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EC T43-SIGNALS AND SYSTEMS 

COURSE OBJECTIVE  
To introduce the concepts of continuous time and discrete time signals and systems including their 

classification and properties.  

To comprehend and analyze the frequency domain representation of continuous time signals.  

To learn and investigate the different types of representing continuous time LTI systems and their 

properties.  

To comprehend and analyze the frequency domain representation of discrete time signals.  

To learn and investigate the different types of representing discrete time LTI systems and their 

properties  

 

UNIT I 
REPRESENTATION AND CLASSIFICATION OF SIGNALS AND SYSTEMS: Continuous time 

signals - Discrete time signals – Representation of signals – Step, Ramp, Pulse, Impulse, Sinusoidal, 

Exponential signals, Classification of continuous and discrete time signals -Operations on the signals.  

Continuous time and discrete time systems: Classification of systems – Properties of systems.  

UNIT II 
ANALYSIS OF CONTINUOUS TIME SIGNALS: Fourier series: Properties - Trigonometric and 

Exponential Fourier Series -Parsavel‘s relation for periodic signals - Fourier Transform: Properties - 

Rayleigh‘s Energy Theorem - Laplace Transformation: Properties, R.O.C -Inverse Laplace transform  

UNIT III 
ANALYSIS OF DISCRETE TIME SIGNALS: Discrete Time Fourier Transform: Properties; Z- 

Transformation: Properties – Different methods of finding Inverse Z-Transformation  

UNIT IV 
CONTINUOUS AND DISCRETE TIME SYSTEMS: LTI continuous time systems- Differential 

equations – Transfer function and Impulse response – Convolution Integral- Block diagram 

representation and reduction -State variable techniques – State equations  

LTI Discrete time systems – Difference equations – System function and impulse response – Convolution 

Sum – Block diagram representation – Convolution Sum – State equations for discrete time systems  

UNIT V 
DISCRETE FOURIER TRANSFORM: DFT – Properties - FFT algorithms –advantages over direct 

computation of DFT – radix 2 algorithms – DIT and DIF algorithms – Computation of IDFT using FFT.  
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UNIT I 

 

REPRESENTATION AND CLASSIFICATION OF SIGNALS AND SYSTEMS 

 

• A Signal is the function of one or more independent variables that carries some information to 

represent a physical phenomenon.  

• A ‘signal’ may be defined as a physical quantity which varies with time, space or any 

independent variable Example — voltage, current A ‘system may be defined as a combination of 

devices and networks or subsystem chosen to do a desired action Example Electrical N/W, 

mechanical system 

• A continuous-time signal, also called an analog signal, is defined along a continuum of time. 

Denoted by x(t) 

• A discrete-time signal is defined at discrete times. Denoted by x(n) 

 

 

 
 

 
 

Representation of signals 

Pulsed Signal Noise Signal 

Continuous analogue 

Sinusoidal 

Discrete digital 

Square wave 



 

I. Sinusoidal & Exponential Signals 

Sinusoids and exponentials are important in signal and system analysis because they arise 

naturally in the solutions of the differential equations. 

Sinusoidal Signals can expressed in either of two ways : 

 cyclic frequency form- A sin 2 πfot = A sin(2 π /To)t  

 radian frequency form- A sin ωot 

       ωo = 2 πfo= 2 π /To  

       To= Time Period of the Sinusoidal Wave 

 

x(t)  = A sin (2 π fot+ θ)    =   A sin (ωot+ θ) 

x(t) = Ae
at
     Real Exponential   

      = Ae
jω̥t

=  A[cos (ωot) +j sin (ωot)] Complex Exponential 

  

     θ = Phase of sinusoidal wave        A = amplitude of a sinusoidal or exponential signal  

fo= fundamental cyclic frequency of sinusoidal signal                  ωo = radian frequency 

 

Discrete Sinusoidal 

DT signals can be defined in a manner analogous to their continuous-time counter part 

 x[n]   = A sin (2 π n/No+θ)                     SINUSOID 

   = A sin (2 πFon+ θ) 

   

x[n]  = a
n
EXPONENTIAL 

       n = the discrete time                   A = amplitude 

θ = phase shifting radians,             No = Discrete Period of the wave 

 1/N0 = Fo= Ωo/2 π = Discrete Frequency 

 

 
 

 

II. Unit Step Function 

  

 

 

 

 

 

Precise Graph Commonly-Used Graph 
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Discrete Unit step 

 

III. Signum Function 

 

The signum function, is closely related to the unit-step  function. 

IV. Unit Ramp Function 

 
The unit ramp function is the integral of the unit step function. 

It is called the unit ramp function because for positive t, its slope is one amplitude unit 

per time. 

 

Discrete Ramp  

 

V. Rectangular Pulse or Gate Function 

 

 

VI. Unit Impulse Function 

unit impulse function is the derivative of the unit step function or unit step is the integral 

of the unit impulse function. 

The area under an impulse is called its strength or weight. It is represented graphically 

by a vertical arrow. An impulse with a strength of one is called a unit impulse.  
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                           Continuous    𝛿(𝑡) = {
1   𝑓𝑜𝑟 𝑡 = 0
0 𝑓𝑜𝑟 𝑡 ≠ 0

 | Discrete     

 

VII. Sinc Function 

 
 

 

 

Operations of Signals 

 

Sometime a given mathematical function may completely describe a signal. 

Different operations are required for different purposes of arbitrary signals. 

The operations on signals can be  

      Time Shifting  

      Time Scaling 

      Time Inversion or Time Folding 

Time Shifting 

The original signal x(t) is shifted by an 

amount tₒ. 

 

X(t)X(t-to) Signal Delayed Shift to the 

right 

 

 

X(t)X(t+to)  Signal Advanced Shift to 

the left 

 

Time Scaling 

• For the given function x(t), x(at) is the time scaled version of x(t) 

• For a ˃ 1,period of function x(t) reduces and function speeds up. Graph of the function shrinks. 

• For a ˂ 1, the period of the x(t) increases and the function slows down. Graph of the function 

expands. 
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•  

Example: Given x(t) and we are to find y(t) = x(2t).  

 
The period of x(t) is 2 and the period of y(t) is 1,  

 

 

Given y(t), find w(t) = y(3t) and v(t) = y(t/3).  

 
 



Time Reversal 

Time reversal is also called time folding 

In Time reversal signal is reversed with respect to time i.e. 

y(t) = x(-t) is obtained for the given function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scaling; Signal Compression 

 

 n Kn

Consider a signal x(n) 

 

 

 
 

 

 

 

 

X(-n) 

 
 

 

 

NOTE: 

X(-n + 2)  Shift right 

 

 
 

 

 

X(-n-2) shift left 
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, Classification of continuous and discrete time signals 

There are various types of signals Every signal is having its own characteristic The processing of 

signal mainly depends on the characteristics of that particular signal So classification of signal is 

necessary Broadly the signal are classified as follows 

1 Continuous and discrete time signals 

2. Continuous valued and discrete valued signals. 

3. Periodic and non periodic signals. 

4 Even and odd signals 

5. Energy and power signals: 

6 Deterministic and random signals 

 

1. Deterministic & Non Deterministic Signals 

 

Deterministic signals  

Behavior of these signals is predictable w.r.t time. There is no uncertainty with respect to  its 

value at any time.  These signals can be expressed mathematically.  

 

     For example  x(t) = sin(3t) is deterministic signal. 

 
 

Non Deterministic or Random signals  



• Behavior of these signals is random i.e. not predictable w.r.t time. 

• There is an uncertainty with respect to  its value at any time.  

• These signals can’t be expressed mathematically.  

•  For example  Thermal Noise generated is non deterministic signal. 

 

 
 

2. Periodic and Non-periodic Signals 

Given x(t) is a continuous-time signal x (t) is periodic iff  x(t) = x(t+Tₒ)  for any T and any 

integer n. 

Example x(t) = A cos(wt) 

x(t+Tₒ) = A cos[w(t+Tₒ)] = A cos(wt+wTₒ)= A cos(wt+2p) = A cos(wt) 

Note: Tₒ =1/fₒ ; w=2pfₒ 

 

For non-periodic signalsx(t) ≠ x(t+Tₒ) 

A non-periodic signal is assumed to have a period T = ∞ 

Example of non periodic signal is an exponential signal. 

 

A discrete time signal is periodic ifx(n) = x(n+N)  

For satisfying the above condition the frequency of the discrete time signal should be ratio of two 

integers 

                     i.e. fₒ = k/N 

Sum of periodic Signals 

X(t) = x1(t) + X2(t)  

X(t+T) = x1(t+m1T1) + X2(t+m2T2) 

m1T1=m2T2 = Tₒ = Fundamental period  

 

Example: cos(tp/3)+sin(tp/4) 

– T1=(2p)/(p/3)=6; T2 =(2p)/(p/4)=8;  

– T1/T2=6/8 = ¾ = (rational number) = m2/m1 

– m1T1=m2T2 Find m1 and m2 

– 6.4 = 3.8 = 24 = Tₒ 

Sum of periodic Signals – may not always be periodic! 

tttxtxtx 2sincos)()()( 21 
 

 

T1=(2p)/(1)= 2p;     T2 =(2p)/(sqrt(2));  

     T1/T2= sqrt(2);  

– Note: T1/T2 = sqrt(2) is an irrational number 

– X(t) is aperiodic 

 

 

 

1.Determine whether or not each of the following signals is periodic .If the signal is periodic 

,specify its fundamental period. 

 

a) x(t) = je
j10t

 



 

     Now for periodicity 

x(t) = je
j10t

 = je
j10(t + T)

 

so;               e
j10t

 = 1 

we know                           e
j10T

 = cos10T + jsin10T 

     Here; 

                We need cos10T = 1 and sin10T = 0 

For  cos10T = 1 ,from trigonometry  10T = 0,2π ,4π ,6π ,…….. 

