/O operation. This type of DMA access is cycle stealing

data transfer.

Direct Memory Access (DMA)

Tri state devices:

 3 output states are high & low states and additionally a high impedance state.

 When enable E is high the gate is enabled and the output Q can be 1 or 0 (if A is 0, Q

is 1, otherwise Q is 0). However, when E is low the gate is disabled and the output Q

enters into a high impedance state.

Fig (a) - Pin Diagram of 8085 Fig (b) - logical schematic of Pin diagram.

 For both high and low states, the output Q draws a current from the input of the OR

gate.

 When E is low, Q enters a high impedance state; high impedance means it is

electrically isolated from the OR gate's input, though it is physically connected.

Therefore, it does not draw any current from the OR gate's input.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 When 2 or more devices are connected to a common bus, to prevent the devices from

interfering with each other, the tristate gates are used to disconnect all devices except

the one that is communicating at a given instant.

 The CPU controls the data transfer operation between memory and I/O device. Direct

Memory Access operation is used for large volume data transfer between memory and

an I/O device directly.

 The CPU is disabled by tri-stating its buses and the transfer is effected directly by

external control circuits.

 HOLD signal is generated by the DMA controller circuit. On receipt of this signal, the

microprocessor acknowledges the request by sending out HLDA signal and leaves out

the control of the buses. After the HLDA signal the DMA controller starts the direct

transfer of data.

READY (input)

 Memory and I/O devices will have slower response compared to microprocessors.

 Before completing the present job such a slow peripheral may not be able to handle

further data or control signal from CPU.

 The processor sets the READY signal after completing the present job to access the

data.

 The microprocessor enters into WAIT state while the READY pin is disabled.

Single Bit Serial I/O ports:

 SID (input) - Serial input data line

 SOD (output) - Serial output data line

 These signals are used for serial communication.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

DMA CONTROLLER

To transfer the data at a faster rate, the CPU is isolated and transfer of data is affected

between the memory and the peripheral directly. This I/O technique is called Direct Memory

Access (DMA).

Direct memory access operation (DMA):

 The DMA operation can be done with three switches.

 Normally, the switch positions are such that the memory and peripheral devices are

connected to the CPU, i.e., the data lines, address lines and the control lines of the

memory and I/O devices are connected to the CPU.

 Whenever the DMA operation is to be carried out, the CPU I totally isolated and the

address lines and control lines are taken over by the DMA controller circuitry.

 To actuate the DMA operation, the following sequence is carried out

o The device which needs data transfers the device and the memory has to send

DMA request (DRQ) to the DMA controller.

o The DMA controller raises the Hold request (HRQ) line and it is connected to the

Hold signal input of the μp

o The μp tristate all the address lines, data lines and control lines and acknowledges

the Hold input signal through Hold Acknowledge (HLDA) output signal.

o The HLDA signal is connected to the DMA controller. Once it becomes active,

then DMA controller takes care of direct data transfer operation.

o It sends acknowledgement signal (DACK)

o To the device which requested for DMA operation to enable the device for data

transfer.

o DMA operation is carried out by sending suitable address to the memory and

suitable control signals to transfer a byte of data. Then it increments the address

and send control signals and so on.

o Before actually carrying out the DMA operation, the DMA controller should

know

A. The starting address of the memory location.

B. Number of bytes to be transferred.

C. Whether the transfer is from memory to I/O or from I/O to memory.

6. PROGRAMMABLE 8237 DMA CONTROLLER

Features

 In DMA, data can be transferred between the memory and an external device without

utilizing the microprocessor.

 DMA is typically used to transfer large volume of data between memory and an

external device.

 A DMA read operation transfers data from memory to an external device.

 A DMA write operation transfers data from an external device to memory.

 The device called DMA controller is used to perform read and write operations in the

same manner as the processor.

 Therefore, the DMA controller is actually a special-purpose microprocessor whose

only task is to perform high-speed data transfers between memory and an external

device.

 The INTEL 8237 DMA controller is a 40 pin programmable device.

 The 8237 has four independent DMA channels.

 One 8237 can provide DMA transfers to four external devices.

 Data transfers begin with DMA request lines DREQ 0 - DREQ 3.

 DREQ 0 has the highest priority and DREQ 3 has the lowest priority.

 DACK 0 – DACK 3 signals are used to acknowledge a DMA channel request.

 After being initialized by the MPU, the 8237 takes control of the bus in order to

perform the DMA operation.

 Data bits are then transferred between a peripheral or external device without

involving the microprocessor.

 The basic pin configuration of the 8237 is shown in the figure.

Need for 8212 and signal ADSTB

 The 8237 has eight address line, but requires 16 address lines to address a memory

location.

 The additional eight lines are generated by using the signal ADSTB to strobe a high-

order memory address into 8212 from the data bus.

 A latch, such as the 74LS373 can replace the 5212.

Signal AEN (address enable)

 The AEN output signal is used to disable the system data bus and control bus.

 The signal is necessary to switch the 8237 from the slave mode to the master mode.

Block diagram of INTEL IC 8237

The block diagram of Intel 8237 DMA controller is shown in figure.

 The INTEL 8237 DMA controller is a 40 pin programmable device.

 The 8237 has four independent DMA channels.

 One 8237 can provide DMA transfers to four external devices.

 Data transfers begin with DMA request lines DREQ 0 - DREQ 3.

 DREQ 0 has the highest priority and DREQ 3 has the lowest priority.

 DACK 0 – DACK 3 signals are used to acknowledge a DMA channel request.

 After being initialized by the MPU, the 8237 takes control of the bus in order to

perform the DMA operation.

 Data bits are then transferred between a peripheral or external device without

involving the microprocessor.

 Data bus buffer

 The data bus lines are bi-directional three state signals connected to the system data

bus.

 The outputs are enabled in the program condition during the I/O read to output the

contents of an address register, a status register, the temporary register or a word

count register to the CPU.

 The outputs are disabled and the inputs are read during an I/O write cycle when the

CPU is programming the 8237A control registers.

 During DMA cycles the most significant 8 bits of the address are output on to the data

bus to be stored into an external latch by ADSTB.

 In memory to memory operations, data from memory comes into the 8237A on the

data bus during the read from memory transfer.

 In the write to memory transfer, the data bus outputs place the data into the new

memory location.

Read / write logic

 The 8237 has eight address lines, but requires 16 address lines to address a memory

location.

 The additional eight lines are generated by using the signal ADSTB to strobe a high-

order memory address into 8212 from the data bus.

 A latch, such as the 74LS373 can replace the 8212.

I/OR (I/O Read)

 I/O read is a bi-directional active low three state line.

 In the idle cycle, it is an input control signal used by the CPU to read the control

registers.

 In the active cycle, it is an output control signal used by the 8237A to access data

from a peripheral during DMA write transfer.

I/OW (I/O write)

 I/O write is a bi-directional active low three state line.

 In the idle cycle, it is an input control signal used by the CPU to load information into

the 8237A.

 In the active cycle, it is an output control signal used by the 8237A to load data to the

peripheral during a DMA read transfer.

CLK (Clock input)

 Clock input controls the internal operations of the 8237A and its rate of data transfers.

 The input may be driven at up to 3 MHZ for the standard 8237A and up to 5 MHZ for

the 8237A-5.

RESET (Reset)

 Reset is an active high input which clears the command, status, request and temporary

registers.

 It also clears the first/last flip/flop and sets the mask register.

 Following a reset the device is in the idle cycle.

A0-A3 (Address)

 The four least significant address lines are bi-directional three-state signals.

 In the idle cycle, they are inputs and are used by the 8237A to address the control

register to be loaded or read.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 In the active cycle, they are outputs and provide the lower 4 bits of the output address.

CS (Chip select)

 The chip select is an active low input used to select the 8237A as an I/O device during

the idle cycle.

 This allows CPU communication on the data bus.

Control logic and mode set registers

A4-A7 (Address)

 The four most significant address lines are three state outputs and provide 4 bits of the

address.

 These lines enabled only during the DMA service.

READY (Ready)

 Ready is an input used to extend the memory read and write pulses from the 8237A to

accommodate slow memories or I/O peripheral devices.

MEMW (Memory write)

The memory write is an active low three-state output used to write data to the selected

memory location during a DMA read or memory-to-memory transfer.

AEN (Address enable)

 Address enable enables the 8-bit latch containing the upper 8 address bits onto the

system address bus.

 AEN can also be used to disable other system bus drivers during DMA transfers.

 AEN is active HIGH.

ADSTB (Address strobe)

 The active high, address strobe is used to strobe the upper address byte into an

external latch.

DREQ 0 – DREQ 3 (DMA request)

 The DMA request lines are individual asynchronous channel request inputs used by

peripheral circuits to obtain DMA service.

 In fixed priority, DREQ 0 has the highest priority and DREQ 3 has the lowest

priority.

 A request is generated by activating the DREQ line of a channel.

 DACK will acknowledge the recognition of DREQ signal.

 Polarity of DREQ is programmable.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 Reset initializes these lines to activate high.

 DREQ must be maintained until the corresponding DACK goes active.

DACK 0 – DACK 3 (DMA acknowledge)

 DMA acknowledge is used to notify the individual peripherals when one has been

granted a DMA cycle.

 The sense of these lines is programmable.

 Reset initializes them to active low.

Registers in 8237

The 8237 has number of internal registers. These registers are used to control the DMA cycle

operation.

1. Current address register

 Each channel contains a 16 bit current address register.

 This register holds the address of the data to be transferred.

 This address can be automatically incremented or decremented after each transfer.

2. Current word register

 Each channel has a 16 bit word count register.

 This register is used to determine the number of transfers to be performed.

 It is incremented after each byte transfer.

3. Base address register

 This 16 bit register stores the starting address of the current address register.

4. Base word register

 This 16 bit register stores the starting address of the current word register.

5. Command register

 This 8 bit register is used to program and control the 8237.

 It is used to initialize the device.

6. Mode register

 Each channel has a 8 bit mode register to define its mode of operation.

7. Request register

 This 4 bit register is used to request a DMA transfer by software.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

8. Mask register

 Each channel has mask register bit that is used to disable incoming DREQ signals.

9. Temporary register

 This is an 8 bit register.

 It is used to hold the data during a memory-to-memory transfer.

10. Status register

 This is an 8 bit register.

 It is used for the microprocessor to read the present status of the 8237.

DMA channels

 The 8237 has four identical channels, each with two signals:

o DRQ (DMA request)

o DACK (DMA acknowledge)

 Each channel has two 16 bit register, one for the memory address where data transfer

should begin, and the second for a 14 bit count.

 Bits D15 and D14 of the count register specify the DMA function such as write, read,

or verify as shown in figure.

 In 8237 two additional 8 nit register are available to enable the DMA channels and to

read the status of DMA channels.

 They are the control register, called the mode set register, shown in figure, and the

status register shown in figure.

 The control word in the mode set register enables or disables channels and determines

other functions.

 The port addresses of each register are determined by four address lines, as shown in

figure and chip select logic.

In 8237 two additional 8-bit registers are available to enable the DMA channels and to read

the status of DMA channels.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

They are the control register, called the mode set registers, shown in figure, and the status

register shown in figure.

 The control word in the mode set register enables or disables channels and determines

other functions.

 The port addresses of each register are determined by four address lines, as shown in

figure and chip select logic.

Operation of DMA controller

 The 8237 DMA controller operates in two major cycles. They are

i. The idle cycle.

ii. The active cycle.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 When the 8237 is in the idle cycle, no external devices are requesting a DMA transfer.

