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[1 To introduce the concepts of continuous time and discrete time signals and systems including their
classification and properties.

[1 To comprehend and analyze the frequency domain representation of continuous time signals.

1 To learn and investigate the different types of representing continuous time LTI systems and their
properties.

[ To comprehend and analyze the frequency domain representation of discrete time signals.

[1 To learn and investigate the different types of representing discrete time LTI systems and their
properties

UNIT I
REPRESENTATION AND CLASSIFICATION OF SIGNALS AND SYSTEMS: Continuous time
signals - Discrete time signals — Representation of signals — Step, Ramp, Pulse, Impulse, Sinusoidal,
Exponential signals, Classification of continuous and discrete time signals -Operations on the signals.
Continuous time and discrete time systems: Classification of systems — Properties of systems.

UNIT 11
ANALYSIS OF CONTINUOUS TIME SIGNALS: Fourier series: Properties - Trigonometric and
Exponential Fourier Series -Parsavel‘s relation for periodic signals - Fourier Transform: Properties -
Rayleigh‘s Energy Theorem - Laplace Transformation: Properties, R.O.C -Inverse Laplace transform

UNIT I
ANALYSIS OF DISCRETE TIME SIGNALS: Discrete Time Fourier Transform: Properties; Z-
Transformation: Properties — Different methods of finding Inverse Z-Transformation

UNIT IV
CONTINUOUS AND DISCRETE TIME SYSTEMS: LTI continuous time systems- Differential
equations — Transfer function and Impulse response — Convolution Integral- Block diagram
representation and reduction -State variable techniques — State equations
LTI Discrete time systems — Difference equations — System function and impulse response — Convolution
Sum — Block diagram representation — Convolution Sum — State equations for discrete time systems

UNIT V
DISCRETE FOURIER TRANSFORM: DFT — Properties - FFT algorithms —advantages over direct
computation of DFT — radix 2 algorithms — DIT and DIF algorithms — Computation of IDFT using FFT.

Text Books:

1. Simon Haykins and Barry Van Veen, —Signals and Systemsl, Second Edition, John Wiley and Sons,
2002.

2. Allan V. Oppenheim, Allan S.Willsky and S.HamidNawab, —Signals and Systemsl, Second Edition,
PHI Learning, New Delhi, 2007.

Reference Books:

1. Douglas K. Lindner, —Signals and Systemsl, McGraw-Hill International Edition, 1999.

2. P. Ramesh Babu, —Signals and Systemsl, Fifth Edition, Scitech Publishers,2014.

Web References:
1.http://www.cdeep.iith.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%20and%20System/Co
urse%200Dbjective.htm

2. http://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/

3. http://www.ece.jhu.edu/~cooper/courses/214/signalsandsystemsnotes.pdf

4. http://techteach.no/publications/discretetime_signals_systems/discrete.pdf.



http://techteach.no/publications/discretetime_signals_systems/discrete.pdf

UNIT I

REPRESENTATION AND CLASSIFICATION OF SIGNALS AND SYSTEMS

A Signal is the function of one or more independent variables that carries some information to
represent a physical phenomenon.

A ‘signal’ may be defined as a physical quantity which varies with time, space or any
independent variable Example — voltage, current A ‘system may be defined as a combination of
devices and networks or subsystem chosen to do a desired action Example Electrical N/W,
mechanical system

A continuous-time signal, also called an analog signal, is defined along a continuum of time.
Denoted by x(t)

A discrete-time signal is defined at discrete times. Denoted by x(n)

x(f)=Ae™, (=0 x(n)=Aat, n=0, 1, 2, ...
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Continuous analogue Discrete digital
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Noise Signal Pulsed Signal

Representation of signals



. Sinusoidal & Exponential Signals
Sinusoids and exponentials are important in signal and system analysis because they arise
naturally in the solutions of the differential equations.
Sinusoidal Signals can expressed in either of two ways :

cyclic frequency form- A sin 2 nif,t = A sin(2 ©t /T)t

radian frequency form- A sin ot

wo=27nf=2n/T,
T,= Time Period of the Sinusoidal Wave

x(t) =Asin2uft+0) = A sin (g 0)
X(t) = Ae™ Real Exponential
= Ae= Afcos (wot) +j sin (w.t)]  Complex Exponential

0 = Phase of sinusoidal wave A = amplitude of a sinusoidal or exponential signal
f,= fundamental cyclic frequency of sinusoidal signal ®, = radian frequency

Discrete Sinusoidal
DT signals can be defined in a manner analogous to their continuous-time counter part
Xx[n] = Asin (2 © n/Ny+6) SINUSOID
= Asin (2 nFo,n+ 6)

x[n] =a"EXPONENTIAL
n = the discrete time A = amplitude

6 = phase shifting radians, N, = Discrete Period of the wave
1/No= Fo= Q,/2 = = Discrete Frequency

=—— Period —— — Period —
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1. Unit Step Function

1 ,1t>0
u(t)=<1/2, t=0
0 , t<O
Precise Graph Coammanlv-TTeed Granh
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Discrete Unit step

ul~n]
o(r)~{ " 2o JININI -,

1. Signum Function

1 ,t>0 sgn(t) Sgﬁ(f)
sgn(t)=4 0 , t=0; = 2u(t)-1

-1,t<0 —L—l - S

The sighum function, is closely related to the unit-step function.

V. Unit Ramp Function
ramp(?)
i A

t, t>0 f
ramp(t)z{o ' tzo}z_[u(/i)dﬂ:tu(t) I

The unit ramp function is the integral of the unit step function.
It is called the unit ramp function because for positive t, its slope is one amplitude unit

per time.
ramp|[n]
il
, n20] ¢ Nt
ramp[n]:{n " }: > u[m-1]_= .ll”” #
Discrete Ramp 0,n<0] = PR
V. Rectangular Pulse or Gate Function
540
5.(0) l/a , |t|<al2
t)=
? 0 , \t\>a/2 o !
VI. Unit Impulse Function

unit impulse function is the derivative of the unit step function or unit step is the integral
of the unit impulse function.

The area under an impulse is called its strength or weight. It is represented graphically
by a vertical arrow. An impulse with a strength of one is called a unit impulse.

o(f) 58(1-1)
1 > dln]

t I 1
Representation of Unit Impulse  Shifted Impulse of Amplitude5 | n



5[n]—{1 , n=0
. A fort=0 . 10, nz0
Continuous  6(t) = {Ofort £ 0 | Discrete
VII.  Sinc Function

sinc(t)

Operations of Signals

Sometime a given mathematical function may completely describe a signal.
Different operations are required for different purposes of arbitrary signals.

The operations on signals can be

Time Shifting
Time Scaling
Time Inversion or Time Folding
Time Shifting
The original signal x(t) is shifted by an X(t)>X(t+to) ->Signal Advanced-> Shift to
amount ¢,. the left
: () x(t+ tp) Advance
l
2 o 2t .
| | -2 0 2t
g2 - .
X(t)>X(t-to) >Signal Delayed-> Shiftto the | 02 b -lof2

right

x(t - tg) Delay
I

]
[
=

Time Scaling
» For the given function x(t), x(at) is the time scaled version of x(t)
* Fora> 1,period of function x(t) reduces and function speeds up. Graph of the function shrinks.
» Fora <1, the period of the x(t) increases and the function slows down. Graph of the function
expands.




Example:

Given x(t) and we are to find y(t) = x(2t).

1 [ x(E)

-3 2 -1 o | 1 2

v = x¢2t)

3 -2 R o‘ 1 2 3
The period of x(t) is 2 and the period of y(t) is 1,

I

Given y(t), find w(t) = y(3t) and v(t) = y(t/3).

yio
2
0 3 t
wif) = v(31)
2

Speed up by 3

:

0 I

W) = 1(1/3)




Time Reversal
Time reversal is also called time folding

In Time reversal signal is reversed with respect to time i.e.

y(t) = x(-t) is obtained for the given function

ey = x—e)

Consider a signal x(n)

N = o = N w S o o
—o
L
]

0
I
o
N
A
I
@
o

X(-n)
T
% 3 5 3 2 1 0

NOTE:
X(-n + 2) Shift right

X(-n-2) shift left

Scaling; Signal Compression

n— Kn K an integer > 1
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, Classification of continuous and discrete time signals

There are various types of signals Every signal is having its own characteristic The processing of
signal mainly depends on the characteristics of that particular signal So classification of signal is
necessary Broadly the signal are classified as follows
1 Continuous and discrete time signals
2. Continuous valued and discrete valued signals.

3. Periodic and non periodic signals.
4 Even and odd signals
5. Energy and power signals:

6 Deterministic and random signals

1. Deterministic & Non Deterministic Signals

Deterministic signals
Behavior of these signals is predictable w.r.t time. There is no uncertainty with respect to its
value at any time. These signals can be expressed mathematically.

For example x(t) = sin(3t) is deterministic signal.
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Non Deterministic or Random signals



Behavior of these signals is random i.e. not predictable w.r.t time.
There is an uncertainty with respect to its value at any time.

These signals can’t be expressed mathematically.

For example Thermal Noise generated is non deterministic signal.

2

wT“m o m‘i’fT‘FFTTq@ ﬂT?“w 1”% -

n:‘-

2. Periodic and Non-periodic Signals
Given x(t) is a continuous-time signal x (t) is periodic iff x(t) =x(t+T,) for any T and any
integer n.
Example X(t) = A cos(wt)
x(t+T,) = A cos[w(t+T,)] = A cos(wttwT,)= A cos(wt+2p) = A cos(wt)
Note: T, =1/f, ; w=2pf,

For non-periodic signalsx(t) # x(t+T,)
A non-periodic signal is assumed to have a period T = o

Example of non periodic signal is an exponential signal.

A discrete time signal is periodic ifx(n) = x(n+N)

For satisfying the above condition the frequency of the discrete time signal should be ratio of two

integers
ie. f,=Kk/N
Sum of periodic Signals
X(t) = x1(t) + X2(t)
X(t+T) = x1(t+m,T1) + X2(t+m,T,)
m;T,=m,T, = T, = Fundamental period

Example: cos(tp/3)+sin(tp/4)
—  T1=(2p)/(p/3)=6; T2 =(2p)/(p/4)=8;
— T1/T2=6/8 = % = (rational number) = m2/m1l
- mT;=m,T,~> Find m1 and m2->
— 64=38=24=T,

Sum of periodic Signals — may not always be periodic!

X(t) = X, (t) + X, (t) = cost +sin /2t

T1=(2p)/(1)=2p; T2 =(2p)/(sart(2));
T1/T2=sqrt(2);
— Note: T1/T2 = sqrt(2) is an irrational number
—  X(t) is aperiodic

1.Determine whether or not each of the following signals is periodic .If the signal is periodic
,Specify its fundamental period.

) () = e



Now for periodicity
x(t) = jejlot — jejlo(t+T)
sO; g0t =1
we know e%T = cos10T + jsin10T
Here;
We need cos10T = 1 and sin10T =0
For cos10T =1 ,from trigonometry 10T =0,2n 4=n 67 ,........
But we cannot take zero because if we take 0, T becomes zero which is not true
So;
10T =2%n 4 ,6m,........... (since 10T =2m xn )
For fundamental Period;
10T=2x
T=2n /10
T=n/5

b) x(t) = et
For periodicity;
e(-1+j)t - e(-1+j)(t+T)
So ;e =1
e'eT =1
Since e~-t is a decaying exponential and " is periodic ,the signal is non periodic

C)X[n] - 3e3n (n+%)/5

Now;
x[n] = i3 (N + Y
PN = 1=eP & ek
comparing;
3t N/S=2mnk
N=10K/3
N=10 ;putting K=3
The fundamental period is 10.
d) x[n]=e/™*"
For periodicity
ej771 n:ej7n (ntN)
Now;e™N=1=ee> . ... ek
So;
7n N=2n k ,where k=1,2,3.........
N=2k/7
N=2 ,putting k=7 since N can only be an integer .
Hence the signal is periodic with smallest period 2.

e) X[n] - 3ej3/5(n+l/2)

for periodicity
3ej3/5(n+1/2) =3ej3/5(n+1/2+N)

- :3{ej3/5(n+1/2)}xej 3/5N
e¥N=1=ei?"* \where k is an integer
N=3/(2x x5xk)



Whatever value we put of k and since k is itself an integer ,N doesn’t become an integer because of 7t
.So the signal x[n] is not periodic.

2) Determine the fundamental period of the signals.

a) X(t) = 2cos(10t + 1) —sin(4t - 1)
Here fundamental period of cos(10t + 1)is 2 /10 and sin(4t— 1) is 2m /4
Comparison to make both periods equal

cos(10t + 1) sin(4t—1)
/5 < m/2

T X5/5=n> /2

b = T X2/2=n

So the fundamental period of the given signal is 7 .

b)x[n]:1+e41r n/7_ ej21r n/s

Here;
ej411 n/7:ej4n (ntN)/7

4n n/7:ej2n k

e where k and n are both integers

N=7k/2

Again;
ejZn n/5:ej2n (n+N)/5
ejZn N/5=1:ej27rk
N=5k
Comparison to make both periods equal

e]471 n/7 ejZn’ n/5
N=7k/2 < N=5k
N=7x10/2 N=5x7
35 = 35

The fundamental period is 35.

3)State which of the following signal is power signal and which one is energy signal .For power
signal ,find the average power ,and for energy signal ,find the total energy of the signal.

a) x@®)=0 <-2
2 -2<t<0
2e™ 12
W2
(0.4)
x(t)
(0.2) dett
2e™tf2
2 3
Here; w
E..=[x(t)dt
0

o0
E.=l4dt+ [4e™ dt



-2 0

=12

Since we got finite energy ,it is energy signal.

t;)x(t):t 0<t<1 with period 1 sec

1
Pag=1/1] tdt
0

=1/3

Since we got power to be finite it is a power signal.

3. Even and Odd Signals

g(t)

N A /N |
Even function — g(t): g(_t) \Y ‘ \VY \.4 \/

Odd Function -- g(t) = _g(_t)

The even part of a function is g, (t) =

The odd part of a function is g, (t) =

A function whose even part is zero, is odd and a function whose odd part is zero, is even.

Function type Sum Difference Product Quotient
Both even Even Even Even Even
Both odd Odd Odd Even Even
Even and odd Neither Neither Odd Odd
Even Function Odd Function
gln] g[n]
i i




Example 1:

x(t) = cos(t) and x(t) =t* + 4 t' are even functions. Verify.
Example 2:

x(t) = sin(t) and x(t) = 2t + 3t’ are odd functions. Verify.
Example 3:

x(t) = (t — 2)* is neither odd nor even. Verify.

e Any arbitrary function x(t) can be written as sum of two function x.(t) and x,(t) where x.(t) is an even
function and x,(t) is an odd function.

Let x(t) be an arbitrary function. Let us assume that there exists an even function x.(t) and an odd
function x,(t) such that

X(t) = X(t) + Xo(t)
then  x(-t) = Xc(-t) T Xo(-t) = Xe(t) - Xo(1)
By solving these two equations we get

xe(t) = 1/2 [x(t) + x(-0)] and xo(t) = 1/2 [x(t) — x(-t)]

Exercise: Show that x(t) = (t — 1)* + sin (t) is neither even nor odd. Find an even function x(t) and an odd
function x,(t) such that
X(0) = Xo(t) + Xo(t)

4. Energy and Power Signals
Energy Signal
« Assignal with finite energy and zero power is called Energy Signal i.e.for energy signal
0<E<oo and P =0
» Signal energy of a signal is defined as the area under the square of the magnitude of the signal.

r 2
E, = [ [x(t) dt
» The units of signal energy depends on the unit of the signal.

Power Signal
» Some signals have infinite signal energy. In that caseit is more convenient to deal with
averagesignal power.
»  For power signals
0<P<ow and E = w0
»  Average power of the signal is given by



» For a periodic signal x(t) the average signal power is
1 2
P.==[ x(t)[ dt
T7
» Tisany period of the signal.

+ Periodic signals are generally power signals.

A discrtet time signal with finite energy and zero power is called Energy Signal i.e.for energy
signal 0<E<w and P =0

= > xIn)f

Energy n=—0
P = I|m— X[n
Power N 2 Z‘ [ ]‘

Example 1: determine if the following signals are Energy signals, Power signals, or neither,
a) a(t) =3sin(2zt), —o<t <oo,
This is a periodic signal, so it must be a power signal. Let us prove it.

_ T|a(t)|2 dt = T|3sin(27zt)|2 dt

—00 —00

= QT %[1—cos(47z*t)]dt

o0 1 o0
=9 jw Sdt=9 jw cos(4xt)dt
= 00 J

Notice that the evaluation of the last line in the above equation is infinite because of the
first term. The second term has a value between —2 to 2 so it has no effect in the overall

value of the energy.
Since a(t) is periodic with period T = 2427 = 1 second, we get

at)[ dt _j|3sm(2m)| dt

0

j |
= .1[ 1—cos(4xt)]dt
T 9j‘cos(47z‘t)dt

9 [9 . i
= E{Esmmm)}

0

9w
2



So, the energy of that signal is infinite and its average power is finite (9/2). This means
that it is a power signal as expected. Notice that the average power of this signal is as
expected (square of the amplitude divided by 2)

b) bt)=5 ", —o<t <o,

Let us first find the total energy of the signal.
E, = [Ib@)F dt = [[se ™| dt
o .
= 25'|' e“dt + 25J'e““dt
0

=§[e‘“ ]io +27:5[e‘4‘ J:

25 25 50
2, 9

=—+—= J
4 4 4

The average power of the signal is

T/2
1

aﬂm—jumnm_mm—j@ﬂWm
T_)OCT -T/2 -T/2
0 T/2
_25TI|L11 I 4tdt+25||m _[e““dt
-T /2
25,. 1 25 . 1
=l et [+ Jim e ]
25, 1 . 1
:T_I_Il_r;gj_l_—lil—e 2T:|+7_I_I|_r};]o_|_—|:e a —1:|
=0+0=0

So, the signal b(t) is definitely an energy signal.