     But we cannot take zero  because if we take 0,T becomes zero which is not true 

     So; 

                10T = 2π ,4π ,6π ,………..      (since 10T = 2π ×n ) 

     For fundamental Period; 

                                         10T=2π  

                                         T=2π /10 

                                         T=π /5 

 

 

b) x(t) = e
(-1+j)t 

    For periodicity; 

e
(-1+j)t

 = e
(-1+j)(t+T)

 

So ; e
(-1+j)T

 = 1 

e
-T

e
jT

 =1 

    Since e^-t is a decaying exponential and e
jt
 is periodic ,the signal is non periodic 

 
 

c)x[n] = 3e
3π (n + ½)/5

 

   Now; 

x[n] = 3e
j3π {(n +N) + ½}/5

 

e
j3π N/5

 = 1=e
j0
 ,e

j2π 
 ,e

j4π 
,……………,e

j2π k
 

comparing; 

                     3π N/5 = 2π k 

                           N=10K/3 

                           N=10    ;putting  K=3 

    The fundamental period is 10. 

d) x[n]=e
j7π n

 

    For periodicity 

e
j7π n

=e
j7π (n+N)

 

    Now;e
j7π N

 = 1=e
j0
,e

j2π 
,………….,e

j2π k
 

     So; 

                7π N=2π k ,where k=1,2,3……… 

                 N=2k/7 

                  N=2  ,putting k=7 since N can only be an integer . 

     Hence the signal is periodic with smallest period 2. 

 

e) x[n] = 3e
j3/5(n+1/2)

 

for  periodicity 

                   3e
j3/5(n+1/2)

 =3e
j3/5(n+1/2+N) 

                                           =3{e
j3/5(n+1/2)

}×e
j 3/5N

 

e
j3/5N

=1=e
j2π k

 ,where k is an integer 

                   N=3/(2π ×5×k) 



     Whatever value we put of k and since k is itself an integer ,N doesn’t become an integer because of π 

.So the signal x[n] is not periodic. 

 

 

 

2) Determine the fundamental period of the signals. 

 

a) x(t) = 2cos(10t + 1) – sin(4t – 1) 

    Here fundamental period of  cos(10t + 1) is 2π /10 and  sin(4t – 1) is 2π /4 

 Comparison to make both periods equal 

 

 

 

 

 

So the fundamental period of the given signal is π . 

 

b)x[n]=1+e
4π n/7

- e
j2π n/5

 

   Here; 

e
j4π n/7

=e
j4π (n+N)/7 

e
4π n/7

=e
j2π k

 where k and n are both integers 

            N=7k/2 

 

    Again; 

e
j2π n/5

=e
j2π (n+N)/5

 

e
j2π N/5

=1=e
j2π k

 

             N=5k 

                   Comparison to make both periods equal 

 

 

e
j4π n/7

 e
j2π n/5

 

N=7k/2 <   N=5k 

N=7×10/2 N=5×7 

35                     = 35 

 

The fundamental period is 35. 

 

3)State which of the following signal is power signal and which one is energy signal .For power 

signal ,find the average power ,and for energy signal ,find the total energy of the signal. 

 

a)  x(t)=0    <-2 

           2    -2≤t≤0 

           2e
^-t/2 

 
Here;        ∞ 

        E∞ = ∫x(t)dt 
 ∞ 

     0             ∞ 

        E∞ = ∫ 4 dt +   ∫4e
(-t)  

dt 

cos(10t + 1) sin(4t – 1) 

π /5 <   π /2 

π ×5/5=π > π /2 

π         = π ×2/2=π  



 -2                  0 

 

            = 12 

 Since we got finite energy ,it is energy signal. 

 ~ 

b)x(t)=t  0<t<1 with period 1 sec 

1 

Pavg=1/1∫  t
2
dt 

0 

= 1/3 

    Since we got power to be finite it is a power signal. 

 

 

 

3. Even and Odd Signals 

Even function –   

 

Odd Function --    

 

 
A function whose even part is zero, is odd and a function whose odd part is zero, is even. 

Function type Sum Difference Product Quotient  

Both even Even Even Even Even 

Both odd Odd Odd Even Even 

Even and odd Neither Neither Odd  Odd  
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Example 1: 

  

x(t) = cos(t) and x(t) = t
2
 + 4 t

4
  are even functions. Verify. 

 

Example 2: 

 

x(t) = sin(t) and x(t) = 2t + 3t
3   

are odd functions. Verify. 

 

Example 3: 

 

x(t) = (t – 2)
2
 is neither odd nor even. Verify.

 

 

 Any arbitrary function x(t) can be written as sum of two function xe(t) and xo(t) where xe(t) is an even 

function and xo(t) is an odd function.  

 

Let x(t) be an arbitrary function. Let us assume that there exists an even function xe(t) and an odd 

function xo(t) such that  

 

x(t) = xe(t) +  xo(t) 

 

then  x(-t) = xe(-t) +  xo(-t) = xe(t) -  xo(t) 

 

By solving these two equations we get 

 

xe(t) = 1/2 [x(t) + x(-t)]   and   xo(t) = 1/2 [x(t) – x(-t)] 

 

Exercise: Show that x(t) = (t – 1)
2
 + sin (t) is neither even nor odd. Find an even function xe(t) and an odd 

function xo(t) such that  

x(t) = xe(t) +  xo(t)  

 

 

4. Energy and Power Signals 

Energy Signal 

• A signal with finite energy and zero power is called Energy Signal i.e.for energy signal 

                              0<E<∞ and P =0 

• Signal energy of a signal is defined as the area under the square of the magnitude of the signal.   

 
• The units of signal energy depends on the unit of the signal. 

 

Power Signal 

• Some signals have infinite signal energy.  In that caseit is more convenient to deal with 

averagesignal power. 

•  For power signals 

                         0<P<∞ and E = ∞ 

• Average power of the signal is given by 
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• For a periodic signal x(t) the average signal power is 

 
• T is any period of the signal. 

• Periodic signals are generally power signals. 

A discrtet time signal with finite energy and zero power is called Energy Signal i.e.for energy 

signal                        0<E<∞ and P =0 

Energy                      

Power               

 

Example 1: determine if the following signals are Energy signals, Power signals, or neither,  

 

 a) ( ) 3sin(2 ),a t t t   , 

 

  This is a periodic signal, so it must be a power signal. Let us prove it. 
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Notice that the evaluation of the last line in the above equation is infinite because of the 

first term. The second term has a value between –2 to 2 so it has no effect in the overall 

value of the energy. 

 

Since a(t)  is periodic with period T = 2/2 = 1 second, we get 
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So, the energy of that signal is infinite and its average power is finite (9/2). This means 

that it is a power signal as expected. Notice that the average power of this signal is as 

expected (square of the amplitude divided by 2) 

 

 b) 
2| |( ) 5 ,tb t e t     , 

 

  Let us first find the total energy of the signal. 
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The average power of the signal is 
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So, the signal b(t)  is definitely an energy signal. 

So, the energy of that signal is infinite and its average power is finite (9/2). This means 

that it is a power signal as expected. Notice that the average power of this signal is as 

expected (the square of the amplitude divided by 2) 
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  Let us first find the total energy of the signal. 
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  So, this signal is NOT an energy signal. However, it is also NOT a power  

  signal since its average power as shown below is zero. 

   

The average power of the signal is 
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Using Le’hopital’s rule, we see that the power of the signal is zero. That is 
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So, not all signals that approach zero as time approaches positive and negative infinite is 

an energy signal. They may not be power signals either. 
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What is System? 

• Systems process input signals to produce output signals 

• A system is combination of elements that manipulates one or more signals to accomplish a 

function and produces some output. 

 

 

 

 

Examples 

 A circuit involving a capacitor can be viewed as a system that transforms the source 

voltage (signal) to the voltage (signal) across the capacitor 

 A communication system is generally composed of three sub-systems, the transmitter, 

the channel and the receiver.  The channel typically attenuates and adds noise to the 

transmitted signal which must be processed by the receiver 

 Biomedical system resulting in biomedical signal processing 

 Control systems 

system 
output signal input signal 



 

Types of Systems 

• Causal &Anticausal 

• Linear & Non Linear 

• Time Variant &Time-invariant 

• Stable & Unstable  

• Static & Dynamic 

 

1. Causal and anticausal system 

 

Causal system : A system is said to be causal if the present value of the output signal 

depends only on the present and/or past values of the input signal. 

Example:    y[n]=x[n]+1/2x[n-1] 

 

Anticausalsystem : A system is said to be anticausal if the present value of the output signal 

depends only on the future values of the input signal. 

Example: y[n]=x[n+1]+1/2x[n-1]  

 

Check whether the following systems are causal or non-causal: 

i. y(n) = x(n) + x(n–2) 

ii. y(n) = x(n) + x(n+2) 

iii. y(n) = x(3n) 

Solution 

i. The given system equation is 

  

y(n) = x(n) + x(n–2) 

  

The output y(n) depends on the present input x(n) and the previous input x(n–1). Therefore, 

the system is causal. 

ii. The given system equation is 

  

y(n) = x(n) + x(n+2) 

  

The output y(n) depends on the present input x(n) and the future input x(n+2). The output y(n) does not 

depend on the previous input. Therefore, the system is non-causal. 

iii. The given system equation is 

y(n) = x(3n) 

For      n = 1, y(1) = x(3) 

  

For      n = 2, y(2) = x(6) 

  

and so on. 

The output y(n) depends on the future input only. Therefore, the system is non-causal. 

 

2. linear-Nonlinear system.  



A system is called linear, if superposition principle applies to that system. This 

means that linear system may be defined as one whose response to the sum of the 

weighted inputs is same as the sum of the weighted responses. 

Let us consider two systems defined as follows. 

 

Here x1(t) is the input or excitation and y1(t) is its output or response and 

 

Here x2 (t) is the input or excitation and y2(t) is its output or response 

Then for a linear system 

 

Where a1 and a2 are constants. 

Linearity property for both continuous time and discrete time systems may be written 

as for continuous time system 

 

For discrete time system 

 

For any non-linear system, the principle of super-position does not hold true and 

equations (3) and (4) are not satisfied. 

Few examples of linear system are filters, communication channels etc.  

 

Determine whether the following systems 

i. y(n) = x(n
3
) and 

ii. y(n) = x
2
(n)               are linear or non-linear. 

Solution 

i. The given equation is 

y(n) = x(n
3
) 

  

Let the system produces y1(n) and y2(n) for two separate inputs x1(n) and x2(n). 

Therefore, y1(n) = x1(n
3
) and y2(n) = x2(n

3
) 

The response y3(n) due to linear combination of inputs is given by 



  

 The response y’3(n) of the system due to linear combination of two outputs will be 

  

  

Therefore, the system is linear. 

 

ii. The given equation is             y(n) = x
2
(n) 

 Let the system produces y1(n) and y2(n) for two separate inputs x1(n) and x2(n). 