 In this cycle, the 8237 samples the DREQ lines every clock cycle to determine if any

of the four channels are requesting the service.

 When any one of the DMA request lines DREQ 0 – DREQ 3 becomes active, the

8237 will enter into the active cycle.

 First, the DMA controller requests a HOLD from the microprocessor in response to a

DREQ (DMA request) from an external device.

 Next, when the microprocessor recognizes the request and is ready, it outputs a grant

signal on the same signal line back to the DMA controller.

 The DMA controller can now use the buses to transfer data between memory and an

external device

 The DMA controller now requests external device with a DACK signal.

 This indicates the start of a DMA transfer.

 After completing the data transfer by the DMA, it outputs an EOP, which indicates

the completion of the DMA transfer.

 Then the control buses are returned to the microprocessor.

The 8237 in its active mode can perform a DMA transfer in any one of the following four

modes:

Single transfer mode

 In this mode, 8237 transfers one byte of data each time the request is active.

Block transfer mode

 In this mode, 8237 transfer a block of data.

 The 8237 is programmed with the starting address of the data and the number of bytes

to be transferred.

 The transfer is continued until the word count register in the 8237 reaches its final

count or an EOP is received.

Demand transfer mode

 In this mode, the 8237 is programmed to continue making transfers until an EOP is

received or until a DREQ from an external device goes inactive.

 In this mode, one byte of data is transferred for each demand (DREQ) received.

 Cascade transfer mode

 This mode is used to cascade more than one 8237 together of a system expansion.

 To use the DMA properly the programmer must first access the internal register of the

8237.

 The command register must be loaded with a command word.

 This command word defines the initial conditions, mode of operation, and the type of

operation.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 Next, depending on the mode and the type of operation, the internal registers must be

loaded with information defining the starting address of the data in memory, the

number of bytes to be transferred, DMA channel number and so on.

 Finally, the DMA channel’s request signal must be enabled.

 Placing control words does initialization and programming of the 8237.

 The OUT instruction is used to send control words to the internal registers.

DMA execution

The process of data transfer from the external devices to the system memory by the DMA

controller can be classified under two modes:

 The slave mode

 The master mode

Slave mode

In the slave mode, the DMA controller is treated as a peripheral, using the following steps:

 Chip select is used to select the DMA.

 The microprocessor writes the command mode and terminal count in channel register

by accessing the register through A0 – A3 and through the control signals IOR and

IOW.

In this mode, the signals shown in the read / write logic block are used; the address line A7 –

A4 and the control signals MEMR, MEMW from the control logic block are in tri-state. The

other signals are not being used.

Master mode

After the initialization, the 8237 in master mode checks for a DMA request. The steps in data

transfer can be listed as follows:

 When the peripheral is ready for data transfer, it sends a high signal to DRQ.

 When the DRQ has been received and the channel enabled, the control logic sets

HRQ high.

 In the next cycle, the microprocessor releases the buses and sends the HLDA signal to

the 8237.

 After receiving the HLDA signal, the control logic generates DACK (DMA

acknowledge) and sends the acknowledgement to the peripheral.

 Meanwhile, the 8237 enables the signal AEN (address enable)

 AEN disables the microprocessor de-multiplexed address bus A7 – A0.

 The entire bus, A7 – A0, OF THE 8237 becomes output.

 The low-order byte of the memory location is placed on the A7-A0 of the 8237.

 When the AEN signal is high, the ADSTB (address strobe) signal goes high.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 This signal places the high-order byte of the memory location, generated by the lower

8212, on address bus A15-A8.

 Data transfer continues until the count reaches zero.

7. INTEL 8253 PROGRAMMABLE INTERVAL TIMER

 The 8253/54 solves one of the most common problem in any microcomputer system-

the generation of accurate time delays under software control.

 Instead of setting up timing loops in system software, the programmer configures the

8253/54 with the desired quantity, then upon command the 8253/54 will count out the

delay and interrupt the CPU when it has completed its tasks.

INTRODUCTION:

 The 8253 is a programmable interval timer/counter designed for use with intel

microcomputer systems.

 It is a general purpose, multi-timing element that can be treated as an array of i/o ports

in the system software.

 The 8253 solves one of the most common problems in any microcomputer system, the

generation of accurate time delays under software control.

 Instead of setting up timing loops in software, the programmer configures the 8253 to

match his requirements and programs one of the counters for the desired delay.

 After the desired delay, the 8253 will interrupt the cpu. Software overhead is minimal

and variable length delays can easily be accommodated.

 The 8253/54 includes three identical 16 bit counters that can operate independently.

 To operate a counter, a 16 bit count is loaded in its register and, on command, it

begins to decrement the count until it reaches 0.

 At the end of the count, it generates a pulse that can be used to interrupt the CPU.

 The counter can count either in binary or BCD.

 In addition, a count can be read by the CPU while the counter is decrementing.

 In this section, we are going to study two timer ICs 8253 and 8254 .

 The 8254 is a superset of 8253.

FEATURES:

 Three independent 16-bit down counters.

 8254 can handle inputs from DC to 10 MHz (5 MHz 8254-5 8 MHz 8254 10 MHz

8254-2) where as 8253 can operate up to 2.6 MHz.

 Three counters are identical, pre-settable and can be programmed for either binary or

BCD count.

 Counter can be programmed in six different modes.

 Compatible with all Intel and most other microprocessors.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 8254 has powerful command called READ BACK command which allows the user to

check the count value, programmed mode and current mode and current status of the

counter.

Block diagram:

DATA BUS BUFFER:

 This tri-state, bi-directional, 8-bit buffer is used to interface the 8253/54 to the system

data bus.

 The Data bus buffer has three basic functions.

1. Programming the 8253/54 in various modes

2. Loading the count registers.

3. Reading the count values.

READ/WRITE LOGIC:

 The Read/Write logic has five signals: ¯ R¯ D, ¯ W¯ R, ¯ C¯ S and the address lines A0

and A1.

 In peripheral I/O mode, the RD and WR signals are connected to IOR and IOW,

respectively

 In memory-mapped I/O, these are connected to MEMR and MEMW. Address lines

A0 and A1 of the CPU are usually connected to lines A0 and A1 of the CPU are

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

usually connected to lines A0 and A1 of the 8253/54, and CS is tied to a decoded

address.

 The control word register and counters are selected according to the signals on lines

A0 and A1.

Control word register:

 This register is accessed when lines A0 and A1 are at logic 1.

 It is used to a write a command word which specifies the counter to be used (binary or

BCD), its mode and either a read or write operation.

Counter:

 These three functional blocks are identical in operation.

 Each counter consists of a single, 16 bit, pre-settable, down counter.

 The counter can operate in either binary or BCD and its input, gate and output are

configured by the selection of modes stored in the control word register.

 The counters are fully independent.

 The programmer can read the contents of the three counters without disturbing the

actual count in process.

Operational description:

 The complete functional definition of the 8254 is programmed by the system

software.

 Once programmed the 8254 is ready to perform whatever timing tasks it is assigned to

accomplish.

 The register is accessed when lines A0 and A1 are at logic 1.

 It is used to write a command word which specifies the counter to tb used.

 Its mode & either a read or write operation.

The bits for D7 and D6 of the control word select anyone of the three counters or the read

back command.

(SC-select counter D7 to D6)

The bits D5 and D4 decide the various read/write operation.

Mode Definition:

READ AND WRITE OPERATIONS

The 8254 can be programmed to provide various types of output through write operations, or

to check a count while counting through read operations. The details of these operations are

given below.

READ OPERATIONS

In some applications especially in event counters, it is necessary to read the values of the

count in progress. This can be done by either of two methods.

 One method involves reading a count after inhibiting (stopping) the counter to be

read. It is known as reading by halting the count.

 The second method involves reading a count while the count is in progress (known as

reading on the fly). It is known as reading while counting.

In first method, counting is stopped (or inhibited) by controlling the gate input or the clock

input of the selected counter, and two I/O read operations are performed by the MPU. The

first I/O operation reads the low order byte, and the second I/O operation reads the higher

order byte.

In the second method, an appropriate control word is written into the control register to latch

a count in the output latch, and two I/O read operations are performed by the MPU.

WRITE OPERATION:

To initialize a counter, the following steps are necessary.

 Write a control word into the control register.

 Load the low order byte of a count in the counter register.

 Load the high order byte of a count in the counter register.

With a clock and an appropriate gate signal to one of the counters, the above steps should

start the counter and provide appropriate output according to the control word.

MODES OF OPERATION:

As mentioned earlier, the 8254 can operate in six different modes; we will describe briefly

various modes of the 8254.

MODE 0: Interrupt on terminal count

 The output goes low on setting the mode, and goes high after the desired count.

 In this mode, initially the OUT is low.

 Once count is loaded in the register, the counter is decremented every cycle, and when

the count reaches zero, the OUT goes high.

 This can be used as an interrupt.

 The OUT remains high until a new count or a command word is loaded.

 Figure shows that the counting (m=s) is temporarily stopped when the gate is disabled

(G=0), and continued again when the gate is at login 1.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

MODE 1: Hardware-Retriggerable One-Shot

 The output goes low on a gate input, and goes high on terminal count.

 In this mode, the OUT is initially high.

 When the gate is triggered, the out goes low, and at the end of the count, the OUT

goes high again, thus generating a one-shot pulse.

MODE 2: Rate generator

 It is equivalent to a ‘clock pulse divide by n’ counter.

 The output pulse frequency is 1/n of the input pulse frequency ,where n is the count

number .

 This mode is used to generate pulse equal to the clock period at a given interval

 When a count is loaded, the OUT stays high until the count reaches 1, and then the

OUT goes low for one clock Period.

 The count is reloaded automatically, and the pulse is generated continuously.

 The count = 1 is illegal in this mode.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

MODE 3: Square wave generator

 This is similar to mode 2 with difference in minor operating details.

 In this mode, when a count is loaded, the OUT is high.

 The count is decremented by two at every clock cycle, and when it reaches zero, the

OUT goes low, and the count is reloaded again.

 This is repeated continuously; thus, a continuous square wave with period equal to the

period of the count is generated.

 In other word, the frequency of the square wave is equal to the frequency of the clock

divided by the count.

 If the count (N) is odd the pulse stays high for (N+1)/2 clock cycles and stays low for

(N-1)/2 clock cycles.

MODE 4: Software-triggered strobe

 The output goes high on setting the mode

 After terminal count, the output goes low for one clock period and then goes high

again

 In this mode, the OUT is initially high; it goes low for one clock period at the end of

the count.

 The count must be reloaded for subsequent outputs.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

MODE 5: Hardware-triggered strobe

 This is similar to mode 4, but a trigger at the gate initiates the counting.

 This mode is similar to mode 4, except that it is triggered by the rising pulse at the

gate.

 Initially, the OUT is high, and when the gate pulse is triggered from low to high, the

count begins.

 At the end of the count, the OUT goes low for one clock period.

Difference between 8253A and 8254A:

PIN DIAGRAM:

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

Pin diagram details:

MICROPROCESSOR AND MICROCONTROLLER
2 MARKS Q&A

Y2/S4

UNIT IV

Intel 8086 Microprocessor: Introduction-Intel 8086 Hardware – Pin description –

External memory Addressing – Bus cycles – Interrupt Processing. Addressing

modes - Instruction set – Assembler Directives.

8085 8086

8-bit microprocessor 16-bit microprocessor

216 memory locations 220 memory locations

Sequential facility Pipelined architecture available

Low speed High speed

It does not have much operational

instructions when compared to 8086

It allows to have much large set of operation

and instruction.