So, the energy of that signal is infinite and its average power is finite (9/2). This means
that it is a power signal as expected. Notice that the average power of this signal is as
expected (the square of the amplitude divided by 2)

+3t
N c(t) = de™, |t|£5’
0, |t]»5
1
—, t>1
d) d(t)=4t ,
0, t<1

Let us first find the total energy of the signal.

Ed:Tmanzm:T dt
1

—00

“nft)

=0—0=w J

|



So, this signal is NOT an energy signal. However, it is also NOT a power
signal since its average power as shown below is zero.

The average power of the signal is

) 1T/2 ] 1T/21
im— d@®)? dt =lim= [ =dt
T J.l ()l T—)ooT »!.t

-T/2

Using Le’hopital’s rule, we see that the power of the signal is zero. That is

B
In 5
P, =lim =

T >0 T Too| 1

So, not all signals that approach zero as time approaches positive and negative infinite is
an energy signal. They may not be power signals either.

e) et)=-T7t?, —oo<t<o,
f) f (t)=2cos’(27t), —oo<t <.

12cos®*(2at), -8<t <31
0} elsewhere

9) g(t)={

What is System?
»  Systems process input signals to produce output signals
« Asystem is combination of elements that manipulates one or more signals to accomplish a
function and produces some output.

input signal—— "] system —— output signal

Examples

e A circuit involving a capacitor can be viewed as a system that transforms the source
voltage (signal) to the voltage (signal) across the capacitor

e A communication system is generally composed of three sub-systems, the transmitter,
the channel and the receiver. The channel typically attenuates and adds noise to the
transmitted signal which must be processed by the receiver

o Biomedical system resulting in biomedical signal processing

e Control systems



Types of Systems
e Causal &Anticausal
e Linear & Non Linear
e Time Variant &Time-invariant
« Stable & Unstable
+ Static & Dynamic

1. Causal and anticausal system

Causal system : A system is said to be causal if the present value of the output signal
depends only on the present and/or past values of the input signal.
Example: y[n]=x[n]+1/2x[n-1]

Anticausalsystem : A system is said to be anticausal if the present value of the output signal
depends only on the future values of the input signal.
Example: y[n]=x[n+1]+1/2x[n-1]

Check whether the following systems are causal or non-causal:

y(n) =x(n) +x(n-2)
y(n) =x(n) + x(n+2)

y(n) = x(3n)
Solution

The given system equation is

y(n) =x(n) +x(n-2)

The output y(n) depends on the present input x(n) and the previous input x(n—1). Therefore,
the system is causal.
The given system equation is

y(n) =x(n) + x(n+2)

The output y(n) depends on the present input x(n) and the future input x(n+2). The output y(n) does not
depend on the previous input. Therefore, the system is non-causal.

The given system equation is

y(n) =x(3n)

For n=1,y(1)=x(3)

For n=2,y(2)=x(6)

and so on.
The output y(n) depends on the future input only. Therefore, the system is non-causal.

2. linear-Nonlinear system.



A system is called linear, if superposition principle applies to that system. This
means that linear system may be defined as one whose response to the sum of the
weighted inputs is same as the sum of the weighted responses.

Let us consider two systems defined as follows.
hO)=fo ) e
Here x1(t) is the input or excitation and y1(t) is its output or response and
yo(t) = fxy (1)
Here x2 (t) is the input or excitation and y2(t) is its output or response

Then for a linear system
fag x1(8) + a5 x5 (1) =ay yp (£) + agyo(h)
Where al and a2 are constants.

Linearity property for both continuous time and discrete time systems may be written

as for continuous time system

k! xﬁ (8) + ag x(t) —> ayiy )+ a5 () | ~(3)
For discrete time system

ay xq (n) + ag Xp(n) —> agyy (n) + ay Y, (n) o (4)
For any non-linear system, the principle of super-position does not hold true and

equations (3) and (4) are not satisfied.

Few examples of linear system are filters, communication channels etc.

Determine whether the following systems

y(n) = x(n®) and
y(n) = X*(n) are linear or non-linear.

Solution

The given equation is
y(n) = x(n’)

Let the system produces y;(n) and y,(n) for two separate inputs x;(n) and x,(n).
Therefore, y1(n) = x;(n) and y,(n) = x,(n°)
The response y3(n) due to linear combination of inputs is given by



y3(n) = Tlayx;(n) + ayey(n)]
= T{ap(n)} +T{aws(n)} = aTix ()} + a;T{xs(n)}
= ap ')+ axy(n’)
= ayi(n) + axva(n) (1)

The response y’3(n) of the system due to linear combination of two outputs will be

¥3(n) = ayy(n) + axa(n) (2)
From Eq. (1) and (2), we get

¥3(m) = yi(n)
Therefore, the system is linear.

ii.  The given equation is y(n) = x%(n)
Let the system produces y;(n) and y,(n) for two separate inputs x3(n) and X(n).

yin)=x f(n} and v5(n) = x %{n)
Therefore,
The response ys(n) due to linear combination of inputs is given by

y3(m) = Tayxy(n) + axxo(m)]
= [apxy () + axxy(m)]

= af‘xf(ﬂh 2aya, xy (1)x, (nj+a§x % (1) (3)

The response y’3(n) of the system due to linear combination of two outputs will be

yi(n)=a;x ;' (n)+a, 1'32 (n) (4)
From equations (3) and (4), we get
y3(n) = ¥3(n)

Therefore, the system is non-linear.

3. Time variant and invariant system

A system is called time invariant if its input output characteristics do not charge

with time. A LTI discrete time system satisfies boths the linearity and the time invariance properties.
To test if any given systems is time invariant, first apply an arbitrary sequence x (n) and find y (n).
y (n) =T [x (]

Now delay the input sequence by k samples and find output sequence denote it as. y(n,k) T[x(n-k)]
Delay the output sequence by k samples denote it as

y k) =yn-k


http://techbus.safaribooksonline.com/9789332515147/ch1_1_12_xhtml#eq1
http://techbus.safaribooksonline.com/9789332515147/ch1_1_12_xhtml#eq2

For all possible values of k, the systems is the invariant on the other hand
y(nky #yn-k
Even for one value of k, the system is time variant.

the output.

Even for one value of k, the system is time variant.

x(n) : x(n=Kk

» Delay » System —————Pp
- y (n, k)
n n-k
> System - y(n) » Delay L—-}—-b
- y(n—k)

Fig. Time invariant and time variant system.



Determine whether the following signals are shift invariant i.e., time invariant or not.

y(n) =x(n) -x(n-2)
y(n) = nx(n)
y(n) =x(-n)

Solution

Here y(n) = x(n) — x(n-2) = T[x(n)]
If the input is delayed by ‘k’ samples, the output will be

y(n, k) = T[x(n—k)] = x(n—k)—x(n—k-2) (1)

If we delay y(n) by ‘k” samples, we get
y(n—k) = x(n—k)—x(n—k=2) (2)

From (1) and (2) we get

y(n, k) = y(n—k)
Therefore, the system is shift variant.

Here y(n) = nx(n) = T[x(n)]
If the input is delayed by ‘k” samples, the output will be
y(n, k) = T[x(n—Kk)] = nx(n—k) —k)  (3)
because the multiplier n is not a part of input.
If we delay y(n) by ‘k” samples, we get
y(n=k) = (n-k)—x(n-k)  (4)
From (3) and (4) we get
y(n, k) # y(n—k)
Therefore, the system is shift invariant.

Here y(n) = x(-n) = T[x(n)]

If the input is delayed by ‘k” samples, the output will be
y(n, K) = T[x(n—K)] = X[(—n)—k] = x(-n—k) ~ (5)

Here n of x(n) has not been replaced by n—k. Here we are delaying x(n) and x(-n) will be delayed by

the same amount.
If we delay y(n) by ‘k” samples, we get

y(n—k) =x[(=m-k] =x(-n+k)  (6)
From Eq. (5) and Eqg. (6) we get

y(n, k) # y(n—k)
Therefore, the system is shift invariant.



http://techbus.safaribooksonline.com/9789332515147/ch1_1_12_xhtml#div0157
http://techbus.safaribooksonline.com/9789332515147/ch1_1_12_xhtml#div0158

4.Stable and unstable system

A system is said to be bounded-input bounded-output stable (BIBO stable) iff every bounded
input results in a bounded output.

LTI system is stable if its impulse response is absolutely summablei e

k=-o

. (h(k)) <o | | (1)

Here h(k)=h(n) is the impulse response of LTI system Thus equation (1) give the
condition of stability in terms of impulse response of the system.

Now the stability factor is denoted by ‘s’.

o
s= > |h(k)j<w
k=-w
Stable system ‘ Astable System
1. An initialy relexed system is BIBO | 1. An initially relexed system is said to
stable if and only if every bounded | be unstable if bounded input
input produces bounded output. produces unbounded output.
2. Stable system shows finite | 2. Unstable system shows Eratic and
behaviour. extreme behaviour
3. When stable system is practically | 3. When unstable system is practically
implemented then it cause limited implemented then it cause overflow.

range output.

5.Static and Dynamic system

A static system is memoryless system
It has no storage devices
its output signal depends on present values of the input signal

ity =1
For example '(t)_/Rv(t)

A dynamic system possesses memory
It has the storage devices
A system is said to possess memory if its output signal depends on past values and future
values of the input signal.

i)=Y [wx)dr

—a0

Nn=xn]+x{n-1]

For example :



Whatisa LTI System ?

» LTI Systems are completely characterized by its unit sample response

» The LTI System is Linear, Time invariant and stable system which can be static or
dynamic

» The output of any LTI System is a convolution of the input signal with the unit-
impulse response, i.e.

yln]= x[n]* h[n]

= f x[kh|n - k]

Problems
1. Determine if the following systems are time-invariant, linear, causal, and/or memoryless?
a) {é—: + 6y(t) =4x(t)
dv
b) ?7: +4ty(t) = 2x(1)
c) y[n]+2y[n—-1]=x[n+1]
) y(t) = sin(x()
9 Liydm=xw
) vin+1]+4y[n]=3x[n+1]—x[n]
dx
g yt)= T x(1)

h) yln]=x[2n]

1) y[n]=nx[2n]
Ldy
1) m +sin(t)y(t) = 4x(t)
dy o dy o dx
k::l d1—2+10§+4‘,(f)— at +4K(t)

Solution( detailed Analysis Refer class Notes)



1. a) ?i—i + 6y(t) =4x(t)

This 15 an ordinary differential equation with constant coefficients, therefore, it 1s linear and time-
invariant. It contains memory and it is causal.

dy

b) — +4ty(t) =2x(t

) " ty(t) = 2x(t)

This 1s an ordinary differential equation. The coefficients of 4t and 2 do not depend on y or x, so the

system is linear. However, the coefficient 4t 1s not constant, so it 1s time-varying. The system 1s also
causal and has memory

©)
yin]+2y[n-1]=x{n+1]

This is a difference equation with constant coefficients; therefore, it is linear and time-invariant. It is
noncausal since the output depends on future values of x. Specifically, let x[n] = u[n], then y[-1] = 1.

d) y(t) = sm(x(t)

check linearity:
y1(t) = sm(x; (1)
y2 (1) =sin(x; (1))
Solution to an input of aqxj(t) +a>x,(t) 1s sinfa;x((t) +arx, (1)) .
This is not equal to a;y(t)+a-2y2(1) .
As a counter example, consider x;(t) =7 and x,(t)=n/2,a;=a; =1

the system 1s causal since the output does not depend on future values of time, and it 1s memoryless
the system 1s time-invariant
dy = 2
e) —+y (H=x(t)
dt )
The coefficient of v means that this i1s nonlinear; however, it does not depend explicitly on t, so 1t 15 time-
invariant. It 1s causal and has memory.
f) y[n+1]+4y{n]=3x[n+1]-x[n]
Rewrite the equation as y[n]+ 4y[n — 1] = 3x[n] — x[n — 1] by decreasing the index.

This 15 a difference equation with constant coefficients, so it 1s linear and time-invariant. The output does
not depend on future values of the mput, so 1t 1s causal. It has memory.



h) y[n]=x[2n]

has memory since the output relies on values of the input at other the the current index n,

causal? Letx[n]=u[n-2], so x[1]=0. Then y[1] =x[2] =1, so not causal.

linear? Let y; [n] = x;[2n] and v, [n] = %,[2n]. The response to an input of x[n] = ax;[n]+bx,[n] is
y[n] = axi[2n]+bx>[2n], which 15 ayi[2n]+by2[2n], so this is linear

time-invariant: Let y;[n] represent the response to an input of x[n-NJ, so yv;[n] = x[2(n-N)]. This is also
equal to y[n-NJ, so the system is time-invariant.

i) y[n]=nx{2n]

This 1s similar to part h), except for the n coefficient. Similar to above, it 15 noncausal, has memory and 1s
linear. Check time-invariance:

Let y1[n] represent the response to an input of x[n-N], so yi[n] = nx[2(n-N)]. This 1s not
equal to y[n-N] = (n-N)x[2(n-N)], so the system is time-varying.

1 % + sin(t)y(t) = 4x(t)

This is an ordinary differential equation with coefficients sin(f) and 4. Neither depends ony or x, so it is
linear. However, the explicit dependence on t means that it is time-varying. It is causal and has memory.

d’y _ dy dx
k) —= + 10—+ 4y(t) = — + 4x(t
) 710G H YD =g ()

This 1s an ordinary differntial equation with constant coefficients, so 1t 1s linear and time-invariant. It 1s
also causal and has memory.



UNIT Il

ANALYSIS OF CONTINUOUS TIME SIGNALS

Fourier Series

The basis of the Fourier Series

Any periodic signal with time period T can be written as a sum of sines and cosines

X(t) = %ao + i[an cos(nayt) + b, sin(nat) |

n=1

The fundamental frequency for this time period T is

27 radians
Wy =—
T second
. 2 7
The dc term is a, = ?J-O x(t) dt,

and the other terms are

2 T
a, = T J' X(t) cos(nayt) dt,

0

27 .
b, =~ j x(t)sin(neggt) dit .

0

Note that the limits of integration can be taken form —T/2 to T/2 instead of O to T. The calculation of a,

orb, is done using the orthogonality properties of sines and cosines, i.e.,

Z_T[ cos(na,t) cos(ma,t)dt L itn=m
— In) I0) =
T ° ° 0 if nzm
2% . . 1 if n=m
—| sin(na,t) sin(ma,t)dt =
T! (naugt) sin(mat) { if n=m

and

T

%J' sin(na,t) cos(mayt)dt =0  for all n &m..
0



The fact that identical functions integrate to one indicates that they are orthonormal. For instance, if
we have a signal x(t) with time period T, then we can write it like Eq. (4.2.1). So when we calculate the
a,,

n

271 & ,
a, = I {an + > [a, cos(neyt) + b, sm(na)ot)]}cos(mwot) dt.
0 n=1
The integral of &, cos(Ma,t) over one period T will be zero. Similarly the integral of cos(maj,t) with
any sine term will be zero. And the integral of COS(ma)ot) with any other cosine except m=n will be

zero. There will only be one term left:

.
a, = %j a,, cos(ma,t) cos(ma,t) dt

.
= gamj F —lcos(Zma)ot)} dt
T "y L2 2
T
:Eamj.ldt:gamlT—am
T 752 T "2

We would obtain a similar result for any of the b terms.

Note that the cosine functions (and the function 1) are even, while the sine functions are odd.

If f(x) iseven (f (—x) = +f(x) for all x), then b, =0 for all n, leaving a Fourier cosine series (and perhaps
a constant term) only for f(x).

If f(x) isodd (f (—x) = —f (x) for all x), then a, =0 for all n, leaving a Fourier sine series only for f (x).

Example Calculate the Fourier series for the rectangular series shown in Fig.

F-series
0.5
g o 1
05 4
1 | |
-1 -05 0 0.5 1
T (sec)

A periodic time-domain signal.



Solution

There are a couple things we can do to simplify the calculation. First of all, we will add a dc term of 1/2,
and then just leave the calculation of a, off. And using symmetry, we will calculate over the interval 0
to T/2, and double it.

2 Ti4
a = ?2{_[0 cos(na)ot)dt}

4| 1 . T/4
=—<——|sIn(ha.t
T{na)o[ (0)0)]|0}
4 . (nZnTj 2 . (nﬂj
=—498In =—SSIn| —
27zn{ T4 zn 2
2/nr n=15,9

a,=3 -2/nr n=3711
0 n=0,2,4

Notice that just the first three non-zero terms of the Fourier series result in a pretty good
approximation (Fig. 1). As more and more terms are added, the series comes closer to the rectangular
function (Fig. 2.)

‘ ‘
| .
:"1‘3‘ Tolal
e RN g |

L S T - ST R C

05 Soo-ad 05F- i Jo e ---
. o . & . { ST A S
1’ ¢!

Sth

Tec) T isech

Figure 1. Fourier series reconstruction using two terms (left) and three terms (right).
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Fig 2 Reconstruction of the series of fig 1. using an increasing number of terms.

Example 2

0 (-7z<x<0)

Expand f (X) = { . (OS « <+ﬂ_) in a Fourier series.