Therefore,       

 The response y3(n) due to linear combination of inputs is given by 

 

The response y’3(n)  of the system due to linear combination of two outputs will be 

  

 

  

From equations (3) and (4), we get 

  

Therefore, the system is non-linear. 

 

3. Time variant and invariant system 

A system is called time invariant if its input output characteristics do not charge 

with time. A LTI discrete time system satisfies boths the linearity and the time invariance properties. 

To test if any given systems is time invariant, first apply an arbitrary sequence x (n) and find y (n). 

y (n) = T [x (n)] 

Now delay the input sequence by k samples and find output sequence denote it as. y(n,k) T[x(n-k)] 

Delay the output sequence by k samples denote it as 

 

  

http://techbus.safaribooksonline.com/9789332515147/ch1_1_12_xhtml#eq1
http://techbus.safaribooksonline.com/9789332515147/ch1_1_12_xhtml#eq2


For all possible values of k, the systems is the invariant on the other hand 

 

Even for one value of k, the system is time variant. 

the output. 

Even for one value of k, the system is time variant. 

 



Determine whether the following signals are shift invariant i.e., time invariant or not. 

i. y(n) = x(n) – x(n–2) 

ii. y(n) = nx(n) 

iii. y(n) = x(–n) 

Solution 

i. Here y(n) = x(n) – x(n–2) = T[x(n)] 

If the input is delayed by ‘k’ samples, the output will be 

  

y(n, k) = T[x(n−k)] = x(n−k)−x(n−k−2)     (1) 

 If we delay y(n) by ‘k’ samples, we get 

y(n−k) = x(n−k)−x(n−k−2)     (2) 

  

From (1) and (2) we get 

y(n, k) = y(n−k) 

 Therefore, the system is shift variant. 

 

ii. Here y(n) = nx(n) = T[x(n)] 

If the input is delayed by ‘k’ samples, the output will be 

y(n, k) = T[x(n−k)] = nx(n−k) −k)     (3) 

 because the multiplier n is not a part of input. 

If we delay y(n) by ‘k’ samples, we get 

y(n−k) = (n−k)−x(n−k)     (4) 

 From (3) and (4) we get 

y(n, k) ≠ y(n−k) 

 Therefore, the system is shift invariant. 

 

iii. Here y(n) = x(–n) = T[x(n)] 

If the input is delayed by ‘k’ samples, the output will be 

y(n, k) = T[x(n−k)] = x[(−n)−k] = x(−n−k)     (5) 

 Here n of x(n) has not been replaced by n–k. Here we are delaying x(n) and x(–n) will be delayed by 

the same amount. 

If we delay y(n) by ‘k’ samples, we get 

y(n−k) = x[(−n)−k] = x(−n + k)     (6) 

 From Eq. (5) and Eq. (6) we get 

y(n, k) ≠ y(n−k) 

 Therefore, the system is shift invariant. 

 

http://techbus.safaribooksonline.com/9789332515147/ch1_1_12_xhtml#div0157
http://techbus.safaribooksonline.com/9789332515147/ch1_1_12_xhtml#div0158


4.Stable and unstable system 

 

A system is said to be bounded-input bounded-output stable (BIBO stable) iff every bounded 

input results in a bounded output. 

LTI system is stable if its impulse response is absolutely summablei e 

  

 

Here h(k)= h(n) is the impulse response of LTI system Thus equation (1)  give the 

 condition of stability in terms of impulse response of the system. 

Now the stability factor is denoted by ‘s’. 

          

 

 
 

5.Static and Dynamic system 

A static system is memoryless system 

It has no storage devices 

its output signal depends on present values of the input signal 

For example  

 

A dynamic system possesses memory 

It has the storage devices 

A system is said to possess memory if its output signal depends on past values and future 

values of the input signal. 

For example :  

 



What is a LTI System ? 

• LTI Systems are completely characterized by its unit sample response  

• The LTI System is Linear, Time invariant and stable system which can be static or 

dynamic 

• The output of any LTI System is a convolution of the input signal with the unit-

impulse response, i.e. 

 

 

Problems 

 

Solution( detailed Analysis Refer class Notes) 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT II 

 

ANALYSIS OF CONTINUOUS TIME SIGNALS 

 

Fourier Series 

The basis of the Fourier Series 

 

 Any periodic signal with time period T can be written as a sum of sines and cosines 
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Note that the limits of integration can be taken form –T/2 to T/2 instead of 0 to T.  The calculation of na

or nb  is done using the orthogonality properties of sines and cosines, i.e., 
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The fact that identical functions integrate to one indicates that they are orthonormal.  For instance, if 

we have a signal x(t) with time period T, then we can write it like Eq. (4.2.1).  So when we calculate the 

na , 
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The integral of 0 0cos( )a m t  over one period T will be zero.  Similarly the integral of 0cos( )m t with 

any sine term will be zero.  And the integral of 0cos( )m t with any other cosine except m=n will be 

zero.  There will only be one term left: 
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We would obtain a similar result for any of the b terms. 

 

 

Note that the cosine functions (and the function 1) are even, while the sine functions are odd.    

 

If  f (x)  is even (f (–x) =  + f (x)  for all x), then bn = 0  for all n, leaving a Fourier cosine series (and perhaps 

a constant term) only for  f (x). 

 

If  f (x)  is odd (f (–x) =  – f (x)  for all x), then an = 0  for all n, leaving a Fourier sine series only for  f (x). 

 

 

Example   Calculate the Fourier series for the rectangular series shown in Fig. 

   

  A periodic time-domain signal. 



 

Solution 

 

There are a couple things we can do to simplify the calculation.  First of all, we will add a dc term of 1/2, 

and then just leave the calculation of a0 off.  And using symmetry, we will calculate over the interval 0 

to T/2, and double it. 
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Notice that just the first three non-zero terms of the Fourier series result in a pretty good 

approximation (Fig. 1).  As more and more terms are added, the series comes closer to the rectangular 

function (Fig. 2.) 

 

Figure 1.  Fourier series reconstruction using two terms (left) and three terms (right). 

 

 

 



Fig 2 Reconstruction of the series of   fig 1. using an increasing number of terms. 

 

----------------------------------------------------------------------------------------------------------- 

Example 2   
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Therefore the Fourier series for  f (x) is  
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Complex Series 

 

 In general, even if we only have one frequency, say 0n n  , we still need two numbers, na

and nb , to describe the nth series term.   Since we know that the sine and cosine terms are 

orthonormal, we might wonder if we could change the two real numbers to one complex number.  Start 

with 

  ( ) cos( ) sin( )n n n n nx t a n t b n t   , 

and use Euler’s equations: 
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We will begin by grouping the positive and negative frequency components 

  

 *

( )
2 2 2 2

n n

n n

jn t jn tn n n n
n

jn t jn t

n n

a b a b
x t j e j e

X e X e

 

 





   
      
   

 

 

The original series 
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Notice that the new series goes between plus and minus infinity because the Euler equations used plus 

and minus terms.  We determine the nX  in the same way 
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So when we try to calculate the n coefficient 
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the only term that survives is m = n 
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Note that the complex form has plus and minus values.  But *

n nX X  , so if we know the positive 

one, we know the negative one.  Once again we can plot the coefficients nX out, but since they are 

complex, we will have to plot magnitude and phase.  This is called the line spectra. 

 

 

Example Redo the previous example of using the complex series. 

 

Solution 

 As  before, it won’t hurt to add a dc term, and then just leave it out of the series.  So now we 

calculate  

 



  

/ 2

/ 2

/ 4 / 4

/ 4/ 4

/ 4 / 4

1
( )

1 1 1

1 1

o

o o

o o

T
jn t

n
T

T T
jn t jn t

TT
o

jn T jn T

o

X x t e dt
T

e dt e
T T jn

e e
T jn



 

 









 







 

   



  

Remember that 

  
2

o
T


   

So 

   

  

/ 2 / 21

2

1 1
2 sin sin

2 2 2

jn jn

n

T
X e e

T jn

n n
j

jn n

 



 

 

   

    
     

    

 

  1 1

1
X X


   

  
2

1 2
sin 0

2
X

n





 
  

 
, 

as will all even terms.  Furthermore, 
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Since the positive and negative terms are the same. 
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Example  Find the Fourier series of the function below 



   

   

Solution 

 

Step 1       / 2 / 2/ 4 / 4
2 2

T T

E E
x t p t T p t T      

Step 2  

     / 4 / 4

sin
4

2 2

4

j T j T

T

E T
X e e

T
 








 
 
     

Step 3  

  

   / 2 / 2

0

2

sin
1 2

2
2

sin
2

sin sin
2 2

j n j n

n

n

E
X X n n e e

T n

n

n jE n
jE

n n

 



  




 

 



 
 
      

 
 

          
   

 

Step 4 

Since n nX X    we will convert the exponential to the sine series 

  

     

     

2

0

1 1

0 0 0

2
sin sin

2

2 1 1
sin sin 3 sin 5 ...

3 5

o ojn t jn t

n

n n

E n
x t X e e n t

E
t t t

  




  


 


 

 
    

 

 
     

 
 

------------------------------------------------------------------------------------------------------------ 

 

Example  Determine the Fourier series of the function in Fig. 1. (T = 1). 

   



   

Old Way: 

 

We know the fundamental frequency is 

  0

2
2

T


    

Now to calculate the nX  

  

0

0 0

/ 4

/ 4

4 4

0

0

0

1
1

1 1

1 2
sin .

4

T

jn t

n

T

n T n T
j j

X e dt
T

e e
T jn

n T

T n



 















 
  

  

 
  

 



 

  

New Way: 

 

 Now, to return to the problem in the figure:  We can recognize that 

   0 / 2( )h

Tx t p t , 

and its Fourier Transform is 

   0

sin sin
22 4

2

2 4

T

T
X

T

 

 
  

   
   
     

 
 
 

. 

Therefore, 

  

0

0

0 0

sin
1 1 24

sin
2 4

4

n

n T

T n T
X

n TT T n





 

 
 

     
   
 
 

, 

and since 0

2

T


   

  
 
 

sin / 2
n

n
X

n




 . 



  0 1 1 3 3 5 5

1 1 1
1/ 2, , ,

3 5
X X X X X X X

  
  


        

So my series is 

  

  2

0 1 3

3 3

2 cos(2 ) 2 cos(6 ) ...