The internal functions of the 8086 processor are portioned logically into two
processing units.

1. Bus Interface Unit (BIU)

2. Execution unit (EU)

 BIU & EU function independently.

The BIU contains The EU contains

1.Segment registers 1.ALU

2.Instruction pointer 2.General purpose registers

3. Instruction queue. 3. Index registers
 4. Pointers
 5.Flag register

 The BIU and EU function independently.

Bus Interface Unit (BIU):

 The BIU interfaces the 8086 to the outside of the world.

 The BIU fetches instruction, reads data from memory and ports and write data

to the memory and I/O ports.

Execution unit (EU):

1. What are the difference between 8085 & 8086?***

2. What are the functional units available in 8086?

3. What are the functions of BIU and EU?***

MICROPROCESSOR AND MICROCONTROLLER
2 MARKS Q&A

Y2/S4

 EU receives program instruction codes and data from the BIU, executes these

instructions and stores the result in the general registers or output them

through the BIU.

Instructions of 8086 are classified into six groups.

1. Data transfer instructions

2. Arithmetic instructions

3. Bit manipulation instructions

4. String instructions

5. Program execution transfer instructions

6. Processor control instructions

The method of specifying the data to be operated by the instruction is called

Addressing.

The 8086 has 12 addressing modes:

1. Register Addressing Mode

2. Immediate Addressing Mode]

3. Direct Addressing Mode

4. Register Indirect Addressing Mode

5. Based Addressing Mode

6. Indexed Addressing Mode

7. Based Indexed Addressing Mode

8. String Addressing Mode

9. Direct I/O port Addressing Mode

10. Indirect I/O port Addressing Mode

11. Relative Addressing Mode

12. Implied Addressing Mode.

Segment registers are in Bus Interface Unit (BIU) of 8086.
Most of the registers contain data/instruction offset within 64KB memory segment.

There are four different 64 KB segments for instructions, stack, data & extra data.

The segment registers are:

1. Code Segment(CS)

2. Stack Segment(SS)

3. Data Segment(DS)

4. Extra Segment(ES)

4. How the instructions are classified in 8086?**

5. What are the types of addressing modes in 8086?***

6. Define segment register? List types of segment in 8086 memory.***

MICROPROCESSOR AND MICROCONTROLLER
2 MARKS Q&A

Y2/S4

An assembler is a program which translates an assembly language program into
machine language program.

An assembly language program consists of two types of statements:

Instruction & Directives.

The instructions are translated to machine codes by the assembler, whereas the

directives are not translated to machine codes.

Some assembler directives are:

1. Borland Turbo Assembler (TASM)

2. IBM Macro Assembler (MASM)

3. Intel 8086 Macro Assembler (ASM)

4. Microsoft Macro Assembler.

 An assembler directive is a statement to give direction to the assembler to

perform the task of assembly process.
 The assembler directives control organization of the program and provide

necessary information to the assembler to understand assembly language

program to generate machine codes.

 They indicate how an operand or a section of a program is to be processed by

the assembler.

 An assembler supports directives to define data, to organize segments, to

control procedures, to define macros etc.

The general assembler directives are: ASSUME , EXTRN, GROUP, INCLUDE,
LABEL, MACRO, ORG, PTR, PROC, PUBLIC, RECORD, SEGMENT, STRUC,

EVEN, EQU, END, ENDM, ENDS, ENDP, DT, DQ , DD,DW, DB.

The ASSUME directive enables error-checking for register values.

It is used to inform the assembler the names of the logical segments, which are to be

assigned to the different segments used in an assembly language program.

Format:

ASSUMEsegregister:name[[,segregister:name]]…

ASSUME dataregister:type[[,dataregister:type]]…
ASSUME register:ERROR[[,register:ERROR]]…

ASSUME [[register:]] NOTHING [[,register:NOTHING]]…

After an ASSUME is put into effect, the assembler watches for changes to the values of

the given registers. ERROR generates an error if the register is used. NOTHING removes

register error-checking.

7. What is 8086 directives?

8. What is the need of assembler directives?**

9. Give examples for some assembler directives that are specific to 8086

assembly language.***

10. Explain ASSUME.

MICROPROCESSOR AND MICROCONTROLLER
2 MARKS Q&A

Y2/S4

Examples:

ASSUME CS : CODE

ASSUME DS : DATA

SEGMENT is used to indicate the start of a logical segment. It defines a program

segment called name having segment attributes align (BYTE, WORD, DWORD),

combine (PUBLIC, STACK), use (USE16, USE32, FLAT), and class.

The ENDS statement indicates the end of the program.

Format:

name SEGMENT type (WORD or PUBLIC)

statements

name ENDS

Examples:

CODE SEGMENT WORD
.

.

.

CODE ENDS

12. Explain EVEN.

EVEN (Align on Even memory Address):

The EVEN directive tells the assembler to increment the location counter to the

next even address if it is not already at an even address.

Format:

EVEN

Examples:

SALES DB

EVEN

DATA_ARRAY DW 100 DUP (?)

DD (Define Double Word):

It can be used to define data like DWORD (4bytes)

Format:

Name of the variable DD Initial values

Example:

NUMBER DD 12345678

11. Explain SEGMENT.**

13. Explain DD, DQ and DT.***

MICROPROCESSOR AND MICROCONTROLLER
2 MARKS Q&A

Y2/S4

DQ (Define Quad Word):

It can be used to define data like QWORD (8 bytes).

 Format:

Name of the variable DQ Initial values

Example:

TABLE DQ 1234567812345678

DT (Define Ten Bytes):

It can be used to define data like TBYTE (10 bytes).

Format:

Name of the variable DT Initial values

Example:

AMOUNT DT 12345678123456781234

14. What is the role of TF and IF flags in 8086?***

TF (Trap Flag)

Setting TF puts the 8086 in the single step mode. In this mode, the 8086 generates an
internal interrupt after the execution of each instruction.

IF (Interrupt Flag)

Setting IF causes the 8086 to receive external maskable interrupts through INTR pin.
Clearing IF disable these interrupts.

15. What is the function of T and D flags in 8086?

D Flag- String Direction Flag:

It is used to set direction in string operation.

T Flag- Single Step Trap Flag:

It is used for single stepping through a program.

The software interrupt are the program instructions. These instructions are inserted at
desired locations in a program. While running a program, if a software interrupt is

encountered then the processor executes an interrupt service routine (ISR).

AAA:

ASCII Adjust for Addition instruction adjusts the binary result of ADD or ADC

instruction.If bits 0-3 of AL contain a value greater than 9, or if the Auxiliary carry

flag is set, the CPU adds 06 to AL and adds 1 to AH. The bits 4-7 are set to zero.

(AL) ← (AL) + 6

(AH) ← (AH) + 1

16. What is meant by software interrupt in 8086?

17. Explain the instructions AAA ,AAS,AAM & AAD?***

MICROPROCESSOR AND MICROCONTROLLER
2 MARKS Q&A

Y2/S4

(AF) ← 1

Example:

AAA

Before execution After execution

AH AL AH AL

AAS:

ASCII Adjust for Subtraction instruction adjusts the binary result of a SUB or SBB

instruction.
If D3-D0 OF AL > 9

(AL) ← (AL) - 6

(AH) ← (AH) - 1

(AF) ← 1

AAM:

ASCII Adjust for Multiplication instruction adjusts the binary results of a MUI

instruction. AL is divided by 10(0AH) and the quotient is stored in AH. The

remainder is stored in AL.
(AH) ← (AL/0AH)
(AL) ← Remainder

AAD:

ASCII Adjust for Division instruction adjusts unpacked BCD dividend in AX before

a division operation. AH is multiplied 10(0AH) and added to AL. AH is set to zero.

(AL) ← (AH X 0AH) + (AL)
(AH) ← 0

A NEAR-JMP (Intra segment) is a jump where destination location is in the same
code segment. In this case only IP (Instruction Pointer) is changed.

IP = IP + signed displacement

A FAR-JMP (Inter-segment) is a jump where destination location is from a

different segment. In this case both IP (Instruction Pointer) and CS (Code Segment)

are changes as specified in the destination.

19. What is NEAR-CALL&FAR-CALL?

Intra-Segment CALL:

A NEAR-CALL is a call to a procedure which is in the same code segment as the

CALL instruction. When 8086 executes a NEAR-CALL instruction, it decrements the

stack pointer (SP) by 2 and copies the offset of the next instruction after the CALL on

0B 01

18. What is Intra-segment (NEARJMP) Inter segment (FARJMP)?***

01 00

MICROPROCESSOR AND MICROCONTROLLER
2 MARKS Q&A

Y2/S4

the stack. It loads IP with the offset of the first instruction of the procedure in same

segment.

Inter-Segment CALL:

A FAR-CALL is a call to a procedure which is in a different segment from that which

contains the CALL instruction. When 8086 executes a FAR-CALL, it decrements the

SP by 2 and copies the content of the CS register to the stack. It then decrements SP

by 2 again and copies the offset of the instruction after the CALL to the stack. Finally

it loads CS with the segment base of the segment which contains the procedure and IP

with the offset of the first instruction of the procedure in that segment.

The 16 bit members of the 8086 family can load a word from any arbitrary address.
The processor fetches the lower order byte of the value from the address specified and

the higher order byte from the next consecutive address.
The memory bank is selected by BHE and A0.

The EVEN memory bank is selected by the address line A0.

The ODD memory bank is selected by the control signal BHE.
Any memory location in the memory bank is selected by the address line A1 TO A19.

BHE A0 Characteristics

0 0 Whole word

0 1 Upper byte from/to ODD address

1 0 Lower byte from/to EVEN address

1 1 None

Program, data and stack memories occupy the same space. The total addressable

memory size is 1 MB. As the most of the processor instructions use 16-bit pointers,

the processor can effectively address only 64KB of memory. To access memory

outside of 64 KB the CPU uses special segment registers to specify where the code,

stack and data 64 KB segments are positioned within 1 MB of memory.

Interrupt Priority

INT n, INTO, Divide Error

NMI

INTR
Single step

Highest

↓

↓
lowest

Table: the priority of interrupts of 8086.
The software interrupts except Single Step interrupt have the highest priority;

followed by NMI, followed by INTR. Single step interrupt has the least priority. The

8086 checks for internal interrupts before for any hardware interrupt. Therefore

software interrupts have higher priority than hardware interrupt.

20. How 8086 is organized to facilitate memory read/write operation for

addressing external memory?***

21. Write about interrupt priority of 8086.

MICROPROCESSOR AND MICROCONTROLLER
2 MARKS Q&A

Y2/S4

So ware Traps

1. Hardware Interrupt – External Uses INTR and NMI

2. Software Interrupt – Internal – from INT or INTO

3. Processor Interrupt – Traps and 10 Software Interrupts

External –generated outside the CPU by other hardware.

(INTR, NMI)

Internal –generated within CPU as of an instruction or operation.

(INT, INTO, Divide Error and Single Step)

Programmable

Interrupt controller

8086 INTERRUPT CONNECTIONS

The physical address is obtained by appending four zeros to the content present in
CS register and then adding the content of IP register with the above value.

The instruction queue is a First-In-First-Out (FIFO) group of registers where 6 bytes
of instruction code is pre-fetched from memory ahead of time. It is being done to

speed up program execution by overlapping instruction fetch and execution. This

mechanism is known as PIPELINING.

 Fetching the next instruction while the current instruction executes is called

PIPELINING.