L= iy
T
T 0 T X
1 Vi 1 0 V.4
a, =—| f(x)dx==| 0dx + =| (z—x)dx
JC&d—T1 JCé—1 JTd0
2 T
=0+ L (7=x) =z
| -2 |2 D I
aT—x Cos Ry
.
+
\1
1¢” 1¢”7 -1 = sinmx
a = — f xcosnxdx:0+—j —X)cosnx dx
=] ~ [ (%) N
1| n(z=x)sinnx — cosnx i 11— (—1)n ) “\_1
= - n2 0 = nzﬂ- FCOSP‘EI
D r
1 . 1 e nr—-x nx
b, = —I f(x)sinnxdx = 0 + —J. (7 —x)sinnx dx N
Td—1 Td0 +\
_1[n(z-x)cosnx + sinnx|” 1 -1 _%cosnx
o -n® , o \\_
s
0 _Lsinm:



Therefore the Fourier series for f(x) is

0 n
f(x)=z+2 #cosnx+%sinnx (- <x<+7)

Complex Series

In general, even if we only have one frequency, say @, = N@,, we still need two numbers, a,

and bn , to describe the nth series term. Since we know that the sine and cosine terms are

orthonormal, we might wonder if we could change the two real numbers to one complex number. Start
with

X, (t) =a, cos(na,t) +b, sin(na,t),

and use Euler’s equations:

ejna)nt +e—jnwnt + ejna)nt _e—jn(ont +
J

We will begin by grouping the positive and negative frequency components
a .b\ a .b ) _..
X, (t) =] 2 — j=2 et 4] L4 jo et
2 2 2 2
jno,t * —jna,t
=X, e+ X n(e " )
The original series

X(t) = %ao + i[an cos(Nayt) + b, sin(neyt) |

n=1

can be written

xt)="> X et

N=—o0

Notice that the new series goes between plus and minus infinity because the Euler equations used plus

and minus terms. We determine the X in the same way
17 .
_ - = Jna,t
X, = T IO x(t)e” "'dt .

This depends on a similar orthonormality condition



1,7 . ) 1,7 . .
?jo elnestg matgt — ?L el Matgt =1 if n=m

otherwise

leejnwotejmwotdt =T1J-Tej(nm)wotdt

0

T Jo
:l 1 i (-magt t=
T j(n-m)a, t=0
:l 1 j(n-m)2xz _1 :O
T j(n-m)ao, (e )=0

So when we try to calculate the n coefficient

X, =T£J'OT i X emete et

the only term that survivesis m =n

X, _lJ'T Xnej”""’te*j”“"’tdt:ijq X dt=X, .
T Jo T Jo

Note that the complex form has plus and minus values. But X = X*n , so if we know the positive
one, we know the negative one. Once again we can plot the coefficients X out, but since they are

complex, we will have to plot magnitude and phase. This is called the line spectra.

Example Redo the previous example of using the complex series.

F-series

0.5
£ or .
_05F TRV J

| 1 1
-1 -05 0 0.5 1
T (sec)
Solution

As before, it won’t hurt to add a dc term, and then just leave it out of the series. So now we

calculate



1 eT7/2 ~inayt
Xp =7 j_mx(t)e dt
=£J~T/4 oty =£ 1 e,jn%t‘Tm
T J-T14 T jna, -T/4
:l 1 I:e—jna)oTM _ejn(uoT/4:|
T jno,
Remember that
27
W, = T
So
x -1 T

== I:e—jn/r/Z _ejnﬂ/2:|
T n27x

1 .. (nﬂ'] 1 . (ﬂﬂ'j
== 2]sin =—3sin
jn272'|: 2 nz 2

Since the positive and negative terms are the same.

x(t): i Xneinwgt _ i Xn(ejnwbtﬁ_efjn%t)

n=1,3,5

= i 2X, cos(nayt) = g{cos(a)ot)—lcos(Ba)ot)+lcos(Sa)Ot)—..}
n=135 T 3 5

Example Find the Fourier series of the function below



E/2

T d 05T T
-E/2
Solution
E E
Step 1 X(t):—EpT,z(t+T/4)+EpT,2(t—T/4)
Step 2
sin(wj
j “j ET 4
—_(_ploTi4 jeria\E 1 &4 )
X (@)=(-e"" +e )20 al
4
Step 3
s.n(nﬂ)
1 _ N E 5
X =_X w = N, =2 n)= _e]”n/2+e janl2 .\
nT ( e ) ( )2 nz
. Nz
n Sm(zj JE V4
—_jEsin[ 22| 2/ JEgipe (N2
2 nz nz 2
Step 4
Since X_, =—X, we will convert the exponential to the sine series

X(t):i Xn(ej”“’ot_e—jn(uo) i

n=1 n=1

( 5 jsm(na)ot)

sin(5a,t) + }

I—‘a‘rl\n)

2E| . 1.
- 7[sm (ot)+ 5sln (3at) +

ol

Example Determine the Fourier series of the function in Fig. 1. (T = 1).

11 11 []

2T



Old Way:

We know the fundamental frequency is

2
W, = 2o
T
Now to calculate the X
1 T/4 )
X,== [ 1e™dt
—T/4

:i 1 eijna‘)fT _ejn(z;oT
T - jna,

New Way:

Now, to return to the problem in the figure: We can recognize that

X (t) = p?/z(t) ,

and its Fourier Transform is

Therefore,

] 27
and since @, = —

B sin(nz/2)

= a)



X, =112, x1=x_1=1, Xy=X,=—, Xy=X_ =—
T

So my series is

0

x(t)= Z X e"*™ = X +2X,cos(27t) +2X, cos(67t) +...

n=—0

= 1 + 2 cos(27zt) — 2 X, cos(6zt) + 2 X, cos(107t)
2 37 o

The bottom line is that we can bring to bear everything we have learned about FT to help us calculate
the Fourier series.

Example

Write the Fourier series of the function in (T=1)

TASVANIA

-Ti4 b T4

Solution

From the table, one of the triangles has the FT

F{A L =F{A;),}



Notice that X,, = X_,, and the dc term X (@ =0) =1/4so the series is

x(t) = i Xnej“%‘:1+i 2X, cos(nayt)

n=—c0 n=1

Example Find the Fourier series of the function given by

x(t)= i e T=1

Solution

Look at just the term centered att=0

X (t) =e™
We know that its Fourier transform is
2-2
X (a)) = 2 7"
+ @

Sothe X, termsare

4 3 4 B 1

X, (®)=

1
T 4+(nw,)” 4+(22n)° 1+(zn)"’
Obviously, these are even, except for the dc term, which is

1
Xo(a)):mzl

So we can write

X(t)z i Xnejncogt :1+§:xn(ejna)ﬂt +e_jnw0t)

n=—c0 n=1

=1+i2xn cos(nayt).
=1

Practice Problems



1. The diagram below represents one period of a time series that extends infinitely in each
direction. Write the Fourier series of this signal. T=1 second. Your answer should be a real
series (i.e., not complex functions).

| -T/8 |
-T/2 T/8 T/2

2. The pattern below extends infinitely in each direction. The interval is 1 second. Write a
Fourier Series. {Your final answer should be a sine series.}

/\ VAN
_1\\/ 02 or\/s.z . M

3. Write a Fourier series to describe the function below. You may assume that it extends
infinitely in both directions. The amplitude of the delta functions is one. The time scale is
seconds. Your final answer should be a sine and/or cosines series.

4. The series below is made up of function of the form
f(t)=e™"

Werite the Fourier series for T = 0.1 sec.

JANYAVA

-T 0 -T




Fourier Transform

The Fourier Transform

Let X(t) be a nonperiodic signal of finite duration, i.e.,

X®)=0 |t|>T,

I

T,00 7

(i)

A A AN A

al

&- T, 0T, To

Let us form a periodic signal by extending X(t) to X, (t) as,
Tlim X, () =x(t) , [i.e., the period is infinity]
X, (1) = Z ce" =

Then, (01)
_ - = jkant
= j ¥ Dt

1
Or, C, = T
0

T2 ,
O x(tye M dt = x(t)e dt

= [ xe = S0

Let us now define X (@) as, X (w) = fo x(t)e 1dt

Thus, C, = Ti X(kay) . X(w)ers

0 /__

Xik Awpettdidl e = = = = = = -

Substituting this in equation (01) we get,

X(Kay) oy 1 X (Kay) ko
t) = 0) o iken o) o ik
%, () Zw T, 27zk;0 T, “

Area s X{kAue PO A,

EY



As T, >, @, = 0. Let usassume @, = Aw.

- LN ent A - _
Thus, TIO'LTJO X, (t) = AILTOZ k; X (kAw)e™ ™ Aw = x(t)

1 (= jot
or, X(t) - LOX(w)eJ do

X(t) in equation (02) is called the Fourier Integral. Thus a finite duration signal is represented by Fourier

integral instead of Fourier series.
The function X () is called the Fourier transform of X(t) .

Symbolically these two pairs are represented as,
X () = F{x@}= [ x(t)e dt
-1 1 @ jot
And X(t) = FY{X (0)}=— j X (w)e'*dw
27 -

Alternatively,  X(t) «—=— X ().

Example

1. Find the Fourier transform of e *u(t) a>0.

X (a)) — Iw e—atu(t)e—iwtdt — Iwe—(a+ja))tdt _ L .
- 0 a+jo
f=1
2. Find the Fourier transform of 5(t) .
]
Fo@}=[" st)e "dt=1
S R—

3. Find the inverse Fourier transform of J(w) .

F{o(w)}= % J‘joé(a))e’j“tda) = % .

1
Thus, 2—(L>5(a)) or, 1«F5327.5(w).
V4

4. Find the inverse Fourier transform of d(w—@,).

FHS@-0}= [ Slo-a)e"do = ——e
27 7> 27

Thus, e’ «FL 527 5(0 - w,)

!

Fiw)=2nBm)




1, . .
We know, COS oyt == (e +e'™);  Thus, |cosapt<«To>r[S(w—a,)+5(w+a,)]

’

fit) sy I F @)

§ -y I'L'l oy m—

5. Find the Fourier transform of the rectangular pulse X(t) shown in Figure.

X () =IT g-ingp = SIN@T _ o sinal Xijo)
-T 0] ol
x(t)
=2T sin c(ﬂj
/4 |
W

_ t NS 27 3
-T T T T T

sinwT
, and the phase spectrum s,

The magnitude spectrum s, |X(a))|=2

0 sin(coT)>0
B ®

g {X (@)} = L sinT)
(4]

6. Find the inverse Fourier transform of the rectangular spectrum shown below.

x(£)
‘ W
XU i) o,
1
. N .
o _M e
W W T \Sm | NS I 5w
w W W W W

{a) : (b}

X(t) = iJ.W eldw = isin(VVt) = V—VSinC (Vﬂj . The plot is shown in Figure above.
27 4w mt T T

Some Properties of Fourier Transform

1. Symmetry property: If f(t) << F(w) then F(t) < 272f(—w). (duality property)



I.i"[r:' Flos)
(a)
F ()
Flry
! - n
o
- . .

(L]

Example: Apply symmetry property to show that J(t +t,) +o(t —t,) < 2cost,w .

2. Scaling Property: If f(t) < F(w) then f(at)< é F(w/a).

fied

3. Time-shifting Property: If f(t) < F(w) then f(t—t,)< e " F(o).

4. Frequency-shifting Property: If f(t) < F(®) then

f(t)e' < F(o-ao,).

Example: Find the Fourier transform of the gate pulse shown in Figure below.

fle) ] (a) (©)
dx
Ir LF(w
0 T ! — 2x (w)
pr 1] ;
F = S %

ST ;o'zu“ 4x

1

We get the Fourier transform by applying time-delay property to the F.T. of rectangular pulse

(symmetrical).




Thus, F(w)= rsinc[ﬂj g lorl2,
2r

Example: Sketch the Fourier transform of f(t)Cc0os10t using frequency shifting property. [property 4]

f (t)cos10t = f (t) Eejm‘ +%e‘“0t] Therefore, f (t)cos10t @%[F(w—10)+ F(w+10)].The

: 2
sketch is shown in Figure below. Here, f (t) < 4sin C(—a)j
T

5. Time and Frequency convolution:

f,(t)* f,(t) © F(o)F,(®) and f () f,(t) < ZL F (o) *F,(»).
p/a

fir} 05 0t




6. Time differentiation and time integration:

df (1)
dt

(a) f(t)_—j F(w)e'dow = —2

df (t)

Therefore, F{ (t)} joF (£ (),

= jo

1

or,

(k) f@O)*u®)=]" f(r)u(t—r)drzj; f()dr

Using convolution property, F {It f (T)dr} =F(w) [Ji + 72'5(60):|
. o

Therefore, J:t f(r)dr <

(a}

(b}

F(@) | F0)s(0).
jo

Fla)

= joF (o) Itwf(r)dr®%+7rF(0)5(a)).

df t)
dt

< joF (o).

-EIiF(a))ej“"da) = jo- f(t)

Example: Using the time-
differentiation property, find the F.T.
of the triangle illustrated in figure

below.

d2f (1)
d2

2[§(t+r/2)+5(t r12)-25(t)]

St) =1 S(t—1/2) e

Performing F.T. of the first equation,

(Ja)) F((O)_ [eja)r/2+e jorl2 2:|

. L[ ot
2( 4 j:>F(a)) 2 smz(%jz

sin2| 7.7 2

8 4 r [a)rj
T0* (wrjz
A

Ar

2
. T
sin (j
= F(o) =~ =L .sinc?| 2%
2 (a)rj 2 z
4
Example:

Calculate the Fourier transform X(jw) for the signal x(t) .



A

v

x(t)=t for-1<t<1
Solution:
y(t)=dx(t)/dt
We know,
Analysis Equation is given by:

oo

X(jw) = J._oo x(t) e™* dt
+1
:J_] te™ dt

To calculate derivative we need to calculate discontinuity, if discontinuity occurs we have impulse
at that point,

A
v

vl +ly

Hence y(t) is the sum of a rectangular pulse and two impulses at -1 and +1

+1

Y(jw) = -e™ - " + J_] e™ dt

= -2coswt + {2 (7" - "/-2jw}



=-2cosw + 2sinw/w

Note that Y (0) =-2cos (0) + 2*1 {sin x/x=1}
=-2+2
=0
Using Integration Property, we obtain
X (jw)=Y(jw)/jw + 1 Y(0) & (w)
With Y (0) =0
We have
X (jw) = 2sinw/jw>-2cosw/jw

This expression for X (jw) is purely imaginary and odd, which is consistent with the fact that x (t) is
real and odd.

Rayleigh’s Enerqy Theorem

Energy in time domain is equal to energy in frequency domain.

ererey E= [ |9 dt=[ | G(f)[* df

Consider the time domain energy

E-[" 1o0 P dt=[" g9 @t
=" g®g" e dt |,
=G(f)®G"(-f)
= .'_ZG(/l)G*(f —(-A)dA |,

= Z G(1)G"(1)dA

00 2
=| [G(f)]" df
o —00
Rayleigh’s energy theorem or Parseval’s theorem for Fourier transform

Define energy spectral density of g(t) as Eg (f)4G(f) |2

Ex : consider a Sinc pulse




o(t) = ASinc(2Wt) < %n(ﬁ)

method (i):

E=[" |g(®)]* dt=A*[" g(t)g” (t)dt
= A2[* sinc (@Wt)dt= A2 x [ Sinc? (u)du—A—2
S - W oo W

method(ii): Applying Rayleigh’s energy theorem
A2

(A2 m2 oy o (A2 Y g AT
E=()? [ PG =2 df =

Parseval’s Theorem:

[ 91092 ®dt = [ Gy ()G, (f)df

If gl(t) =02 (t), then the theorem reduces to Rayleigh’s energy theorem.

Laplace Transformation

Why Laplace Transforms?

1) Converts differential equations to algebraic equations- facilitates combination of multiple
components in a system to get the total dynamic behavior (through addition & multiplication)

2) Can gain insight from the solution in the transform domain ("s")- inversion of transform not

necessarily required

3) Allows development of an analytical model which permits use of a discontinuous (piecewise
continuous) forcing function and the use of an integral term in the forcing function (important for

control)

Definition of a Laplace Transform

F(s)= L[ f(?)]= T f(t) edt




Examples of Evaluating Laplace Transforms using the definition

(1) x(t)=1 and step function x(t)=u(t)

0 0 t=00
L[x(t) = u(t)] = j x(t)e *dt = j et =1 j e%'d(-st)
0 0 S t=0
:—e_St t:w:_ie_jwt t:w:___owe_jam +ﬂe—jw0
s | =0 S t=0 S S
(e =1  e™=0, (if o0>0) e >w, (if o<0)
=1(cosO— jsin0) 1
S S
— L) = L[u()] =2 (Re(s)) > 0
S

@ X(t) =e “u(t)

Lle~*u(t)] = [e e "dt = [e"(***)Ndt
0 0

Define a new complex variable S =S+«

= Ie_Stdt
0
we know _[e‘Stdt = 1 Re(s) >0
5 S
= [e~tdt = L Re(s) >0
0 S
=3 je‘(‘”s)tdt L Re(s+a)>0
5 S+a
= L[e"*u(t)] = b Re(s+a)>0 or Re(s)>—Re(a)
S+a
ot 1
= L[e"]=——

S+«



(3) X(t)=0(t)
L[5 ()] = Ta(t)e‘“dt
0

— e—St

=e

—ote—ja)t‘
t=0

t=0

=e (cosawt — jwsin a)t)‘t—o
=1

No constraint on s.
(4)Find L(cosayt)

Key to solution : express (COSa)t) as linear combination of 5(t), u(t),

and/or e .
L[5 ()] =1
1
L[u(t)] =~
S
L[e—at] — i
S+a
T —
S+ joy,
L[el@0t] = L[e Gty =L
S— jay

Can we use € 1" and el to express cos(myt) ?



e 1@t = cos(—awpt) + jsin(—wgt)
= COS(wpt) — jsin(awyt)

el — cos(wpt) + jsin(wgt)

e‘jwot +eja)ot — 2COS(a)Ot)
e—ja)ot +eja)0t
#

I S
2| s+ jo, s-—jo,
_;{(s— joo) + (s + j%)}

2| (s+ jwy)(s— jwy)
S

= cos(w,t) =

2
s’ +w,

H.W. Find L[Sin ayt]

Convergence of the Laplace Transform

(1) To assure jx(t)e‘“dt = IX(t)e_de_jWIdt converge, o =Re(s) must be
0 0

psotive enough such that x(t)e™* goes to zero when t goes to positive infinite

(2) Region of absolute convergence and pole



je

////////////
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dea)

Creaants St i
o

% %\ EoT ong S o =2

e Loplace Cransfora
c

Jeo

/////////

Kogion
gonvergence (the
e & e (o

_

5~ —Re(x)

\\\\\

x\

(b}
FIGURE 5-1. Regions of absolute convergence for the Laplace transforms of (a) w(f) and (b) e—«e(e).