1 2 2 2
cos(2 ) cos(6 ) cos(10 )

2 3 5

jn t

n

n

x t X e X X t X t

t X t X t

  

  
  





    

   


 

 

------------------------------------------------------------------------------------------------------- 

   

The bottom line is that we can bring to bear everything we have learned about FT to help us calculate 

the Fourier series. 

 

----------------------------------------------------------------------------------------------------------- 

 

Example 

  

Write the Fourier series of the function in (T = 1) 

 

   

   

 

Solution 

 

From the table, one of the triangles has the FT 

  

   

 

/ 2

2 21
sin sin

2 4 4 8

T

X c c



  


  

   
     

   

F F

 

    2 0
0

1 1
sin

4 8
n

n
X X jn c

T




 
   

 
 



Notice that n nX X  , and the dc term  0 1/4X    so the series is 

     0

0

1

1
2 cos

4

jn t

n n

n n

x t X e X n t
 

 

 

     

 

---------------------------------------------------------------------------------------------------------- 

  

Example  Find the Fourier series of the function given by 

    2
1

t nT

n

x t e T


 



   

Solution 

 

Look at just the term centered at t = 0 

    2

0

t
x t e


  

We know that its Fourier transform is 

   
2 2

2 2

2
X 







. 

So the nX  terms are 

   
     

2 2 2

0

1 4 4 1

4 4 2 1
nX

T n n n


  
  

  
. 

Obviously, these are even, except for the dc term, which is 

   
 

0 2

1
1

1 0
X 


 


 

So we can write   

  

 

 

0 0 0

1

0

1

( ) 1

1 2 cos .

jn t jn t jn t

n n

n n

n

n

x t X e X e e

X n t

  



 


 





   

 

 


 

 

----------------------------------------------------------------------------------------------------------- 

  

Practice Problems 



 

1. The diagram below represents one period of a time series that extends infinitely in each 
direction.  Write the Fourier series of this signal.  T= 1 second.  Your answer should be a real 
series (i.e., not complex functions). 

  

 

2.  The pattern below extends infinitely in each direction.  The interval is 1 second.  Write a 
Fourier Series. {Your final answer should be a sine series.} 

  

 

3.  Write a Fourier series to describe the function below.  You may assume that it extends 
infinitely in both directions.  The amplitude of the delta functions is one. The time scale is 
seconds.  Your final answer should be a sine and/or cosines series. 

  

  

 

4.   The series below is made up of function of the form 

  
250tf t e . 

 Write the Fourier series for T = 0.1 sec. 



Fourier Transform 

 

The Fourier Transform 

Let ( )x t be a nonperiodic signal of finite duration, i.e.,  

1( ) 0x t t T   

 

Let us form a periodic signal by extending ( )x t to 
0
( )Tx t as, 

  
0

0

lim ( ) ( )T
T

x t x t


  ,   [i.e., the period is infinity] 

Then,   

0

0

0
0

0
0

0

0

/ 2

/ 2
0

2
( )

1
( )

jk t

T k

k

T
jk t

k T
T

x t c e
T

c x t e dt
T
















 







    (01) 

Or,  
0

0 0

0

/ 2

/ 2
0 0

1 1
( ) ( )

T
jk t jk t

k
T

c x t e dt x t e dt
T T

 


 

 
    

Let us now define ( )X  as, ( ) ( ) j tX x t e dt





   

Thus,   0

0

1
( )kc X k

T
 . 

Substituting this in equation (01) we get, 

 

0 0

0

0 0
0

0 0

( ) ( )1
( )

2

jk t jk t

T

k k

X k X k
x t e e

T T

  




 

 

    



As 0T  , 0 0  . Let us assume 0   . 

Thus,    0

0
0 0

1
lim ( ) lim ( ) ( )

2

jk t

T
T

k

x t X k e x t



 





  


     

Or, 
1

( ) ( )
2

j tx t X e d 





         (02) 

( )x t in equation (02) is called the Fourier Integral. Thus a finite duration signal is represented by Fourier 

integral instead of Fourier series. 

The function ( )X  is called the Fourier transform of ( )x t . 

Symbolically these two pairs are represented as,  

  ( ) { ( )} ( ) j tX F x t x t e dt





    

And  
1 1

( ) { ( )} ( )
2

j tx t F X X e d  






    

Alternatively, . .( ) ( )F Tx t X  . 

Example 

1.  Find the Fourier transform of ( ) 0.ate u t a   

( )

0

1
( ) ( )at j t a j tX e u t e dt e dt

a j

 


 
   


  

  . 

2.  Find the Fourier transform of ( )t . 

     { ( )} ( ) 1j tF t t e dt 





   

3.  Find the inverse Fourier transform of ( )  . 

      
1 1 1
{ ( )} ( )

2 2

j tF e d    
 


 


  . 

     Thus, 
. .1

( )
2

F T  

 or, . .1 2 ( )F T     . 

 

4.  Find the inverse Fourier transform of 0( )   . 

      
1

0 0

1
{ ( )} ( )

2

j tF e d      






    0

1

2

j t
e




  

     Thus,  0 . .

02 ( )
j t F Te
        



     We know,  0 0

0

1
cos

2

j t j t
t e e

    ;      Thus,     . .

0 0 0cos ( ) ( )F Tt            

 

 

5.  Find the Fourier transform of the rectangular pulse ( )x t  shown in Figure.  

sin sin
( ) 2 2

T
j t

T

T T
X e dt T

T

  


 




         

2 sin
T

T c




 
  

 
 

 

 

The magnitude spectrum is, 
sin

( ) 2
T

X





 , and the phase spectrum is, 

 

sin( )
0, 0

arg ( )
sin( )

, 0

T

X
T














 
 


. 

 

6.  Find the inverse Fourier transform of the rectangular spectrum shown below. 

 

1 1
( ) sin( ) sinc

2

W
j t

W

W Wt
x t e d Wt

t

 
   

 
    

 
 . The plot is shown in Figure above. 

 

Some Properties of Fourier Transform 

1.  Symmetry property:   If ( ) ( ) then ( ) 2 ( )f t F F t f     . (duality property) 



 

Example: Apply symmetry property to show that 0 0 0( ) ( ) 2cost t t t t      . 

2.  Scaling Property: If 
1

( ) ( ) then ( ) ( / )f t F f at F a
a

   . 

 

3.  Time-shifting Property:  If 0

0( ) ( ) then ( ) ( )
j t

f t F f t t e F
 

   . 

4.  Frequency-shifting Property:  If 0

0( ) ( ) then ( ) ( )
j t

f t F f t e F
     . 

 

Example:  Find the Fourier transform of the gate pulse shown in Figure below. 

 

We get the Fourier transform by applying time-delay property to the F.T. of rectangular pulse 

(symmetrical). 



Thus,   / 2( ) sinc
2

jF e 
 



 
  

 
. 

Example:  Sketch the Fourier transform of ( )cos10f t t  using frequency shifting property. [property 4] 

10 101 1
( )cos10 ( )

2 2

j t j tf t t f t e e 
  

 
.  Therefore,  

1
( )cos10 ( 10) ( 10)

2
f t t F F     . The 

sketch is shown in Figure below. Here, 
2

( ) 4sinf t c




 
  

 
. 

 

 

 

5.  Time and Frequency convolution:  

1 2 1 2 1 2 1 2

1
( ) ( ) ( ) ( ) and ( ) ( ) ( ) ( )

2
f t f t F F f t f t F F   


    . 

 

 

 



6.  Time differentiation and time integration:  

( ) ( )
( ); ( ) (0) ( )

tdf t F
j F f d F

dt j


      


   . 

      (a)  
1 ( ) 1

( ) ( ) ( ) ( )
2 2

j t j tdf t
f t F e d j F e d j f t

dt

      
 

 

 
        

Therefore, 
( )df t

F
dt

 
 
 

=  ( )j F f t ,   or,   
( )

( )
df t

j F
dt

  . 

      (b) ( ) ( ) ( ) ( ) ( )
t

f t u t f u t d f d    


 
      

 Using convolution property,   1
( ) ( ) ( )

t

F f d F
j

    


 
  

 
  

 Therefore, 
( )

( ) (0) ( )
t F

f d F
j


    


  . 

Example: Using the time-

differentiation property, find the F.T. 

of the triangle illustrated in figure 

below. 

 
2

2

( ) 2
( / 2) ( / 2) 2 ( )

d f t
t t t

dt
    


      

/ 2( ) 1 ( / 2) jt t e        

Performing F.T. of the first equation, 

2 / 2 / 22
( ) ( ) 2j jj F e e  



      

2 24 8
( ) cos 1 sin

2 4
F

 
 

 

    
         

    

2
2

2

22 2

sin
8 8 4

( ) sin
4 4

4

F

 

 


  



 
 

          
    

 
 

 

2

2

sin
4

( ) sinc
2 2 4

4

F



  


 

  
            

    
    

 

 

 

Example: 

Calculate the Fourier transform X(jw) for the signal x(t) . 

 



x(t) = t  for-1<t<1 

Solution: 

 y(t)=dx(t)/dt 

We know, 

  Analysis Equation is given by: 

                         ∞ 

 X(jw) =  ∫-∞   x(t) e-jwt  dt  

                         +1 

                =∫-1 t e
-jwt  dt 

 To calculate derivative we need to calculate discontinuity, if discontinuity occurs we have impulse 

at that point, 

 

Hence y(t) is the sum of a rectangular pulse and two impulses at -1 and +1 

 

      +1 

Y(jw) = -e-jw - ejw  + ∫-1  e
-jwt  dt 

 

          = -2coswt + {2 (e-jw - ejw)/-2jw} 

       

  -1            +1   

1 

-1 

 



         =-2cosw + 2sinw/w 

 

Note that Y (0) = -2cos (0) + 2*1   {sin x/x=1} 

                               =-2+2 

                               =0 

Using Integration Property, we obtain 

                    X (jw)=Y(jw)/jw + π Y(0) δ (w) 

With Y (0) =0 

We have 

  X (jw) = 2sinw/jw2-2cosw/jw 

This expression for X (jw) is purely imaginary and odd, which is consistent with the fact that x (t) is 

real and odd. 

Rayleigh’s Energy Theorem 

 

Energy in time domain is equal to energy in frequency domain. 