22. What are the interrupts in 8086***

NMI

8086 CPU

INTR

INT INTO

ft

Divide

Error
Single

Step

Interrupt Logic

Intel

8259A

PIC

23. How the physical address for fetching the next instruction to be

executed is obtained in 8086?

24. What is pipelining?***

NMI Requesting device

Unit IV

Intel 8086 Microprocessor: Introduction-Intel 8086 Hardware – Pin description – External

memory Addressing – Bus cycles – Interrupt Processing. Addressing modes - Instruction set

– Assembler Directives.

INTEL 8086 MICROPROCESSOR

1. ARCHITECTURE OF 8086:

The internal architecture of 8086 is divided into two separate units. They are

(i) Bus Interface Unit (BIU)

(ii) Execution Unit (EU)

The two units function independently.

The BIU is needed to fetch instruction, read operands, and write results. The

execution unit is used to execute instructions that have already been fetched by the BIU.

BUS INTERFACE UNIT

 The BIU is used to handle all transfers of data and addresses on the buses for the

Execution unit.

 The BIU is used to send addresses, fetch instructions from the memory, read data

from ports and memory and write data to ports and memory.

 The BIU contains segment registers, instruction pointer and the instruction queue.

QUEUE

 The queue is a First – In – First – Out (FIFO) group of registers.

 6 bytes of instruction code are fetched in advance and stored in a queue, while the EU

is not using the buses.

 EU fetched instructions from this queue to execute.

 When the EU is ready for the execution of the next instruction, it reads the byte from

the instruction queue.

 The time required to access the memory. So it increases the overall processing is

called as “Pipelining”.

SEGMENT REGISTER

 In 8086 memory (1 MB) is divided into number of segments.

 The size of the each segment is 64K bytes.

 A segment is an area that begins with a paragraph boundary, that is, at any location

divisible by 16.

 A segment may be located anywhere in the memory.

 Each of these segments can be used for a specific function.

 Code segment is used for storing the instructions.

 The stack segment is used as a stack and it is used to store the return addresses.

 The data and extra segment are used for storing data byte.

 In the assembly language programming, more than one data/code/ stack segments can

be defined.

 But only one segment of each type can be accessed at any time.

 The Figure shows different segment and segment registers.

Segments and Segment Register

The BIU contains four segments registers: They are

(i) Code segment register

(ii) Stack segment register

(iii)Data segment register and

(iv) Extra segment register

 These registers are used to hold the upper 16-bits of the starting address of the logical

group of memory, called the segment.

 The address of the memory bytes that need to be accessed is generated with the help

of address contained in the segment registers and other registers.

CS REGISTER:

 This register contains the initial address of the code segment (CS).

 This address plus the offset value contained in the instruction pointer (IP) indicates

the address of an instruction to be fetched for execution.

SS REGISTER:

 The stack segment (SS) register contains the initial address of the stack segment. This

address plus the value contained in the stack pointer (SP) is used for stack operations.

DS REGISTER:

 The data segment (DS) register contains the initial address of the current data

segment.

 This address plus the offset value in instruction causes a reference to a specific

location in the data segment.

ES REGISTER:

 Extra segment is used by some string operations.

 The Extra segment register contains the initial address of the extra segment.

 String instructions always use the ES and DI registers to calculate the physical

address for the destination.

ADVANTAGES OF SEGMENT REGISTERS:

1. The segment registers permit a program and its data to be placed in different areas of

memory each time the program is executed.

2. The segment registers facilitate the use of separate memory areas for instructions, its data,

and the stack.

3. The segment registers are used to allow the instruction, data, or stack portion of a program

to be more than 64 K bytes long. The above can be achieved by using more than one code,

data, or stack segment.

4. The segment registers are used to allow the memory capacity to be 1MB even though the

address associated with the individual instructions are only 16-bits.

INSTRUCTION POINTER (IP):

 The instruction pointer register contains a 16-bit offset address of the instruction that

is to be executed next.

 The value contained in the instruction pointer is called as an offset because this value

must be added to the base address of the code segment, which is available in the CS

register to find the 20-bit physical address.

 The value of the instruction pointer is incremented after executing every instruction.

EXECUTION UNIT (EU):

 The Execution Unit is responsible for executing the instructions.

 The EU decodes and executes instructions.

 BIU provide instructions and data to the EU.

The execution unit contains the following sections:

 Control circuitry, Instruction decoder, ALU and nine 16-bit registers.

 The nine registers are AX, BX, CX, DX, SP, BP, SI and DI and flag register.

GENRAL PURPOSE REGISTERS:

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

The 8086 has four 16-bit general purpose registers: AX, BX, CX and DX. The above 16-bit

registers can also be used as 8-bit registers. This BH, BL, CH, CL, DH, DL.

AX REGISTER:

 The AX register is also called as “Accumulator”.

 The use of accumulator registers is assumed by some instructions like divide, rotate,

shift etc.

 In such kind of instructions, the user loads the accumulator properly before executing

the instruction.

 In this case, the complete 16-bit, or only its lower 8-bit AL is used.

BX REGISTER:

 The BX register is called as “Base Register”.

 The contents of this register can be used to address the memory.

 All memory references use the content of this register for addressing by using the DS

as the default segment register.

CX REGISTER:

 The CX register is called as “Count Register”.

 Some instructions like SHIFT, ROTATE and LOOP use the contents of CX as a

counter.

 CX register contains the number of times the loop is to be executed.

DX REGISTER:

 The DX register is known as “Data Register”.

 Some input/output operations require the use of this register.

 The DX register is used to hold the high 16-bit result in 16 x 16 multiplications or the

high 16-bit dividend in 32/16 division and the 16-bit remainder after the division.

STACK POINTER REGISTER:

 A stack is a block of memory to store address or data.

 The base address of the stack is stored in the Stack segment register.

 The special register called the stack pointer contains the address of the top of the

stack.

 The stack pointer contains the offset of the data that has been stored latest on the

stack.

BASE POINTER REGISTER:

 Base pointer register is also used to access the data from the stack.

 The value in Sp always represents the offset of the top of the stack.

 BP register also contains an offset relative to SS register.

 With the help of BP register, it is possible to access any location within the stack

segment of the memory.

INDEX REGISTER:

 The 8086 contain two index registers Source Index (SI) register and Destination Index

(DI) register.

 The main use of three register is to hold the offset of a data in one segments.

CONTROL CIRCUITARY, INSTRUCTION DECODER AND ALU:

 The Execution Unit fetches instruction from the instruction queue.

 The above instruction is stored in the decoder.

 The decoder translates each instruction into sequence of actions, which the EU carries

out.

 The ALU is used to perform the arithmetic and logic operations.

 All the above actions are controlled by the control circuitry.

 Control circuitry generates appropriate signals at fixed intervals of time.

8086 FLAG REGISTER:

A flag register is a 16-bit register. A flag is a flip-flop. The flag register contains nine active

flags. Out of the above nine flags, six flags are called status flags or conditional flags and the

remaining three flags are called control flags.

The six conditional flags are:

1. The carry Flag (CF)

2. The Auxiliary Carry Flag (AF)

3. The Zero Flag (ZF)

4. The Overflow Flag (OF)

5. The Sign Flag (SF)

6. The Parity Flag (PF)

The status Flags are used to indicate some condition produced by an instruction. The

Execution Unit sets or resets these flags at the completion of execution of the arithmetic or

logical instruction.

The three control flags are:

1. The Directory Flag (DF)

2. The Trap Flag (TF)

3. The Interrupt Flag (IF)

These flags are used to control certain operations of the processor.

The control flags are set or reset by the specific instruction. The following figure

shows the format of the 8086 flag register. The first row indicates the bit positions and the

second row indicates the corresponding flags.

8086 flag Register

Status Flags or Conditioal Flags:

CARRY FLAG (CF)

CF is set if there is a carry or borrow for the most significant bit from addition or subtraction

operation respectively.

PARITY FALG (PF)

PF is set, if the result contains an even number of 1’s. PF is reset, if the result conatins an odd

number of 1’s.

AUXILIARY CARRY FLAG (AF)

AF is set if there is a carry from the low nibble into the high nibble during addition or a

borrow from the high nibble into the low nibble during subtraction of the low order 8-bit of a

16-bit number. Otherwise, Af is reset.

ZERO FLAG (ZF)

ZF is set, if the result of the arithmetic operation is zero. Otherwise it is reset.

SIGN FLAG (SF)

SF is set if the most significant bit of the result is one; otherwise, it is zero. The value of SF

=0 indicates that the sign of the result is positive. If SF =1, the result is negative number.

CONTROL FLAGS

TRAP FLAG (TF)

If TF is set, the 8086 works in the single step mode. In the single step mode, one instruction

is executed at a time. This type of operation is very useful for debugging programs.

INTERRUPT FLAG (IF)

If IF is set to 1, the processor recognizes all the interrupts; if IF is cleared to zero, the

processor ignores interrupts that come from the external devices.

DIRECTION FLAG (DF)

DF is used in string processing. When Df is set to 1, the string is processed backward. If DF

is cleared to zero, the string is processed forward.

OVERFLOW FLAG (OF)

OF is set if there is an arithmetic overflow, i.e., if the size of the result exceeds the capacity

of the destination location.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

2. PIN DIAGRAM AND PIN DESCRIPTION OF 8086:

Figure shows the Pin diagram of 8086. The description follows it.

 The Microprocessor 8086 is a 16-bit CPU available in different clock rates and

packaged in a 40 pin CERDIP or plastic package.

 The 8086 operates in single processor or multiprocessor configuration to achieve high

performance. The pins serve a particular function in minimum mode (single processor

mode) and other function in maximum mode configuration (multiprocessor mode).

 The Microprocessor 8086 is a 16-bit CPU available in different clock rates and

packaged in a 40 pin CERDIP or plastic package.

 The 8086 operates in single processor or multiprocessor configuration to achieve high

performance. The pins serve a particular function in minimum mode (single processor

mode) and other function in maximum mode configuration (multiprocessor mode).

 The 8086 signals can be categorized in three groups.

o The first are the signal having common functions in minimum as well as

maximum mode.

o The second are the signals which have special functions for minimum mode

o The third are the signals having special functions for maximum mode.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 The following signal descriptions are common for both modes.

 AD15-AD0: These are the time multiplexed memory I/O address and data lines.

o Address remains on the lines during T1 state, while the data is available on the

data bus during T2, T3, Tw and T4. These lines are active high and float to a

tristate during interrupt acknowledge and local bus hold acknowledge cycles.

 A19/S6, A18/S5, A17/S4, A16/S3 : These are the time multiplexed address and status

lines.

o During T1 these are the most significant address lines for memory operations.

o During I/O operations, these lines are low.

o During memory or I/O operations, status information is available on those

lines for T2, T3, Tw and T4.

o The status of the interrupt enable flag bit is updated at the beginning of each

clock cycle.

o The S4 and S3 combinely indicate which segment register is presently being

used for memory accesses as in below fig.

o These lines float to tri-state off during the local bus hold acknowledge. The

status line S6 is always low.

o The address bits are separated from the status bit using latches controlled by

the ALE signal.

 BHE/S7: The bus high enable is used to indicate the transfer of data over the higher

order (D15-D8) data bus as shown in table. It goes low for the data transfer over D15-

D8 and is used to derive chip selects of odd address memory bank or peripherals.

BHE is low during T1 for read, write and interrupt acknowledge cycles, whenever a

byte is to be transferred on higher byte of data bus. The status information is available

during T2, T3 and T4. The signal is active low and tristated during hold. It is low

during T1 for the first pulses of the interrupt acknowledge cycle.