(3) How to obtain Fourier transform form Laplace transform:

LIX(®]= X(s) = X(jo) = F(x(1)

Important: why introduce Laplace transform; definition of Laplace transform as a
modification of Fourier transform; find the Laplace transforms of the three basic
functions based on the (mathematical) definition of Laplace transform.

@) Properties of Laplace Transform

l. Properties of Laplace Transform

Property Original Function Transformed Function
Linearity af(t) + bg(t) aF(s) + bG(s)
f(t—a) u(t-a) e “F(s)
Shifting
e f(t) F(s—a)
: ZF (E)
Scaling flat) 2 ‘a
s"F(s)—s""f(0)—s"f (0)—s""f"(0)—...—
Differentiation () .
£ 0)




d"F(s
(=t)"f(t) Tp
t 1
j f(t)dt ZF(s)
0 S
Integration 1
1 j _F(s)ds
t
Convolution jo f(r)g(t—1)dr F(s)G(s)
1 7 s
Periodic Function f(O)=f(t+T e .[o f(t)e™dt
Initial Value Theorem l'ir(‘) f(t)= !m sF(s)
iim 1+ _ jjm EG)
t—0 g(t) S—>00 G(s)
tIim f(t)= Iin}) sk (s)
Final Value Theorem
im f(t) o F(s)
t—>o g(t) s—0 G(S)

1. Linearity

L {af(t) + bg(0) = O‘” [af (t) + bg(t)]e *dt = a : f(t)e dt+b| : g(t)edt = aF (s) + bG(s)

Find the Laplace transform of cos’t.

Solution : L [cos*t]=L [

> 173

1+ cos2t 1(1 s ) s%+2
s s2+2°

2. Shifting
(@)L [f(t-a)u(t—a)]= j: f(t—a)u(t—a)edt = j°° f(t—a)edt
Let t=t—a, then
L [f(t-a)u(t-a)]=] f()e "Vdr=e"["f(x)e"dr=e F(s)

(b) F(s—a) = 0°° f(t)e ¢ dt = Ow[eat f(t)edt=L [e*f(t)]




0, t<4

What is the Laplace transform of the function: f(t) =4 _ . .
2t°, t>4

Solution: f(t) = 2tu(t—4)

L [f(t)]=L {2[(t—4)®+ 12(t—4)* + 48(t — 4) + 64] u(t — 4)}

I |
:2e‘45[3' +12x%+48xi2+6—4j:4e‘45(£+g+2_4+gJ

s? s s s s s s s

3. Scaling
L [f(aﬂ]::Lff(aDe*“dt
Let t = at, then
L[umnzjwuné?dizljwf@m?Hrlec%
0 a a-o a a

Find the Laplace transform of cos2t.

Solution : - L [cost] =

s?+1
S
oL [cosZt]z1 32 = ZS

4. Derivative

(a) Derivative of original function

L [f'(6)] =j0°° f/(t)e Sdt = f(t)e ™

—@sﬁ:fam*Mt

0
(1) If f(t) is continuous, equation (2.1) reduces to

L [f'(t)] ==A(0) + sF(s) = sF(s) - f(0)

(2) If f(t) is not continuous at t=a, equation (2.1) reduces to

o0

. +SF(8)=[fla’) e~ fl0)] + [0—fla") ] + sF(s)

‘a7

Lif(t)]=f(t)e™ .t f(t)e™

=sF(s)—f(0)—e™ [f(a") - f(a")]

(3) Similarly, if f(t) is not continuous at t=a,, a,, ...,..., a,, equation (2.1) reduces to

LIF1=sF(5) - 1(0) - Y e (@)~ f(a)]



[Deduction] If £(t), f'(t) , f(t), ..., f"2(t) are continuous, and f"(t) is piecewise continuous, and all

of them are exponential order functions, then

LUWun=s“F@)—jis”W“4K0)

i=1

(b) Derivative of transformed function

dF(S)_i o st 4y _ ‘”i —st _[”(_ —st 4y .
T_dsfo f(t)e olt_j0 ~Lf (e ]dt_jo( ) f (e dt=L [(-t)f(t)]
[Deduction] d:;fs) —L [(=t)" f(1)]

Find the Laplace transform of te'.

Solution : L (e‘):il:ﬂ_ (tet)=_i( 1 J 1
S_

ds\s-1 :(5—1)2
t?, 0<t<1
f(t)y=4 "' Jfind L [f(1)].
(t) {O’ (o1 [f'(D]

Solution : f (t) = t?[u(t) —u(t —1)]

L [f(t)]=L [tu(t)]-L [tzu(t—l)]zg—L {[(t-1) +1Pu(t-1)}
2

= L {[(t-1)%+2(t-1) +1Ju(t -1}
:%—e’s(%+2%+l)
S S s° s
L [f'(D)]=sF(s)-f(0)—e[f(1") - f@)]
=[32—e‘s(%+z+1)]—0—e‘s(0—1)=%—e‘s(%+z)
S s° s S s° s

5. Integration

(a) Integral of original function



L[ ; fdr =] 0‘ f (v)dre*dt

_ i[e-“ ['f (0

] ”f(t)e-stdt}lF(s)
0 0 S
= L[ @dtat--] :sinF(s)

(b) Integration of Laplace transform
jj F(s)ds = j:’ jo“’ f (t)e “dtds = jo” fof je’“dsdt

= [t (t)% dt :jf@e“dt =L [@]

=[] ] F(s)dsds--ds=L [tinf(t)]

: 1-e 1-e™
Find (@) L [ " ] )L [ = 1.
Solution : (a)L [L-e™]= 1.1

s s+1

0

1-e™
t

]Zjlw(l—i)dSzln s—In(s+1)|” —n>
s 's s+1 s s

L
[ +1

S
S s+1

=0-In——=Ih—=
s+1 S

-t
1t§3 ]:,[ Ins+1 sns+l

(b)L [

_J'ws(i_l)ds
. s s+1 s

o0

+ wids :{s Ins—+1+ln(s+1)}
s s+1 S

=shh—
S

=[(s+1)In(s+1) —sIns]? =sins—(s+1)In(s +1)

S

sinkte™ sin x

Find (a) I:fdt (b) j:de.



sin kte sin kt

Solution : (a)j dt=L [~ ]
- L [sinkt] = k2
L [smkt] J-S : k2 s:% S S1 ds
S™ 4+ (7)2_{_1
k
—tant> _Tt—tan‘lE
S k

(b)J. smxd —ZJ smx

_2lim Iooo sin kte

k—1
s—0

dt

= 2lim (= - tan™ S) n
ko1 2

s—0

6. Convolution theorem
L [j; f(0)g(t—t)dt] = j:jotf (1)g(t — 1)deedt ‘

= j:I:O f (T)g (t — T)eistdtd‘t = ,[: f (T)jtw g (t _ r)e—stdtdr
Let u =t -1, du =dt, then

L [f ; f(1)g(t-r)d] = | : f(9)f :g(u)e‘s(““)dudr

= | 0°° f(r)e"de[ :g(u)e’sudu = F(s)G(s)

Find the Laplace transform of J.; e " sin 2t dr.

Solution : - L [e]_i L [sin2t] =
s-1 s’ +4

oL [joe"fsin 2tdt] =L [e' *sin2t] =L [e']-L [sin2t]

12 2
s—1 s*+4 (s-1)(s°+4)

7. Periodic Function: f (t+T) =f(t)
L [F®)=] f(etdt=] f)e™dt+[" (e dt+

and [ f(t)e at = [ OT fu+T)e Ndu=e | OT f (u)edu



Similarly,
8T —st _ A—2sT T —-su
_[ZTf(t)e dt=e jf(u)e du

L [f)]=@Q+e +e2 4o )j f(t)e dt

1

_ —st
= jo f (t)e dt

Find the Laplace transformof f (t) = %t, O<t<p, f(t+p)="F(t).

Solution : L [ ()] = ——— | " K et
p

1-e™
1 k.1 | P P g
_1_e_p56[_—s(te = [ edn]
_ - k — (te—st +le—5t) P

ps(l—-e ™) 0

_ e_3p

=—(pe P +——-=

ps(l-e™™) (p )

8. Initial Value Theorem:
L [f'{t)]=sF(s)- f(0) = Ilim I: f'(t)e*dt =lim sF(s) - f(0) = 0 = lim sF(s) - f (0)
we get initial value theorem |tIrTg f(t)= Iim sF(s) 9.

Deduce general initial value theorem : lim ——= () Iim@
0 g(t) = G(s)

Final Value Theorem:

L [f'(t)]=sF(s)- f(0)= Is"ﬂ; _[: f'(t)e dt :Lm sk(s)- f(0)=>
!m f(t)- f(0)= Ism sk (s) — f (0) = final value theorem : !m f(t)= LILTE) sF(s)

General final value theorem : lim —=~ F(t) Iimm
o g(t) 0 G(s)

Find L[], S'”—Xol X].



Solution : Let f (t) = I;wdx = f(t) = S'tﬂ £(0)=0
X

L [tf'(t)]=L [sint]=

s?+1
d . oo 1
et O
d 1 d 1
—£[SF(S)— f(0)]= 32 +1:£[SF(S)]=_52 1

sF(s)=—tan's+C

From the initial value theorem, we get

Iting f(t) = lim sF(s)

0=-24+C ~C==X
2 2
T 4 41
sSF(s)=——-tan"s=tan" =
2 S

F(s):ltan’1l
s s

—X

Solution : Let f(t) :.[Xw ex dx = f'(t) =—eTt, !m f(t)=0
L [t @M)]=L [-e']=-—"
s+1
d 1
—E[SF(S)— f(o)]=—m
EG. Find L Df ex dx] %[SF(S)]=$

sF(s)=In(s+1)+C
From the final value theorem: !im f(t)= Iirrg sF(s)

In(s+1)

0=0+C=C=0,and F(s) =

—X

[Note] J;WITX dx, and Itw €

dx are called sine, and exponential integral function, respectively.
X

[Exercises] Find the Laplace transform of the problems:1-4, and 7



l.e “(Acospt+Bsinpt)  2.t?cost  3.u(t—m)cost

© COSX L : : : B
4.L ——dx (cosine integral function) 5. Find the value of the integral jo te™* costdt
X

wpt_p ¥
6. Find the value of the integral IO fdt

7.
f(9
K. m—.. —
a 2a 136. 34a t
2_ _ —7S
[Ans.] 1_A(SL2)+BZB z_M 3_25L
(s+a) +p (s“+1) s +1
2
g7+ 53 s 7 K ®
2s 25 S 2

Inverse Laplace Transform

l. Inversion from Basic Properties

1. Linearity
4r25+1 a2 4(s+1)
a)L * b)L [—1].
(a) [sz+4] (b) [52—16]
. 2s+1 S 1 2 1 .
Solution :(a)L =L 2 += =2c0s2t + =sin 2t
@) [sz+4] [ 5% +2° 252+22] 2
24(s+1) a4 S 4 .
b)L =L 4 + = 4cosh4t + sinh 4t
(b) [32—16] [ 2 32—42]
2. Shifting
g™ 2s+3
ajL y——— b)L ——""" 1.
@) [32+23+2] (b) [sz+33+2]



. e S e—ns
Solution:(a) L f—— =L Y—
(@) [32 +23+2] [(s+1)2 +1]
L ’1[;2]:e’tsint
(s+1)°+1

and L [f(t—a)u(t—a)]=e*F(s)

eT[S

L ‘Tm] =e " sin(t - m)u(t — ) = —e P sintu(t - )
+1)% +
3
2(S+f) 3
O)L L2 gel 226 ¥ cosn
+35+2 (5+2)2 - (3)? 2
2 2
3. Scaling
4s
L * .
[1682—4]
Solution : L [ is ]1=L ‘l[Lz]—— osh2- 1t =Lcoshl
16s° -4 (45)* -2 4 4 2
4. Derivative
~ 1 . S+Aa
(a)L 1[m] (b)L ~[in —]
. . d ® 203
solution : (a)L [sinwt]= ds(s e )= 1oy
Let F(t)=tsinot= L [F'(t)]:s-(szi%z)z_p(o)
SZ (52+(1)2)_(1)2 1 (02
L [F'(D)]=2 =2 ) _
[FOl=20 G oy =2 oy e g wra
. 20°
:2L [Slnﬁ)t]—m
1 1 . ,
(571 07) =20 L [2sinwt—F'(t)]
71[(52 +1®2)2] o [ZSlnmt—F(t)]_—(smmt otcosmt)
(b) Let L [f(t)]= In% In(s +a) — In(s + b)
d 1 1 -bt —at
L [tf(t)]=——TI[In(s+a)=In(s+b)]=——-——=L [e ]
ds s+b s+a
e—bt_e—at
Lft)=————
(t) .

5. Integration



1 s-1 S+a

(aﬂ-‘Tz(———ﬂ ()L ~in Nl

Solution : (a)L *1[i(s—1)]_ [S(Sl+ s (s+1)] j e tdt — j j e dtdt

=—(e" —1)+j0(e-t ~Ddt=-(et-D-(e'-1)-t=2-2e" -

(b)L [e’bt—e’at]:—l L
s+b s+a
s+b|” | s+a
———d =1In =In
] j(s+b s+a) s+a| s+b
—bt —at
L qpnStay_e e
Lin b] t
6. Convolution
1 S
AL [5——5 b)L [—————=].
(a) [(Szﬂoz)z] (b) [(52+(02)2]
Solution : (a)L [sin wt] = 2(’) - 1Sin0)t]: . 1 >
S"+m® o STt+m®
L ‘1[; .[Sln otSin ot — t)dt
(S +m?)?

== j OE[cos(m — ot + o1) — cos(wt + ot — ot)]dr

t

wt) —coswt]dt = i?_|:i3in(2(m: —ot)-1 COSmt}
20° | 2m 0

= 12{[i(sin ot —sin(-ot)]-tcoswt} = 13(sin ot — ot coswt)
20° T 2m 20

L [Lsinotl=—+— L [cosot]= >
Q] ST+ ST+ ®

B ﬁ] = 1J.Otsin wtcosm(t —1)dr
+ o
11, _
= _JOE[SIH(CM + ot — ©1) +sin(ot — ot + ot)]dt
®

t

= ij‘t[sin ot +sin(2ot — ot)]dt = i[rsin ot + _—1COS(2(m: _ cot)}
2(,0 0 2(,0 2(0 )

= i{t sin ot — i[coswt —cos(—mt)]}= Lsin ot
20 20 20




2nnT s—4

Exercises]1.L [s73/2 2L y—=— 3L >~
[ ] 51 [T252+(2nn)2:I [s —83—9]
-2ms/3 _
aL ) sl el il 7L ZS” ]
s°+1 S S s+1 +s+1
1 Js+1
8.L [In(l+= 9.L 1 10. L M2 -
[In( Sz)] [2(s+1)2] [ 3 ]

[Ans.]l.Zﬁ/F(E) or 2\/I 2.sin ant 3.e* cosh5t 4.cos(t—2—;)u(t—2?n)
T

. 71 _
Jtsmu 6.25|nht 7 e 2(cos£t+isinﬁt) 8. 2(1—cost)
t 2 J3 2 t
g.e'(t+2)+t-2 10,4 2, L
3Vn 2

Il. Partial Fraction

s+1
L ——1.
[53+32—63]
Solution : — stl __ s+l A A A
s+s°—-6s s(s—-2)(s+3) s s—-2 s+3
s+1 1
=ImMm-——=——
520 (s—2)(s+3) 6
s+1 3
= lim
s>2 5(s+3) 10
A, = lim s+1 :—_2
s>-35(s—2) 15
13 -2
L i S-|2-1 1= 6,10 . 15 :_l+ie2t_£e—3t
$°+s8°—6S s s—-2 s+3 6 10 15
,1[54 —7s* +13s? +4s —12]

s?(s—1(s-2)(s-23)



Sc)Iution:s“2—7s3+1332+4s—12__22 G, AL AL A
s°(s=1(s-2)(s—-3) S S S-— 1 S— 2 s—3
c, =lm? '-7s°+13s" +4s-12 12 _
50 (s=1)(s-2)(s-3) -6
d 54—733+13sz+4s—12]

C,=Ilim—
_ 4D (=2)(=3) — (-12)[(-2)(-3) + (-D)(=3) + (-1)(-2)] _ —24+12x11

s>0ds”  (s—-1)(s—-2)(s—-3)

2 = 2 =3
[(D(=2)(-3)] 6
i S 7787 +18s% 44512 -1
51 32(3—2)(3—3) 2
AZ:Iim —75% +13s” +4s— 12_ 8 _
52 s?(s—1)(s—-3) T4
st —7s°+13s% +4s5-12 9 1
A, =lim > =—==
53 s°(s=1)(s-2) 18 2
4 7.3 2 _
_1[5 27s +13s° +4s 12] ot 4 3_1 —2e21+1e3‘
s°(s=1)(s-2)(s-3) 2 2
y S
L ~ .
[s“+4:I
. 2 SZ SZ
Solution : = =
s*+4  (s?)?+2-5%.2+42°-2-5.2 (s°+2)*—(29)°
B s? _ As+B, . As+B,
(s> +25+2)(s*-25+2) (s+1)*+1 (s-1)*+1
. s? . —2i .
Iim ——=A(-1+i)+B :>—: —-A +B)+i
s—>—1+i (5_1)2 AI'( ) 1 4 — 4j ( Al l) Al
8- 8'—( A1+B)+|A1:>A1_—— ,=0
. 52
Ilm—— 1+1)+B, :>—— +B,)+i
S 1+ (S+1)2 A2( ) 4 4 (Az ) AZ
8+8'—<A2+B>+IA23A2—% B, =0
1
§2 ——(s+1)+— —(s 1)+
L T l=L 4+ 4
s"+4 (s+1)°+1 (s-1)%+1
e e'
= —(—cost +sint) + —(cost +sin t)
4 4
—3s® +6s-4
[ 1

(s> —25+2)



s®-3s* +6s5—4 As+B cs+D
= +
(s°-2s+2)*  [(s-D*+1° (s-1)*+1
lim (s® —3s®* +6s+4) = A(l+i)+B

S—1+i
2i=(A+B)+iA=> A=2B=-2

Solution :

lim i(s3 —3s* +65+4) = A+[c(l+i)+ D] Iirp_%[(s—l)2 +1]

s—1+ (s
0=A+(c+ic+D)2i=(A-2c)+2i(c+D)
c=1,D=-1
88 —3s*+6s5-4 4 2(s-1) a S—1
L 1S :L 1 L 1
T 25227 178 Yeopap ™t Toopr it

= e‘(Z-%sin t +cost) = e'(tsint + cost)

s—1
(s+3)(s° +25+2)]
| 4L _l[lls3 —47s%* +565+4
(s—2)°(s+2)

s+1
bs? +7s+2]
s
(s> —2s+2)(s* +25+2)
s 1

1 6L [ 55l

st +4 (s*-1)°

[Exercises]1.L [ L [

3L ]

5L [
t 2
[Ans]l.ie 2 —Ee 3 Z.Ee’t(4cost—3.sint)—ﬂe’3t 3.£sintsinht
2 3 5 5 2

4% (2t —t+5)+6e 5.%(coshtsin t+sinhtcost) 6%[(3+ t?)sinht —3tcosht]




UNIT I

ANALYSIS OF DISCRETE TIME SIGNALS

Discrete Time Fourier Transform

Discrete Time Fourier Transform.