Energy 







 dffGdttgE 22 |)(||)(|            

Consider the time domain energy 









 dttgtgdttgE )()(|)(| *2

 

        



















 





 













dffG

dGG

dfGG

fGfG

dtetgtg

f

f

f

ftj

2

*

0

*

0

*

0

2*

|)(|

)()(

))(()(

|)()(

)()(







                     

Rayleigh‘s energy theorem or Parseval’s theorem for Fourier transform 

Define energy spectral density of )(tg  as 
2|)(|)( fGfEg                  

Ex : consider a Sinc pulse 



 )
2

(
2

)2()(
W

f

W

A
WtASinctg               

method (i): 

 


















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method(ii): Applying Rayleigh’s energy theorem 
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 Parseval’s Theorem:  
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If )()( 21 tgtg  , then the theorem reduces to Rayleigh’s energy theorem. 

Laplace Transformation 

 

Why Laplace Transforms? 

1) Converts differential equations to algebraic equations- facilitates combination of multiple 

components in a system to get the total dynamic behavior (through addition & multiplication) 

2) Can gain insight from the solution in the transform domain ("s")- inversion of transform not 

necessarily required 

3) Allows development of an analytical model which permits use of a discontinuous (piecewise 

continuous) forcing function and the use of an integral term in the forcing function (important for 

control) 

 

Definition of a Laplace Transform 

F(s) L f t   f t 
0



  e
st
dt  

    tfsFL 1  

 

 



Examples of Evaluating Laplace Transforms using the definition 

 

(1) x(t)=1 and step function x(t)=u(t) 
 

            

0(Re(s))               
1

)]([)1(           

1
)0sin0(cos

1
            

)0(,)0(,01|(|

           

)(
1

)()]()([

0
0

00

000
















































s
tuLL

s
j

s

ifeifee

e
s

e
e

s

e
e

s

e

s

e

stde
s

dtedtetxtutxL

j

jj
t

t

tj
t

t

t

st

t

t

ststst

 










 

(2) )()( tuetx t  







 
0

)(

0

)]([ dtedteetueL tssttt 
 

 

Define a new complex variable  ss
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 No constraint on s. 

(4)Find )(cos 0tL   

Key to solution : express )(cos 0t  as linear combination of )(t , )(tu ,  
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e 0   to express )cos( 0t  ? 

    



 

)sin()cos(

)sin()cos(

)sin()cos(

00

00

00

0

0

tjte

tjt

tjte

tj

tj


















 

 

 

2

0

2

00

00

00

0

0

0

                       

))((

)()(

2

1
                       

11

2

1
                        

)]()([
2

1
)][cos(

2
)cos(          

)cos(2

00

00

00


































































s

s

jsjs

jsjs

jsjs

eLeLtL

ee
t

tee

tjtj

tjtj

tjtj
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Convergence of the Laplace Transform 
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psotive enough such that tetx )(  goes to zero when t goes to positive infinite 

 

(2) Region of absolute convergence and pole 



 

 

 

(3) How to obtain Fourier transform form Laplace transform: 
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Important: why introduce Laplace transform; definition of Laplace transform as a 

modification of Fourier transform; find the Laplace transforms of the three basic 

functions based on the (mathematical) definition of Laplace transform.  

(4) Properties of Laplace Transform 

 

I. Properties of Laplace Transform 
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Ex. 1   

Find the Laplace transform of cos2t. 
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Ex. 2   



What is the Laplace transform of the function: 
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Ex. 3  

Find the Laplace transform of cos2t. 
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4. Derivative 

(a) Derivative of original function 
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(1) If f (t) is continuous, equation (2.1) reduces to  
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[Deduction] If f (t), f (t) , f (t), …, f (n1)(t) are continuous, and f (n)(t) is piecewise continuous, and all 

of them are exponential order functions, then 
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(b) Derivative of transformed function 
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Ex. 4   

Find the Laplace transform of tet. 
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5. Integration 

 (a) Integral of original function 
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 (b) Integration of Laplace transform 
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Ex. 6  
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Ex. 7   
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6. Convolution theorem
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Ex. 8   
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7. Periodic Function: f (t + T)  f (t) 
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8. Initial Value Theorem: 
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Inverse Laplace Transform 

 

I. Inversion from Basic Properties 

 

1. Linearity 
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2. Shifting 
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3. Scaling 
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5. Integration 
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6. Convolution 
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II. Partial Fraction 

 

Ex. 7.  
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UNIT III 

 

 

ANALYSIS OF DISCRETE TIME SIGNALS 

 

Discrete Time Fourier Transform 

 

Discrete Time Fourier Transform. 

 The Discrete Time Fourier Transform   of a discrete line signal x(n) is expressed as 

 

DTFT is periodic units period  . So any interval of length   is sufficient for the 



complete specification of the spectrum. Generally, we draw the spectrum in the fundamental 

internal  

 

linearity property of DTFT 

 If 

 

According to definition of DTFT 

 

Comparing each summation term with definition of DTFT then we can write 

 

Problems 

1. x(n) = δ(n) 

 
 

2. x(n) = ejΩn 
 

 



 

 

3. x(n) = (3/4)n u(n) 

 

 

 

 



 

 

 

 
 

Properties of DTFT 

 

 

 

 

 



 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Convolution   Property 

 
 

Multiplication Property 

 

 

 

 

 



 

 

 

 



Z- Transformation 

 

The Z-transform of a discrete time signal x(n) is defined as the power series 

 

where z is a complex variable. The Z-transform of a signal x(n) is denoted by 

 

whereas the relationship between x(n) and X(z) is indicated by 

 

The z-transform is a infinite power series, it exists only for those values of z for 

which this series converges. The region of convergence (ROC) of X(z) is the set of all s values ofz for 

which X(z) attains a finite value. Thus any time we cite a z-transform. We should also indicate its ROC. 

 

What is Region of convergence? 

 Ans. The z-transform is an infinite power series, it exists only for those values of z 

for which the series converges. The region of convergence (ROC) of X (z) is set of all values of z for which 

X (z) attains a finite value. The ROC of a finite duration signal is the entire z-plane, except possibly the 

point  . These points are excluded because z-n (when n > 0) becomes unbounded for 

z =∞  andzn (when n > 0) becomes unbounded for z = 0. 

 

What is the relationship between Z transform and the Discrete Fourier transform? 

 Ans. Let us consider a sequence x(n) having z-transforrn with ROC that includes the 

 

unit circle. If X(z) is sampled at the N equally spaced points on the unit circle. If X(z) is 

sampled at N equally spaced pomts on the unit circle. 

 



We obtain 

 

Expression is (2) identical to the Fourier transform X(w) evaluated at the N. equally  spaced. Frequencies 

 

If the sequence x(n) has a finite duration of length N or less, the sequence can be 

recovered from its N-point DFT. Hence its Z-transform is uniquely determined by its N-point DFI’. 

Consequently, X(z) can be expressed as a function of the DFT {X(k)} as 

follows 

 

When evaluated on the unit circle (3) yields the Fourier transform of the finite duration sequence in 

terms of its DFT in the form: 

 

This expression for Fourier transform is a polynomial interpolation formula for X(w) 

expressed in terms of the, values {x(k)) of the polynomial at a set of equally spaced 

discrete frequencies 

 



 

What are the application’s of z-transform? 

 Ans. 1. z-transform is an important tool in the analysis of signals and linear time invarient systems. 

2. It is used for the analysis of discrete time systems in frequency domain which in generally more 

efficient than time domain analysis. 

3. It is used for filtering process. 

4. Causality of discrete time LTL system. 

5. Stability of discrete time LTI system. 

6. Determination of poles and zeros of rational z-transform. 

 

 

Properties of the z transform 

 

 Linearity: 

Z{afn+ bgn} = aF(z) + bG(z).  and ROC is Rf Rg 

which follows from definition of z-transform. 

 

 Time Shifting 

If we have    zFnf   then    zFznnf
n0

0


  

 

The ROC of Y(z) is the same as F(z) except that there are possible pole additions 

or deletions at z = 0 or z = . 

 

Proof: 

Let    0nnfny  then 

    n

n

znnfzY 




  0
 

Assume k = n- n0 then n=k+n0, substituting in the above equation we have: 
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 Multiplication by an Exponential Sequence 

Let    nfzny n
0  then   
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Proof: 
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The consequence is pole and zero locations are scaled by z0. If the ROC of X(z) is 

rR<|z|<rL, then the ROC of Y(z) isrR< |z/z0| <rL, i.e., |z0|rR < |z| < |z0|rL 

 

 

 Differentiation of X(z) 

If we have    zFnf   then  

 
 
z

zdF
zznnf  and ROC = Rf 

 

Proof: 
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 Conjugation of a Complex Sequence 

If we have    zFnf   

then      zFznf  and ROC = Rf 

 



 Time Reversal 

If we have    zFnf   then 

 

     zFznf 1  

 

A comprehensive summery for the z-transform properties is shown in Table  

 

Table Summery of z-transform properties 

 

 

Problems on Z Transforms 

 

1. Example 1 

.          

The X (z) is finite for all values of because 

 

The ROC is entire z-.plane. 

  



 

2. Example 2                  unit step sequence u(n): 
 










00

01
)(

n

n
nTx  

Solution : 

 

1

21

1

1

1
         

1         

)()0()(














z

zz

zTxxzX





 

 

 

3. Example 3 :  
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           Solution: 
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4. Example  Find the z transform of 3n + 2 × 3n. 
 

SolutionFrom the linearity property 
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Z{3n + 2 × 3n} = 3Z{n} + 2Z{3n} 

 
 21


z

z
nZ and  
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
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z
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(rnwith r = 3). Therefore 

Z{3n + 2 × 3n}=
   3

2

1

3
2 
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 z

z
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5. Example :Find the z-transform of each of the following sequences: 
(a) x(n)= 2nu(n)+3(½)nu(n) 

(b) x(n)=cos(n 0)u(n). 
Solution: 

(a) Because x(n) is a sum of two sequences of the form  nu(n), using the linearity property of the z-
transform, and referring to Table 1, the z-transform pair 
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(b) For this sequence we write 

x(n) = cos(n 0) u(n) = ½(ejn 0 + e -jn 0) u(n) 

 

Therefore, the z-transform is 
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with a region of convergence |z| >1. Combining the two terms together, we 

have 
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6. Example   Find z transform of                                                   

 Ans. We have standard z-transform pair. 