 RD – Read: This signal on low indicates the peripheral that the processor is

performing memory or I/O read operation. RD is active low and shows the state for

T2, T3, Tw of any read cycle. The signal remains tristated during the hold

acknowledge.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 READY: This is the acknowledgement from the slow device or memory that they

have completed the data transfer. The signal made available by the devices is

synchronized by the 8284A clock generator to provide ready input to the 8086. the

signal is active high.

 INTR-Interrupt Request: This is a triggered input. This is sampled during the last

clock cycles of each instruction to determine the availability of the request. If any

interrupt request is pending, the processor enters the interrupt acknowledge cycle.

This can be internally masked by resulting the interrupt enable flag. This signal is

active high and internally synchronized.

 TEST: This input is examined by a ‘WAIT’ instruction. If the TEST pin goes low,

execution will continue, else the processor remains in an idle state. The input is

synchronized internally during each clock cycle on leading edge of clock.

 CLK- Clock Input: The clock input provides the basic timing for processor operation

and bus control activity. It’s an asymmetric square wave with 33% duty cycle.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

The following pin functions are for the minimum mode operation of 8086,

 M/IO – Memory/IO: This is a status line logically equivalent to S2 in maximum

mode. When it is low, it indicates the CPU is having an I/O operation, and when it is

high, it indicates that the CPU is having a memory operation. This line becomes

active high in the previous T4 and remains active till final T4 of the current cycle. It is

tristated during local bus “hold acknowledge “.

 INTA – Interrupt Acknowledge: This signal is used as a read strobe for interrupt

acknowledge cycles. i.e. when it goes low, the processor has accepted the interrupt.

 ALE – Address Latch Enable: This output signal indicates the availability of the

valid address on the address/data lines, and is connected to latch enable input of

latches. This signal is active high and is never tristated.

 DT/R – Data Transmit/Receive: This output is used to decide the direction of data

flow through the transceivers (bidirectional buffers). When the processor sends out

data, this signal is high and when the processor is receiving data, this signal is low.

 DEN – Data Enable: This signal indicates the availability of valid data over the

address/data lines. It is used to enable the transceivers (bidirectional buffers) to

separate the data from the multiplexed address/data signal. It is active from the middle

of T2 until the middle of T4. This is tristated during ‘hold acknowledge’ cycle.

 HOLD, HLDA- Acknowledge: When the HOLD line goes high, it indicates to the

processor that another master is requesting the bus access. The processor, after

receiving the HOLD request, issues the hold acknowledge signal on HLDA pin, in the

middle of the next clock cycle after completing the current bus cycle.

 At the same time, the processor floats the local bus and control lines. When the

processor detects the HOLD line low, it lowers the HLDA signal. HOLD is an

asynchronous input, and is should be externally synchronized. If the DMA request is

made while the CPU is performing a memory or I/O cycle, it will release the local bus

during T4 provided:

1. The request occurs on or before T2 state of the current cycle.

2. The current cycle is not operating over the lower byte of a word.

3. The current cycle is not the first acknowledge of an interrupt acknowledge

sequence.

4. A Lock instruction is not being executed.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

The following pin functions are applicable for maximum mode operation of 8086,

 S2, S1, S0 – Status Lines: These are the status lines which reflect the type of

operation, being carried out by the processor. These become activity during T4 of the

previous cycle and active during T1 and T2 of the current bus cycles.

 LOCK: This output pin indicates that other system bus master will be prevented from

gaining the system bus, while the LOCK signal is low. The LOCK signal is activated

by the ‘LOCK’ prefix instruction and remains active until the completion of the next

instruction. When the CPU is executing a critical instruction which requires the

system bus, the LOCK prefix instruction ensures that other processors connected in

the system will not gain the control of the bus.

The 8086, while executing the prefixed instruction, asserts the bus lock signal output,

which may be connected to an external bus controller. By prefetching the instruction, there is

a considerable speeding up in instruction execution in 8086. This is known as instruction

pipelining.

S2 S1 S1 INDICATION

0 0 0 Interrupt Acknowledgement

0 0 1 Read I/O port

0 1 0 Write I/O port

0 1 1 Halt

1 0 0 Code Access

1 0 1 Read Memory

1 1 0 Write Memory

1 1 1 Passive

 At the starting the CS:IP is loaded with the required address from which the execution

is to be started. Initially, the queue will be empty an the microprocessor starts a fetch

operation to bring one byte (the first byte) of instruction code, if the CS:IP address is

odd or two bytes at a time, if the CS:IP address is even.

 The first byte is a complete opcode in case of some instruction (one byte opcode

instruction) and is a part of opcode, in case of some instructions (two byte opcode

instructions), the remaining part of code lie in second byte.

 The second byte is then decoded in continuation with the first byte to decide the

instruction length and the number of subsequent bytes to be treated as instruction data.

The queue is updated after every byte is read from the queue but the fetch cycle is

initiated by BIU only if at least two bytes of the queue are empty and the EU may be

concurrently executing the fetched instructions.

 The next byte after the instruction is completed is again the first opcode byte of the

next instruction. A similar procedure is repeated till the complete execution of the

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

program. The fetch operation of the next instruction is overlapped with the execution

of the current instruction. As in the architecture, there are two separate units, namely

Execution unit and Bus interface unit.

 While the execution unit is busy in executing an instruction, after it is completely

decoded, the bus interface unit may be fetching the bytes of the next instruction from

memory, depending upon the queue status.

QS1 QS0 INDICATION

0 0 No Operation

0 1 First Byte of the opcode the queue

1 0 Empty Queue

1 1 Subsequent Byte from the Queue

 RQ/GT0, RQ/GT1 – Request/Grant : These pins are used by the other local bus

master in maximum mode, to force the processor to release the local bus at the end of

the processor current bus cycle.

 Each of the pin is bidirectional with RQ/GT0 having higher priority than RQ/GT1.

RQ/GT pins have internal pull-up resistors and may be left unconnected.

Request/Grant sequence is as follows:

1. A pulse of one clock wide from another bus master requests the bus access to

8086.

2. During T4(current) or T1(next) clock cycle, a pulse one clock wide from 8086 to

the requesting master, indicates that the 8086 has allowed the local bus to float and

that it will enter the ‘hold acknowledge’ state at next cycle. The CPU bus interface

unit is likely to be disconnected from the local bus of the system.

3. A one clock wide pulse from another master indicates to the 8086 that the hold

request is about to end and the 8086 may regain control of the local bus at the next

clock cycle. Thus each master to master exchange of the local bus is a sequence of

3 pulses. There must be at least one dead clock cycle after each bus exchange. The

request and grant pulses are active low. For the bus request those are received

while 8086 is performing memory or I/O cycle, the granting of the bus is governed

by the rules as in case of HOLD and HLDA in minimum mode.

3. 8086 EXTERNAL MEMORY ADDRESSING

The 8086 memory address space can be viewed as a sequence of one million bytes in which

any byte may contain an 8-bit data element and any two consecutive bytes may contain a 16-

bit data element. There is no constraint on byte or word address boundaries. The address

space is physically connected to a 16-bit data bus by dividing the address space into two 8-bit

banks of up to 512K bytes each.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

One bank is connected to the lower half of the 16-bit data bus (D0 – D7) and contains even

address bytes. i.e., when A0 bit is low, the bank is selected. The other bank is connected to

the upper half of the data bus (D8 - D15) and contains odd address bytes. i.e., when A0 is

high and BHE (Bus High Enable) is low, the odd bank is selected. A specific byte within

each bank is selected by address lines A1-A19.

Data can be accessed from the memory in four different ways. They are:

 8 - bit data from Lower (Even) address Bank.

 8 - bit data from Higher (Od) address Bank.

 16 - bit data starting from Even Address.

 16 - bit data starting from Od Address.

4. 8086 INTERRUPT PROCESSING

 The event that causes the interruption is called interrupt.

 The special routine executed to service the interrupt is called interrupt service routine.

Normal program can be interrupted by three ways:

1. By external signal

2. By a special instruction in the program or

3. By the occurrence of some condition

An interrupt caused by an external signal is referred as a hardware interrupt conditional

interrupts of interrupts caused by special instructions are called software interrupts.

4.1 8086 INTERRUPT TYPES

 Divide by zero interrupt (type 0)

 Single step interrupt (type 1)

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 Non maskable interrupt (type 2)

 Breakpoint interrupt (type 3)

 Overflow interrupt (type 4)

Divide by zero interrupt (type 0)

 When the quotient from either a DIV or IDIV instruction is too large to fit in the

result register; 8086 will automatically execute type 0 interrupt.

Single step interrupt (type 1)

 The type 1 interrupt is the single step trap.

 In the single step mode, system will execute one instruction and wait for further

direction from user.

 Then user can examine the contents of registers and memory locations and if they are

correct, user can tell the system to execute the next instruction.

 This feature is useful for debugging assembly language programs.

 An 8086 system is used in the single step mode by setting the trap flag.

 If the trap flag is set, the 8086 will automatically execute a type 1 interrupt after

execution if each instruction.

 But the 8086 has no such instruction to directly set or reset the trap flag.

 These operations can be performed by taking the flag register contents into memory,

changing the memory contents so to set or reset trap flag and save the memory

contents into flags register.

 To reset the trap flag we have to reset bit 8

Non maskable interrupt (type 2)

 As the name suggests, this interrupt cannot be disabled by any software instruction

 This interrupt is activated by low to high transition on 8086 NMI input pin

 In response 8086 will do a type 2 interrupt

Breakpoint interrupt (type 3)

 Type3 interrupt is used to implement break point function in the system.

 It is produced by execution of the INT3 instruction.

 Break point function is often used as debugging aid in case where single stepping

provides more detail than wanted.

 When you insert a break point, the system executes the instruction upto the

breakpoint, and then goes to the break point procedure.

 In the breakpoint procedure you can write a program to display register contents,

memory contents and other information that is required to debug your program. .

 You can insert as many breakpoints as you want in your program.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

Overflow interrupt (type 4):

 It is used to check overflow condition after any signed arithmetic operation in the

system.

 For example, if you add the 8-bit signed number 0111 1000(+120 decimal) and the 8

bit signed number 0110 0010 (-98 decimal).

 In signed number, MSB is reserved for sign and other bit represent magnitude of the

number.

 In the previous example, after addition of two 8-bit signed numbers result is negative,

since it is too large to fit in 7bits.

 To delete this condition in the program you can put interrupt on overflow instruction,

INTO, immediately after the arithmetic instruction in the program.

 If the overflow flag is not set when the 8086 executes the INTO instructions, the

instruction will simply function as a NOP (no operation).

 However, if the overflow flag is set, indicating an overflow error, the 8086 will

executes type4 interrupt after executing the INTO instruction.

 Another way to detect and respond to the overflow error in a program is to put the

jump if overflow (JO) instruction immediately after the arithmetic instruction.

 If the overflow flag is set as a result of arithmetic operation, execution will jump to

the address specified in the JO instruction.

 At this address you can put an error routine which response in the way you want to

overflow.

Software interrupts

Type 0-255:

 The 8025 INT instruction can be used to cause the 8086 to do one of the 256 possible

interrupt types.

 The interrupt type is specified by the number as a part of the instructions.

 We can use an INT2 instruction to send execution to an NMI interrupt service routine.

 With the s/w interrupts u can call the desired routines from many different programs in a

system.

 The BIOS (Basic Input Output System) routines are called INT instructions. we will

summarize interrupt response and how it is serviced by going through following steps.