The Discrete Time Fourier Transform (DTFT) X (¢*) of a discrete line signal x(n) is expressed as

0

X(J“’) = 2 x(n)e'jw”

H=-0c
or DTFT x (n) = X (¢%)
Symbolically, this may be expressed as

x(n) DTET X (e}w)

DTFT is periodic units period 2T 5o any interval of length 2% s sufficient for the



complete specification of the spectrum. Generally, we draw the spectrum in the fundamental

-,
internal ( /%)

linearity property of DTFT
If
x(n) <P | x; (w)

X5(n) <LPIEY | x, (w)

ay x1(n) + a5 xo(n) <LIET g, x, (W) + 4y x5 (W)

According to definition of DTFT

x(w) = i x(n) e/

fl=-

Here input sequence, x(n) = a; x; (1) + a, x, (n)

x(w)r= a, z [a1x1(”)+ azxz(n)] e—jwn

n=-w
i oo

x(w) ={ Z xl(n)e-j?n+ iy 2 xz(n)e-jwn

H==09 =—00

Comparing each summation term with definition of DTFT then we can write

Problems

1. x(n)=6(n)
If x[n] = é[n], then X(Q) = 1 and

Y@) = HOX®) = =

SO

y[n] = @) uln]

2. x(n)=é&™

X(Q) = e ™0 50
g ~n
1—le
and, using the delay property of the Fourier transform,
y[n] = @" "uln — )

Y(@q) =



3. x(n)=(3/4)" u(n)

If x[n] = () u[n], then
1

1—de

_( 1 1\ -2 3
it (1 = ée‘f")(l = %e-fﬂ) TTfem T T g

50

X(Q) =

y[n] = —2@)"uln] + 3() uln]

r[nle —Fn
Y L Pl
=

> @ ulnle 7™

n=—o0

> e "
n=10
1
1 — e

Here we have used the fact that

o0

]

oo %
([17¢

d 1
Za"= for ja|] <1
l1—a

n={0

(b) x[n] = (a" sin Qyn)u[n]
We can use the modulation property to evaluate this signal. Since

. F 2w
sin Q,n -~— E_; [6(2 — Q) — 6(2 + Q)]

periodically repeated, then

1 1 1
X = 2 [1 — e i) ] _ ggi@tig

periodically repeated.




© x@ = > e

l — 373'49
" T

using the identity

a, —
= 1 —a
Alternatively, we can use the fact that x[n] = u[n] — u[n — 4], so
1 e—j-m 1 — e—J‘-m
X)) = 1 — e—jné 1 — ¢ ° = 1 — e @

(d) z[n] = D"u[n + 2]
= @ ® uln + 2)
= 16(3)" " *u[n + 2]

We know that
1\" F 16
16 (=) u[n] == ————,
S0
n+2
1 F 16720
16 | — uln + 2 .
(4) [ ] 1 — e ™"
Fourier Transform Pairs
Sequence DTFT
d[n-n,] e
1 3" 2rd(o + 2rk)
1
a"uln] |al<1 1 ae ™
1 = - X
uln] et k-z_:tc-[w + 2nk)
Sirl{ﬂ},:n:] jofy _ [1 |{d =
an Xle j_1ﬂ o, < o<
] - 1 O=n=M sinfefM + 1”2]{‘”““2
|0 otherwise sinfm/2)
ok i 2ndlm — o, + 21k)
K m—x
cos{m,n+d) i [Ire5°5{|:-_1 — @, +2mk) + e ¥Hm + o, + 2.'[1{]']
=z

Properties of DTFT

Periodicity: X (e/@12™)) = X (&%)
Linearity:  axzy[n] + bran] «— aX(e?%) + bXo(e?¢)

Time Shiftino: rln — nal «—s e~ JwWno X (plw)



Conjugate Symmetry: z[n| real = X (e/¥) = X*(e %)

| X (e7)| and Re { X (/%) } are even functions
LX(e/) and Sm { X (e7*)} are odd functions

Convolution Property

elnl———  hln] ———yln]

y[n| = h[n] * z|n]
Y (/) = H(e/) X (e7%)
H(e%) = DTFT of h[n|
Frequency response = DTF'T of the unit sample response

Multiplication Property

yln] = x1[n] - z2[n]

: 1 ' ,
Y(el) = o X1 (e7%) X5 (e “=9)do
2m

1 . ,
. Y Juw ; . Jw
= %X.(e ) @ Xo(e?)

< Periodic Convolution



Parseval’s Relation

00 1
> lalnl? = o [ X () Pdw

n=—00 " . 27 ,

h -~ ~ "

Total energy in Total energy in

time domain frequency domain



Z- Transformation

The Z-transform of a discrete time signal x(n) is defined as the power series

where z is a complex variable. The Z-transform of a signal x(n) is denoted by

whereas the relationship between x(n) and X(z) is indicated by

The z-transform is a infinite power series, it exists only for those values of z for

which this series converges. The region of convergence (ROC) of X(z) is the set of all s values ofz for
which X(z) attains a finite value. Thus any time we cite a z-transform. We should also indicate its ROC.

What is Region of convergence?

Ans. The z-transform is an infinite power series, it exists only for those values of z

for which the series converges. The region of convergence (ROC) of X (z) is set of all values of z for which
X (z) attains a finite value. The ROC of a finite duration signal is the entire z-plane, except possibly the

[

point ‘ . These points are excluded because z" (when n > 0) becomes unbounded for

z =eo andz" (when n > 0) becomes unbounded for z = 0.

What is the relationship between Z transform and the Discrete Fourier transform?

Ans. Let us consider a sequence x(n) having z-transforrn with ROC that includes the

unit circle. If X(z) is sampled at the N equally spaced points on the unit circle. If X(z) is

sampled at N equally spaced pomts on the unit circle.




We obtain

Expression is (2) identical to the Fourier transform X(w) evaluated at the N. equally spaced. Frequencies

If the sequence x(n) has a finite duration of length N or less, the sequence can be

recovered from its N-point DFT. Hence its Z-transform is uniquely determined by its N-point DFI'.
Consequently, X(z) can be expressed as a function of the DFT {X(k)} as

follows

When evaluated on the unit circle (3) yields the Fourier transform of the finite duration sequence in
terms of its DFT in the form:

This expression for Fourier transform is a polynomial interpolation formula for X(w)
expressed in terms of the, values {x(k)) of the polynomial at a set of equally spaced

discrete frequencies




What are the application’s of z-transform?
Ans. 1. z-transform is an important tool in the analysis of signals and linear time invarient systems.

2. It is used for the analysis of discrete time systems in frequency domain which in generally more
efficient than time domain analysis.

3. Itis used for filtering process.
4. Causality of discrete time LTL system.

5. Stability of discrete time LTI system.

6. Determination of poles and zeros of rational z-transform.

Properties of the z transform

e Linearity:
Z{af,+ bg,} = aF(z) + bG(z). and ROCis Ry R,

which follows from definition of z-transform.

e Time Shifting
If we have T [ﬂ](:) F<Z) then f[n - no] o7 F(Z)

The ROC of Y(z) is the same as F(z) except that there are possible pole additions

or deletionsat z=0 or z = .

Proof:

Let y[n]= f [n - no]then

Y(z)= i fl[n—n,]z™"

N=—c0

Assume k = n- ny then n=k+n,, substituting in the above equation we have:



Y(z)= k_ii;of[k]z‘k‘”o =77"F[¢]

Multiplication by an Exponential Sequence

e yTnl= 23 [n] wen ¥ ()= XH

0

Proof:

N=—o0 0 Zy

Y(z)= nioZSX[n]Z” - X[n(ziJ_n - x[iJ

The consequence is pole and zero locations are scaled by z,. If the ROC of X(z) is
rR<|z|<rL, then the ROC of Y(z) isrR< |z/zo| <rL, i.e., |zo|rR < |z| < |zo|rL

Differentiation of X(z)
if we have f [n] < F(Z) then

nf [n]@—zdl:—(z) and ROC = R;
z

Proof:

F(z)= ngof [n]z™"

- zdl(:j—gz) =7 io— nfln)z "= io— nfln]z™
—de—EZ) Z_nf[n]

Conjugation of a Complex Sequence
If we have T [n] & F(Z)

then f *[n](Z—)F*<Z*)and ROC = Ry



e Time Reversal
If we have f [ﬂ]@ F(Z) then

f*[- n]<z—>F*<]/z*)
A comprehensive summery for the z-transform properties is shown in Table

Table Summery of z-transform properties

Property Sequence z-Transform Region of Convergence
Linearity ax(n) + by(n) aX(z)+ bY(2) Contains R, N R,
Shifi xi(n — ny) MK (z) R,

Time reversal v(—n) Xz 1/R,
Exponentiation a"x(n) X 'z) || R,
Convolution x(n)* v(n) X(z)¥(z) Contains R, N R,
Conjugation x*(m) X*z%) R,
Derivative nxin) —z {% R,

Note: Given the z-transforms X(z) and ¥ (2) of x(n) and y(n), with regions of convergence R, and
R, respectively, this table lists the :-transforms of sequences that are formed from x(n) and y(n).

Problems on Z Transforms

1. Example 1

The X (z) is finite for all values of because

The ROC is entire z-.plane.




2. Example 2 unit step sequence u(n):

1 n=>0
x(nT) =
0 n<o

Solution :

X (2)=x(0)+x(T)z " +--
=1l+z'+z27%+--

1-z7

3. Example 3:

x(NT)=e™|_ ;=" =) (o >0)
= kn (k = eaT)
Solution:

X(2) =x(0)+x(M)z " +x(2T)z7% +---
=1+kz'+k?z2+--
=1+k™) T+ (k) +--

s=k7z
= 1+67 +5 %+
1 1 ‘k’lz‘_l <l=
C1-57 1-kt k=e" <|g
1
= X(Z) = efaTzfl

4. Example Find the z transform of 3n+ 2 x 3",

SolutionFrom the linearity property



Z{3n+2x3"}=3Z{n} +22{3"}

A=zl

(r"with r = 3). Therefore

3z N 21
Z{3 2x3"=
(3n + } (Z—l)z (2_3)

5. Example :Find the z-transform of each of the following sequences:
(a) x(n)=2"u(n)+3(%)"u(n)
(b) x(n)=cos(nwo)u(n).
Solution:

(a) Because x(n) is a sum of two sequences of the form «"u(n), using the linearity property of the z-
transform, and referring to Table 1, the z-transform pair

X(2)= o 2

o1
1=227 1 42 (1—22)(1—12‘1j
2 2

(b) For this sequence we write
x(n) = cos(nwy) u(n) = %(e"“° + e %) u(n)

Therefore, the z-transform is

1 1 1 1
X(Z):El_ejna)oz—l +El_e—jna)02—l

with a region of convergence |z| >1. Combining the two terms together, we
have

1

1—(cosw,)z”
X(z)= 0
@) 1-2(coswy)z ™t + 277

6. Example Find z transform of

Ans. We have standard z-transform pair.




7. Example Determine to z-transform of the following signal

Ans.




Z Transform of some important functions

Sequence
1 &[n]
2 un]
3 p"

4 v lum-1]

5 gim
6 n

7 n

8 '"mn
9 e'"n

10 zin (an)
11 v zin (an)

12 cos (an)

z - trans form

z - gl

Z
(z - 1)%
z [z + 1)
(z - 1)®

b=
(z - byt
zE*

2in (a) =

gf_Zcosfalz +1
zin(al bz

gf - Zcoz(a)bz +bi

Z [z -cC03 (al)

zi_Zeoosla) ez +1

13 v"co= (an)

z [z -bcoz (a))]

g _Zcooz (al bz +hi



The Inverse z-Transform

The z-transform is a useful tool in linear systems analysis. However, just as important as techniques for
finding the z-transform of a sequence are methods that may be used to invert the z-transform and
recover the sequencex(n)from X(z). Three possible approaches are described below.

What are the various methods to find out inverse z transform?
Ans. (a) Cauchy Rihemen’s theorem
(b) Long division method.

(c) Partial function.

. Partial Fraction Expansion

Example 1 :Suppose that a sequence x(n)has a z-transform

Xiz) =

_
I

!

L s | B | b
L] r-
+ |+

Solution:

With a region of convergence |z|>% . Because p = g = 2, and the two poles are simple, the partial
fraction expansion has the form

| Az
Alz)=C+ i + ,
] —2z-! l — sz
1c 4
The constant Cis found by long division:
2
b.-2 3.1 1o-2 Tl
EZ — 37 +l a< a< +4
_ 3
ﬁ: 2—1.’.’ |+2
—32 ' +2

Therefore, C = 2 and we may write X(z) as follows:



X(zy=2+

Next, for the coefficients A;and A,we have

Av=[(1-4)x@] ., = Il'_

and

Ja
|
L fd
ey
|
El—
(8]

e
3
|
|
—
.

I
ks | -
L8]
I
f——
e
-
ey
e
—_

1
L
|
[
|

Foh | m

Thus, the complete partial fraction expansion becomes

3 I
X(2) =24 —— - ——
| —'31_1 |1 - E:

Finally, because the region of convergence is the exterior of the circle |z| > 1, x(n) is the right-sided

sequence

(Y = 28(n) + 3(%]ﬂu(n} — {&}”u{n}

1. Power Series

The z-transform is a power series expansion,

X(z)= Z x(m)z ™= x (=D a2+ x(+x (D2 (D2 4

H=—D20Q

where the sequence values x(n)are the coefficients of z™ in the expansion. Therefore, if we can find the
power series expansion for X(z), the sequence values x(n)may be found by simply picking off the

coefficients of z7".

Example 2 :Consider the z-transform

X(z)=log(l +az™") lz] = lal



Solution:

The power series expansion of this function is

[}

|
log(l +az")y =" E{—H"T]a“:_"

o=l
Therefore, the sequence x(n) having this z-transform is

I
—(=1y*ta" n=10
x(ny= 4 n

0 n=10




Il. Contour Integration
Another approach that may be used to find the inverse z-transform of X(z) is to use contour

integration. This procedure relies on Cauchy's integral theorem, which states that if C is a closed

contour that encircles the origin in a counterclockwise direction,

__|_ kg 1 k=1
w0 ke
With
o0
X(z)= Z x(n)yz™"

Cauchy's integral theorem may be used to show that the coefficients x(n) may be found from X(z) as

follows:

1
x(n) = —jﬂ X(z)z" 'dz
2nj Je

whereCis a closed contour within the region of convergence of X(z) that encircles the originin a
counterclockwise direction. Contour integrals of this form may often by evaluated with the help of

Cauchy's residue theorem,

1
x(n) = e ﬁ X(z)z"dz = Z [residues of X(z)z"'at the poles inside C]

If X(z) is a rational function of z with a first-order pole at z = «,
| - _
Rex[)f{z}z" atz = r:rg] = [{! —apz X ()" 'L:m

Contour integration is particularly useful if only a few values of x(n) are needed.

Example 3:
Find the inverse of each of the following z-transforms:
(@) X(z) =443z +272) 0<|z| < oo
1 3
(b) -X(f):—'-—*l‘-:—l-i-—“——“—' - ]zl:—%
1 -2z ] -z}
2 3
) X(z) : z] = 2
[y Z) = Il =
( 143271 2272
|
X(z)= z| = 1
Solution:

Because X(z) is a finite-order polynomial, x(n) is a finite-length sequence. Therefore, x(n) is the

a)
coefficient that multiplies z* in X(z). Thus, x(0) = 4 and x(2) = x(-2) = 3.



b) This z-transform is a sum of two first-order rational functions of z. Because the region of
convergence of X(z) is the exterior of a circle, x(n) is a right-sided sequence. Using the z-
transform pair for a right-sided exponential, we may invert X(z) easily as follows:

x(n) = (1) utm) + 3(4) un)

Here we have a rational function of z with a denominator that is a quadratic in z. Before we can
find the inverse z-transform, we need to factor the denominator and perform a partial fraction

|
T a0+22 01 +z2D

expansion:
1
X(z
} | + 32714222
2 ]
1 42271 1 4+z-!