 



 

7. Example  Determine to z-transform of the following signal  

 

 Ans.                                 

 

 

 

 

 

 

 



Z Transform of some important functions 
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The Inverse z-Transform 

 

The z-transform is a useful tool in linear systems analysis. However, just as important as techniques for 

finding the z-transform of a sequence are methods that may be used to invert the z-transform and 

recover the sequencex(n)from X(z). Three possible approaches are described below. 

What are the various methods to find out inverse z transform? 

 Ans. (a) Cauchy Rihemen’s theorem 

(b) Long division method. 

(c) Partial function. 

 

 

I. Partial Fraction Expansion 
 

 

Example 1 :Suppose that a sequence x(n)has a z-transform 

 

 

Solution: 

With a region of convergence |z|>½ . Because p = q = 2, and the two poles are simple, the partial 

fraction expansion has the form 

 

The constant C is found by long division: 

 

Therefore, C = 2 and we may write X(z) as follows: 



 

Next, for the coefficients A1and A2we have 

 

and 

 

Thus, the complete partial fraction expansion becomes 

 

 

Finally, because the region of convergence is the exterior of the circle |z| > 1, x(n) is the right-sided 

sequence 

 

 

 

II. Power Series 
 

 

The z-transform is a power series expansion, 

 

where the sequence values x(n)are the coefficients of z -n in the expansion. Therefore, if we can find the 

power series expansion for X(z), the sequence values x(n)may be found by simply picking off the 

coefficients of z –n. 

 

Example 2 :Consider the z-transform 

 

 



Solution: 

The power series expansion of this function is 

 

Therefore, the sequence x(n) having this z-transform is 

 

 



III. Contour Integration 
Another approach that may be used to find the inverse z-transform of X(z) is to use contour 

integration. This procedure relies on Cauchy's integral theorem, which states that if C is a closed 

contour that encircles the origin in a counterclockwise direction, 

 

With 

 

Cauchy's integral theorem may be used to show that the coefficients x(n) may be found from X(z) as 

follows: 

 

whereCis a closed contour within the region of convergence of X(z) that encircles the origin in a 

counterclockwise direction. Contour integrals of this form may often by evaluated with the help of 

Cauchy's residue theorem, 

 

If X(z) is a rational function of z with a first-order pole at z =  k, 

 

Contour integration is particularly useful if only a few values of x(n) are needed. 

 

Example 3: 

Find the inverse of each of the following z-transforms: 

 

Solution: 

a) Because X(z) is a finite-order polynomial, x(n) is a finite-length sequence. Therefore, x(n) is the 
coefficient that multiplies z-1 in X(z). Thus, x(0) = 4 and x(2) = x(-2) = 3. 



 

b) This z-transform is a sum of two first-order rational functions of z. Because the region of 
convergence of X(z) is the exterior of a circle, x(n) is a right-sided sequence. Using the z-
transform pair for a right-sided exponential, we may invert X(z) easily as follows: 

 

 

 

c) Here we have a rational function of z with a denominator that is a quadratic in z. Before we can 
find the inverse z-transform, we need to factor the denominator and perform a partial fraction 
expansion: 

 

Because x(n) is right-sided, the inverse z-transform is 

 

 

 

 

 

d) One way to invert this z-transform is to perform a partial fraction expansion. With 

 

 

the constants A, B1, and B2are as follows: 

 

 

 

 



Inverse transforming each term, we have 

 

 

 

 

 

 

 

 

 

Example 4           Find the inverse z-transform of the second-order system 

 

 

Here we have a second-order pole at z = ½. The partial fraction expansion for X(z) is 

 

The constant A1 is 

 

and the constant A2 is 

 

Therefore, 

 

and 

 

 



Example 5     Find the inverse z-transform of X(z) = sin z. 

 

Solution 

To find the inverse z-transform of X(z) = sin z, we expand X(z) in a Taylor series about z = 0 as follows: 

 

Because 

 

we may associate the coefficients in the Taylor series expansion with the sequence values x(n). Thus, we 

have 

 

 

 

 

 

 

Example 6:Evaluate the following integral: 

 

where the contour of integration C is the unit circle. 

 

Solution: 

Recall that for a sequence x(n) that has a z-transform X(z), the sequence may be recovered using 

contour integration as follows: 

 



Therefore, the integral that is to be evaluated corresponds to the value of the sequence x(n) at n = 4 

that has a z-transform 

 

Thus, we may find x(n) using a partial fraction expansion of X(z) and then evaluate the sequence at n = 

4. With this approach, however, we are finding the values of x(n) for all n. Alternatively, we could 

perform long division and divide the numerator of X(z) by the denominator. The coefficient multiplying 

z-4 would then be the value of x(n) at n = 4, and the value of the integral. However, because we are only 

interested in the value of the sequence at n = 4, the easiest approach is to evaluate the integral directly 

using the Cauchy integral theorem. The value of the integral is equal to the sum of the residues of the 

poles of X(z)z3 inside the unit circle. Because 

 

has poles at z =1/2 and z =2/3, 

 

and 

 

Therefore, we have 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT IV 

 

CONTINUOUS AND DISCRETE TIME SYSTEMS 

 

Differential equations Difference equations 

Analysis of LTI circuits gives a relationship 

between input x(t) and output y(t) in the form 

of a differential equation: 
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whose system (or transfer) function is of the 

form: 
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This is a ratio of polynomials in  s .  The order 

of  the system function is max(N,M).  

Replacing s by j gives the frequency-

response H a (j), where  denotes frequency 

in radians/second.  For values of s with non-

negative real parts, H a (s) is the Laplace 

Transform of the analogue filter’s impulse 

response h a(t).  H(s) may be expressed in 

terms of its poles and zeros as: 

 
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The solution is composed of a homogeneous 

response (natural response) and a particular 

solution (forced response) of the system. 

 

 

 

The processing of discrete-time signals is 

performed by discrete-time systems. Similar 

to the continuous-time case, we may represent 

a discrete-time system either by a set of 

difference equations or by a block diagram of 

its implementation. For example, consider the 

following difference equation. 

 

y(n) = y(n - 1) + x(n) + x(n - 1) + x(n - 2) 

     

 

This equation represents a discrete-time 

system. It operates on the input signal x(n) to 

produce the output signal y(n). 

We use the notation y(n) = [x(n)] to denote 

a discrete-time system with input signal 

x(n) and output signal y(n).  Notice that the 

input and output to the system are the 

complete signals for all time n. This is 

important since the output at a particular 

time can be a function of past, present and 

future values of x(n).  It is usually quite 

straightforward to write a computer program 

to implement a discrete-time system from its 

difference equation. In fact, programmable 

computers are one of the easiest and most 

cost effective ways of implementing 

discrete-time systems. 

 

The general form is  

 
A general solution to Equation can be 

expressed as the sum of a 

 homogeneous solution (natural response) to  

and a particular solution (forced response),  

 

 



 

Transfer function and Impulse response 
 

PROPERTIES OF TRANSFER FUNCTION (TF) 

The properties of transfer function are given below: 

 The ratio of Laplace transform of output to Laplace transform of input assuming all initial 

conditions to be zero. 

 The transfer function of a system is the Laplace transform of its impulse response under 

assumption of zero initial conditions. 

 Replacing ‘s’ variable with linear operation   D= d/dt  in transfer function of a system, the 

differential equation of the system can be obtained. 

 The transfer function of a system does not depend on the inputs to the system. 

 The system poles and zeros can be determined from its transfer function. 

 Stability can be found from characteristic equation. 

 Transfer function cannot be defined for non-linear systems. It can be defined for 

linear systems only. 

 

 
Example :Find the impulse response of the following second order system: 

 
2

2

( ) ( )
4 3 ( ) ( )

d y t dy t
y t t

dt dt
   .  

Solution 

The characteristic equation is 

   2 4 3 3 1 0s s s s       

so the homogenous solution will be of the form 

  3( ) ( )t ty t Ae Be u t   .  

The first derivative is 

  3( )
3 ( ) ( ) ( )t ty t

Ae Be u t A B t
dt

        

and the second derivative is 

     
2

3 (1)

2

( )
9 ( ) 3 ( ) ( ) ( )t ty t

Ae Be u t A B t A B t
dt

           

Putting these back into Eq. (2.1.6) gives 
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 

3 (1)

3

3

9 ( ) 3 ( ) ( ) ( )

4 3 ( ) ( ) ( )

3 ( ) ( ).

t t

t t

t t

Ae Be u t A B t A B t

Ae Be u t A B t

Ae Be u t t

 





 

 

 

     

     
 

   
 

 



Putting Eq. (2.1.7) in Eq. (2.1.6), we will wind up with three types of functions.  If Eq. (2.1.6) is to hold 
true, then the coefficients for the different types of functions must satisfy Eq. (2.1.6),  so we get three 
equations 
 

The  (1) ( )t terms give  (1)( ) ( ) 0A B t   

or  A B  . 

The ( )t  terms give ( 3 ) ( ) 4( ) ( ) ( )A B t A B t t        

or  
1 1

( 3 ) 1 ,
2 2

A A A B       . 

The ( )u t  terms     3 3 39 4( 3 ) 3 0t t t t t tAe Be Ae Be Ae Be            , 

But this is redundant, because our choice of the homogeneous equation insured it.   
 So we can conclude 

   31
( ) ( )

2

t th t e e u t   . 

What would be the response for the input ( ) ( )x t u t ? 

      

   

0

3 3

0

3

( ) ( )* ( ) ( )

1 1
1 (1 ) ( )

2 2

1
.

2

t

t
t t t t

t t

y t h t u t h d

e e d e e u t

e e u t

 

   

 

 

     

 



  

This problem was not so difficult because the characteristic equation separated into two simple real 
roots.  In general, it will be much easier to use Laplace transforms. 
 

System function and impulse response 

 

Example : What is the frequency response of a discrete LTI system? Derive the frequency 

response of a system whose impulse response is given by h(n) = a” u(n —1) for (a) <1. 

 Ans. The frequency response of a linear time invariant discrete time system can be obtained by 

applying a spectrum of the input sinusoids to the system. The frequency response gives the gain 

and phase response of the system to the input sinusoids at all frequencies. Let us consider, the 

inpulse response of an LTI discrete time system is h(n) and the input x(n) to the system is 

complex exponential e1u. The output of the system y(n) can be 

Given                 

 
 

 



Example : Determine the system function 

 

 Ans. Taking z-transform of both sides. 