1. 8086 pushes the flag register on the stack

2. It disables the single step & the INTR input by clearing the trap flag & interrupt flag in

the flag register.

3. It saves the current CS &IP register contents by pushing them on the stack.

4. Once these values are loaded in CS & IP, 8086 will fetch the instruction from the new

address which is the starting address of ISR

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

5. An IRET instruction at the end of ISR gets the previous values of CS &IP by popping

the CS and IP from the stack.

6. At the end of flag register contents are copied back into flag register by popping the flag

register from stack.

MASKABLE INTERRUPT (INTR)

 The 8086 INTR input can be used to interrupt a program execution.

 This interrupt can be enabled or disabled by STI(IF=1)or CLI(if=0)

The 8086 responds to an INTR interrupt as follows:

1. The 8086 has 2 interrupt i) interrupt acknowledge machine cycle the 8086 floats the

data bus line AD0-AD15.

2. Once the 8086 receives the interrupt type, it pushes the flag register on the stack, Clears

TF &IF, pushes the CS & IP values of the next instruction on the stack.

3. The 8086 then gets the new value of IP from the memory address = 4 times the interrupt

type & CS value from memory address = 4 times the interrupt number plus2.

5. ADDRESSING MODES OF 8086

Definition: An instruction acts on any number of operands. The way an instruction accesses

its operands is called its Addressing modes.

Operands may be of three types:

 Implicit

 Explicit

 Both Implicit and Explicit.

Implicit operands mean that the instruction by definition has some specific operands. The

programmers do NOT select these operands.

Explicit operands mean the instruction operates on the operands specified by the

programmer.

XLAT; automatically takes AL and BX as

operands

AAM; it operates on the contents of AX.

Example: Implicit operands

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

Implicit and explicit operands

The location of an operand value in memory space is called the Effective Address (EA)

We can classify the addressing modes of 8086 into four groups:

 Immediate addressing

 Register addressing

 Memory addressing

 I/O port addressing

The first three Addressing modes are clearly explained.

Immediate addressing mode & Register addressing mode

Immediate Addressing Mode

In this addressing mode, the operand is stored as part of the instruction. The immediate

operand, which is stored along with the instruction, resides in the code segment -- not in the

data segment. This addressing mode is also faster to execute an instruction because the

operand is read with the instruction from memory. Here are some examples:

MOV AL, 20 ; move the constant 20 into register AL

ADD AX, 5 ; add constant 5 to register EAX

MOV DX, offset msg ; move the address of message to

register DX

MUL BX; automatically multiply BX explicitly times

AX

MOV AX, BX; it takes AX and BX as

operands

XCHG SI, DI; it takes SI and DI as operands

Example: Explicit operands

Example: Implicit/Explicit operands

Example: Immediate Operands

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

Register addressing mode

In this addressing mode, the operands may be:

 reg16: 16-bit general registers: AX, BX, CX, DX, SI, DI, SP or BP.

 reg8: 8-bit general registers: AH, BH, CH, DH, AL, BL, CL, or DL.

 Sreg: segment registers: CS, DS, ES, or SS. There is an exception: CS cannot be a

destination.

For register addressing modes, there is no need to compute the effective address. The operand

is in a register and to get the operand there is no memory access involved.

Some rules in register addressing modes:

1. You may not specify CS as the destination operand.

Example: mov CS, 02h –> wrong

2. Only one of the operands can be a segment register. You cannot move data from one

segment register to another with a single mov instruction. To copy the value of cs to ds, you

would have to use some sequence like:

mov ds,cs -> wrong

mov ax, cs

mov ds, ax -> the way we do it

You should never use the segment registers as data registers to hold arbitrary values. They

should only contain segment addresses.

Memory Addressing Modes

Memory (RAM) is the main component of a computer to store temporary data and machine

instructions. In a program, programmers many times need to read from and write into

memory locations.

There are different forms of memory addressing modes

1. Direct Addressing

2. Register indirect addressing

3. Based addressing

4. Indexed addressing

MOV AX, BX ; mov reg16, reg16

ADD AX, SI ; add reg16, reg16

MOV DS, AX ; mov Sreg, reg16

Example: Register Operands

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

5. Based indexed addressing

6. Based indexed with displacement

Direct Addressing Mode & Register Indirect Addressing Mode

Direct Addressing Mode

The instruction mov al, ds:[8088h] loads the AL register with a copy of the byte at memory

location 8088h. Likewise, the instruction mov ds: [1234h],dl stores the value in the dl register

to memory location 1234h. By default, all displacement-only values provide offsets into the

data segment. If you want to provide an offset into a different segment, you must use a

segment override prefix before your address. For example, to access location 1234h in the

extra segment (es) you would use an instruction of the form mov ax, es:[1234h]. Likewise, to

access this location in the code segment you would use the instruction mov ax, cs: [1234h].

The ds: prefix in the previous examples is not a segment override.

The instruction mov al, ds:[8088h] is same as mov al, [8088h]. If not mentioned DS register

is taken by default.

Register Indirect Addressing Mode

The 80x86 CPUs let you access memory indirectly through a register using the register

indirect addressing modes. There are four forms of this addressing mode on the 8086, best

demonstrated by the following instructions:

mov al, [bx]

mov al, [bp]

mov al, [si]

mov al, [di]

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

Code Example

MOV BX, 100H

MOV AL, [BX]

The [bx], [si], and [di] modes use the ds segment by default. The [bp] addressing mode uses

the stack segment (ss) by default. You can use the segment override prefix symbols if you

wish to access data in different segments. The following instructions demonstrate the use of

these overrides:

mov al, cs:[bx]

mov al, ds:[bp]

mov al, ss:[si]

mov al, es:[di]

Intel refers to [bx] and [bp] as base addressing modes and bx and bp as base registers (in fact,

bp stands for base pointer). Intel refers to the [si] and [di] addressing modes as indexed

addressing modes (si stands for source index, di stands for destination index). However, these

addressing modes are functionally equivalent. This text will call these forms register indirect

modes to be consistent.

Based Addressing Mode and Indexed Addressing Modes

Based Addressing Mode

8-bit or 16-bit instruction operand is added to the contents of a base register (BX or BP), the

resulting value is a pointer to location where data resides.

Mov al, [bx],[si]

Mov bl , [bp],[di]

Mov cl , [bp],[di]

Code Example

If bx=1000h

si=0880h

Mov AL, [1000+880]

Mov AL,[1880]

Indexed Addressing Modes

The indexed addressing modes use the following syntax:

mov al, [bx+disp]

mov al, [bp+disp]

mov al, [si+disp]

mov al, [di+disp]

Code Example

MOV BX, 100H

MOV AL, [BX + 15]

MOV AL, [BX + 16]

If bx contains 1000h, then the instruction mov cl, [bx+20h] will load cl from memory

location ds:1020h. Likewise, if bp contains 2020h, mov dh, [bp+1000h] will load dh from

location ss:3020. The offsets generated by these addressing modes are the sum of the constant

and the specified register. The addressing modes involving bx, si, and di all use the data

segment, the [bp+disp] addressing mode uses the stack segment by default. As with the

register indirect addressing modes, you can use the segment override prefixes to specify a

different segment:

mov al, ss:[bx+disp]

mov al, es:[bp+disp]

mov al, cs:[si+disp]

mov al, ss:[di+disp]

Based Indexed Addressing Modes & Based Indexed Plus Displacement Addressing Mode

Based Indexed Addressing Modes

The based indexed addressing modes are simply combinations of the register indirect

addressing modes. These addressing modes form the offset by adding together a base register

(bx or bp) and an index register (si or di). The allowable forms for these addressing modes

are:

mov al, [bx+si]

mov al, [bx+di]

mov al, [bp+si]

mov al, [bp+di]

Code Example

MOV BX, 100H

MOV SI, 200H

MOV AL, [BX + SI]

INC BX

INC SI

Suppose that bx contains 1000h and si contains 880h. Then the instruction mov al, [bx][si]

would load al from location DS:1880h. Likewise, if bp contains 1598h and di contains 1004,

mov ax, [bp+di] will load the 16 bits in ax from locations SS: 259C and SS: 259D. The

addressing modes that do not involve bp use the data segment by default. Those that have bp

as an operand use the stack segment by default.

Based Indexed Plus Displacement Addressing Mode

These addressing modes are a slight modification of the base/indexed addressing modes with

the addition of an eight bit or sixteen bit constant. The following are some examples of these

addressing modes

mov al, disp[bx][si]

mov al, disp[bx+di]

mov al, [bp+si+disp]

mov al, [bp][di][disp]

Code Example

MOV BX, 100H

MOV SI, 200H

MOV AL, [BX + SI +100H]

INC BX

INC SI

6. INSTRUCTION SETS OF 8086

The instruction set of a processor can defines the basic operations that a programmer can

make the device to perform. The 8086 instruction contains no operand, single operand and

two operand instructions. The instruction set will be divided into number of groups of

functionally related instructions.

 Data transfer instructions

 Arithmetic instructions

 Bit manipulations instructions

 String manipulations instructions

 Conditional branch instructions

 Unconditional branch instructions

 Iteration control instructions

 Interrupt control instructions

 Processor control instructions

1. Data transfer instructions

The data transfer instructions transfers’ data from one register/memory locations to other

register/memory locations. All the store, move, load, exchange, input and output instructions

belong to this category. These instructions move single byte or word between a register and

I/O ports. Some of the data transfer instructions are listed below.

 MOV d,s

 PUSH d

 POP d

 LEA reg,mem

 LDS reg,mem

The following example will explain the instructions mentioned above

MOV CX,DX copies 16 bit content of DX to CX.

LDS BX, 5000H loads register and DS from memory.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

2. Arithmetic instructions

This type of instructions usually perform the arithmetic operations, like Addition,

Subtraction, Multiplications, Division, Increment and Decrement operation along with

respective ASCII and decimal adjust instructions. The operands are either the registers or

memory locations or immediate data depending upon the addressing mode. Some of the

arithmetic instructions are given below.

 ADD a,b

 ADC a,b

 AAA

 INC reg/mem

 SUB a,b

 SBB a,b

 CMP a,b

 MUL reg,mem

 DIV reg,mem

The following are the examples for some of the above mentioned instructions.

ADD AX, 0100H Adds to register

SUB 0100H Subtract byte or word, destination is AX

3. Bit manipulation instructions

These types of instructions are used for carrying out the bit by bit shift, rotate in basic logical

operations. All the condition code flags are affected depending upon the result. The 8086

provides three groups of bit manipulation instructions. Some of the instructions are listed

below.

 AND a, b

 OR a, b

 XOR a, b

 SHL/SAL mem / reg, CNT

 SHR/SAR mem /reg, CNT

 RCL mem/reg, CNT

 RCR mem/reg, CNT

The following are the example for the above mentioned instructions.

1. AND, Logical AND, Logical OR, Logical Inverter and Logical XOR

The source operand that may be available immediately, register or a memory location ANDed

bit by bit to the destination operand that may be a register or a memory location.

Eg: AND AX, 008H

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

 SHL/SAL [Shift Logical/Arithmetic Left]

The instructions shift the operand word or byte bit by bit to the left and insert zeros in the

newly introduced least significant bits.

 SHR/SAR [Shift Logical Right /Arithmetic Right]

The instructions are same as SHL/SAL; the only difference is shift the operand word or byte

bit by bit to the right. The result is stored in the destination operand.