It

Because x(n) is right-sided, the inverse z-transform is

x(n) = 2(=2Y"u(n) — (=1)"u(n)

d) One way to invert this z-transform is to perform a partial fraction expansion. With
] 1
X(z) = — =
(I—z7"Ml—-z"2)  (1—=zNHY1+:z1)
A B,
— +
1 4z~

4
(1 =zt

I

|

the constants A, B;, and B.are as follows:

A=[(1+z )X (@)amy = §

5

I PRI Ie SYOIN RN B S B!

(1= 27" X ()= = 3



Inverse transforming each term, we have

x(n) = t{(=D"+ 14 2(n + Dlu(n)

Example 4 Find the inverse z-transform of the second-order system

] + iz-1
X(z)= 3 = 2| > 1
(1-327Y)

Here we have a second-order pole at z = %. The partial fraction expansion for X(z) is

A
X(z)= : -+

The constant A; is

e
Il
b | —
|
—
—
[
T
P
|
E—
e
i
L]
"
| I |
e
I
-
rd
I
[ ST
—
|
|-
L&)
[
]
"
_
=]
Il
|
P =

and the constant A, is

A=[(1- 7)Y x@),, , =3
Therefore,
1 3
X(2)=— : + £ 5
(=)
and

x(n) = —-(%)"Hu[n] +3(n + I‘J(%)“]u{n]




Example 5 Find the inverse z-transform of X(z) = sin z.

Solution

To find the inverse z-transform of X(z) = sin z, we expand X(z) in a Taylor series about z = 0 as follows:

| dX(z)| 22 d’X(z) 2" d"X(2)
X(z) = X TRPLAL LY R 4 R
@) = X@)|.,+2 L, 20 d? |, n dz |,
S35 oo 2041
=7 — 4+ — — = -1y
fT3 TS ;i YT
Because
[ =]
X(z)= Z x(nyz™"
=%

we may associate the coefficients in the Taylor series expansion with the sequence values x(n). Thus, we
have

= (=1 — = —1.-3, —5,...
m=E0arn T

Example 6:Evaluate the following integral:

-1 =2
I .% I + 2-'. — -r}ddv
. 2 ] L -

2rj Je (V= 327")(1 - 3z
where the contour of integration Cis the unit circle

Solution:

Recall that for a sequence x(n) that has a z-transform X(z), the sequence may be recovered using
contour integration as follows:

|
I{H‘}: ;—;—j X{I}:H_Id:



Therefore, the integral that is to be evaluated corresponds to the value of the sequence x(n) atn=4

that has a z-transform

X(z)= ST w e

Thus, we may find x(n) using a partial fraction expansion of X(z) and then evaluate the sequence at n =
4. With this approach, however, we are finding the values of x(n) for all n. Alternatively, we could
perform long division and divide the numerator of X(z) by the denominator. The coefficient multiplying
z* would then be the value of x(n) at n = 4, and the value of the integral. However, because we are only
interested in the value of the sequence at n = 4, the easiest approach is to evaluate the integral directly
using the Cauchy integral theorem. The value of the integral is equal to the sum of the residues of the

poles of X(z)z® inside the unit circle. Because

X(2) = 2 —————

C-DE-))

has poles at z=1/2 and z =2/3,

, 22422 -1 .
REEIX{I}:']:,;‘ =[:]—‘———:——J :—_'—b
2 z—12 =)
and
-.J 5 '}- _ I
. RV P I B _ 112
Res[X(z)z'],.: = | 2 — = 3£
Therefore, we have
— @ X(2)'dz = P — 2 = 1.1952




UNIT IV

CONTINUOUS AND DISCRETE TIME SYSTEMS

Differential equations

Difference equations

Analysis of LTI circuits gives a relationship
between input x(t) and output y(t) in the form
of a differential equation:

dy(t) +b, d? y(t)
dt dt?

_ax(t) +a, X0 X(t) a, dd’t(z(t)

b,y(t)+b,

whose system (or transfer) function is of the
form:

2 N
H ():a0+als+azs +..+a,S
: b, +b,s+h,s* +...+ b, s"

This is a ratio of polynomials in s. The order
of  the system function is max(N,M).
Replacing s by jo gives the frequency-
response H , (jo), where « denotes frequency
in radians/second. For values of s with non-
negative real parts, H , (s) is the Laplace
Transform of the analogue filter’s impulse
response ha(t). H(s) may be expressed in
terms of its poles and zeros as:

) (s—2z,)s-2,).(s-zy)
(S_ p1)(5_ pz)-“(s_ pM)

H.6)=

The solution is composed of a homogeneous
response (natural response) and a particular
solution (forced response) of the system.

y()y=y,()+y (1),

The processing of discrete-time signals is
performed by discrete-time systems. Similar
to the continuous-time case, we may represent
a discrete-time system either by a set of
difference equations or by a block diagram of
its implementation. For example, consider the
following difference equation.

y(n) =y -1) +x(n) +x(n-1) +x(n-2)

This equation represents a discrete-time
system. It operates on the input signal x(n) to
produce the output signal y(n).

We use the notation y(n) = 7[x(n)] to denote
a discrete-time system 7with input signal
x(n) and output signal y(n). Notice that the
input and output to the system are the
complete signals for all time n. This is
important since the output at a particular
time can be a function of past, present and
future values of x(n). It is usually quite
straightforward to write a computer program
to implement a discrete-time system from its
difference equation. In fact, programmable
computers are one of the easiest and most
cost effective ways of implementing
discrete-time systems.

The general form is

Za vn—k]= Zh x[n—k),

k=0
A general solution to Equation can be
expressed as the sum of a
homogeneous solution (natural response) to
and a particular solution (forced response),

yvln]=y, [n]+ }»‘P[n].




Transfer function and Impulse response

PROPERTIES OF TRANSFER FUNCTION (TF)

The properties of transfer function are given below:

The ratio of Laplace transform of output to Laplace transform of input assuming all initial
conditions to be zero.

The transfer function of a system is the Laplace transform of its impulse response under
assumption of zero initial conditions.

Replacing ‘s’ variable with linear operation D= d/dt in transfer function of a system, the
differential equation of the system can be obtained.

The transfer function of a system does not depend on the inputs to the system.

The system poles and zeros can be determined from its transfer function.

Stability can be found from characteristic equation.

Transfer function cannot be defined for non-linear systems. It can be defined for

linear systems only.

Example :Find the impulse response of the following second order system:

d’y(t) . ,dy() _
h AT 2 3y(1) = 5().

Solution

The characteristic equation is
s’ +4s+3=(s+3)(s+1)=0
so the homogenous solution will be of the form
y(t) =(Ae™ +Be " u(t).

The first derivative is

% = (~3Ae ™ —Be " )u(t) + (A+B)S(t)

and the second derivative is

yczlt(zt) - (9Aefst + Be*t)u(t) +(-3A-B)S(t) + (A+B)sO(t)

Putting these back into Eq. (2.1.6) gives
(9Ae™ +Be " )u(t) +(-3A-B) 5(t) + (A+ B)5™ (1)

+4[(-3Ae™ —Be™)u(t)+ (A+B)3(t) |
+3[(Ae™ +Be™u(t) | = 5(1).



Putting Eq. (2.1.7) in Eq. (2.1.6), we will wind up with three types of functions. If Eq. (2.1.6) is to hold
true, then the coefficients for the different types of functions must satisfy Eq. (2.1.6), so we get three
equations

The S®(t) terms give (A+B)sO(t)=0

or A=-B.

The S(t) terms give (-3A—-B)o(t) +4(A+B)o(t) = o(t)

or (-3A+A)=1 :>A=—1, B:E.
2 2

The U(t) terms  (9Ae™ +Be™")+4(-3Ae ™ —Be ") +3(Ae ™ +Be ) =0,

But this is redundant, because our choice of the homogeneous equation insured it.
So we can conclude

1
h(t)==(e" —e™)u(t).
=5( Ju(t)
What would be the response for the input X(t) =u(t)?
t
y(t) =h(®)*u(t) = [ h(z) dz

= ﬁ% (e —e™)dr= %{(1—e‘)— (1-e*)ju(t)
(e -e)u(o)

This problem was not so difficult because the characteristic equation separated into two simple real
roots. In general, it will be much easier to use Laplace transforms.

System function and impulse response

Example : What is the frequency response of a discrete LTI system? Derive the frequency

response of a system whose impulse response is given by h(n) = a” u(n —1) for (a) <1.

Ans. The frequency response of a linear time invariant discrete time system can be obtained by

applying a spectrum of the input sinusoids to the system. The frequency response gives the gain
and phase response of the system to the input sinusoids at all frequencies. Let us consider, the
inpulse response of an LTI discrete time system is h(n) and the input x(n) to the system is
complex exponential elu. The output of the system y(n) can be

Given




Example || Determine the system function

Ans. Taking z-transform of both sides.

Example : Determine the pole-zero plot for the system described by difference equation

Ans. Taking z-transform of both sides.

The ROC & pole zero plot shown in Fig. below

From the following figure, we can observe the followingl.ROC of the system function include unit
circle.2. ROC of the system function cannot have any poles.



Example : Consider the causal second-order system described by

Z ¥ B
SO _
2 07y =1

and with initial conditions
x(t) = e u(t).

Suppose that this system is subjected to the

input signal: what is the output?
Solution :
(S: + 35+ 2)7[(8): (S+ 3)2’(.&')-&-_\:1:(0' )+ 3v(07)+ dy(0")
- _dv(0
(s+3)2(s) H(O)+3p(0)+= 0)
%(s)=— + 5

S +35+2 S +35+2

We have,
I
(s)=——, Re{s}>-3,
(s) T ist
and thus,
s+3 5+5
5= . Rei: -1
e {5:+35+2}(s+5}|+.\':+?-.3'+2 (i
S +115+28
= . Re{ -1
(s* +3s+2)(s+5) glis
3 8 1
ETYTETY TS

Taking Inverse we have



The Convolution Integral

Assume that the input, x(t), to an LTI system started at time t, (the input was zero for all time prior to to
and has continued to the present time, t, as shown below.

Figure 1: x(t), the Input

2.5

/

7=t

We can approximate this input as a series of rectangular pulses having the same area under the curve as
shown in Figure 2.

Figure 2: x(z,), the Approximation to the Input

25

15

0.5

To

Nt

These graphs are given in terms of the variable t, the variable t is reserved for the time of observation of
the output signal. The interval from t =t; to T = t is divided into subintervals of width At each centered
about an value of 1, = ty + n*At.

Now perform the following experiment. Apply a rectangular pulse of unit strength and width At to the
input of our LTI system. Lets call the resulting output f(t, t,).

o f(t, t,) is the output at time t due to a rectangular pulse of unit amplitude and width At that
occurred attimet =1, .




The output of the system at time t due to the n™ pulse of the approximate input is then the value of the
input at time 1, ,which is x(t,), times f(t, t,). Using superposition the total output from the system at time
t is then approximated by the sum:

x(z,)* f(t,z,)

M=

y(t)~

n

I
o

Multiplying and dividing each term in the sum by At yields:

N
)~ ZX [— f(t,z ):lAT
n=0
1
Note that the term [A_ f (t, T, )} is the output of the time t due to a pulse of amplitude AT that occurred
T T

at time t = t,. The area of this input pulse ise equal to unity. Our approximation gets better as At
approaches zero so take the limit of y(t) as At -B-shanging the sum to an integral.

¢ 1
— f(t,
y(t)= I X(T)* At ( Tn) dr
=t ImAz -0

The term in the brackets becomes the output at time, t, of the system to 6(t-t), a Dirac Delta function or
impulse that occurred at time 1 . It is usually denoted as h(t, t), or since our system is time invariant
simply h(t-t). This function, h(t), is called the UnitImpulse Response of the system (which happens to
be the Inverse Fourier Transform of the Transfer Function, H(jm) ). The output then is given by:

)= [X(e)*hit- e

or, where it is up to you to determine the limits on the integral from the nature of the two functions:
= j x(z)*h(t-7)dz

This is known as the Convolution Integral and is denoted as:

y(t)=x(t)®h(t)

Note: The meaning of Convolution is that an LTI system can be modeled as having a memory that
stores all past input. Acording to this model, the LTI system determines its output by performing
a weighted sum of all past inputs using the Impulse Response as the weighting factor.

Continuous systems seldom actually function this way, but this model accurately determines the
output. Many Discrete-Time LTI systems AREbuilt according to the Convolution model.
They are called Finite Impulse Response systems since their memory has a limited capacity.

Properties of Convolution

Commutative Law

x(t)® y(t) = y(t)®x(t)

Proof:



@ Y1)= [H(e)* vl

T=—00

Letu=t-rt,thereforet=t—uand

(0= [x(t-u)*ylo)-du)

Reversing the limits is the same as multiplying by —1
xO)®y(t)= [xt-u)*y(u)du="[y(u)*xt-u)du=yt)®x(t)

Distributive Law

X(t)®[y(t)+z(t)] = x(t)® y(t) + x(t) ®z(t)

Associative Law

xp)elyt)®z(t)]=[xt)® yit)]®x(t)

Example Convolutions

Convolution Example 1: Simple Rectangular Functions

h(t)=1for0<t<1;0elsewhere

I e ——

Time

First flip h(t) by lettingt = -t

h(-1)

Time




Now shift h(-t) to the time for Case 1 by replacing (—t) witht - t

Casel:t<O0

AN
&

X(t)

I
=
~~
i
A
N—r
I
o
(6] Lol
A

N —

2 1 0 1
t-1 t
Case2:0<t<1
X(7)

h(t-c) b

0.5 i
0 . ,
2 1 0 1 2 3

t-1 t

Case 2 moves the front edge of h(t-t) into x(t) so the output is the shaded area t
For all of Case 3 h(t-t) is fully within x(t) so the output is 1

Case 4 h(t-1) is exiting x(t) so the output is [ 2 — (t-1) ]*1 or (3-t)

Case4:2<t<3

N
a0

X()

[EEY

o
o1

] t
X(1)
1 L J
h(t-1) I
3 :
2 1 0 1 2 3
t-1 t




For all of the last Case t > 3 and there is no overlap so the output is O

So now we can plot the output, y(t)= x(t)®h(t)= Ix(r)* h(t —)d 7 and we are done.

Convolution Example 2: A Triangular Function

x(t)=1for 0<t<2;0elsewhere
-
s / \ The input
\ signal x(t) isa
: : unit
2 1 0 1 2 3 4
e rectangular

pulse fromt =

-ltot=1



The system Impulse Response is triangular

Find the output, y(t)= x(t)® h(t)

h(t) =t for 0 <t < 3; 0 elsewhere

b
4]

N
N (¢ S

N

[EEN

)
o IS

Time




h(-t)

®
&

N
4] w

N

Time

First flip the Impulse Response by substituting t = -t
Now slide it back to start at a value of t < -1 and plot the signal on the same chart

Thereisno overlapsoy=0fort<-1

Casel:t<1
3
h/+ \ 2
n(t-t) [
X(7)
|7 1
_ |
-4 -3 -2 -1 0 1 2 3 4
t-1 t




Now slide the tip of h(t-t) just past t = -1 to set up Case 2

Case2:0<t<1

B

w
o1

N
w

)]

N

u
(é]

x(»)
'_ XL
05 I
U.Jd l
! ! T C , ! ! !
-4 3 " -2 -1 O 1 2 3 4 5

The shaded area is the integral of the product of the two functions. And:

t 2 t
y(t)=T:'._l(t—r)*ldf={t*r—%} =%t2+t+%for0<t<1

r=-1

Case 3 is set up by sliding t to just past t = 1. Now the complete signal lies within the memory of the

Case3:1<t<?2

b
o

oy
—~
—
a
p
N [8)] w

[« 2]

X(1)
0.5 —‘
N\
1
t

2 3 4 5
t-3

system.

Now



2

1
(t—r)*ldr:[t*r—%} =2tforl<t<2
r=-1

Case4d:2<t<4

o
an

w

h(t-7)

The fourth Case occurs when the back edge of h(t-t) crosses T =-1. Thisis whent = 2.

2

1 1
Now y(t)= [ (t—T)*ldr:{t*r—%} :—%t2+t+4for2>t>4
=t— r=t-3

7=t-3



Case5:t>4
3 ,
25 |
2 ,
h(t-
1.5 - ( T)
X(7)
e —
0.5 1 I
4 3 2 1 0 1 2 3 4 5
t-1 t

The last Case is when t > 4. Now there is no overlap and the output remains at zero.

Now we can plot y(t). Note that it is a continuous function. This is the normal case (the exception is
when there are Impulse Functions in either the signal or h(t) ). Use this fact to check your work by
comparing the values at the boundary conditions between cases.

y(t)

B
a

Case 4

A
v

BN

w

AN
/

N
o

casezZ

A

v

N

Case 3 \ Case 5

A\ 4
\ 4

Case 1

A

Y
i
[¢]

[en]
1N

an

D

Time




Convolution Example 3: The RC Low Pass Filter
The input signal x(t) is a unit rectangular pulse fromt=0tot=t,

The circuit is:
. R

¥ . . L0 | ... Mout

Find the ImpulseResponse of the circuit using the TransferFunction:

1 1
H(jo)= 1ja)C =—RC_ inceitisa simple AC voltage divider
—+R —+jo
jaoC RC

From Example 1 of the section on Fourier Transforms the inverse transform of this Transfer function is:
t

h(t) = R_ng_RC *U (t)which looks like:

h(t)=[1/RC]*exp(-/RC)*U(t)

1/RC |

t=1/RC




The input, vy, is:

elsewhere

vi,(t)=2for0<t<1;0

N

[REY
[

-

Time

Now using Convolution, find the output:

Flipping h(t), sliding it to the left, t < 0, we have Case 1:

i

Case 1l:t <0

w

X(1)

N

=

-4 -3 -2 -1

()

t

[N
N

And of course y(t) = 0 for t < 0 since there is no overlap.