  

 

  

Example  :  Determine the pole-zero plot for the system described by difference equation 

 

 Ans. Taking z-transform of both sides. 

  

The ROC & pole zero plot shown in Fig. below 

 

From the following figure, we can observe the following1.ROC of the system function include unit 

circle.2. ROC of the system function cannot have any poles. 



Example : Consider the causal second-order system described by 

 

and with initial conditions  Suppose that this system is subjected to the 

input signal:   what is the output? 

 

Solution :  

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Taking Inverse we have  

 

 
 



The Convolution Integral 

Assume that the input, x(), to an LTI system started at time t0 (the input was zero for all time prior to t0) 

and has continued to the present time, t, as shown below. 

 

We can approximate this input as a series of rectangular pulses having the same area under the curve as 

shown in Figure 2. 

 

These graphs are given in terms of the variable , the variable t is reserved for the time of observation of 

the output signal.  The interval from  = t0 to  = t is divided into subintervals of width  each centered 

about an value of n = t0 + n*.   

Now perform the following experiment.  Apply a rectangular pulse of unit strength and width  to the 

input of our LTI system.  Lets call the resulting output f(t, n). 

 f(t, n) is the output at time t due to a rectangular pulse of unit amplitude and width  that 

occurred at time  = n . 
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Figure 1: x(), the Input 
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Figure 2: x(n), the Approximation to the Input 
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The output of the system at time t due to the n
th
 pulse of the approximate input is then the value of the 

input at time n ,which is x(n), times f(t, n).  Using superposition the total output from the system at time 

t is then approximated by the sum: 

     n

N

n

n tfxty  ,*
0




  

Multiplying and dividing each term in the sum by  yields: 

      


 













n

N

n

n tfxty ,
1

*
0

 

Note that the term  









ntf 


,

1
is the output of the time t due to a pulse of amplitude 



1
 that occurred 

at time  = n .  The area of this input pulse ise equal to unity.  Our approximation gets better as  

approaches zero so take the limit of y(t) as            0 changing the sum to an integral.   

   
 






















t

t

n d
tf

xty

0 0lim

,
1

*







  

The term in the brackets becomes the output at time, t, of the system to (t-), a Dirac Delta function or 

impulse that occurred at time  .  It is usually denoted as h(t, ), or since our system is time invariant 

simply h(t-).  This function, h(t), is called the UnitImpulse Response of the system (which happens to 

be the Inverse Fourier Transform of the Transfer Function, H(j) ).  The output then is given by: 

     




t

t

dthxty

0

*


  

or, where it is up to you to determine the limits on the integral from the nature of the two functions: 

     







 dthxty *  

This is known as the Convolution Integral and is denoted as: 

     thtxty   

Note: The meaning of Convolution is that an LTI system can be modeled as having a memory that 

stores all past input.  Acording to this model, the LTI system determines its output by performing 

a weighted sum of all past inputs using the Impulse Response as the weighting factor. 

Continuous systems seldom actually function this way, but this model accurately determines the 

output.  Many Discrete-Time LTI systems AREbuilt according to the Convolution model.  

They are called Finite Impulse Response systems since their memory has a limited capacity. 

Properties of  Convolution  

Commutative Law 

       txtytytx   

Proof: 



       







 dtyxtytx *  

Let u = t -  , therefore  = t – u and 

        





u

duuyutxtytx *  

Reversing the limits is the same as multiplying by –1 

               txtyduutxuyduuyutxtytx
uu

 








**  

Distributive Law 

              tztxtytxtztytx   

Associative Law 

             tztytxtztytx   

 

 

Example Convolutions 

Convolution Example 1: Simple Rectangular Functions 

 

First flip h(t) by letting t = - 

0

0.5

1

1.5

-2 -1 0 1 2 3 4

Time 
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Now shift h(-) to the time for Case 1 by replacing (–) with t -  

Case 2 moves the front edge of h(t-) into x() so the output is the shaded area t 

For all of Case 3 h(t-) is fully within x() so the output is 1 

 Case 4 h(t-) is exiting x() so the output is [ 2 – (t-1) ]*1 or (3-t) 
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For all of the last Case t > 3 and there is no overlap so the output is 0 

 

So now we can plot the output,          




  dthxthtxty * and we are done. 

 

 

Convolution Example 2: A Triangular Function 

The input 

signal x(t) is a 

unit 

rectangular 

pulse from t = 

-1 to t = 1 
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The system Impulse Response is triangular 

Find the output,      thtxty   
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First flip the Impulse Response by substituting t = - 

Now slide it back to start at a value of  t  -1 and plot the signal on the same chart 

There is no overlap so y = 0 for t < -1 
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Now slide the tip of h(t-) just past t = -1 to set up Case 2 

The shaded area is the integral of the product of the two functions. And: 

   
2

1

2

1

2
*1* 2
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2










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 tttdtty

tt




 for 0 < t < 1 

Case 3 is set up by sliding t to just past t = 1.  Now the complete signal lies within the memory of the 

system. 

 

Now  
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    ttdtty 2
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The fourth Case occurs when the back edge of h(t-) crosses  = -1.  This is when t = 2. 
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The last Case is when t > 4.  Now there is no overlap and the output remains at zero. 

Now we can plot y(t).  Note that it is a continuous function.  This is the normal case (the exception is 

when there are Impulse Functions in either the signal or h(t) ).  Use this fact to check your work by 

comparing the values at the boundary conditions between cases. 
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Convolution Example 3: The RC Low Pass Filter 

The input signal x(t) is a unit rectangular pulse from t = 0 to t = t0 

The circuit is: 

Find the ImpulseResponse of the circuit using the TransferFunction: 

 







j
RC

RC

R
Cj

Cj
jH








1

1

1

1

Since it is a simple AC voltage divider 

From Example 1 of the section on Fourier Transforms the inverse transform of this Transfer function is: 

   tU
RC

th RC

t

*
1 

  which looks like: 
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h(t)=[1/RC]*exp(-t/RC)*U(t) 

1/RC 

t=1/RC 

 



The input, vin, is: 

Now using Convolution, find the output: 
Flipping h(t), sliding it to the left, t < 0, we have Case 1: 

And of course y(t) = 0 for t < 0 since there is no overlap. 
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Case 2 is while the leading edge of h(t-) is within the square pulse or when 0 < t < 1 

Now the integral becomes: 
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Case 3 is the final case and it is good for t > 1 

Now the integral becomes: 
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Moreover, we can now plot the output: 

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4 5

Case 3: 0 < t < 1 

t 

h(t-) 

x() 

0

1

2

-1 0 1 2 3 4 5

The Output 

t 

y(t) 



Convolution Sum 
 

 

Example : Convolve {1,3,1) and (1,2,2,). 

 Ans. 

 

 

 

 

Example . The impulse response of a linear time-invariant system is 

Determine the response of the system to the input signal 

 



 

 

 

 

 



Block diagram representation and reduction  

 

Block diagram representation  

 

 

 



State variable techniques 
 

The main tools of analysis of single input and single output (SISO) systems are transfer function and 

frequency response methods where the systems must be linear time invariant. These tools cannot be 

applied for time varying and non-linear systems. In conventional control theory the main theme is to 

formulate the transfer function putting all initial conditions to zero. The state variable analysis takes care 

of initial conditions automatically and it is also possible to analyze time varying or time-invariant, linear 

or non-linear, single or multiple input-output systems. The main target of this chapter is to introduce state 

variable analysis for continuous systems. 

 

State: The state of a dynamic system is the smallest set of variables and the knowledge of these 

variables at t = t0 together with inputs for t ≥ t0 completely determines the behaviour of the system 

at t ≥ t0. A compact and concise representation of the past history of the system can be termed as the 

state of the system. 

State Variables: The smallest set of variables that determine the state of the system are known as 

state variables. 

The knowledge of capacitor voltage at t = 0 i.e., the initial voltage of the capacitor is a history 

dependent term and it forms a state variable. Similarly, initial current in an inductor is treated as 

state variable. 

State Vector: The ‘n’ state variables that completely describe the behaviour of a given system are 

said to be ‘n’ components of a vector. 

State Space: The n dimensional space whose co-ordinate axes consist of the x1 axis, x2 axis,….,xn 

axis are known as a state space. 

 

Advantages 

It is possible to analyze time-varying or time-invariant, linear or non-linear, single or multiple input-

output systems. 

It is possible to confirm the state of the system parameters also and not merely input-output 

relations. 

It is possible to optimize the systems and useful for optimal design. 

It is possible to include initial conditions. 

Disadvantages 

Complex techniques 

Many computations are required. 

 

STATE MODEL 

 

Figure shows an nth order system having multiple input multiple output. 

 

 
 

For time invariant system, the functional equations can be written in the form as below: 

 
where A, B, C and D are constant matrices. 

 



The order of the above matrices is given below: 

 

An × n known as the evolution matrix,  

B           n × m known as the control matrix,  

C           p × n known as the observation matrix and  

Dp × m known as the direct transmission matrix. 

 

This is known as the State Model of the given system. 

 

TRANSFER FUNCTION DERIVATION FROM THE STATE MODEL 

 

From the state model equations, we can derive the transfer function of the system. From definition of 

transfer function, we can write 

 

Formula  
 

 

The characteristic equation is given by               |sI – A| = 0 

 

 

Example 1.             Find the transfer function when   

 

Solution:  

 
 

 
 

Example 2.    Find Trnasfer Function of the following system 

 
 

Solution  : 



First, we compute the eigenvalues of the A matrix by solving det(λI – A) = 0 to obtain λ1 = –1, λ2 = 

–2 Thus, the system is BIBO stable since the poles of the transfer function are negative, being equal 

to the eigenvalues. 

 

 
 

 

 

 



 

STATE EQUATIONS FOR DISCRETE TIME SYSTEMS 

 

State variable methods for continuous time systems have already been introduced. In this chapter we 

are interested to discuss the following: 

i. to represent a given z–transfer function by state variable equation and output equation of 

the form 

 
 

ii. to get a relation between state equations, output equation and transfer function and 

iii. finally the solution of state equation. 

With the help of state equations we can calculate the next value of state variable from the given 

value of state variables and inputs. 
 

 

Example 1    Find the SV model for the system with

 

 

 



 

 

 

Example 2.  