 RCR/RCR [Rotate Right through Carry/Rotate Left through Carry]

These instructions rotate the contents (bit-wise) of the destination operand right or left

respectively by the specified count through Carry flag (CF). In RCR, the Carry flag is pushed

in to the MSB of the operand, and the LSB is pushed into carry flag for each operation. In

RCL the carry flag for each operation.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

4. String manipulation instructions

String instructions are available to MOVE, COMPARE or SCAS for a value as well as to

move string elements to and from the accumulator. A series of the data bytes or words

available is memory at consecutive locations, to be referred to collectively or word strings.

For referring to a string two parameters are required (a) string or end address of the sting (b)

length of the string. Some of the string manipulations are given below.

 MOVSB/MOVSW[Move String Byte or String Word]

These instruction moves 8 or 16 bit data from the memory l0cation addressed by

SI to another set of destination location which is addressed by SI.

Eg: MOV AX, 5000H -Source segment address is 5000H

 CMPS [Compare String Byte or String Words]

When two strings of bytes or words are to be compared the CMPs can be used. The length of

the strings must be stored in the CX register. If both strings are equal Z=1, other flags are

affected in the same way as CMP instruction.

5. Conditional branch instructions

In these instructions, the control is transferred to the specified location provided the result of

previous operation satisfies a particular condition, otherwise, the execution continuous in

normal flow sequence. All the conditional branch instructions use 8-bit signed displacement

these type of instructions do not affect any flag. The typical structure of the conditional

branch is follows.

If condition is true,

Then PC←PC + disp 8 otherwise

PC←PC + 2 and execute next instruction.

Some of the conditional branch instructions are given below

 JZ

 JNZ

 JS

 JNS

6. Unconditional branch instructions

These instructions, transfers the execution control to the specified location independent of

any status or condition. The CS and IP are unconditionary, modified to the new CS and IP.

The 8086 unconditional transfers are

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

CALL reg/mem/disp 16 ; call subroutine

RET ; return from subroutine

JMP reg/mem/disp 8/disp 16 ; Unconditional jump

 CALL[Unconditional call]

This instruction is used to call a subroutine form amain program. While executing this

instruction IP is incremented (i.e. address of the next instruction to be executed) and CS on

to the stack with the flags and loads the CS and IP register respectively.

 RET[Return from the Subourtine]

At the end of the subroutine, the RET must e executed, upon executing the previously stored

contents of IP and CS along with flags are retrieved into CS, IP and flag registers from the

stack and the main program will be executed the types of procedure and the SP contents.

They are

a) Return with segment

b) Return within segment adding 16-bit immediate displacement to the SP contents

c) Return intersegment

d) Return intersegment adding 16-bit immediate displace ment to the SP contents

 JMP[Unconditional JumP]

This instruction transfers the control of execution to the specified address using an 8 -bit or

16-bit displacement or CS unconditionally. No flags are affected by this instruction.

7. Iteration control instructions

These instructions execute the part of the program from the label or address specified in the

instruction up to the loop instruction, CX number of times. These instructions are given

below

 LOOP disp 8 Decrement CX by 1 without affecting flags and loop if CX≠0.

 LOOP E/LOOP Z disp8 Decrement CX by 1 without affecting flags and loop if CX≠0

/not equal .

 JCX Z disp 8 JMP if register CX = 0

8. Interrupt instructions

In the 8086, there are 256 interrupts are defined corresponding to the types from 00Hto FFH.

Where an Interrupt instruction executed, the TYPE byte N Is multiplied and the contents of

IP and CS of the interrupt service routine will be taken from the hexadecimal multiplication

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

(N*4) as offset address and 0000 as segment address. The interrupt instruction in8086 is

listed below.

Process control instructions

Hardware function in the processor chip can be controlled by these instructions.

There are two types

i. Flag manipulation Instruction

ii. Machine control Instruction

First one directly modifies some of the flags of 8086, later control the bus usage and

execution.

A processor control instruction available in 8086 is listed below.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

7. ASSEMBLER DIRECTIVES

Assembly languages are low-level languages for programming computers, microprocessors,

microcontrollers, and other IC. They implement a symbolic representation of the numeric

machine Codes and other constants needed to program a particular CPU architecture. This

representation is usually defined by the hardware manufacturer, and is based on abbreviations

that help the programmer to remember individual instructions, registers. An assembler

directive is a statement to give direction to the assembler to perform task of the assembly

process.

It control the organization if the program and provide necessary information to the assembler

to understand the assembly language programs to generate necessary machine codes. They

indicate how an operand or a section of the program is to be processed by the assembler.

An assembler supports directives to define data, to organise segments to control procedure, to

define macros. It consists of two types of statements: instructions and directives. The

instructions are translated to the machine code by the assembler whereas directives are not

translated to the machine codes.

Assembler directive 8086 microprocessor

(a) The DB directive

(b) The DW directive

(c) The DD directive

(d) The STRUCT (or STRUC) and ENDS directives (counted as one)

(e)The EQU Directive

(f)The COMMENT directive

(g)ASSUME

(h) EXTERN

(i) GLOBAL

(j) SEGMENT

(k)OFFSET

(l) PROC

(m)GROUP

(n) INCLUDE

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

Data declaration directives:

1. DB - The DB directive is used to declare a BYTE -2-BYTE variable - A BYTE is made up of

8 bits.

Declaration examples:

Byte1 DB 10h

Byte2 DB 255 ; 0FFh, the max. possible for a BYTE

CRLF DB 0Dh, 0Ah, 24h ;Carriage Return, terminator BYTE

2. DW - The DW directive is used to declare a WORD type variable - A WORD occupies 16

bits or (2 BYTE).

Declaration examples:

Word DW 1234h

Word2 DW 65535; 0FFFFh, (the max. possible for a WORD)

3. DD - The DD directive is used to declare a DWORD - A DWORD double word is made up

of 32 bits =2 Word's or 4 BYTE.

Declaration examples:

Dword1 DW 12345678h

Dword2 DW 4294967295 ;0FFFFFFFFh.

4. STRUCT and ENDS directives to define a structure template for grouping data items.

(1) The STRUCT directive tells the assembler that a user defined uninitialized data structure

follows. The uninitialized data structure consists of a combination of the three supported data

types. DB, DW, and DD. The labels serve as zero-based offsets into the structure. The first

element's offset for any structure is 0. A structure element is referenced with the base "+"

operator before the element's name.

A Structure ends by using the ENDS directive meaning END of Structure.

Syntax:

STRUCT

Structure_element_name element_data_type?

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

. . .

. . .

. . .

ENDS

(OR)

STRUC

Structure_element_name element_data_type?

. . .

. . .

. . .

ENDS

DECLARATION:

STRUCT

Byte1 DB?

Byte2 DB?

Word1 DW?

Word2 DW?

Dword1DW?

Dword2 DW?

ENDS

Use OF STRUCT:

The STRUCT directive enables us to change the order of items in the structure when, we

reform a file header and shuffle the data. Shuffle the data items in the file header and

reformat the sequence of data declaration in the STRUCT and off you go. No change in the

code we write that processes the file header is necessary unless you inserted an extra data

element.

(5) The EQU Directive

The EQU directive is used to give name to some value or symbol. Each time the assembler

finds the given names in the program, it will replace the name with the value or a symbol.

The value can be in the range 0 through 65535 and it can be another Equate declared

anywhere above or below.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

The following operators can also be used to declare an Equate:

THIS BYTE

THIS WORD

THIS DWORD

A variable - declared with a DB, DW, or DD directive - has an address and has space

reserved at that address for it in the .COM file. But an Equate does not have an address or

space reserved for it in the .COM file.

Example:

A - Byte EQU THIS BYTE

DB 10

A_ word EQU THIS WORD

DW 1000

A_ dword EQU THIS DWORD

DD 4294967295

Buffer Size EQU 1024

Buffer DB 1024 DUP (0)

Buffed_ ptr EQU $; actually points to the next byte after the; 1024th byte in buffer.

(6) Extern:

It is used to tell the assembler that the name or label following the directive are I some other

assembly module. For example: if you call a procedure which is in program module

assembled at a different time from that which contains the CALL instructions ,you must tell

the assembler that the procedure is external the assembler will put information in the object

code file so that the linker can connect the two module together.

Example:

PROCEDURE -HERE SEGMENT

EXTERN SMART-DIVIDE: FAR ; found in the segment; PROCEDURES-HERE

PROCEDURES-HERE ENDS

(7) GLOBAL: The GLOBAL directive can be used in place of PUBLIC directive .for a name

defined in the current assembly module; the GLOBAL directive is used to make the symbol

available to the other modules.

IT-T44 MICROPROCESSORS AND MICROCONTROLLERS

Example: GLOBAL DIVISOR:

WORD tells the assembler that DIVISOR is a variable of type of word which is in another

assembly module or EXTERN.

(8) SEGMENT:

It is used to indicate the start of a logical segment. It is the name given to the the segment.

Example: the code segment is used to indicate to the assembler the start of logical segment.

(9) PROC: (PROCEDURE)

It is used to identify the start of a procedure. It follows a name we give the procedure.

After the procedure the term NEAR and FAR is used to specify the procedure Example:

SMART-DIVIDE PROC FAR identifies the start of procedure named SMART-DIVIDE and

tells the assembler that the procedure is far.

(10) NAME:

It is used to give a specific name to each assembly module when program consists of several

modules.

Example: PC-BOARD used to name an assembly module which contains the instructions for

controlling a printed circuit board.

(11) INCLUDE:

It is used to tell the assembler to insert a block of source code from the named file into the

current source module. This shortens the source module. An alternative is use of editor block

command to cop the file into the current source module.

(12) OFFSET:

It is an operator which tells the assembler to determine the offset or displacement of a named

data item from the start of the segment which contains it. It is used to load the offset of a

variable into a register so that variable can be accessed with one of the addressed modes.

Example: when the assembler read MOV BX.OFFSET PRICES, it will determine the offset

of the prices.

(13) GROUP:

It can be used to tell the assembler to group the logical segments named after the directive

into one logical group. This allows the contents of all he segments to be accessed from the

same group. Example: SMALL-SYSTEM GROUP CODE, DATA, STACK-SEG.

	 SID (Serial input data line):
	 SOD (Serial output data line):
	Unit: I
	Definition of the Microprocessor:
	The microprocessor is a programmable device that takes in numbers, performs on them arithmetic or logical operations according to the program stored in memory and then produces other numbers as a result.