Case 2 is while the leading edge of h(t-t) is within the square pulse or when0<t<1

Case2:0<t<1

IS

w

x(%)

N

Now the integral becomes:

0

Vou )= XO® ()= [x(c)*h(t- el

T=—00

t (t=7)
Vo) = | z*R_lcg " dr
=0

2 LI
Vout(t)zﬁ*g RC J.gRCdr
7=0

t

t
Vo (t) = R—zc*g_R{RC *5“}
=0

t "k t t t
Vo, (t)=2%¢ Rc{ch} =2%¢ RC[ERC —1}=2’{1—5 RC}for0<t<1
7=0



Case 3 is the final case and it is good fort > 1

Case3:0<t<1

A

w

Now the integral becomes:
1 (tfr)

v, (t)= I Z*R—lchCdr

P
VOUt(t)_R_C*g RC ngcdr
=0

t T

1
Vo (1) = R—ZC*gRC{RC*SRC}

=0

1
t T t 1
Vout(t)ZZ*g Rc{ch:| —2*¢ RC|:SRC _1}
=0
Moreover, we can now plot the output:

The Output

N

/\. o

[REY

P
—




Convolution Sum

Example : Convolve {1,3,1) and (1,2,2,).

Ans.

Example . The impulse response of a linear time-invariant system is

hin) ={1.2,1, -1}

! Determine the response of the system to the input signal

x(n) = {1,2.3.1)
T



(1) —1 234 k
Fold ( Product
lm_k} voth) sequence
|
i
-1o12 K -1012 k
u (b
Shift
: vy (k> Product
h(1—k) 4 sequence
2
ot
s 012 K 0112 k
(ch
Jhl—l—k} v (k) Product
sequence
2
-3
—2-1 0 ! k
(d)
o
¥ly= ) vk =8
k=
vi-1)=1

ymy=1{...0.0.1,4.8.8,3. 2. -1.0.0... )
T.



Block diagram representation and reduction

Block diagram representation



State variable technigues

The main tools of analysis of single input and single output (SISO) systems are transfer function and
frequency response methods where the systems must be linear time invariant. These tools cannot be
applied for time varying and non-linear systems. In conventional control theory the main theme is to
formulate the transfer function putting all initial conditions to zero. The state variable analysis takes care
of initial conditions automatically and it is also possible to analyze time varying or time-invariant, linear
or non-linear, single or multiple input-output systems. The main target of this chapter is to introduce state
variable analysis for continuous systems.

State: The state of a dynamic system is the smallest set of variables and the knowledge of these
variables at t = t0 together with inputs for t > t0 completely determines the behaviour of the system
at t>t0. A compact and concise representation of the past history of the system can be termed as the
state of the system.

State Variables: The smallest set of variables that determine the state of the system are known as
state variables.

The knowledge of capacitor voltage at t = 0 i.e., the initial voltage of the capacitor is a history
dependent term and it forms a state variable. Similarly, initial current in an inductor is treated as
state variable.

State Vector: The ‘n’ state variables that completely describe the behaviour of a given system are
said to be ‘n” components of a vector.

State Space: The n dimensional space whose co-ordinate axes consist of the x1 axis, x2 axis,....,xn
axis are known as a state space.

Advantages

It is possible to analyze time-varying or time-invariant, linear or non-linear, single or multiple input-
output systems.

It is possible to confirm the state of the system parameters also and not merely input-output
relations.

It is possible to optimize the systems and useful for optimal design.

It is possible to include initial conditions.

Disadvantages

Complex techniques

Many computations are required.

STATE MODEL

Figure shows an nth order system having multiple input multiple output.

Ly ————=f — ¥4
—— MIMO , f
h— System : 2 ) (1) x,(1) (1)
U] ey i, (1) x5(1) (1)
l j j n(t)=|: x(r)=|: v =|:
Xy Xz X ””'l:‘r) mx 1 x’-'l:‘r) nx1 'TPE?:I pxl

For time invariant system, the functional equations can be written in the form as below:

x(f) = Ax(¢) + Bul(t)
y(t) = Cx(t) + Du(t)

where A, B, C and D are constant matrices.



The order of the above matrices is given below:

An x n known as the evolution matrix,

B n x m known as the control matrix,

C p x n known as the observation matrix and
Dp x m known as the direct transmission matrix.

This is known as the State Model of the given system.

TRANSFER FUNCTION DERIVATION FROM THE STATE MODEL

From the state model equations, we can derive the transfer function of the system. From definition of
transfer function, we can write

. Laplace transform of output
Transfer function = P P |

Laplace transform of input |

: ¥(s)
Transfer function = ) = C|[sI- :‘L]'IB +D
U(s)
Formula
The characteristic equation is given by Isl—A|=0
A= 03 13—|,B= ‘lﬂ :md(i=[1 1]
Example 1. Find the transfer function when
Solution:
_ {1 a 2 1| _|s+2 1
51‘*"‘5&' 1}‘[& 3} ‘[ 0 5+3-‘
sI—A|= ‘EE- s+13‘ =(5+2)(5+3) 20
Therefore, (sI — A)~! exists.
543 1
Now (SI— :1.:'_1 — _-‘:'Ld-_](SI :1:] _ 0 5+2
) IsT— Al (54+2)(s+3)
5+3 1

0 5+

CI-A)'B=[11]= 2
(I-4) =G

[1.:.]= [ 1][1+2] 4y 1

(5+2)(5+3) (s+2)(5+3) s5+2

Example 2. Find Trnasfer Function of the following system

e =22 04 N 2
Xr)y= 06 —-08 x(t) i wlt)

yry=[=1 3]x(6)+2u(r).

Solution :



First, we compute the eigenvalues of the A matrix by solving det(Al — A) = 0 to obtain A1 =—1,A2 =

—2 Thus, the system is BIBO stable since the poles of the transfer function are negative, being equal
to the eigenvalues.

; s+#22 04 1'[2
Hi=l=V W65 sins] |<1]*2

| s+08 04 2
= [-1 3] +2
(s+2.2)s+0.8)-(-0.4)-0.6 06 s+2.2])-I

2s+1.2 ~55— * 4+ 3
- | [—I 3] ) +2= Ss I':“"Z(.\ +.$+2)
ST+ 3s5+2 -s=34 s + 3542

_ 2.€:+s—7.4_253+0.5$-3.7_2(s+2.l9)(s-l.69)
s +35+2 s +3542 (s+1)Xs+2)

Re{s} > -1




STATE EQUATIONS FOR DISCRETE TIME SYSTEMS

to represent a given z—transfer function by state variable equation and output equation of
the form

x(k+ 1) = Ax (k) + Bu (k)

 State equation |
(k) = Cx(k) + Du(k) - Output equation|

State variable methods for continuous time systems have already been introduced. In this chapter we
are interested to discuss the following:
i.

ii. to get a relation between state equations, output equation and transfer function and
iii. finally the solution of state equation.

With the help of state equations we can calculate the next value of state variable from the given
value of state variables and inputs.

Example 1 Find the SV model for the system with

1
H(z)=
:J'+4:3 +5:1 + 6z+ 3

The given transfer function is

¥(z) 1
H(z)=—== =
() UE) zt+4z2° 4527+ 6243
e, (2%+42° +522 + 6z + 3)¥(z) = U(=)
e, Z'Y(z2) + 42°Y(z) + 52°Y(z) + 6zY(z) + 3Y(z) = U(z) (1)
The inverse transform of Eq. (1) gives
vik +4) + 4dy(k + 3) + Sy(k + 2) + 6y(k + 1) + 3y(k) = u(k)
e, ylk+4)=u(k) —4ylk + 3) — Sy(k + 2) — 6y(k + 1) — 3y(k)
Xalk +1) Xa(K) x3(k) xz(K) x4(K)
‘Q yik+4) yik+3) yik+2) ylk+1) y(k)
u(k) D D D D
RIS AN
T\




xi(k+ 1) =x,(k)  (2)
xa(k +1) = x3(k)  (3)
x3(k + 1) = xy (k) (4)

xa(k + 1) = =3x(k) —6x5(k) — Sx3(k) —dx (k) + ulk) (5)

From Egs. (2}, (3), (4) and (5) we get

x (k+1)] g ; [: E N ((?) g

x k+D)| 2

Lg K+ 710 0 0 1 x| o[ v
E+D |5 6 s 4| xy ()| 1}

The output equation is

y(K) = x,(K) = x;(K) + 0. x(K) + 0. x5(k) + 0. x4(k) + 0. u(K)  (7)

X (1? '
- Ekg |+ [0)u(k) (8)

~ v

e, y®=[t o o 0]

2 43z+4
3 2
7+ Tz +6z+5

H(z)=

Example 2.

¥(z) _ ¥(@) W@ o, . ' 1
A AR B ey

iz _ 1

Uiz) z2+72%+62+5

¥(z)
w(z)

I =7+32+4




wix)

£\ W) wik +2) wik+1)
(k) o g D *
. k\’\ (k) Xk
e
\ _,
\ e
-5

xy(k)

x;(k + 1) = x;(k)

xalk + 1) = x5(K)
x3(k + 1) = (=5)x; (k) + (=6) x2(k) + (~=6) x3(k) + u(k)

From the above we get

G+D] [0 1 %ru @] [o]
nE+Dl_| 0o o 111(}:}.+{U u(k)
NED| | s e g/l (1

The Out put equation is

y (k) = 4 x,(k) + 3x;5(k) + x3(k)

Therefore
x, (k)|
yR=[4 3 1]| 5k
x3(k) |

Example 3. If the state model of a system is given by



[xl(mm _[ 0 1 [xl(k}1+[n1 u(k)

xy(k+1)| |2 -3 xg(k)J 1]
YR =[-2 -1] Ltl EE |+ [1] U (k). find the transfer function of the system.
2 d

Solution :

’ [0 17 o] . iD-
ere A—[_E _BJ,B—[”,C_[—E ~1]and D =[1]
We know that

H(z) =C(zI-A)"'B+D

a1 0] [0 1_[z -1
(zI-4) [o 1] [—2 —3_|—[2 243

z+3 1
(,I_{}_lz[ 1 ‘r 3 1]_|2°+432+42 22 +3z+42|
o (2243242 ) -2 ] -2 z
243242 z2+3z+2|
z+3 1 1
1 z2+3z+2 z243z+2 |[0]
HE)=C@E-A)"B+D=[2 -1] & *F*2 # 4% |+
243242 z2243z+2] _
1
I 2243242 1] 22 +1_—2—z+23+3:+2
B Z 22 +3z42 z +3z42
z2 +3z42
2242z 142270

243242 143z 042272




UNIT V

DISCRETE FOURIER TRANSFORM



DISCRETE FOURIER TRANSFORM

One of the main advantages of discrete-time signals is that they can be processed and
represented in digital computers. However, when we examine the definition of the Fourier
transform of discrete-time signal

X(ej“’): x(n)elon DTFT
Nn=-o0

We notice that such a characterization in frequency domain depends on the continuous

variable .

This implies that the Fourier transform is not suitable for the processing of discrete-time
signals in digital computers.

As a consequence we need a transform depending on a discrete-frequency variable. This
can be obtaining from the Fourier transform itself in very simple way, by sampling uniformly
the continuous-frequency variable ., . In this way, we obtain a mapping of a signal depending
on a discrete-time variable , to a transform depending a discrete-frequency variablek, such a
mapping is referred to as the discrete Fourier transform (DFT).

DFT is given by

N -

LN

X(k)= Y x(n)e "™ = x(nW¥, for 0<k<N-1
n=0 n=0
IDFT
N-1 22} N-1
x(n)=>"X(k)e" " =" X (k)Wy™, for 0<n<N-1
k=0 k=0

Twiddle factor




Most approaches for improving the efficiency of computation of DFT, exploits

rkn
the symmetry and periodicity property of N j.e.

N
wl(:+7) =- W:] ' [Symmetry property]
k+N k Core
WN+ =W, [Periodicity property]

Properties of the DFT

1. Linearity :  AX(n) + By(n) <> AX (k) + BX (k)
2. Time shift: ~ X(N—m) <> X (k)e Z*™N — X (k)w, ™

3. Frequency Shift: x(n)ejZ”km’N > X(k—m)

4. Duality : N 7*x(n) <> X (=k)

N-1 )
why?  X(k) =Y x(m)e 1Zm/N

m=0

DFF(X () = Y X (e 7"

/ n=0

DFT of x(m)



X(=n)=x(N —n)
1 j27K(N=n)/N
k=0

pI27k(N-N)/N _ o j27kN/N o j2akn/N

1E —j2akn/N
X(=n) = N > X(k)e
k=0

— DFT(NX(n)) :%Nz_lx (M)e 12N Z x(_k)
n=0

5. Circular convolution

Nz_llx(m)y(n —m) = x(n)Oy(n) <> X (k)Y (k) circular convolution

m=0

6. Multiplication

x(n)y(n) <> N fo (M)Y (k —m) = N X (k)OY (k)

new sequence m=0

z(n)=x(n)y(n)

7. Parseval’s Theorem

>IXMP =N X ()P

Summary of Properties of the Discrete Fourier Transform

Property Periodic signal Fourier Series Coefficients

Linearity Ax[n] + By[n] Aa, +Bb,




Time Shifting x[n — no] —jk[z’r] 0

N 0

ak * e
Conjugation x*[n] ajk
Time Reversal x[—n] a,
Frequency Shifting @ IMwn x[n] A _m
First Difference X[n]—x[n-1 — k(27
[n]—¥[n—1] e,

Conjugate x[n] real a, =a’,

Symmetry for Real
Signals

Real & Even Signals

X[n] real and even

a, realandeven

Real & Odd signals

X[n] real and odd

a, purely imaginary and odd

Even-Odd
Decomposition
Of Real Signals

x.[n] = Evix[n]}
x,[n] = 0d {x{n]}

[x[n]real ]
[x[n]real ]

Refa, }
jim{a, }

Parseval’s Relation

1 2
— x[n]" =
SRILU P

‘ak‘z
KT




PROBLEMS

Example 1.: Find DFTof {100 1}.
The DFT of the sequence { 1, 0, 0, 1} will be evaluated
x(0)=1, x(T)=0, x(2T)=0, x(3T)=1, N=4

We desire to find X(k) for k=0,1,2,3.

X(0) = Z?’:x(nT)ejO = Zslx(nT) =X(0)+ x(T)+x(2T) + x(3T)

Fork=0 =1+0+0+1=2

3 _ 3 _ 6
X (@)= x(nT)e ™™™ =3 x(nT)e 2™ =140+0+1e " * =1+ ]
k: 1 n=0 n=0

3 H .
X(2)=) x(nT)e #™™ =140+0+1e* =1-1=0
k=2 n=0

97

3 . _
X(3)= x(nT)e "N =140+0+1e 2 =1-j
n=0

Ans: X(k)={ ZI (1+j) ’ 0, (1'j) }

Example 2: What is the DFT of the signal 5[n]?

x[n] =9J[n]

1 N 1 1
X[kl =5 28] ok[-n] =1 @k[0]=% -
n=0



This means that all frequencies are equally strong present in the impulse signal. So its frequency

spectrum is flat.

Example 3: What is the DFT of a shifted impulse o[n-1]?

x[n] = J[n-1]
J kO 2n
X[kl =y > 3[n-1] gx[-n] = N oK[-1]1= 0 with Qg = N

n=0

1
In this case again all frequencies X[k] are equally strong (they have the same modulus N ), but

now the frequency spectrum consists of complex numbers.

2
Example 4: What is the DFT of cos(5Q) with Q= En ?
x[n] = cos(n 5€).

We could calculate X[k] in the same way as in the previous examples, but we can also directly
find X[k] because we may write cos(5€2) as:

1 1 1
x[n] = cos(n5Qg) =5 ¢i>P0+5 &30 =2 gs[n] +5 ¢.5[n].
As @x+N[n] = ok[n] we obtain:
1 1
x[n] = @s[n] +5 on.s[nl.

1 1
So X[5] = 5 and X[N-5] = 5 and all other frequencies are zero:

X[k] =0, for 0<k <N and k # 5 and k # N-5.

Example 5: What is the DFT of a shifted signal x[n-ny]?
Denote the DFT of the shifted signal by X'[k] and of the original signal by X[k].

N-1
1 N-1 r
X[k =y ZX[n ngl gul-n] =g LS xneno] qu-n+ng] e 1KMo —
= n=0
2
~ X[K] e'leOHO = X[K] gif-ng] with Q=7

Example 6 : Compute the DFT of sequence * (#) =1{-2, 2,1, -1}.

Ans.



N-1 N-1 )
X(k) = D x(m)Wer = D AmWE k=0,1,2,3

n=0 n=0

X(k) =-2+2 Wi+ W2_wk

X(0) =-2+2+1-1=0
X(1)=-2-2j-1-j=-3-3
X(2) =-2-2+1+1=-2
X(3) = 2+2j =1+j=-3+3]
X(k) = {0, -3, -3j, -2, -3 + 3

Example 7: What is the relationship between Z transform and the Discrete
Fourier transform?

Ans. Let us consider a sequence x(n) having z-transforrn with ROC that includes the

o

X(z) = Y x(n)z™" ' ...'(1)'

n=-e

unit circle. If X(z) is sampled at the N equally spaced points on the unit circle. If X(z) is

sampled at N equally spaced pomts on the unit circle.
27k
Z,= JW,k=0,1,23 ... N-1

We obtain

X (k)

i
>
—
3
—
(]
1§ :
o
.
Y]
u
E
~ .
R- -
i
(=]
~
=y
-
<
-

it '!
™M
A

2

LY

Z

(2)
Expression is (2) identical to the Fourier transform X(w) evaluated at the N. equally spaced.
Frequencies

2xk '
wy, = ‘ﬁ'—, k=01, ... N-1.

If the sequence x(n) has a finite duration of length N or less, the sequence can be

recovered from its N-point DFT. Hence its Z-transform is uniquely determined by its N-point
DFI’. Consequently, X(z) can be expressed as a function of the DFT {X(k)} as



follows

N-1

X@) = D x(m)z™"

n=0

-1 1 N-1 2:: N-1 . j2nk n
X(z) = Z{N}:xm)e N ] = —.zxm 2[ N z-m]

n=0 k=0 k-O

1-2V N x@k
- r: 2-—~—,§2;),;-— )

k=04 _¢ N 1

When evaluated on the unit circle (3) yields the Fourier transform of the finite duration
sequence in terms of its DFT in the form:

| 1-¢/"N S X (k)
X(w) = N

This expression for Fourier transform is a polynomial interpolation formula for X(w)
expressed in terms of the, values {x(k)) of the polynomial at a set of equally spaced

discrete frequencies

Example 8 : Perform circular, convolution of two sequences

x; (n) = {02, 04, 0.6, 0.8, 1, 1.2, 1.4, 1.6}
x, (1) ={01,03,05,07,09.11,1,3,1]  (Dec. 2006)

Ans. Circular convolution is

y (1) = xy(n) N x;(n)



[4(0)
y(1)
¥(2)
y(3)
y(4)
¥(5)
y(6)

| y(7)]

02 16
04 02
06 04
08 06

12 1
14 1.2
16 14

[4(0)]
y(1)
¥(2)

y(4)
¥(5)
y(6)

y(3)|

1y (7))

14 12 1 08
16 14 12 1
02 16 14 12
04 02 16 14
06 04 02 16
08 06 04 02
1 08 06 04
12 1 08 06

[0.02 +0.18 +0.7
-10.04 +0.06 +0.8
0.06 +0.12 +0.1
0.08 +0.18 +0.2

0.12 +0.3 +04
0.14 +0.36 +0.5
0.16 +0.42 +0.6

0.6 047 [0.1]
08 06( /03
1 08|05
12 1 [[07
14 12|09
16 14| |11
02 16|13
04 02] [15]

+0.64 +0.9 +0.88 +0.78 +0.6
+0.98 +1.08 +1.1 +1.04 +0.9
+1.12 +1.26 +1.32 +1.3 +12
+0.14 +1.44 +1.54 +1.56 +1.5

0.1 +0.24 +0.30 +0.28 +0.18 +1.76 +1.82 +1.8

+0.42 +0.36 +0.22 +2.08 +2.1
+0.56 +0.54 +0.44 +0.26 +2.4

[5.2

6.48
6.64
6.48

52

+0.7 +0.72 +0.66 +0.52 +0.3 |

-4.08-:




FFT algorithms —advantages over direct computation of DFT — radix 2
algorithms

What are the advantages of FFT algorithm?

Fast fourier transform reduces the computation time. In DFT computation, number of
multiplication is N* and the number of addition is N(N-1). In FFT algorithm, number of
multiplication is only N/2(log,N) . Hence FFT reduces the number of elements (adder,
multiplier Z &delay elements). This is achieved by effectively utilizing the symmetric and
periodicity properties of Fourier transform.

(Preparation for Mathematical Derivation of FFT)

1. DFT Algorithm
N-1 _ N-1 _ "
X(k) — Zx(n)e—JZﬂkn/N — Zx(n)(e—JZH/N )
n=0 n=0

j2zIN

Denote W =€ , then

N-1
X (k)= 3 x(nwy,™
n=0

Properties of Wy " :

(1) WNOZ(e—jZﬂ'/N)OZeO:L WNN :e—j27r:1
(Z)WNN+m =WNm

WN N+m _ (e—j27z'/N)N+m

(e—j27Z'/N )N (e—jZﬂ'/N )m

:1.(e—j27r/N)m :WNm
(3) WNN/2 :e—j272'/(N/2)/N :e—jﬂ' :_1
WNN/4 :e—j27r/(N/4)/N :e—jﬂ'/z :_j

3N/4  _—j2z/BN/AIN _ —j37xl2
W e e ]
= = =



RADIX 2

The FFT algorithm is most efficient in calculating N point DFT. If the number of point N can
be expressed as a power of 2 ie N= 2V where M is an integer , then this algorithm is
known as radix-2 FFT algorithm.

Two-Point DFT
1
x(0), x(1): X (k) = > x(n)w,™ k=01
n=0

1

X (0) = ix(n)wznO = > x(n) = x(0) + x(1)
n=0

n=0

1 1

X (@)= x(mW,™ => x(nW,"

= x(O\W," + x(W,"
= x(0) + x(Dw,*??
= x(0) + x@)(-1)

= x(0) — x(2)

Oy int ———= X X(O L ii=x )4l
) \DFT | — sy x) E H()=x(0)-x (L)

Four-point DFT

x(0), x(1), x(2), x(3)
3
X (k)= x(nw,™ k=01,23,
n=0

X(0) = 23: x(n)W4no = i x(n) = x(0) + x(1) + x(2) + x(3)
n=0 n=0



X (1) = i x(MW," = x(OW,° + x(W," + x(2W,* + x(3W,’

= X(0) = jx() = x(2) + Jx(3)

X (2) = i x(NW,>" = x(OW,° + x@W,* + x(2W,* + x(3W,°

= x(0) + x(1)(-1) + x(2) (1) + x(3W,”
= X(0) — x(1) + x(2) — x(3)

X (3) = i x(MW,™ = x(OW,° + x@W,° + x(2QW,° + x(3W,°

= x_(O) + XMW, +xQ)@MW,* + xBW,*

= x(0) + x() + (=D)x(2) + (= 1)x(3)
= x(0) + x(@) - x(2) - x(3)

X (0) = [x(0) + x(2)] + [x(T) + x(3)]

5 X@ =[xO)=x2)]+ (= NIxD) - x)]
X(2) =[x(0) + x(2)] - [x(1) + x(3)]
X (3) = [x(0) = x(2)] + J[x(T) = x(3)]

x() ——> —— (]
xfi) dpaint | = Fy})
22) ———  DFT > 72
#(3) —> (3

Twci]point DFT

If we denote z(0) = x(0), z(1) = x(2) => Z(0) = z(0) + z(1) = x(0) + x(2)

Z(1) = z(0) - z(1) = x(0) - x(2)

\(0) = x(1), v(1) = 3) => V(0) = v(0) + v(1) = x(1) + x(3)

V(1) = v(0) - v(1) = x(1) - x(3)



Four — point DFT Two-point DFT

= X(0) = Z(0) + V(0)
X(1) = z(1) + (4)V(1)
X(2) = Z(0) - V(0)

X(3) = (1) +jv(1)

Twa - point Two - point Four - point

DFTs DFT outpuii DET autput
x{ xf+xi2) A0 0
(Z(0)
x()-x(2)
xf2) (Zri) >< ><Xf’f) ]
_} J
x(1) xf1)+x(3) 3 P X (N2 +0)

(Vo)
x(1)-xf3)
xf3) g (VL) o - X3 (W24

Decimation-in-Time FFT Algorithm

m

I
N

x(0), x(1), ..., x(N-1) N



g(O),g(l),---,g(%—l) —enen % points
((x(0), x(2),---,x(N - 2)) (9(r) =x(2r))

h(O),h(l),---,h(%—l) _odd % ooint s

L((X(@), X(3),-++,X(N = 1)) (h(r) =x(2r +1))

X (k) = Nz_lx(n)va "
:Nflg(r)w k(2”+N/2 h(nw,“®*®  (k=04,...,.N —1)
=S W, +w, Nflh(r)w o

W, 2kr _ (e—j27r./N )2kr _ (e—j2ﬂ/(.N/2))kr —W, kr

2

N/2-1 K K N/2-1 ‘r
= X(k) = Zg(r)WN/Z +Wy Zh(r)Wle
r=0 r=0
= G(k) +W, “H (k)

( G(k): N/2 point DFT output (even indexed), H(k) : N/2 point DFT
output (odd indexed))

X(k)=G(K)+W"H(k) k=01..N-1

N/2-1 o N2 «
G(k) = Z g(rWy,, = Z X(2r)Wy /2

r=0 r=0

N/2-1 o N2 «
H (k) = Z h(rWy,, = Z X(2r + YWy 5

r=0 r=0

Question: X(k) needs G(k), H(k), k=... N-1
How do we obtain G(k), H(k), for k > N/2-1?

G(k) = G(N/2+k) k <= N/2-1



H(k) = H(N/2+k) k <= N/2-1

G(0)
X((}) Ommenie - »© X (0)
__G:\ wh
—z—point
DFT
X(4) Ot X(2)
X{6) Ot X(3)
x{1) o X(4)
- x(3) o= o X()
_gﬂpomt —‘-C(/
X(5) Conmedirery DFT oy X(6)
X (7} O > X

H(3) w}

(a) Result of one decimation of the time samples

Future Decimation

9(0), 9(1), ..., g(N/2-1) G(k)
h(0), h(1), ..., h(N/2-1) H(k)
N/2-1 i
N G(k) = Z g(r)W(N/Z)
9(0),9(2),---,9(3—2) r=0
N/4-1 K
ge(O),ge(l),...ge(%—l) - rZ;)ge(m)w(NM)
N c N/4-1 c
9(.9(3). . 9(5 -Y) +Wy /2 Zogo(m)W(NM) i
. n
90(0), go(M)..- 9o, =1 = GE(k) + Wy, ‘Go(k)

/ f

evenindexed g oddindexedg

(N/4 point) (N/4 point)



k 2k
Wyjp =Wy 7

Kk —j27z/(N/2)\K
Wy, =(e J2 ))

— (e—j27r2/N )k _ (e—j27r/N )2k

2k
:WN

=> G(k) = GE (k) + W, **Go(k)

Similarly,

H (k) = HE (k) + W, *Ho(k)

For 8 — point

g(0) 9@ 9(2) 90 h(0)
T T T T 1

x(0)  x(2) x(4) x(6) x(1)
\! \! \!

ge(@) v ge® I he(0)

even indexed odd indexed

h (N/4 point) h (N/4 point)

go(0) go(1)

h(1)
T
x(3)

\
ho(0)

h(2)
T
x(5)
)
he(1)

h(3)
T
x(7)

J
ho(1)



jee, GE) S

r
 J

ge(') o GE(l ) w Q‘(U

o) x» > G(b
3 ( N
Y o . "

Wi W v‘ "
fLE(o) x(1) a - E(o) > . A X(4)

X0

keu) x(5) o . k .A‘ X(5)

hﬂ[o) xAa

ho(.l) x(Ma

Decimation-in-Frequency FFT Algorithm

x(0), x(1), ..., x(N-1) N =2"
N-1
X (k) = x(mw,"™
n=0
N/2-1 N-1
= Y x(MW,"™ + > x(nw, ™
n=0 n=N/2

let m=n-N/2 (n=N/2+m) n=N/2=>m=N/2-N/2 =0

b X(7)



n=N-1=>m=N-1-N/2 =N/2-1

N/2-1 N/2-1
= X (k)= > x(MW™ + > x(N/2+myw,, Nk
n=0 m=0
N/2-1 N/2-1 N
= 3 XMW+ > x(N72+mW, ™MW, 2
n=0 m=0

N Ny k

N/2-1 N/2-1
X(K)= > x(MW™+ Y (“D*x(N /2 +mw,™
n=0 m=0
N/2-1

= S [x(n)+ (1)  x(N /2+ )W, "™
n=0

k:even (k =2r)= X (k)= X(2r) = Ni—ix(n) +X(N/2+n)W, "

n=0
WNZrn — (e—j27r/N)2rn — (e—jZﬂ/(NIZ))rn :WN/Zm

N/2-1

N/2 point DFT = X(k) = X(2r) = >_[x(n)+x(N/2+ n)W, o

\ :
N/2-1

Y(r)= Z Y(n)WN/zm Z(r)
n=0
k:odd > k=2r+1

= X(K) = X (2r +1)

y(n)

N/2-1 2
= > [x(n) = x(N /2 +n) W, "
n=0
NZ2 n 2m
= > [X(nN)=x(N/2+n)W, W,
n=o 2(n)
N/2-1 5
= > z(nw, "
n=0
N/2-1 m
= Z(MWy 5



N/2-1 N N
Z(r) = Zz(n)WN,zr"egpoint DFT of z2(0), ---, Z(E—l)

n

X(k) : N-point DFT of x(0), ..., x(N) =» two N/2 point DFT

Yio)
x{0) o bere—p—0 X (0)

(1) \ “ ;3{(') .0 X(2)

N .
E-pomt
DFT’
x(2)

o0 X(4)

x(3) g X {6}

x(4) gty X (1)}

x(5)

pnassnpumeass X (3)

x(6}

7 \ |
x( .

-1

et X(5)

iy X'(7)

FIGURE 10-10. Flow graph after a single decimation.

One N/2 point DFT => two N/4 point DFT

. two point DFTs



x(0) o - o A(0)
wi
x(1) o X{4)
x(2) ey X (2}
W
x(3) g “g — X {(6)
x(4) o o X(1)
]
x(5) X
x(6) - X(3)
k] 1 1]
x(7) o - LA —_— o
-1 é(;‘ -1 &aj—i
FIGURE 10-11. Flow graph pertaining to decimation-in-frequency FFT (N = 8).
Efficiency of FFT
N — point DFT : 4N(N-1) real multiplications
4N(N-1) real additions
N — point FFT : 2Nlog,N real multiplications
(N=2M 3Nlog;N real additions

Computation ration

FFT's computations _ 5log, N
DFT's computations 8(N —1)
N=2"=4096 512

8 x 4095

=0.18%




Example 1 Eight-Point FFT Using Decimation-in-Frequency of

x(n)={11110000}

x(0) = x(1) = x(2) = x(3)=1, and x(4) = x(5) = x(6) = x(7) = 0.
W=
W = =8 = cos(m/d) —jsin{w/d) = 0.707 — j0.707
FE=efet =

W3 = =8 =_0.707 - j0.707

Stage 1 Siage 2 Siage 3
x [0 X0

ey N/ NS Dxi
e NN/ X Rwe ~xe2)
x (3} W e ><x:ﬁa
x (4} we . _1.:(11;
x (5) ;”}Q(\Ziw \/ 1}‘::::5:
AN “x@)
x (7} ,.f/ \_.:ﬂ.fﬂ‘ N /A\;;'.-'E' - >'<Jr{?]
-1

Eight-point FFT flow graph using decimation-in-frequency.

1. Atstage 1:

0y (=1 — x" ()
Iy +x(5 =1 — x"(13
2y t+w(d)r=1 — x"(2)
NI +w(TrI=1 — x"(3}

R —x[:‘l]]ﬁ":'= 1 — x"i(dn

[ 1) — xSy =0.TO0T7 —j0. 707 — x"(5)
[x(2) — 26N W2 = — x"(6)

[A3y —x{TH] W= _0.T0T7 —j.707 — x"(T)



where x(0), x(1), . . ., x(7) represent the intermediate output sequence afterthe
first iteration that becomes the input to the second stage.

2. At stage 2:

0+ N2y =2 — 2"y

X+ x3y=2—=x"(1)

[x {0y —x (2] =0 x""{2)

[ —x" (32 =0—=x""(3)

A+ REN =1 —f—x"(4)

5+ T = 00707 — 0. T0T )+ (0707 — 00T = < L4l — x5
[x"(dy—x"EHT =1 +j—=x""(6)

(S —x (T =l 4l — T
[ 7

The resulting intermediate, second-stage output sequence x”(0), x’(1), . ..
X’(7) becomes the input sequence to the third stage.

3. At stage 3:

Xim=x""{y+x"{11=4

Xidi=x""{0y—x""(1y=0

Xi2)y=x"(2y+x"(3)=10

Xe)=x""2y—x""3y=0

Xl =x"td+x" 5=l -3+ i—l4l)=1-72.4]
X5 =x"d-x""(5)=1+;041
X3p=x"ey+x"(T)= (L + i+ (L4l =1 - j0.41]
X(Ty=x"(6)-x""(Th=1+;241

Answer

X(k)={4, 1-j241,0 , 1-j0.41 ,0 ,1+j0.41,0,1+j2.41 }

DIT radix-2 FFT DIF radix-2 FFT




1.When the input is bit reversed order, the

output will be in normal order .

1.When the input is normal order, the

output will be in bit reversed order .

2.In each stage of computation the phase
factor are multiplied before add and

subtract operation

2.In each stage of computation the phase
factor are multiplied after add and subtract

operation

3.The value of N should be expressed such
that N=2 ™ and this algorithm consists of

m stage of computation.

3.The value of N should be expressed such
that N=2 ™and this algorithm consists of

m stage of computation.

4.Total number of arthemetric operations is
N log N complex addition and N/2logN

complex multiplications.

4.Total number of arithmetic operations is
N log N complex addition and N/2logN

complex multiplications




COMPUTATION OF IDFT USING FFT

The inverse DFT of an N point sequence X (K); K=0, 1...N-1 is defined as
N-1
x (n) =1/N 5 X (K) e"™ ™ for n=0, 1,2,...N-1
K=0

Take complex conjugate and multiply by N, we get

N-1
Nx *(n) = X *(K) €™M forn=0, 1, 2 ...N-1

K=0
The desired output sequence x (n) can then be obtained by complex conjugating
the DFT and divided by N
N-1

x (n) =1/N [ SX* (K) e2mN 1% K=0