 

 



 

 

 

 

 

From the above we get 

 

The Out put equation is  

 

Therefore  

 

Example 3.  If the state model of a system is given by 



 

Solution : 

 

 

 

 

 

 

 

 

 



          

UNIT V 

 

 
DISCRETE FOURIER TRANSFORM 



DISCRETE FOURIER TRANSFORM  
 

One of the main advantages of discrete-time signals is that they can be processed and 

represented in digital computers. However, when we examine the definition of the Fourier 

transform of discrete-time signal 
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We notice that such a characterization in frequency domain depends on the continuous 

variable  . 

 

 This implies that the Fourier transform is not suitable for the processing of discrete-time 

signals in digital computers.  

 

As a consequence we need a transform depending on a discrete-frequency variable. This 

can be obtaining from the Fourier transform itself in very simple way, by sampling uniformly 

the continuous-frequency variable . In this way, we obtain a mapping of a signal depending 

on a discrete-time variable n  to a transform depending a discrete-frequency variable k , such a 

mapping is referred to as the discrete Fourier transform (DFT). 

 

 

DFT is given by  
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Twiddle factor 

 



Most approaches for improving the efficiency of computation of DFT, exploits 

the symmetry and periodicity property of   i.e. 

 

 

 

Properties of the DFT 

 

1. Linearity :     )()()()( kBXkAXnBynAx   
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5. Circular convolution 
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6. Multiplication 
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7. Parseval’s Theorem 
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Summary of  Properties of the Discrete Fourier Transform  

 

Property Periodic signal Fourier Series Coefficients 
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PROBLEMS 

 

 

Example 1. :  Find DFT of { 1 0 0 1}. 

 

The DFT of the sequence { 1, 0, 0, 1} will be evaluated 

 

x(0) = 1,    x(T)= 0,    x(2T) = 0,   x(3T) = 1  ,              N = 4  

 

We desire to find X(k) for k = 0,1,2,3.  

 

For k = 0  21001
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Ans:   X(k) = {  2 ,  (1+j)  ,  0,  (1-j)  } 

 

Example 2: What is the DFT of the signal[n]? 

 x[n] = [n] 

 X[k] = 
1

N
 
n = 0

 N-1

 [n] k[-n]  = 
1

N
  k[0] = 

1

N
 . 



This means that all frequencies are equally strong present in the impulse signal. So its frequency 

spectrum is flat. 

Example 3: What is the DFT of a shifted impulse [n-1]? 

  x[n] = [n-1] 

  X[k] = 
1

N
  

n = 0

 N-1

 [n-1] k[-n]  = 
1

N
  k[-1] = 

1

N
  e-ik0 with 0 = 

2


  

In this case again all frequencies X[k] are equally strong (they have the same modulus 
1

N
 ), but 

now the frequency spectrum consists of complex numbers. 

 

Example 4: What is the DFT of cos(50) with 0 = 
2


 ? 

  x[n] = cos(n 50). 

We could calculate X[k] in the same way as in the previous examples, but we can also directly 

find X[k] because we may write cos(50) as: 

 x[n] = cos(n50) = 
1

2
  ein50 + 

1

2
  e-in50

1

2
 5[n] + 

1

2
  -5[n]. 

As k+N[n] = k[n] we obtain: 

 x[n] = 
1

2
  5[n] + 

1

2
  N-5[n]. 

So X[5] = 
1

2
  and X[N-5] = 

1

2
  and all other frequencies are zero: 

 

 X[k] = 0, for 0 k < N and k  5 and k  N-5. 

 

Example 5: What is the DFT of a shifted signal x[n-n0]? 

Denote the DFT of the shifted signal by X'[k] and of the original signal by X[k]. 

 X'[k] = 
1

N
 
n = 0

 N-1

 x[n-n0] k[-n]  = 
1

N
 
n = 0

 N-1

 x[n-n0] k[-n+n0] e-ik0n0  =  

  = X[k] e-ik0n0 = X[k] k[-n0] with 0 = 
2


  

 

Example 6 : Compute the DFT of sequence  

 Ans. 



 

 

Example 7: What is the relationship between Z transform and the Discrete 

Fourier transform? 

 Ans. Let us consider a sequence x(n) having z-transforrn with ROC that includes the 

 

unit circle. If X(z) is sampled at the N equally spaced points on the unit circle. If X(z) is 

sampled at N equally spaced pomts on the unit circle. 

 

We obtain 

 

Expression is (2) identical to the Fourier transform X(w) evaluated at the N. equally  spaced. 

Frequencies 

 

If the sequence x(n) has a finite duration of length N or less, the sequence can be 

recovered from its N-point DFT. Hence its Z-transform is uniquely determined by its N-point 

DFI’. Consequently, X(z) can be expressed as a function of the DFT {X(k)} as 



follows 

 

When evaluated on the unit circle (3) yields the Fourier transform of the finite duration 

sequence in terms of its DFT in the form: 

 

This expression for Fourier transform is a polynomial interpolation formula for X(w) 

expressed in terms of the, values {x(k)) of the polynomial at a set of equally spaced 

discrete frequencies 

 

 

Example 8 : Perform circular, convolution of two sequences 

 

 Ans. Circular convolution is 

 



 

 



FFT algorithms –advantages over direct computation of DFT – radix 2 

algorithms  

 
What are the advantages of FFT algorithm? 

 

 Fast fourier transform reduces the computation time. In DFT computation, number of 

multiplication is N2 and the number of addition is N(N-1). In FFT algorithm, number of 

multiplication is only N/2(log2N) . Hence FFT reduces the number of elements (adder, 

multiplier Z &delay elements). This is achieved by effectively utilizing the symmetric and 

periodicity properties of Fourier transform. 

 

 (Preparation for Mathematical Derivation of FFT) 

1. DFT Algorithm 
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RADIX 2  

 

The FFT algorithm is most efficient in calculating N point DFT. If the number of point N can 

be expressed as a power of 2 ie  N= 2M    where M is an integer , then this algorithm is 

known as radix-2 FFT algorithm. 

 

Two-Point DFT 
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Four-point DFT 
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                                                                        Two – point DFT 

 

If we denote z(0) = x(0), z(1) = x(2) => Z(0) = z(0) + z(1) = x(0) + x(2) 

                                                 Z(1) = z(0) - z(1) = x(0) - x(2) 

 

 v(0) = x(1), v(1) = x(3) => V(0) = v(0) + v(1) = x(1) + x(3) 

                                                V(1) = v(0) - v(1) = x(1) - x(3) 



 

Four – point DFT       Two-point DFT 

 

  X(0) = Z(0) + V(0) 

X(1) = Z(1) + (-j)V(1) 

X(2) = Z(0) - V(0) 

X(3) = Z(1) + jV(1) 

 

 

 

 

 

 

 

Decimation-in-Time FFT Algorithm 
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          ( G(k): N/2 point DFT output (even indexed), H(k) : N/2 point DFT 

output (odd indexed)) 
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Question: X(k) needs G(k), H(k),    k=… N-1  

 How do we obtain G(k), H(k), for k > N/2-1 ? 

 G(k) = G(N/2+k)                            k <= N/2-1 



 H(k) = H(N/2+k)                            k <= N/2-1 

 

 

 

Future Decimation  

 g(0), g(1), …, g(N/2-1)            G(k) 

 h(0), h(1), …, h(N/2-1)             H(k) 
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Decimation-in-Frequency FFT Algorithm 
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let m = n-N/2   (n = N/2+m)  n = N/2 => m = N/2-N/2 = 0 



      n = N-1 => m = N-1-N/2 = N/2-1 
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N/2 point DFT  
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X(k) : N-point DFT of x(0), …, x(N)  two N/2 point DFT 

 

 

 

 

One N/2 point DFT => two N/4 point DFT 

   …   two point DFTs 

 



 

 

Efficiency of FFT 

 N – point DFT : 4N(N-1) real multiplications 

         4N(N-1) real additions 

 

 N – point FFT : 2Nlog2N real multiplications 

    (N = 2m)       3Nlog2N real additions 

 Computation ration 
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Example 1  Eight-Point FFT Using Decimation-in-Frequency of  

x(n) = {1 1 1 1 0 0 0 0} 

 

x(0) = x(1) = x(2) = x(3)= 1,               and              x(4) = x(5) = x(6) = x(7) = 0.  

 

 

 

Eight-point FFT flow graph using decimation-in-frequency. 

 

1. At stage 1: 
 

 



where x,(0), x,(1), . . . , x,(7) represent the intermediate output sequence afterthe 

first iteration that becomes the input to the second stage. 

 

2. At stage 2: 
 

 

 

The resulting intermediate, second-stage output sequence x,,(0), x,,(1), . . .  

X,,(7) becomes the input sequence to the third stage. 

3. At stage 3: 

 

   

Answer 

 

X(k) = { 4 ,  1-j2.41 , 0   ,  1 – j0.41  , 0  , 1 + j0.41 , 0  , 1 + j2. 41     } 

 
DIT radix-2 FFT DIF radix-2 FFT 



1.When the input is bit reversed order, the  

   output will be in normal order . 

1.When the input is normal order, the  

   output will be in bit reversed order . 

2.In each stage of computation the phase  

  factor are multiplied before add and  

  subtract operation 

2.In each stage of computation the phase  

  factor are multiplied after add and subtract 

  operation 

3.The value of  N should be expressed such 

   that N=2 m and this algorithm consists of  

   m stage of computation. 

3.The value of N should be expressed such  

   that N=2 m and this algorithm consists of  

    m stage of computation. 

4.Total number of arthemetric operations is 

   N log N complex addition and N/2logN  

   complex multiplications. 

4.Total number of arithmetic operations is 

   N log N complex addition and N/2logN  

   complex multiplications 

 



COMPUTATION OF IDFT USING FFT 

 
The inverse DFT of an N point sequence X (K); K=0, 1…N-1 is defined as 

                                         N-1 

 x (n) =1/N ∑ X (K) e+j2הnk/N    for n=0, 1,2,…N-1 

                             K=0 

Take complex conjugate and multiply by N, we get 

                             N-1 

Nx *(n) = ∑X *(K) e+j2הnk/N    for n=0, 1, 2 …N-1 

                K=0 

The desired output sequence x (n) can then be obtained by complex conjugating  

the DFT and divided by N 

                   N-1 

x (n) =1/N [ ∑X* (K) e+j2הnk/N   ]*                    K=0 

 
 