	Basic Concepts of Microprocessors & Differences between:
	1.1 GENERAL ARCHITECTURE OF MICROPROCESSOR
	2. EVOLUTION OF MICROPROCESSORS
	 8-bit Microprocessors
	 16-bit Microprocessors
	 32-bit Microprocessors
	 Pentium Series
	 First generation (1971 – 73)
	 Second Generation (1974 – 1978)
	 Third generation microprocessors (1979 – 80)
	 Fourth Generation (1981 – 1995)
	 Fifth Generation (1995 – till date)
	3. HARDWARE ARCHITECTURE OF INTEL -8085 ACCUMULATOR:
	TEMPORARY REGISTER:
	GENERAL PURPOSE REGISTERS:
	STACK POINTER (SP):
	PROGRAM COUNTER (PC):
	INCREMENTER/DECREMENTER:
	ALU:
	FLAGS:
	INSTRUCTION REGISTER AND DECODER
	TIMING AND CONTROL
	INTERRUPT CONTROL
	SERIAL I/O CONTROL
	ADDRESS, DATA, AND CONTROL BUSES
	ADDRESS BUFFER AND ADDRESS DATA-BUFFER
	Features Of 8085
	Bus Organization of INTEL 8085
	POWER SUPPLY AND CLOCK FREQUENCY SIGNALS:
	ADDRESS BUS
	MULTIPLEXED ADDRESS / DATA BUS
	CONTROL AND STATUS SIGNALS
	STATUS SIGNALS
	INTERRUPTS AND EXTERNALLY INITIATED OPERATIONS
	Reset In (input, active low)
	Reset Out (Output)

	5. DIRECT MEMORY ACCESS (DMA)
	READY (input)
	Single Bit Serial I/O Ports

	6. INSTRUCTION WORD SIZE
	7. ADDRESSING MODES OF 8085
	1) DIRECT ADDRESSING MODE:
	Examples:
	2) IMMEDIATE ADDRESSING MODE:
	Examples: (1)
	b) LXI RP, 16-bit Data
	3) REGISTER DIRECT ADDRESSING MODE:
	Examples: (2)
	b) ADD R
	4) REGISTER INDIRECT ADDRESSING MODE:
	Examples
	b) ADD M
	5) IMPLICIT ADDRESSING MODE
	Examples (1)
	6) STACK ADDRESSING MODE
	Examples (2)
	7. INDIRECT ADDRESSING MODE:
	Examples (3)
	8. INDEXED ADDRESSING MODE
	Examples (4)
	8. RELATIVE ADDRESSING MODE

	8. INSTRUCTION SET OF 8085
	Instruction and Data Formats
	Opcode Operand Description
	Copy from source to destination
	Output data from accumulator to a port with 8-bit address

	Opcode Operand Description (1)
	Add register or memory to accumulator
	Increment register pair by 1

	Opcode Operand Description (2)
	Jump unconditionally

	Opcode Operand Description (3)
	Compare register or memory with accumulator

	Opcode Operand Description (4)
	Halt and enter wait state

	Address
	Instruction Label (optional)
	Mnemonic
	Operands
	No operands
	One operand
	Two operands
	Three operands
	Comments
	Arithmetic Operation:
	Program in Microprocessor (immediate addressing):
	Program in Microprocessor (direct addressing):
	ASCENDING ORDER
	Algorithm:

	10.THE STACK
	Saving Information on the Stack
	The PUSH Instruction
	The POP Instruction
	Operation of the Stack
	LIFO
	The PSW Register Pair

	11. SUBROUTINES
	The CALL Instruction
	The RTE Instruction
	Passing Data to a Subroutine
	Call by Reference and Call by Value
	Cautions with PUSH and POP

	12. TIMING DIAGRAM
	OPCODE FETCH MACHINE CYCLE OF 8085:
	Fig - Timing Diagram for Opcode Fetch Machine Cycle MEMORY READ MACHINE CYCLE OF 8085:
	Fig - Timing Diagram for Memory Read Machine Cycle I/O WRITE CYCLE OF 8085:
	Fig - Timing Diagram for I/O Write Machine Cycle
	Timing Diagram for IN C0H
	Timing diagram for INR M
	Timing diagram for MVI B, 43H

	13. EVOLUTION OF 16-BIT & 32-BIT MICROPROCESSOR:
	EVOLUTION OF 16-BIT MICROPROCESSORS:
	2. 8088
	3. 80186
	4. 80188
	5. 80286
	EVOLUTION OF 32-BIT MICROPROCESSORS:
	32- bit processors: the 80386 range
	32- bit processors: the 80486 range
	32- bit processors: P5 microarchitecture
	32- bit processors: P6/Pentium M microarchitecture
	32- bit processors: NetBurst microarchitecture

	Unit II
	INTERRUPTS
	Definition:
	Analogy of interrupt process:
	Classification Of Interrupts:
	What happens when MP is interrupted?
	RESPONDING TO INTERRUPTS:

	1. THE 8085 INTERRUPTS:
	The 8085 Has 5 Interrupt Inputs:
	Interrupt Vectors And The Vector Table:
	The 8085 Non-Vectored Interrupt Process:
	The 8085 Recognizes 8 Restart Instructions:

	1.2 SOFTWARE INTERRUPTS OF 8085:
	1.3 HARDWARE INTERRUPTS OF 8085:
	1.4 MULTIPLE INTERRUPTS & PRIORITIES:
	The 8085 Maskable/Vectored Interrupts:
	Masking RST 5.5, RST 6.5 And RST 7.5:
	The 8085 Maskable/Vectored Interrupt Process:
	2. 8259 PROGRAMMABLE INTERRUPT CONTROLLER The following are the features of 8259A:
	Pin configuration:
	D0-D7 (Data Bus)
	A0 (Address Line)
	CS (Chip Select)
	BLOCK DIAGRAM
	Interrupts and Control Logic Section:
	Data Bus Buffer
	Read/Write Logic
	CHIP SELECT:
	WRITE:
	READ:
	Cascade Buffer / Comparator
	Control Logic
	Interrupt request register (IRR)
	Priority Resolver (PR)
	Interrupt Mask Register (IMR)
	Interrupt Service Register (ISR)
	Interrupt Operations:
	Priority Interrupt Modes:
	END OF INTERRUPT
	1. Non Specific EOI command
	2. Specific EOI command
	VECTORING DATA FORMATS
	INITIALIZATION COMMAND WORD (ICW1)
	IC4
	SIGNAL
	ADI
	LTIM
	A5 –A7
	INITIALIZATION COMMAND WORD2 (ICW 2)
	OPERATION COMMAND WORDS (OCWS)

	4. DATA TRANSFER TECHNIQUES
	TYPES OF DATA TRANSFER:-
	PROGRAMMED DATA TRANSFER:
	SYNCHRONOUS DATA TRANSFER:
	ASYNCHRONOUS DATA TRANSFER:
	INTERRUPT DRIVEN DATA TRANSFER:

	4. DIRECT MEMORY ACCESS (DMA):
	BURST MODE DATA TRANSFER:
	CYCLE STEALING DATA TRANSFER:
	Direct Memory Access (DMA)
	READY (input)
	Single Bit Serial I/O ports:

	DMA CONTROLLER
	Direct memory access operation (DMA):

	6. PROGRAMMABLE 8237 DMA CONTROLLER
	Features
	Need for 8212 and signal ADSTB
	Signal AEN (address enable)
	Block diagram of INTEL IC 8237
	Read / write logic
	I/OR (I/O Read)
	I/OW (I/O write)
	CLK (Clock input)
	RESET (Reset)
	A0-A3 (Address)
	CS (Chip select)
	Control logic and mode set registers A4-A7 (Address)
	READY (Ready)
	MEMW (Memory write)
	AEN (Address enable)
	ADSTB (Address strobe)
	DREQ 0 – DREQ 3 (DMA request)
	DACK 0 – DACK 3 (DMA acknowledge)
	Registers in 8237
	DMA channels
	Operation of DMA controller
	Single transfer mode
	Block transfer mode
	Demand transfer mode
	DMA execution
	Slave mode
	Master mode

	7. INTEL 8253 PROGRAMMABLE INTERVAL TIMER
	INTRODUCTION:
	FEATURES:
	Block diagram:
	READ/WRITE LOGIC:
	Control word register:
	Counter:
	Operational description:
	READ OPERATIONS
	WRITE OPERATION:
	MODES OF OPERATION:
	MODE 0: Interrupt on terminal count
	MODE 1: Hardware-Retriggerable One-Shot
	MODE 2: Rate generator
	MODE 3: Square wave generator
	MODE 4: Software-triggered strobe
	MODE 5: Hardware-triggered strobe
	Difference between 8253A and 8254A:
	Pin diagram details:

	UNIT IV
	Bus Interface Unit (BIU):
	Execution unit (EU):
	Addressing.
	Examples:
	12. Explain EVEN.
	Examples: (1)
	DD (Define Double Word):
	DQ (Define Quad Word):
	DT (Define Ten Bytes):
	14. What is the role of TF and IF flags in 8086?*** TF (Trap Flag)
	IF (Interrupt Flag)
	15. What is the function of T and D flags in 8086? D Flag- String Direction Flag:
	T Flag- Single Step Trap Flag:
	AAA:
	AAS:
	AAM:
	AAD:
	IP = IP + signed displacement
	19. What is NEAR-CALL&FAR-CALL? Intra-Segment CALL:
	Inter-Segment CALL:
	Programmable Interrupt controller
	PIPELINING.
	Unit IV
	INTEL 8086 MICROPROCESSOR
	BUS INTERFACE UNIT
	QUEUE
	SEGMENT REGISTER
	CS REGISTER:
	SS REGISTER:
	DS REGISTER:
	ES REGISTER:
	ADVANTAGES OF SEGMENT REGISTERS:
	INSTRUCTION POINTER (IP):
	EXECUTION UNIT (EU):
	GENRAL PURPOSE REGISTERS:
	AX REGISTER:
	BX REGISTER:
	CX REGISTER:
	DX REGISTER:
	STACK POINTER REGISTER:
	BASE POINTER REGISTER:
	INDEX REGISTER:
	CONTROL CIRCUITARY, INSTRUCTION DECODER AND ALU:
	8086 FLAG REGISTER:
	Status Flags or Conditioal Flags:
	PARITY FALG (PF)
	AUXILIARY CARRY FLAG (AF)
	ZERO FLAG (ZF)
	SIGN FLAG (SF)
	CONTROL FLAGS TRAP FLAG (TF)
	INTERRUPT FLAG (IF)
	DIRECTION FLAG (DF)
	OVERFLOW FLAG (OF)

	2. PIN DIAGRAM AND PIN DESCRIPTION OF 8086:
	The following pin functions are for the minimum mode operation of 8086,
	The following pin functions are applicable for maximum mode operation of 8086,

	3. 8086 EXTERNAL MEMORY ADDRESSING
	4. 8086 INTERRUPT PROCESSING
	Normal program can be interrupted by three ways:

	4.1 8086 INTERRUPT TYPES
	Divide by zero interrupt (type 0)
	Single step interrupt (type 1)
	Non maskable interrupt (type 2)
	Breakpoint interrupt (type 3)
	Overflow interrupt (type 4):
	Software interrupts Type 0-255:
	MASKABLE INTERRUPT (INTR)

	5. ADDRESSING MODES OF 8086
	Implicit and explicit operands
	Register addressing mode
	Some rules in register addressing modes:
	Memory Addressing Modes
	Direct Addressing Mode & Register Indirect Addressing Mode Direct Addressing Mode
	Register Indirect Addressing Mode
	Code Example
	Based Addressing Mode and Indexed Addressing Modes Based Addressing Mode
	Code Example (1)
	Indexed Addressing Modes
	Code Example (2)
	Based Indexed Addressing Modes
	Code Example (3)
	Based Indexed Plus Displacement Addressing Mode
	Code Example (4)

	6. INSTRUCTION SETS OF 8086
	1. Data transfer instructions
	2. Arithmetic instructions
	3. Bit manipulation instructions
	1. AND, Logical AND, Logical OR, Logical Inverter and Logical XOR
	 SHL/SAL [Shift Logical/Arithmetic Left]
	 SHR/SAR [Shift Logical Right /Arithmetic Right]
	 RCR/RCR [Rotate Right through Carry/Rotate Left through Carry]
	4. String manipulation instructions
	5. Conditional branch instructions
	6. Unconditional branch instructions
	 CALL[Unconditional call]
	 RET[Return from the Subourtine]
	 JMP[Unconditional JumP]
	7. Iteration control instructions
	8. Interrupt instructions
	Process control instructions

	7. ASSEMBLER DIRECTIVES
	Assembler directive 8086 microprocessor
	Data declaration directives:

