
.

1

UNIT I

Introduction to Embedded Processors, Devices and Communication Buses: Introduction to

Embedded Systems - Design Metrics – Optimization Challenges in Embedded system Design -

Embedded Processors – General Purpose Processor – Single Purpose Processor and Application

Specific Instruction Set Processor - IC Terminology – Full-Custom/VLSI – Semi-Custom ASIC -

PLD Introduction to RISC architecture, VLIW and DSP processors. Introduction to I/O Devices

– Types - Synchronous, Iso-synchronous and Asynchronous Communications - Serial

Communication – I2C, USB, CAN – Wireless Communication – IrDA – Bluetooth.

1.1 Introduction to Embedded systems:

An Embedded system is a system that has software embedded into computer hardware,

which make system dedicated for an application or specific part of an application or product.

An embedded system is one that has dedicated purpose software embedded in computer

hardware.

It is a dedicated computer based system for an application or product. It may be

independent system or a part of large system. Its software usually embeds into a ROM or flash.

Examples:

Personal digital assistance (PDA), Printer, Cell phones, Automobiles, House hold appliances etc.

Application Examples:

Simple control: Front panel of microwave oven (function is very less)

Automobiles Examples: Automobile has 100‟s of microcontroller. 4 bit microcontroller for seat

belt. 16/32 bit microcontroller is to control engine (complex function).

1.1.1 Characteristics of Embedded systems:

 Sophisticated functionality

 Real time operation

 Low manufacturing cost

 Application dependent processor

 Restricted memory

 Low power

1.1.2 Manufacturing cost:

 Non-recurring engineering cost for design and development

 Cost for production and marketing each unit

1.1.3 Real time operation:

It must finish operation by dead lines

Hard real time: Missing dead line causes failures

Soft real time: Missing dead line result in degraded performance

.

2

Many systems are multi-rate. It must handle operations at widely varying rates from external

world

1.1.4 Application dependent requirement:

Fault tolerance: It should continue operation despite of hardware or software faults.

Safe: Systems to avoid physical or economic damage to property.

1.1.5 Components of an embedded system:

Fig: Components in embedded system

(i). Microprocessor:

Microprocessor is heart of any Real time embedded system. They are designed to meet

specific requirements.

(ii). Memory:

The microprocessor and memory must coexist on same PCB. Compactness, Speed and

low power consumption are characteristics required for memory used in real time embedded

system (RTES) .

So, Low power semiconductor memories are used in all the devices. For housing

operation system ROM is used. The program or data loaded may exist for considerable duration.

It is changing setup of computer.

E.g.:- Changing ringtone of mobile, Screensaver etc.;

In this case memory should retain even after power should be removed. So non-volatile

memory is used.

.

3

(iii). Input, Output devices and Interfaces:

Input/output interfaces are necessary to make RTES interact with external world. They

could be screen in mobiles, Touchpad keyboards, Microphone etc. These RTES should also have

open interface to other devices such as computer, LAN and other RTES.

e.g.:- We have to download address book from PDA

The input and output device provide necessary interface to support the standard.

(iv). Software:

RTES is just a physical body as long as it is not programmed. It is like a human body

without life. When we switch ON our mobile phone we will notice activities on our screen.

Battery low warning, Signal sign are taken care by RTOS (software) siting on non-volatile

memory of RTES.

Besides the above an RTES have various other components and application specific

integrated circuit (ASIC) for specific function such as motor control, Modulation, Demodulation,

and CODEC etc.

1.2 Design metrics:

Fig: Design Metrics

.

4

1.2.1 Requirement:

It is only determined by a complete clarity of the required purpose, inputs, outputs,

functioning, design metrics and validation requirements

Design Metrics:

(i). Power dissipation: For many systems, particularly battery operated systems, such as mobile

phone or digital camera the power consumed by the system is an important feature. The battery

needs to be charged less frequently if power dissipation is small

 (ii). Performance: Smaller execution time means higher performance. For example, a mobile

phone, voice signal processed between antenna and speaker is 0.1s shows phone performance.

(iii). Process Deadlines: There are number of processes in the system, Each process have

deadlines. They have to complete the process within the required time and give results.

(iv). User interface: These includes GUIs and VUIs.

(v). Size: Size of the system is measured in terms of physical space required and RAM in kB

and internal flash memory requirements in MB or GB for running the software and for data

storage.

(vi). Engineering cost: Initial cost of developing, debugging and testing the hardware and

software is called engineering cost and it is one time non recurring cost.

(vii). Manufacturing cost: It is the cost for manufacturing each unit.

(viii). Flexibility: Flexibility in a design enables, without any significance engineering cost,

development of different version of a product and advanced version later on. For example,

software enhancement by adding extra functions necessary by changing software re-engineering.

(ix). Prototype: Time taken in days or month for developing the prototype and in-house testing

for system.

(x). Development time: It includes engineering time and making prototype time.

(xi). Time to market: Time taken in days or month after prototype development to put a product

for user and customer.

(xii). System and user safety: System safety in terms of accidental fall from hand or table, theft.

For example phone tracking ability

(xiii). Maintenance: Maintenance means changeability and addition to the system. For example,

adding or updating software, data and hardware. Example of data maintenance is additional ring

tones, wallpaper etc.

1.2.2 Specification:

Clear specification of the required system are must. Specification need to be mentioned.

The designer needs specification for

 Hardware, For example, peripherals, devices processor and memory specification.

 Data type and processing specification

 Expected system behavior specification

 constrains of design

 Expected life cycle specification

.

5

1.2.3 Architecture:

Data modeling design of attributes of data structure, data flow graph, Program model,

software architecture layer and hardware architecture are defined. Software architecture layers

are as follows:

 First layer is an architectural design. Here a design for system architecture is developed.

Different element like data structures, databases, algorithms, control functions program

flow are organized

 The second layer is an data design. Here a data organized type is mentioned. For

example tree like structure.

 The third layer is interface design. Here interfacing the components is mentioned in

detail

1.2.4. Components:

The fourth layer is a component level design. There is an additional requirement in

design of embedded system, be optimized for memory usage and power dissipation. The

following lists are the common hardware components.

 Processor, ASIP and single purpose processor in system

 Memory RAM,, ROM or internal and external flash memory in system

 Peripherals and devices internal and external to the systems

 Ports and busses in the system

 Power source or battery in the systems

1.2.5. System integration:

Build components are integrated in the system. Components may work fine

independently, but when integrated may not fulfill the design metrics. The system is made to

function and validated.

1.3 Optimizing challenges in design metrics:

1.3.1 Clock rate reduction:

Power dissipation typically reduces 2.5µW per 100kHz of reduced clock rate. So

reduction from 8000 kHz to 100 kHz reduces power dissipation by about 200µW, which is

nearly similar to when the clock is non-functional.

The power 25µW is typically the residual dissipation needed to operate the timer and few

other units. By operating the clock at lower frequency the advantage is power loss due to heat

generation reduces.

1.3.2 Voltage reduction:

In portable or hand-held devices such as cellular phone, compared to 5v operation,

CMOS circuit power dissipation reduces by one sixth, ~ (2v/5v)
 2

, in 2.0v operation.

.

6

Thus the time interval needed for recharging the battery increases by factor of six.

1.3.3 Wait, Stop and Cache Disable instructions:

An embedded system need to run continuously, without being switched off; the system

design, therefore, is constrained by the need to limit power dissipation while it is ON but is in

idle state. Total power consumption by the system while in running, waiting and idle states

should be limited.

A microcontroller must provide Wait and Stop instruction for power down mode. One

way to reduce power dissipation is by wait and stop instruction. Another is to operate the system

at lowest voltage level in idle state and selecting power down mode in that state.

1.3.4 Process deadlines:

Meeting the deadline of all processes in the system while keeping the memory, power

dissipation, processor clock rate and cost at minimum is a challenge.

1.3.5 Flexibility and Upgrade ability:

Flexibility and upgrade ability in design while keeping the cost minimum and without

any significant engineering cost is a challenge. Flexibility and upgrade ability allow different

and advanced version of a product to be introduced in market later on.

1.3.6 Reliability:

Designing a reliable product by appropriate deign, testing and verification is a challenge.

The goal of testing is to find errors and to validate the software as per specification and

requirement. Verification is to ensure that the specific function are correctly implemented.

Validation is an to ensure that the system works correctly as per its requirement.

1.4 Embedded Processor:

Processor technology involves the architecture of the computation engine used to

implement a system‟s desired functionality. There are three types of processor in designing

embedded systems.

(i) General purpose processor

(ii) Single purpose processor

(iii) Application specific processor

1.4.1 General purpose processor:

The general-purpose processor is to build a device suitable for a variety of applications,

to maximize the number of devices sold. One feature of such a processor is a program memory.

The designer does not know what program will run on the processor, so cannot build the

program into the digital circuit. Another feature is a general data path. The data path must be

general enough to handle a variety of computations, so large register file and one or more

general-purpose arithmetic-logic units (ALUs) are used. An embedded system designer simply

.

7

uses a general-purpose processor, by programming the processor‟s memory to carry out the

required functionality.

Using a general-purpose processor in an embedded system may result in several design-

metric benefits. Design time and NRE cost are low, because the designer must only write a

program, but need not do any digital design. Flexibility is high, because changing functionality

requires only changing the program. Unit cost may be relatively low in small quantities, since

the processor manufacturer sells large quantities to other customers and hence distributes the

NRE cost over many units. Performance may be fast for computation-intensive applications, if

using a fast processor, due to advanced architecture features and leading edge IC technology.

However, there are also some design-metric drawbacks. Unit cost may be too high for

large quantities. Performance may be slow for certain applications. Size and power may be

large due to unnecessary processor hardware.

Figure 1.6(a) shows a simple architecture of a general-purpose processor implementing

the array summing functionality. The functionality is stored in a program memory. The

controller fetches the current instruction, as indicated by the program counter (PC), into the

instruction register (IR). It then configures the data path for this instruction and executes the

instruction. Finally, it determines the appropriate next instruction address, sets the PC to this

address, and fetches again.

1.4.2 Single purpose processor:

A single-purpose processor is a digital circuit designed to execute exactly one program.

Using a single-purpose processor in an embedded system results in several design metric benefits

and drawbacks, which are essentially the inverse of those for general purpose processors.

.

8

Performance may be fast, size and power may be small, and unit-cost may be low for

large quantities, while design time and NRE costs may be high, flexibility is low, unit cost

may be high for small quantities, and performance may not match general-purpose processors

for some applications.

Figure 1.6(c) illustrates the architecture of such a single-purpose processor for the

example. Since the example counts from one to N, we add an index register. The index register

will be loaded with N, and will then count down to zero, at which time it will assert a status line

read by the controller. Since the example has only one other value, we add only one register

labeled total to the datapath. Since the example‟s only arithmetic operation is addition, we add a

single adder to the datapath. Since the processor only executes this one program, we hardwire the

program directly into the control logic.

1.4.3 Application Specific processor:

An ASIP is designed for a particular class of applications with common characteristics,

such as digital-signal processing, telecommunications, embedded control, etc. The designer of

such a processor can optimize the data path for the application class, perhaps adding special

functional units for common operations, and eliminating other infrequently used units. Using an

ASIP in an embedded system can provide the benefit of flexibility while still achieving good

performance, power and size. However, such processors can require large NRE cost to build

the processor itself, and to build a compiler, if these items don‟t already exist. A DSP is a

processor designed to perform common operations on digital signals, which are the digital

encodings of analog signals like video and audio. These operations carry out common signal

processing tasks like signal filtering, transformation, or combination. Such operations are usually

math-intensive, including operations like multiply and add or shift and add. To support such

operations, a DSP may have special purpose data path components such a multiply-accumulate

unit.

Figure 1.6(b) shows the general architecture of an ASIP for the example. The data path

may be customized for the example. It may have an auto-incrementing register, a path that

allows the addition of a register plus a memory location in one instruction, fewer registers, and a

simpler controller.

1.5 IC Terminology:

Every processor must eventually be implemented on an IC. IC technology involves the

manner in which we map a digital (gate-level) implementation onto an IC. An IC (Integrated

Circuit), often called a “chip,” is a semiconductor device consisting of a set of connected

transistors and other devices. To understand the differences among IC technologies, we must

first recognize that semiconductors consist of numerous layers. The bottom layers form the

transistors. The middle layers form logic gates. The top layers connect these gates with wires.

One way to create these layers is by depositing photo-sensitive chemicals on the chip surface and

then shining light through masks to change regions of the chemicals. Thus, the task of building

.

9

the layers is actually one of designing appropriate masks. A set of masks is often called a layout.

The narrowest line that we can create on a chip is called the feature size, which today is well

below one micrometer (sub-micron). For each IC technology, all layers must eventually be built

to get a working IC.

1.5.1 Full Custom/VLSI:

In a full-custom IC technology, we optimize all layers for our particular embedded

system‟s digital implementation. Such optimization includes placing the transistors to minimize

interconnection lengths, sizing the transistors to optimize signal transmissions and routing wires

among the transistors. Once we complete all the masks, we send the mask specifications to a

fabrication plant that builds the actual ICs. Full-custom IC design, often referred to as VLSI

(Very Large Scale Integration) design, has very high NRE cost and long turnaround times

(typically months) before the IC becomes available, but can yield excellent performance with

small size and power. It is usually used only in high-volume or extremely performance critical

applications.

1.5.2 Semi-custom ASIC:

In an ASIC (Application-Specific IC) technology, the lower layers are fully or partially

built, leaving us to finish the upper layers. In a gate array technology, the masks for the transistor

and gate levels are already built (i.e., the IC already consists of arrays of gates). The remaining

task is to connect these gates to achieve our particular implementation. In a standard cell

technology, logic-level cells (such as an AND gate or an AND-OR-INVERT combination) have

their mask portions pre-designed, usually by hand. Thus, the remaining task is to arrange these

portions into complete masks for the gate level, and then to connect the cells. ASICs are by far

the most popular IC technology, as they provide for good performance and size, with much

less NRE cost than full-custom IC‟s.

1.5.3 PLD:

In a PLD (Programmable Logic Device) technology, all layers already exist, so we can

purchase the actual IC. The layers implement a programmable circuit, where programming has a

lower-level meaning than a software program. The programming that takes place may consist of

creating or destroying connections between wires that connect gates, either by blowing a fuse, or

setting a bit in a programmable switch. Small devices, called programmers, connected to a

desktop computer can typically perform such programming. We can divide PLD's into two types,

simple and complex. One type of simple PLD is a PLA (Programmable Logic Array), which

consists of a programmable array of AND gates and a programmable array of OR gates. Another

type is a PAL (Programmable Array Logic), which uses just one programmable array to reduce

the number of expensive programmable components. One type of complex PLD, growing very

rapidly in popularity over the past decade, is the FPGA (Field Programmable Gate Array), which

.

10

offers more general connectivity among blocks of logic, rather than just arrays of logic as with

PLAs and PALs, and is thus able to implement far more complex designs.

 PLDs offer very low NRE cost and almost instant IC availability. However, they are

typically bigger than ASICs, may have higher unit cost, may consume more power, and may be

slower (especially FPGAs). They still provide reasonable performance, though, so are

especially well suited to rapid prototyping.

1.6 Introduction to RISC architecture:

A RISC microprocessor provides the speedy processing of instruction each in a single

clock cycle. This facilitates pipelining and superscalar processing. Besides greatly enhanced

capabilities in speed of instruction is processed. RISC is used when the system needs to perform

intensive computation in a speech processing system.

1.6.1 VLIW and DSP processor

A digital signal processor (DSP) is a processor core or chip for the applications that

process digital signals. A microprocessor is essential for a computing system; similarly DSP is

essential for an embedded system in a large number of applications needing processing of

signals. Examples are in image processing, multimedia, audio, video, HDTV, DSP modem and

telecommunication processing systems.

DSP executes discrete time, signal processing instructions. It has Very Large Instruction

Word (VLIW) processing capabilities; it process Single Instruction Multiple Data (SIMD).

1.7 Introduction to IO devices:

A serial port is a port for serial communication. Serial communication is for a given line

or channel one bit can communicate and the bits transmit at periodic intervals generated by

clock. A serial port communication is over short or long distances.

A parallel port is a port for parallel communication. Parallel communication means that

multiple bits can communicate over a set of parallel line at any given time. A parallel port

communication is over very short distances of less than a meter.

Ports can be wireless. Wireless communication can be used without wires over short

range personal area network.

Serial and parallel ports of IO devices can be classified into following types:
i) Synchronous serial input

ii) Synchronous serial output

iii) Asynchronous serial input

iv) Asynchronous serial output

v) Parallel port input

vi) Parallel port output

.

11

1.7.1 Synchronous serial input:

Fig shows synchronous serial input. Each bit in a byte are in synchronous. If a clock

period equals T, then each byte at the port is received at input in period 8T.

The serial data input and clock pulse input are on same input line when the clock pulse

encoded with serial data input. The receiver detects clock pulses and receives data bits after

decoding the input data.

Synchronous serial input is also called as master output slave input(MOSI) when CLK is

sent from sender to receiver and receiver is forced to synchronize the sent input from

master(sender) clock.
It is also called as Master input slave output(MISO) when CLK is sent to sender(slave)

from the receiver(master) and sender(slave) is forced to synchronize sending input as per master

clock.

1.7.2 Synchronous serial output:

Fig shows synchronous serial output. Each bit in each byte is in synchronization with

clock. If the clock period equals T, then the data transfer rate is 1/T bps.

The sender sends either the clock pulse or serial data output by encoding both the signals.

.

12

1.7.3 Asynchronous serial input:

Fig shows Asynchronous serial input serial port line, denoted by RxD (received data).

Each RxD bit is received at fixed interval of time but each received byte is not in

synchronization. The bytes can be separated by variable intervals and phase difference.

Fig shows starting point of receiving the bits for each byte. When the sender shifts after

every clock period T, then a byte at the port is received at 10T or 11T.

The bit transfer rate is (1/T) baud per second but different bytes may be received at

varying intervals. The sender cannot send clock pulse along with data bits.

1.7.4 Asynchronous serial output:

Fig shows Asynchronous serial output serial port line, denoted by TxD (transmit data).

Each TxD bit is sent at fixed interval of time but each output byte is not in synchronization.

.

13

1.7.5 Synchronous, Iso-synchronous and Asynchronous communication from serial port:

Synchronous communication: When a byte (character) or frame (a collection of bytes) of data

is received or transmitted at constant time intervals with uniform phase difference, the

communication is called synchronous. Bits of data frame are sent in fixed maximum time

interval.

Iso-synchronous is a special case when maximum time interval can be varied.

An example of synchronous serial communication is frames sent over LAN.

There are two characteristics of synchronous communication. They are as follows:

i) Bytes maintain constant phase difference. That is in synchronous there is no permission

to send either bytes or frames at random time intervals. This mode does not provide

handshaking during communication intervals.

ii) The clock is not always implicit to the synchronous data receiver. The transmitter

generally transmits the clock rate information in the synchronous communication of data.

Synchronization ways:

1) Separate clock pulses along with the data bits

 PISO(parallel in serial out for transmitter)

 SIPO(serial in parallel out for receiver)

2) Data bits modulated or encoded with clock information

 FM

 MFM

 QAM

 Bi-phase

 Manchester

3) Embedded clock information with a data frame before transmitting

 Synchronization code bits preceding a data bit-frame

 In-between frames signaling bits

 Bi-sync coding

Asynchronous communication is when a byte of frames of data is transmitted or received at

variable time intervals, communication is called as Asynchronous. Voice data on the line is

asynchronous mode in telephone network.

There are two characteristics of Asynchronous communication. They are as follows:

i) Bytes or frames need not to maintain a constant phase difference and are asynchronous.

They can be sent at variable time interval. This mode requires handshaking between

transmitter and receiver.

ii) The transmitter or receiver does not send any clock signals.

1.8 Serial communication:

Fig shows a processor of embedded system connected to system memory bus and

networked to other system through serial bus.

.

14

1.8.1 I
2
C Bus:

It is a standard bus for integrated circuit. The I
2
C bus has become the standard bus for

circuit involving ICs which need to mutually network through a common bus. Examples are

temperature and pressure measurement.

There are three standards. They are

i) Industrial 100kbps I
2
C

ii) 100kbps SM I
2
C

iii) 400 kbps I
2
C

The I
2
C bus has two lines that carry the signals. They are

i) One line is for clock signal

ii) Another line is for bi-directional data

.

15

Field and its length Explanation

First Field of 1 bit It is start bit like an UART

Second field of 7

bits

It is called address field. It defines the slave address, which is being sent

the data frame by the master

Third field of 1

control bit

It defines whether to read or write a data

Fourth field of 1

control bit

Bit defines whether the present data is acknowledgement

Fifth field of 8 bits It is for IC device data type

Sixth field of 1 bit It is bit for NACK(Negative Acknowledgement)

Seventh field of 1

bit

It is a stop bit

1.8.2 CAN Bus:

The CAN bus is a standard bus in distributed network. It is mainly used in automotive

electronics. It has a serial line, which is bidirectional. It receives or sends a bit at an instance by

operating at maximum rate of 1Mbps. It employs twisted pair cable connection to each node. The

maximum length of cable is 40 meters.

Characteristics:

i) CAN serial line is pulled to logic level “1” by a resistor between the line and +4.5V to

+12V line logic “1” in its idle state also called as “recessive state”

ii) Each node has a buffer gate between an input pin and a CAN serial line. A node gets the

input at any instance from the line after sensing that instant when the line is pulled down

to “0”. This state is called “Dominant state”

iii) Each node has a current driver circuit between an output pin and the serial line. A node

sends the output to the line at an instance by pulling the line “0” by its driver.

.

16

iv) A node sends data bits as a data frame. Data frames always starts with “1” and always

ends with seven “0”s.

v) There is an arbitration method called CSMA/AMP (Carrier Sense Multiple access with

Arbitration on Message priority)

Field and Its Length Explanation

First field of 12 Bits It is called “arbitration field”. It contains the packet 11 bit destination

address and RTR (remote Transmission request) bit

Second Field of 6 bits It is called control field. The first bit is the identifier extension. The

second bit is always “1”. The last 4 bits are coded for data length

Third field of 0 to 64

bits

Its length depends on the data length code in the control field

Fourth field(Third if

data field has no bit

present) is of 16 bits

It is the CRC (Cyclic Redundancy Check) word. The receiver node

uses it to detect errors, if any, during the transmission

Fifth field of two bits First bit is the “ACK slot”. The sender sends it as “1” and receiver

sends back “0” in this slot when receiver detects an error in the

reception. Sender after sensing “0” in the ACK slot generally

retransmit the data. The second bit is the “ACK delimiter” bit

Sixth field of 7 bits It is for end of the frame specification and has seven “0”s

1.8.3 USB Bus:

The Universal Serial Bus (USB) is a bus between host system and a number of

interconnected peripherals.

There are two standards in USB

i) USB 1.1 (a low speed 1.5 Mbps 3 meter channel along with a high speed 12 Mbps 25

meter channel)

ii) USB 2.0 (High speed 480 Mbps 25 meter channel)

iii) wireless USB

Key features:

USB protocol has a features that a device can be attached, configured and used,

reconfigured and used, share the bandwidth with other devices detached and reattached.

A device can be either bus powered or self-powered. In addition, there is power

management by the software at the host for the USB ports.

The host connects to the devices or nodes using USB ports driving software and host

controller.

Design Issues:

USB cable has four wires, one for +5V, two for twisted pairs and one for ground. There is

termination impedance at each end as per the device speed. The electromagnetic interference

(EMI) shielded cable is used for 15Mbps devices.

The data transfer is of four types

.

17

i) Controlled data transfer

ii) Bulk data transfer

iii) Interrupt driven data transfer

iv) Iso-synchronous transfer

USB is a polled bus. The host controller regularly polls the presence of a device as

scheduled by software. It sends a token packet. The token consists of field for type, direction and

USB device address. The device uses handshaking during transmission. A CRC field in a data

permits error detection

USB support three types of pipes

a) „Steam‟ with no USB defined protocol. It is used when the connection is already

established and the data flow starts.

b) „Default control‟ for providing access.

c) „Message‟ to control function of the devices.

1.9 Wireless Communication:

1.9.1 Infrared Data Association (IrDA):

Infrared (IR) is electromagnetic radiation of wavelength greater than visible red light. An

infrared source consists of gallium-arsenic-phosphorous junction based diode. An infrared

receiver consists of gallium-arsenic-phosphorous junction based phototransistor, which conduct

electric current when the IR beam falls on it and does not conduct when IR beam does not fall on

it.

IrDA supports data transfer rate of up to 4Mbps. It supports bi-directional serial

communication over viewing angle between ±15
0
 and distance of nearly 1m. At 5m, the IR

transfer data can be up to data transfer rate of 75kbps. There should be no wall or obstruction in

between the source and receiver.

IrDA supports 5 levels of communication. Level 1 is minimum level required

communication. Level 2 is access based communication. Level 3 is index based communication.

Level 4 is synchronized communication. Level 5 is SyncML (Synchronization Markup

Language) based communication. A SyncML is used for device management and

synchronization with server and client devices, which are connected by IrDA.

.

18

IrDA is used in mobile phones, digital cameras, keyboard, mouse, printers to

communicate to laptop computer and for data and picture download and synchronization. IrDA is

also used for control TV, air-conditioning, LCD projector, VCD devices from a distance.

IrDA supports several protocols at three layers. Lower layer is physical layer 1.0 or 1.1. It

supports data transfer rates of 9.6 kbps to 115.2 kbps and 115.2 kbps to 4Mbps I IrDA physical

layer 1.0 and 1.1 respectively.

Intermediate layer is data link layer. At data link layer, it specifies IrLMP (IR

management protocol) upper sub layer is HDLC communication

An IrDA upper layer protocol is tiny TP (transfer protocol). Another upper layer protocol

is IrLMIAS (IR Link Management Information Access Service Protocol). A transport layer

protocol during transmission specifies ways of flow control, segmentation of data and

packetization. During reception, it assembles the segments and packets.

An infrared monitor in windows monitors the IR port of the IR device. It detects a nearby

IR source. It controls, detects and selects the IR communication activity. An IR device on

command sets up connection using IrDA, and starts the IR communication. When IR

communication is inactive, the monitor enables plug and play

1.9.2 Bluetooth:

Bluetooth hardware is connected to embedded system buses and Bluetooth embeds in the

system to support WPAN using Bluetooth wireless protocol. Fig shows a handheld device

connected to other computers through wireless protocol using Bluetooth. A large number of CD

players and mobile devices are Bluetooth enabled. Bluetooth is also used for hands free listening

of Bluetooth enabled iPod or CD music player or mobile phone.

Bluetooth is an IEEE 802.15.1 protocol. The physical layer radio communicates at carrier

frequency of 2.4 GHz band with FHSS (Frequency Hop Spread Spectrum). Hoping interval is

625µs and number of hopped frequencies are 79. Data transfer is between two devices or

multiple devices.

It support range up to 10m low power and up to 100m high power. Range depends on

radio interface at physical layer. Bluetooth 1.x data transfer rate supported is 1Mbps. Bluetooth

2.0 has enhanced maximum data rate of 3.0 Mbps over 100m. Bluetooth protocol supports

.

19

automatic self-discovery and self-organization of network in number of devices. Bluetooth

devices self discovers nearby devices (<10m) and they synchronize and form a WPAN network.

Bluetooth protocol supports power control so that the devices communicate at minimum power

level. This prevents drowning of signals by superimposition of high power signals with low level

signals.

The physical layer has three sub layers. Radio, baseband and link manager or host

controller interface. There are two types of link: best effort traffic links and real-time voice

traffic links.

The host controller interface (HCI) interface is a hardware abstraction sub layer. It is used

in place of the link manager sub layer.

Its communication latency is 3s. It has large protocol stack overhead of 250KB. Provision

of encrypted secure communication. Self-discovery and self-organization and radio based

communication between any antennas are three main features of Bluetooth.

.

1

UNIT II

Embedded Program Modeling Concepts in C: Programming in assembly language (ALP) vs

High Level Language - C Program Elements:- Macros and functions, Use of Date Types,

Structure, Pointers, Function Calls – Program Modeling Concepts – Program Models- DFG

Models – FSM Models – Modeling of Multiprocessor Systems.

2.1 Programming in Assembly Language (ALP) Vs. High Level Language:

2.1.1 Assembly Language Programming:

Assembly language coding has the following advantages

i) The assembly language codes are sensitive to the processor, memory, ports and devices

hardware. It gives control of the processor internal devices and complete use of the

processor specific features in its instruction sets and addressing modes.

ii) The machine codes are compact, processor sensitive and memory sensitive. This is

because the codes for declaring the conditions, rules and data types does not exists.

The system needs smaller memory.

iii) Device driver codes may need only a few assembly instructions. For example, consider

a timer device in microwave oven or an automatic washing machine or an automatic

chocolate vending machine. Assembly codes for these can be compact and are

conveniently written.

iv) We use bottom up approach. It is an approach in which programming is first done for
sub modules. An example is program for software timer. Program for delay, counting,
finding time intervals and many operation are written first. Then the final program is
designed. The approach is to first code the basic functional modules and then use these
to build a bigger module.

2.1.2 High Level language programming:

High level language coding if source files in C or C++ has great advantages. So, most of

the program are in high level. They are as follows:

i) High level program development cycle is short even for complex systems because of the

use of routines, standard library functions, use of modular programming approach, top

down design. Application programs are structured to ensure that the software is based on

hardware and network drivers.

 A function defines a method of operation, and sets of statements and commands

are run, when the function is called.

 Library functions are standard functions, which are readily available to a

programmer and the codes for them is not defined by a programmer. For example,

square root can be defined by square root(), saves the time to coding.

 Identical devices such as serial line devices (Buses) are used in most number of

embedded systems. Directly programming these functions in each system bus will

.

2

mean repetitive and redundant coding for each device buses. It is better to use

the high level programming, which use functions. Some of the function uses only

arguments is passed to system bus when needed and use it at the requirement.

 Modular programming approach is an approach in which building blocks are

reusable software components. A module is built by software components. The

components are built by a set of functions. Module building block may call

several functions and library functions. A module is then tested for a

requirement. It should have only one calling method. There should be return point

from it. It should not affect any data other than it operates that there should be

data encapsulation.

 Top down design is another programming approach in which main program is

first designed and then its sub modules are designed.

ii) High level program facilitates data type declarations: Data type declarations provide

programming very simple. For example there are four types of integers, int, unsignedint,

short and long. When the required values are only positive values we can use unsigned

int. We need signed integer, int (32 bits) in arithmetical calculations. An integer can also

be declared as data types as short (16 bits) or long (64 bits). To operate the text and

strings char data type is used.

iii) High level program facilitates „type checking‟ makes the program less error. For

example type checking does not permit subtraction, multiplication or division operation

on char data types. It permits „plus‟ operator to be used for concatenation when using

char data types.

iv) High level program facilitates use of control structures (e.g., while, do while break

and for) and conditional statements(e.g., if, if else and switch case) to specify the

program flow by simple statements.

v) High level program has portability of non processor specific codes. When the hardware

changes, only the modules for ISRs of the devices driver and device management,

initialization and program locator modules and initial boot up record data need

modifications.

2.2 “C” program Elements

A “C” program has following structural elements

 Preprocessor declarations, definitions and statements.

 Main function.

 Functions, exceptions and ISRs

A C program has the following preprocessor structural elements

 Include directive for inclusion of file.

 Definitions for preprocessor global values

 Definitions of constants

.

3

 Declarations for global data type, type declaration and data structures, macros and

functions

2.2.1 Include Directives for the inclusion of files

Any C program first include the header and source file that are readily available. Some of

the examples are

 #include “vXWorks.h” ----> including VxWorks function

 #include “semLib.h” ----> including Semaphore functions library

 #include “taskLib.h” ----> including multitasking functions library

 #include “msgQlib.h” ----> including Message queue function library

Include is a preprocessor directive to include the contents (codes) of a file. Inclusion of all

header file has to be done as per the requirements.

i) Including Code files: These are the files for the codes are readily available. For example

#include „practHandlers.c‟

ii) Including constant data files: These are the files for the codes and may have the

extension „,const‟

iii) Including string data files: These are the files for string and may have the extension

„.string‟ or „.str‟ or „.txt‟. For example #include „netDrvConfig.txt‟

iv) Including initial data files: These are the files for initial or default data in the ROM of

an embedded system. The boot up program is later copied into RAM and may have

extension „.init‟ or „.data‟

v) Including basic variable files: These are the files for the local or global static variables

that are stored in the RAM because they do not have initial values. It may have extension

„.bss‟.

vi) Including header files: It is a preprocessor directive, which includes the content (codes)

of a set of source files. These are the files of a specific module. A header file has an

extension „.h‟. For example #include „string.h‟.

2.2.2 Source Files:

Source files are the program files for function of application software. The source files

need to be compiled. A source file will also possess the preprocessor directivities of the

application and have first function from where the processing will start. Its code start with

void main (). The main calls other functions.

2.2.3 Configuration Files:

Configuration files are the files for configuration for the system. Device configuration

codes can be put in a file of basic variable and included when needed. If these codes are in the

file “SerialLine_cfg.h” then #include „SerialLine_cfg.h‟ will be the preprocessor directives.

.

4

2.2.4 Preprocessor Directives:

Preprocessor constant, variables and inclusion of configuration files, text files and library

functions are used in embedded C program

 Preprocessor global variables:For example, in a program the IntrDisable,

IntrPortAEnable, IntrPortADisable, STAF and STAI are global variables for disabling

interrupts, enabling port A, Disabling port A, status flag and status flag for interrupt

respectively.

 Preprocessor constants:„#define false 0‟ is a preprocessor directive which means it

assume „false‟ as 0 for entire program.

2.3 Program Elements

2.3.1 Macros and Functions:

A macro is a collection of codes that is defined in a C program by a name. If a macro is

defined by certain name, the compiler puts the corresponding codes for it at every place where

that macro name appears. For example „enable_maskable_intr ()‟. Here the pair of brackets are

optional. When the name enable_maskable_intr appears, the compiler places the codes designed

for it.

Macros differs from function:

i) The codes for a function is compiled one time only. On calling that function, the system

has to save the content and on return have to restore the content.

ii) The codes for macro are compiles in every operation wherever that macro name is used.

thecompiler puts the corresponding code assigned to it. On using macros, the processor

no need to save the content and no need to restore the value since there isno return.

iii) Macros are used for short codes only. This is because, if a function call is used instead of

macro, he overheads will take a time. Overhead means content saving and new content

retrieving and return. Toverheadthat is the same order of magnitude as the time, Texecis a

time taken to execution of short codes within a function. We use function when

Toverhead<<Texec and macros when Toverhead ≥Texec.

2.3.2 Use of Data Types:

When a data is named, it will have addresses at allocated memory. The number of

addressed depends on the data type.

C program allows primitive data types. The char (8 bits) for characters, byte (8 bits),

unsigned short (16 bits), short (16 bits), unsigned int (32 bits), int (32 bits), long double (64

bits), float (32 bits) and double (64 bits).

The typedef is used to create a Boolean type variable in the C program.

2.3.3 Use of Pointers:

Pointers are the tools used in C programs. Pointer is a reference to a starting memory

address. A pointer can refer to a variable, data structure or function. Before a pointer in C

.

5

program * symbol is used. For example unsigned char *1000 refers to a character of 8 bit at

address 1000.

2.3.4 Use of Data Structures:

A data structure is organizing many data elements of same type or different types

together at consecutive memory addresses. Marks of a students in different subjects are in table.

The table in mark sheet shows them in an organized way.

The data structure is one of the important element in any program. Some of the important

data structure areStack, one dimensional array, queue, circular array, a table, look up table,

hash table and list.

Stack:A stack is a special program element in a data structure.A stack means an allotted memory

block data element is read from LIFO (last in first out) way. An element is popped or pushed

from an addresses pointed by SP (stack pointer).

Various stack structure can be created during processing. For handling each stack one

pointer is needed to point the top of the stack.

i) A call can be made for another routine during running of a routine. When the routine

called is completed, the processor returns to calling function (main function), the

instruction address for return must be pushed on the top of the stack.

ii) There may be at the beginning of an input data, for example, received call numbers in a

phone are saved into a stack RAM in order to be retrieved in LIFO mode.

iii) An application may also create the run time stack structures. There can be multiple data

stacks at the different memory blocks, each having a separate pointer addresses. There

can be multiple stack shown as Stack 1, Stack 2.....Stack N.

iv) Each task in a multitasking should have its own stack where its content is saved. The

content is saved on the processor on switching to another task. The content includes

return address for PC retrieval on coming back to the task. There can be multiple stack

for different memory blocks.

Array:A data structure, array is an important programming element. An array has multiple data

elements, which are identified by an index. An N-dimensional array is a special data structure at

the memory. It has a pointer that always points to first element of the array.

.

6

Assume one dimensional array. From the first element pointer and an index of that

element starts from 0 to (array length-1) in a given dimension(length).

Data can be retrieved from any element addresses in the block that is allocated to the

array. It can be also used for storing string data type element.

Queue:A data structure , called queue is another programming element. In array the reading of

data with the help of index value and first element address. So any element can be read or write

at any instance. In queue each element is read from an addresses next to the address from where

the queue element was last read. This is called deletion.

In queue it is written to an address from where the queue element was last written. This

writing is called insertion. A Queue means an allotted memory block from which a data is

retrieved in FIFO mode.

For queue two pointers are needed. The starting memory address is represented by

*Qstartand ending memory address is represented by *Qlimit. *Qtail is for pointing to an address in

a memory block where an element is to be inserted (added).

For a queue of integer, int *Qtail, *Qhead are declared. *Qtail initially equals to *Qstart and it

should increment on each insertion on queue tail pointer. The other *Qhead initially equals *Qstart

and is for pointing to an address in a memory block from where the element is to be deleted. This

pointer should increment on each deletion.

.

Circular queue:A queue is called circular queue when a pointer reaching a limit *Qlimit, returns

to its starting value *Qstart. From circular queue the data element is retrieved in FIFO mode but

there is no condition for exceeding the memory block allotted.

Table: A table is two-dimensional structure (matrix) and is an important data set that is allocated

a memory block. There is always base pointer for a table. It points to its first element of the first

.

7

column and first row. There are two indices, one for column and the other is for row. Like array

any element can be retrieved from addresses for the table base, column index and row index.

A look-up table is a two dimensional structure. It has only rows and each rows has key

and on reading the key value , the data is traced.

hash table:A hash table is a data set that is a collection of pairs of key and corresponding value.

A hash table has a key name in one column. The corresponding value in second column. The

keys may be at non-consecutive memory addresses.

List: A list is a data structure with a number of memory block for each element. A list has a top

(head) pointer for the memory address from where it starts.Each list element also stores the

pointer to the next element. The last elements points to NULL.

2.3.5 Use of Loops, Infinite loops and Conditions:

Sometimes a set of instruction is repeated in a loop. Generally loops are used when

executing a set of statements repeatedly. A loop starts from an initial value or condition and

executes till the limiting condition is fulfilled. There are certain parameters which change each

time from its initial condition to limiting condition.

for (i = 0; i <= 100; i++)

{

/* A set of statement which is repeatedly execute */

.

8

}

Here the initial condition is assigned as i = 0 and the last condition for the loop to execute till i is

less or equal to 100. The set of statements in the bracket executes from start to end and before

return to start i is incremented by 1 (i++). The “for” statement allows set of statement to

execute repeatedly 101 times with values of 0 to 100.

i = 0;

while (i <= 100)

{

/* A set of statement which is repeatedly execute */

i++;

}

The initial condition is assigned as i = 0 and is set before the while loop. The while loop executes

till i remains less or equal to 100.i++ increments before the return to test while condition.The

while statement allows set of statement to execute repeatedly 101 times with values of 0 to 100.

If the condition remains true, then while loop will execute infinitely. For example

while(1)

{

/* A set of statement which is repeatedly execute */

}

The loop will execute infinitely because “1” is always true and doesn‟t come out of the loop.

Conditional statementare used when a defined condition is fulfilled, then the statements

within the curly braces are executed, otherwise the program proceeds to the next set of

instructions.

2.3.6 Use of function calls:

The following steps to be followed when using a function in a program

.

9

Declaring a function:just as each variable have declaration, each function must be declared by

any name.

Defining the statements in function:Just as each variable has to be given the contents or value,

each function must have statement. Consider the statement „run‟. These are within a pair of curly

braces as follows:

intRTCSWT run(intindexRTCSWT, unsigned intmaxlength, SWT_Action..).

{

/* A set of statement which is repeatedly execute */

return ();

}

The last statement in a function is for the returnand may also be for returning an element or

object.

Call to a function:Consider an example

if (delay_F = = true &&SWTDelayEnable = = true)

ISR_Delay (100);

There is a call on fulfilling a condition. The call occurs several times and can be repeatedly

made.

The steps for the transfer of values from argument of calling function to called function

arguments:

Passing the elements (elements):The values are copied from argument in calling to called

function argument. When the function is executed in this way, it does not change its variable

value at the calling function on return from the called function. A function use only the copied

value as its own variables through the arguments.

Reentrant functions call:Re-entrant function is used by several tasks and routines at the same

time (synchronously). This is because all its arguments values are retrievable from a stack of the

local variables or data structure.

Passing the reference:when an argument value to a function passes through a pointer, the called

function can change this value. On returning from this function, the new value is available in the

calling program or another program called by this function. This is because there is no saving on

stack of a value that either passes through a pointer in the function arguments.

2.3.7 Multiple functions calls in cyclic order:

One of the most common methods is multiple function call made in cyclic order in an

infinite loop.

.

10

2.3.8 Queuing of functions on interrupts:

When there are multiple ISRs, a high priority ISR is executed first and then lowest

priority is executed. It is possible that function call and statements in any of the higher priority

may block the execution of lower priority ISR and there may be deadline miss for low priority

ISR. Using the function pointers in the routines and forming the queue is a solution for this

problem. The queued functions are executed at later stages.

2.4 Programming Modeling Concepts:

i) Polling for event model: The polling in the cyclic events, state variables and signal are

controlled by using switch case statements.

ii) Sequential program model: This model occurs when there is multiple function call within

a function.

iii) Data flow model: Data flow graph (DFG) and Control data flow graph (CDFG) are used

for modeling the data paths and program of the software. A program is modeled as

handling input data stream and creating output data stream.

iv) State machine model: A programming model will change its state from one to another.

Example for state machine model is that the key marked 5 can produce on pressing

different states (0,5) ----> (1,5) ----> (1,j) ----> (1,k) ----> (1,5) and its repeats in cyclic

manner.

v) Concurrent process and inter process communication: When there are several concurrent

tasks (at the same time) and each task has sequential codes in infinite loop. A task send

signal for another task. A task which gets signal runs the remaining task in the blocked

state.

2.4.1 Data flow graph (DFG):

A data flow means that the program execution steps are determined only by the data. The

data inputs are predetermined and program is done for output data. For example to find an

.

11

average all given marks, we will have data input as all subject marks and output data is average.

Data input becomes data output after several operation in it. A DFG does not have any

conditions within it. The program has data entry point and data output point.

A circle represents each process in DFG. An arrow directed towards the circle

represents the data input and an arrow away from the circle represents data output. Data input

along with an input edge is called token. The circle is represented as node.

when there is only one set of value for each input and output, then the DFG is also called

as ADFG (acrylic data flow graph). All the input are instantaneously available in ADFG.

From fig. it is observed that there is no complexity in the process for output y0. DFG

model is a simple code design. A DFG models a fundamental program element that has

independent path. There is no control for the program flow. The following fig. shows a DFG

model for saving a picture in a digital camera.

.

12

2.4.1.1 Control DFG model (CDFG):

A control flow means that the program controls the execution steps and flow of the

program. The control is taken by taking decision during data operations and data flow. It

may also have loop statements for controlling. Data input will generate data output only after a

control data flow by conditions. The output depends on the control statements in the program.

A circle represents each process in DFG. An arrow directed towards the circle

represents the data input and an arrow away from the circle represents data output. Data input

along with an input edge is called token. The circle is represented as node. A box (either square

or rectangle with diagonal axes vertical) represents the condition. The directed arrow from the

box determines the condition is true.

2.4.1.2 Synchronous data flow graph (SDFG):

When there are number of token (inputs along with the edge) required for processing to

generate more token (outputs along with the edge) in a single instance. the data flow is called

SDFG. Let an arc represent a buffer in memory. The arc contains one or more input data with

delays. Vertices will perform the computations. An edge between vertices(arc with an arrow for

direction) represents queue of output values form vertex and queue of input values to another

vertex.

Let X and Y be the set of instructions that started once and X generates the output values

a, b and c. Let Y get the input values a, c, i and j; and let i has a delay. The number of inputs to Y

.

13

need not equal to the number of output from X. Y gets additional inputs and it does not need all

the output from X. The i with delay is represented by a dot. Here i and j are initial token for

vertex Y. All the computations are scheduled in ADFG at each vertices. Then SDFG translate

model program into a sequential model program.

2.4.2 State machine programming model for event controlled program flow:

A state machine model is for if there are state and state transition function, which produce

a new state. A state transition function changes a state to its next state.

In a state machine model the input of the program that changes into new state and

generates the output, which may be input for next state.

2.4.2.1 Finite state machine (FSM) model:

In FSM model there are finite number of possible states in a system. Fig 1 shows the

states are modeled as FSM of a timer as there are finite number of states. Fig 2 shows how the

state of the task can be modeled as a FSM. Fig 3 shows state in a program model for ACVM

(Automatic Chocolate Vending Machine). There can be transition of the present state to next

state, which depends on the transition functions.

Fig. 1

.

14

Fig.2

Fig. 3

While modeling a process in FSM, the designer specifies the following process for each state:

i) The state with finite numbers.

ii) Finite set of inputs and their values for the state.

iii) Finite actions (computation) during the state and finite set of output with their values

and output functions are determined.

iv) State transition function for present state to next state.

The steps to model the states and interstate transition in FSM modeling are as follows:

i) A transition to a new state should be from previous state events. The event may be setting

a value of the parameters.

ii) A state can receive multiple input from other state. An event input may be asynchronous

(event input may occur at any instance of time).

.

15

iii) A state can generate multiple output. An output variables identifies the next stateon

mapping the inputs and previous state.

2.4.2.2 FSM State Table:

To design a software using FSM model, a state table can be designed to representing

every state in its rows. The following columns are made for such table:

i) Present state name or identification.

ii) Action of the state until some events.

iii) The event that cause the execution of the state transition function.

iv) Output from the output state functions.

v) Next state

vi) Expected time interval for finishing the transition to a new state after each event.

2.4.3 Modeling of Multiprocessing Systems:

2.4.3.1 Multiprocessor systems:

A large complex program can be partitioned into the task of instruction and ISRs. The

task and ISRs runs concurrently on different processor and they can communicate with each

other finally.

Partitioning the program between the various processor is very important. The problems

in modeling the processing of instruction in multi processor system are as follows:

i) Partitioning of processes, instruction sets and instructions.

ii) Concurrent processing of processes on each processor.

iii) Static scheduling by the compiler in a superscalar processor.(Each superscalar processor

has multiple processing unit in parallel).

iv) When superscalar unit are present in parallel, then two or more pipelines of instructions

are executed in parallel.

v) hardware scheduling issue. For example whether the chosen hardware will support the

scheduling algorithm.

vi) Static scheduling issue.(The performance should not be affected when the processing

actions are predictable)

vii) Synchronizing issues, it means inter-processor communication should be in definite

order.

viii) Dynamic scheduling issues, For example the performance is affected when there are

interrupts and the tasks are asynchronous.

ix) Scheduling of instructions, SIMDs (Single instruction multiple data), MIMDs (Multiple

instruction multiple data) and VLIWs (Very large instruction words) and scheduling them

for each processor.

Consider two processor PA and PB, interfaces with a memory in a system.

.

16

Case 1: Processor share the same address space through a common bus. It is called tightly

coupled between processor.

Case 2: Processor have different addresses space and shared data set. It is called loosely

coupled between processor.

Fig. 6.12 (a) and Fig. 6.12(b) shows both the cases.

.

17

2.4.3.2 Model of Unfolding SDFGs into Homogeneous SDFGs:

An SDFG model delays the number of input and outputs. When there is only one data at

the input and one at the output then an SDFG is called homogeneous SDFG (HSDFG). Fig. ***

shows modeling of SDFG. Fig 6.13 shows an HSDFG representation after unfolding the SDFG.

The dot shows that there is a delay.

For example the output of vertex X is „a‟ and input to Y is also „a‟. Then an SDFG can be unfold

into HSDFG. An SDFG can be unfolded into one or more HSDFGs. Two vertices can be

connected by one or more vertices in HSDFG. An HSDFG usually has more vertices than SDFG.

All computations are static scheduled in HSDFG vertices. Let there be a sequence of

computations that are fired at the vertices. Let precedence in a directed graph defines a

computation order which vertices are placed first. then next to next. Input from another processor

can be delayed. A SDF model program then translates into number of concurrent process using

HSDFGs.

2.4.3.3 Model of Unfolding HSDFG into APEGs:

It is a precedence of vertices in a directed graph such that there is no delays in the

vertices. If initial delays are removed from HSDFG then Acrylic Precedence Expansion Graph

(APEG) is obtained.

.

18

APEGs are important for scheduling in multiprocessor systems. An APEG has starting

input identical to the output from a previous vertex and also delaying vertices. An APEG

algorithm is to schedule that the precedence problem in algorithm remains same in original state.

APEG graph has no delays. It drives from SDFG or HSDFG.

A task level concurrent processes in IPC (inter process communication) can be modeled

using APEG. A thread(delay) running on one processor modeled as APEG can pass a control to

another processor by blocking itself.

2.4.3.4 Applications of Graphs to Multiprocessor systems: Partitioning and scheduling

When there are multiple processor in parallel, then the partitioning is done as follows:

i) There are minimum number of IPCs so that total number of IPC delays can be

minimized.

ii) There is a load balancing. Each processor has the least waiting time by sharing the

processor load.

iii) The performance cost minimizes.

Consider Fig.6.15 . At each vertices computations occur such that the delay problem

maintained. The graph of a program thus partitioned into the function or task. The following

strategies can schedule a program for running.

.

19

i) Each task is executed on assigned processor only. Instructions of four different task are

partitioned on two or more processor. These are scheduled in different periods.

ii) Each set of data is partitioned in VLIW instruction and is executed on the different

processors, which execute a same program. Partitioning is preferred using VLIW for

matrix addition process.

.

1

UNIT III

Real Time Operating Systems: Real Time Systems – Issues in Real Time Computing –

Structure of a real time system – Process – Task – Threads – Classification of Tasks – Task

Periodicity – Periodic Tasks- Sporadic Tasks – Aperiodic Tasks – Task Scheduling –

Classification of Scheduling Algorithms – Event Driven Scheduling – Rate monotonic

scheduling – Earliest deadline first scheduling. Inter Process Communication:- Shared data

problem, Use of Semaphore(s), Priority Inversion Problem and Deadlock Situations - Evaluating

operating system performance – Power optimization strategies for processes.

3.7 Classification of task:

Based on their time task can be classified into three categories. These are

 Hard real time task

 Firm real time task

 Soft real time task

3.7.1 Hard real time task:

Hard real time task are those which produce their result within a time limit or deadline.

Missing such a deadline causes the task has failed.

An example is a circuit contains several motors along with sensors and actuators. The

sensor senses various condition and issues command to the actuators. It is necessary that the

controlled is within a time limit. The inputs may be from fire-sensor, power sensor etc. A delay

in detection and reaction process may result in failure of result.

A very important feature of hard real time system is criticality. Many of the hard real

time systems are safety-critical. The medical instruments monitoring and controlling the health

of the patient is another example. In hard real time systems we have to determine the dead line

and the task should complete within a deadline.

3.7.2 Firm real time task:

A firm real time task also has its own deadline time. If the task failed to complete within

its deadline then the system does not fail altogether. Only some of the result will get affected.

.

Fig.3.1 Utility result for firm real time task

.

2

For example in video conferencing, video frames are sent over a network. Depending upon the

quality of the network some frames may arrive late or it gets lost. The overall effect is

degradation quality in the particular video.

The main feature is that any result computed after the deadline is no value and it is

discarded. As shown in Fig. 3.1 after the event has occurred, the utility of response is 100% if it

occurs within the deadline. Beyond the deadline, the utility becomes zero and the result is simply

discarded.

3.7.3 Soft real time task:

In soft real time task similarly there is a deadline. The task is expected to complete within

a deadline. If the task does not complete within the deadline, still the system runs without any

failure. Late arrival of results does not force a total discarding of task. But as time passes the

utility of the result drops as shown in fig. 3.2

Fig. 3.2 Utility result of soft real time task.

A typical example for soft real time task is the railway reservation system. It is

expected that the average time taken to process the request is small, and particular request takes

high time then still the system is working.

Another example is web-browsing. After typing URL, we expect the page to arrive soon.

But it will take longer time sometimes.

3.8 Task periodicity:

An embedded system is generally designed to perform a specific application. It normally

consists of small set of tasks. For example, a monitoring system continuously monitors its

environment and takes appropriate actions based on inputs. Such a system will generally consist

of set of task to be performed at regular interval of time. Based on this periodicity property, tasks

are classified into three categories namely

 Periodic task

 Sporadic task

 Aperiodic task

.

3

3.8.1 Periodic Tasks:

A periodic task repeats itself regularly after a certain fixed interval of time. Such a task

Ti can be characterized by four factors;φi represents the phase, di represents the deadline,

eirepresents the execution time and pi represents the periodicity.

The phase (φi) identifies the first time instant at which the task Ti occurs. For a particular

occurrence of the task, the deadline di is the time by which the task must be completed. The

actual time required to execute the task in worst case is ei, which is smaller than di.Finally pi

identifies the periodicity of the task.

Thus the task Ti can be represented by four factors <φi, di, ei, pi>. The periodic task is

represented as shown in Fig. 3.3

Fig. 3.3 Periodic task

Most of the tasks in real time embedded systems are periodic in nature.Sometimes the

deadline di is taken to be same as periodicity pi.

3.8.2 Sporadic Tasks:

A sporadic task can occur at any time instant. However, after the occurrence of first

instance, there is minimum separation after another occurrence of task. Thus a sporadic task can

be represented by three factors < di, ei, gi>. Where ei is the worst case time, gi denotes minimum

separation between two consecutive task and di represents deadline.

Examples of sporadic tasks are the interrupts which may be generated from different

conditions. Fig. 3.4 shows a sporadic task behavior.

Fig. 3.4 Sporadic task behavior.

3.8.3 Aperiodic Tasks:

Aperiodic tasks are similar to the sporadic task only in both type of task can arrive at

random time interval. In aperiodic task there is no guarantee that another instance of task will

.

4

not arrive before minimum amount of time. The deadline of this task is random and

expressed as average value or expected value.

An example of aperiodic task is railway reservation systems.

3.9 Task Scheduling:

Task scheduling is to identify the order in which the task is to be executing in a system.

Since most of the task in a real time embedded systems re periodic in nature, the real time task

scheduling algorithm mostly concentrate on periodic tasks. Sporadic and aperiodic tasks are

handled when they occur, without disturbing deadlines of the already scheduled tasks.

The quality of a schedule is identified by a term called processor utilization. The

processor utilization of a task is defined to be the fraction of time for which the processor is used

by it. Thus if the execution of task is ei and periodicity be pi then the utilization ui= .

The overall utilization is given by U = ∑ .

3.10 Classification of Scheduling Algorithms:

Based upon scheduling points, the algorithm is classified into following categories:

 Clock driven scheduling.

 Event driven scheduling.

 Hybrid scheduling.

In a clock driven scheduling, the scheduling points are the interrupts received from a periodic

clock. There are two types of clock driven schedulers:

 Table driven.

 Cyclic.

In event driven schedulers, it responds to different event in a system. They perform scheduling at

a instance when a task is finished executing. There are three types of event driven schedulers:

 Simple priority scheduling (or) Foreground background scheduling.

 Rate monotonic scheduling (RMS)

 Earliest deadline first (EDF) scheduling

3.11 Clock Driven Scheduling:

A clock driven scheduler works in synchronism with clock signal. The timer periodically

generates interrupts. On receiving an interrupt, the scheduler is processed and then takes decision

about which process to be scheduled next. Since the set of task and their periodicity values,

execution times and deadline are known already. Then it is possible to schedule the process. But,

the major drawback of this type is it is inability to handle aperiodic and sporadic task.

3.11.1 Table Driven Scheduling:

.

5

A table driven scheduler uses pre-computed table that stores the task to be run at different

clock intervals. For example, consider a set of tasks T = {T1, T2, T3} with the associated

parameter as shown in table 3.1.

Table 3.1 Example task set with parameters

Task id (Ti) Execution time (ei) Periodicity (pi)

T1 2 6

T2 1 3

T3 4 12

A possible schedule for this set of tasks can be shown in table 3.2. It is assume that at time

instant 0, all three tasks have arrived. Next instance of time T2 will arrive at time instant 3. It is

easy to see that the arrival pattern of task instance will repeat itself from 12
th

 instant of time, the

LCM of the periodicity of individual tasks.From Table 3.2.It is sufficient to store the number of

entries equal to LCM of periods of the task. This LCM determining the size of the schedule table

is called major cycle.

Time instant Task arrived Task scheduled

0 T1, T2, T3 T1

1 T1

2 T2

3 T2 T3

4 T3

5 T3

6 T1, T2 T3

7 T2

8 T1

9 T2 T1

10 T2

11 T1

12 T1, T2, T3 T1

.

.

.

.

.

.

.

.

.

.

.

.

3.11.2 Cyclic Scheduling:

A major problem in table driven scheduling is the size of the schedule table. If the LCM

of periods or execution time is a large number, we need to have so many slots in the table. In

.

6

cyclic scheduling, the major cycle (Equal to LCM of periodicity of tasks) is divided into a

number of equal sized minor cycles or frames.

One or more frames are allocated to individual tasks.The condition is shown in Fig. 3.5 in

which major cycle has been divided into four equal sized frames, F1, F2, F3, F4. Now three tasks

T1, T2 and T3 have been allotted to various frames within a major cycle.

The task T1 has been assigned by two frames F1 and F3. The tasks T2 and T3 have been

assigned to frames F2 and F4 respectively. The schedule table stores the task to be run for

different frames, thus the size of the table is reduced to be equal to the number of frames.

The frames size is chosen such that if large frame size is chosen then lesser number of

frames in a major cycle. This may leads to wastage of CPU time. The limitations behind

selection of a frame size are the following:

i. Minimize context switching:The frame size should be such that even the largest task can

complete within a frame.Otherwise multiple frames need to be allocated to a task. Since

the scheduler needs to context switching at each and every boundary of a frames. These

times are wasted.

ii. Schedule table minimization:Since the schedule table holds information for each of the

frames, a large frame size is advisable. It means lesser number of frames. Frame size

should be such that the major cycle is multiple of frames. Otherwise storing information

for one major cycle is not enough for scheduling.

iii. Satisfaction of task deadlines: This is one of the important issues in determining the

frame size. Suppose if a task arrives after the start of the frame, the task deadline may be

very close, resulting in missing the deadline for the task. The situation is shown in Fig 3.6

in which an instance of a task has arrived Δt times later than the beginning of frame k. It

can be scheduled earliest in frame (k+1). If the execution time of the task is more than the

time difference between the start time of (K+1)th frame and task deadline d, the task will

miss its deadline.

Fig. 3.6.Possibility of missing deadline.

To solve this problem, it is required that there are atleast one complete frame between the

arrival of a task and its deadline. The condition is shown in Fig. 3.7. That is,

.

7

2F – Δt ≤ di.

Fig. 3.7 Existence of full frame.

To define the dondition further, it can be shown that the minimum value of Δt is equal to

GCD(F,pi), Pi being the periodicity of the task.

3.12 Event Driven Scheduling:

A basic problem with clock driven scheduling is their inability to handle a large number

of tasks. Determining frame size is difficult. Other tasks such as sporadic task and aperiodic task

cannot be handled efficiently. So event driven scheduling is chosen. The priority may be static or

dynamic. There are three important schedulers.

 Foreground background scheduling

 Rate monotonic scheduling

 Earliest deadline first scheduling.

3.12.1 Foreground background scheduling:

This is the simplest possible priority driven scheduling strategy. In this the periodic real

time task have higher priority than sporadic task and aperiodic tasks. The periodic task runs in

foreground. A background task can run only when no foreground tasks are running.

3.12.2 Rate monotonic scheduling:

.

8

.

9

.

10

.

11

.

12

3.12.3 Earliest Deadline first scheduling:

.

13

.

14

.

15

.

1

3.13 Inter process communication:

Inter process communication (IPC) means that a process (scheduler or task or ISR)

generates some information by setting or resetting a flag value or generates an output. So that

it let another process take use of it under the control of an OS.

IPCs in a multiprocessor systems are used to generate information about certain sets

of computations finishing on one processor and allowing another processor to use it.

i) Signal

ii) Semaphore(as flag, mutex) for the inter task communication between tasks.

iii) Queue, pipe and mailbox

iv) Socket

v) Remote Procedure Call (RPC) for distributed processes

3.13.1 Shared data problem

Shared data problem can arises in a system when another higher priority task finishes

an operation and modifies the data or a variable disabling interrupt mechanism using

semaphores and using re-entrant function. Here are some solutions.

 The shared data problem can be explained as follows. Assume that several functions

share a variable.

 Inconsistency may results as a result of access of same variable by many functions.

 The following steps are the steps that, if used together, almost eliminate a likely error

in the program due to shared data problem

Use of modifier volatile with a declaration for a variable that returns from the interrupt.

Use re-entrant functions with atomic instructions in that part of a function that needs its

complete execution before it can be interrupted. This part is called the critical section.

Put a shared variable in a circular queue. A function that requires the value of this always

deletes (takes) it from queue front, and another function, which inserts (writes) the value of

this variable, always written in queue back. Now a problem can occur in case there are a large

number of functions that send the value into and get the value from the queue, and the queue

is insufficient.

Disable the interrupts before a critical section starts executing and enable the interrupts on its

completion. An interrupt, even if of higher priority than the present critical function, gets

disabled.

3.13.2 Uses of Semaphore:

An RTOS provides the IPC function for creating and using semaphores as event flags

Mutex resource keys (for resource locking and unlocking into process) and as counting

semaphore.

 The semaphore as event flag facilitates inter-task communication for messaging

(through a scheduler) a waiting task M to the running task N or at an ISR.

 A semaphore token generated at one place is usable at another place. Before entering

critical section at the running place, a flag, Sem_NTakenFlag becomes ―true‖.

 Mutex gives a resource key and facilitates the communication between the task and

scheduler. The key is to get an access to a resource.

.

2

 It solves the shared data problem (shared resource problem). It works as a resource

locking mechanism it the access to certain resources is blocked.

 The blocking period of a task during the period when other tasks have taken the

semaphore can be limited by defining time out value.

 Using the key, in a similar manner, a time consuming ISR can also be blocked after a

present time interval time-out. The ISR takes a semaphore and releases it after the

time-out to let the other ISR run.

 A spin lock does not let a running task may be blocked instantly, but first successively

tries decreasing the trial periods before finally blocking a task.

The counting semaphore facilitates multiple inter task communications.

3.13.3 Priority Inversion Problem and Deadlock Situations:

Let the priority of the task be in an order such that task I is of highest priority, task J is

of lower and task k is the lowest. Assume that only task I and K shares the data and J does not

share the data with K. Also let tasks I and K alone share a semaphore and not J.

At any instance t0, suppose task K shares semaphore, the OS does not blocks task J

and I. This is because only task I and K shares the data and J does not shares the data

The problem that arises on selective sharing between K and I.

At next instance of time t1, let task K began to ready to run.

At next instance of time t2, task I began to ready on an interrupt. At this instance, task

K is in critical section. So, task I cannot start this instance due to K being in critical section.

Now, at next instance t3, some event causes the unblocked higher than the K priority task J to

run.

After time t3, running task J does not allow the higher priority task J to run. This is

because even though K is not running and thus unable to unlock the task I.

Further the task J is in the same condition and does not allow task I to run.

Thus J action is now higher priority than I. This brings K to enter the critical section.

The priority information of another higher priority task I should have also been

blocked by K temporarily. if K waits for I , but J does not wait. So J runs.

This situation is called priority inversion problem

Thus the use of MUTEX solves the deadlock problem in certain OSes.

.

3

3.14 Evaluating operating system performance:

The scheduling policy does not tell us about the performance of a real system running

processes. Our analysis of scheduling policies makes some simplifying assumptions:

 We have assumed that context switches require zero time. Although it is often

reasonable to neglect context switch time when it is much smaller than the process

execution time, context switching can add significant delay in some cases.

 We have assumed that we know the execution time of the processes. In fact, that

program time is not a single number, but can be bounded by worst-case and best-case

execution times.

 We probably determined worst-case or best-case times for the processes in isolation.

But in fact they interact with each other in the cache. Cache conflicts among

processes can drastically degrade process execution time.

The zero-time context switch assumption used in the analysis of RMS is not accurate, we

must execute instructions to save and restore context, and we must execute additional

instructions to implement the scheduling policy. On the other hand, context switching can

be implemented efficiently context switching need not kill performance. The effects of

nonzero context switching time must be carefully analyzed in the context of a particular

implementation to be sure that the predictions of an ideal scheduling policy are

sufficiently accurate.

The following example shows that context switching can, in fact, cause a system to miss a

deadline.

First, let us try to find a schedule assuming that context switching time is zero. Following is a

feasible schedule for a sequence of data arrivals that meets all the deadlines:

Now let us assume that the total time to initiate a process, including context switching and

scheduling policy evaluation, is one time unit. It is easy to see that there is no feasible

schedule for the above release time sequence, since we require a total of

.

4

2TP1 + TP2 =2 x (1 + 3) + (1 +3) =11 time units to execute one period of P2 and two periods

of P1.

Li and Wolf [Li99] developed a model for estimating the performance of multiple processes

sharing a cache. In the model, some processes can be given reservations in the cache, such

that only a particular process can inhabit a reserved section of the cache; other processes are

left to share the cache. We generally want to use cache partitions only for performance-

critical processes since cache reservations are wasteful of limited cache space. Performance is

estimated by constructing a schedule, taking into account not just execution time of the

processes but also the state of the cache. Each process in the shared section of the cache is

modelled by a binary variable: 1 if present in the cache and 0 if not. Each process is also

characterized by three total execution times: assuming no caching, with typical caching, and

with all code always resident in the cache.The always-resident time is unrealistically

optimistic, but it can be used to find a lower bound on the required schedule time. During

construction of the schedule, we can look at the current cache state to see whether the no-

cache or typical-caching execution time should be used at this point in the schedule. We can

also update the cache state if the cache is needed for another process. Although this model is

simple, it provides much more realistic performance estimates than assuming the cache either

is nonexistent or is perfect.

Another example shows how cache management can improve CPU utilization.

Each process uses half the cache, so only two processes can be in the cache at the same time.

Appearing below is a first schedule that uses a least-recently-used cache replacement policy

on a process-by-process basis.

In the first iteration, we must fill up the cache, but even in subsequent iterations, competition

among all three processes ensures that a process is never in the cache when it starts to

execute. As a result, we must always use the worst-case execution time.

Another schedule in which we have reserved half the cache for P1 is shown below.

This leaves P2 and P3 to fight over the other half of the cache.

.

5

3.15 Power optimization strategies for processes

A power management policy is a strategy for determining when to perform certain

power management operations. A power management policy in general examines the state of

the system to determine when to take actions. However, the overall strategy embodied in the

policy should be designed based on the characteristics of the static and dynamic power

management mechanisms.

Going into a low-power mode takes time; generally, the more that is shut off, the

longer the delay incurred during restart. Because power-down and power-up are not free,

modes should be changed carefully. Determining when to switch into and out of a power-up

mode requires an analysis of the overall system activity.

 Avoiding a power-down mode can cost unnecessary power.

 Powering down too soon can cause severe performance penalties

A straightforward method is to power up the system when a request is received. This

works as long as the delay in handling the request is acceptable. A more sophisticated

technique is predictive shutdown. The goal is to predict when the next request will be made

and to start the system just before that time, saving the requestor the start-up time. In general,

predictive shutdown techniques are probabilistic. They make guesses about activity patterns

based on a probabilistic model of expected behavior. Because they rely on statistics, they may

not always correctly guess the time of the next activity. This can cause two types of

problems:

 The requestor may have to wait for an activity period. In the worst case, the requestor

may not make a deadline due to the delay incurred by system start-up.

 The system may restart itself when no activity is imminent. As a result, the system

will waste power.

A very simple technique is to use fixed times. For instance, if the system does not receive

inputs during an interval of length Ton, it shuts down; a powered-down system waits for a

period Toff before returning to the power-on mode. The choice of Toff and Ton must be

determined by experimentation.

The observed idle time (Toff) of a graphics terminal versus the immediately preceding

active time (Ton).The result was an L-shaped distribution as illustrated in Fig. In this

distribution, the idle period after a long active period is usually very short, and the length of

the idle period after a short active period is uniformly distributed. Based on this distribution,

they proposed a shut down threshold that depended on the length of the last active period.

They shutdown when the active period length was below a threshold, putting the system in

the vertical portion of the L distribution.

.

6

The Advanced Configuration and Power Interface (ACPI) is an open industry standard for

power management services. It is designed to be compatible with a wide variety of OSs. It

was targeted initially to PCs. The role of ACPI in the system is illustrated in Figure

6.18.ACPI provides some basic power management facilities and abstracts the hardware

layer, the OS has its own power management module that determines the policy, and the OS

then uses ACPI to send the required controls to the hardware and to observe the hardware‘s

state as input to the power manager.

ACPI supports the following five basic global power states:

 G3, the mechanical off state, in which the system consumes no power.

 G2, the soft off state, which requires a full OS reboot to restore the machine to

working condition. This state has four substrates:

i) S1, a low wake-up latency state with no loss of system context;

ii) S2, a low wake-up latency state with a loss of CPU and system cache state;

iii) S3, a low wake-up latency state in which all the system except for main

memory is lost;

iv) S4, the lowest-power sleeping state, in which all devices are turned off.

 G1, the sleeping state, in which the system appears to be off and the time required to

return to working condition is inversely proportional to power consumption.

 G0, the working state, in which the system is fully usable.

 The legacy state, in which the system does not comply with ACPI.

.

7

STRUCTURE OF A REAL TIME SYSTEM

The state of the controlled process and of the operating environment (e.g pressure,

temperature, speed and altitude) is acquired by sensors, which provides inputs to the controller,the

real time computer.The Data from each sensor depends on how quickly the measured parameters can

change,it is usually less than 1kb/second.

.

Process Concepts

A process consists of executable program (codes), state of which is controlled by OS the state

during running of a process represented by process-

status (running, blocked or finished), process

structure—its data, objects and resources, and process

control block (PCB).

Runs when it is scheduled to run by the OS

(kernel)

OS gives the control of the CPU on a

process‗s request (system call).

Runs by executing the instructions and the

continuous changes of its state takes Place as the

program counter (PC) changes.

.

8

• Process is that executing unit of computation, which is controlled by some process (of the

OS) for a scheduling mechanism that lets it execute on the CPU and by some process at OS for a

resource management mechanism that lets it use the system memory and other system resources such

as network, file, display or printer.

Application program can be said to consist of number of processes

Example - Mobile Phone Device embedded software

 Software highly complex.

 Number of functions, ISRs, processes threads, multiple physical and virtual device

drivers, and several program objects that must be concurrently processed on a single

processor.

 Voice encoding and convoluting process─ the device captures the spoken words through

a speaker and generates the digital signals after analog to digital conversion, the digits are

encoded and convoluted using a CODEC,

 Modulating process,

 Display process,

 GUIs (graphic user interfaces), and

 Key input process ─ for provisioning of the user interrupts

Process Control Block

 A data structure having the information using which the OS controls the Process

state.

 Stores in protected memory area of the kernel.

 Consists of the information about the process state

Information about the process state at Process Control Block…

Process ID,

o process priority,

o Parent process (if any),

o child process (if any), and

o address to the next process PCB which will run,

o allocated program memory address blocks in physical memory and in secondary

virtual) memory for the process-codes,

o allocated process-specific data address blocks

o allocated process-heap (data generated during the program run) addresses,

o allocated process-stack addresses for the functions called during running of the

process,

o allocated addresses of CPU register-save area as a process context represents by CPU

registers, which include the program counter and stack pointer

.

9

o allocated addresses of CPU register-save area as a process context [Register-contents

(define process context) include the program counter and stack pointer contents]

o process-state signal mask [when mask is set to 0 (active) the process is inhibited from

running and when reset to 1, the process is allowed to run],

o Signals (messages) dispatch table [process IPC functions],

o OS allocated resources‗ descriptors (for example, file descriptors for open files, device

descriptors for open (accessible) devices, device-buffer addresses and status, socket

descriptor for open socket), and Security restrictions and permissions.

Context

o Context loads into the CPU registers from memory when process starts running, and the

registers save at the addresses of register-save area on the context switch to another process

o The present CPU registers, which include program counter and stack pointer are called

context

o When context saves on the PCB pointed process-stack and register-save area addresses, then

the running process stops.

o Other process context now loads and that process runs─ This means that the context has

switched.

Threads and Tasks

Thread Concepts

o A thread consists of executable

program (codes), state of which is controlled

by OS,

o The state information─ thread-status

(running, blocked, or finished), thread

structure—its data, objects and a subset of the

process resources, and thread-stack.

Considered a lightweight process and a process

level controlled entity.[Light weight means its

running does not depend on system resources] .

Process… heavyweight

• Process considered as a heavyweight process and a kernel-level controlled entity.

.

10

• Process thus can have codes in secondary memory from which the pages can be swapped

into the physical primary memory during running of the process. [Heavy weight means its

running may depend on system resources]

• May have process structure with the virtual memory map; file descriptors, user–ID, etc.

• Can have multiple threads, which share the process structure thread

• A process or sub-process within a process that has its own program counter, its own stack

pointer and stack, its own priority parameter for its scheduling by a thread scheduler

• Its variables that load into the processor registers on context switching.

• Has own signal mask at the kernel. Thread‗s signal mask

• When unmasked lets the thread activate and run.

• When masked, the thread is put into a queue of pending threads.

Thread‘s Stack

• A thread stack is at a memory address block allocated by the OS.

Application program can be said to consist of number of threads or Processes:

Multiprocessing OS

• A multiprocessing OS runs more than one processes.

• When a process consists of multiple threads, it is called multithreaded process.

• A thread can be considered as daughter process.

• A thread defines a minimum unit of a multithreaded process that an OS schedules On to the CPU

and allocates other system resources.

Thread parameters

• Each thread has independent parameters ID, priority, program counter, stack pointer, CPU

registers and its present status.

• Thread states─ starting, running, blocked (sleep) and finished

Thread’s stack

• When a function in a thread in OS is called, the calling function state is placed on the stack

top.

• When there is return the calling function takes the state information from the stack top

• A data structure having the information using which the OS controls the thread state.

• Stores in protected memory area of the kernel.

• Consists of the information about the thread state

Thread and Task

• Thread is a concept used in Java or Unix.

• A thread can either be a sub-process within a process or a process within an application

program.

• To schedule the multiple processes, there is the concept of forming thread groups and thread

libraries.

.

11

• A task is a process and the OS does the multitasking.

• Task is a kernel-controlled entity while thread is a process-controlled entity.

• A thread does not call another thread to run. A task also does not directly call another task to

run.

• Multithreading needs a thread-scheduler. Multitasking also needs a task-scheduler.

• There may or may not be task groups and task libraries in a given OS

Task and Task States

Task Concepts

• An application program can also be said to be a program consisting of the tasks and task

behaviors in various states that are controlled by OS.

• A task is like a process or thread in an OS.

• Task─ term used for the process in the RTOSes for the embedded systems. For example,

VxWorks and μCOS-II are the RTOSes, which use the term task.

• A task consists of executable program (codes), state of which is controlled by OS, the state

during running of a task represented by information of process status (running, blocked, or

finished),process-structure—its data, objects and resources, and task control block (PCB).

• Runs when it is scheduled to run by the OS (kernel), which gives the control of the CPU on

a task request (system call) or a message.

• Runs by executing the instructions and the continuous changes of its state takes place as the

program counter (PC) changes.

• Task is that executing unit of

computation, which is controlled by

some process at the OS scheduling

mechanism, which lets it execute on

the CPU and by some process at OS

for a resource-management

mechanism that lets it use the system

memory and other system-resources

such as network, file, display or

printer.

• A task─ an independent process.

• No task can call another task. [It is unlike a C (or C++) function, which can call another

function.]

• The task─ can send signal (s) or message(s) that can let another task run.

.

12

• The OS can only block a running task and let another task gain access of CPU to run the

servicing codes

Task States

(i) Idle state [Not attached or not registered]

(ii) Ready State [Attached or registered]

(iii) Running state

(iv) Blocked (waiting) state

(v) Delayed for a preset period

Idle (created) state

• The task has been created and memory allotted to its

structure however, it is not ready and is not schedulable by

kernel.

Ready (Active) State

• The created task is ready and is schedulable by the kernel but not running at present as

another higher priority task is scheduled to run and gets the system resources at this instance.

Running state

• Executing the codes and getting the system resources at this instance. It will run till it needs

some IPC (input) or wait for an event or till it gets pre-empted by another higher priority task

than this one.

Blocked (waiting) state

• Execution of task codes suspends after saving the needed parameters into its Context. It

needs some IPC (input) or it needs to wait for an event or wait for higher priority task to block

to enable running after blocking.

Deleted (finished) state

• Deleted Task─ The created task has memory de allotted to its structure. It frees the memory.

Task has to be re-created.

.

1

UNIT IV

Reliability and Clock Synchronization: Introduction to Reliability Evaluation Techniques –

Reliability Models for Hardware Redundancy – Permanent faults only - Transient faults.

Introduction to clock synchronization – A Non-Fault-Tolerant Synchronization Algorithm -

Fault-Tolerant Synchronization in Hardware – Completely connected zero propagation time

system – Sparse interconnection zero propagation time system –Fault tolerant analysis with

Signal Propagation delays.

4.1 Introduction to reliability evaluation technique:

Suppose we have a system that is supposed to fail on the average for once in every

10
10

 hours. To validate this experiment, we have to run this system for a millions of years. To

overcome this difficulty, we use mathematical model of reliability. We construct a

mathematical model of real time system and solve it. There are two reliable models

 Hardware reliability model

 Software reliability model

(i) Obtaining parameter value:

The first step in developing model is to decide the input parameters. A model should

always placed on parameters that can be either accurately measured or estimated.

 Obtaining device failure rate:

There are two ways to obtain device failure rate

(a) Collecting field data

(b) Life cycle testing in laboratory

Collecting field data is more realistic, Since it represent the failure rate when the

device is used in normal operating condition.

Life cycle testing is used only when the field data of device is not known.

In laboratory, the devices are subjected to “accelerated testing”. That is to gather the data, we

stress the device so that their failure rare can increase by some factor. the most common

accelerant is temperature.

The acceleration factor is given by

R(t) = Ae
−Ea

KT .

Where A is constant

T is temperature

Ea is activation energy and depends on logic family used

K is Boltzmann constant (0.8625 X 10
-4

 eV/ K).

At temperature T1, the device failure rate can be

.

2

𝑅(T1)

𝑅(T2)
 = 𝑒

−𝐸𝑎

𝐾

1

𝑇1
−

1

𝑇2 .

We can see that for testing for an hour at 100
o
 C is equivalent to testing for almost 250 hours

at 25
o
 C.

(ii) Measuring Error propagation time:

To measure how quickly an error can propagate through, we use fault injection.

Special purpose hardware is used to simulate a fault on a selected line. The status of

related line is monitored by using logic analyzers to determine the flow of error

propagation.

The flow of error can be expressed by directed graph. For example if an error originates

(starts) at A and propagates to B and C. This error creates an error in output of these

processor and output of C causes error in output of D. Finally E receives error input from B

and D produce error result.

Such a graph along with time taken by each module to produce the error in response to error

input, can be used to compute error propagation time from output of A to output of E.

.

3

The task schedule for processor A and B as Shown in Fig.***. Task Ai and Bi are run on A

and B respectively. The A1 output is error and used by the task B2. The time for propagation

of the error from the A1 output to the B2 output depends on when B2 completes execution.

4.2 Reliability model for Hardware Redundancy:

The most difficult problem in reliability model is to keep the complexity of model is

small. when the parameters of model are exponentially distributed, there is no such

complexity problem. But to accurately model with parameters that observe other distribution

usually result in complexity for smaller systems.

 Current technique to reduce the complexity is state aggregation. State aggregation

is multiple states are grouped together and treated as single state.

 In decomposition, the overall model is broken into sub model and each sub model is

interconnected between them.

In order to model the reliability of a system, we have to know reliability of each of its

components and measure the failure of each component in overall systems.

.

4

.

5

4.2.1 Permanent Faults only:

(a) Series systems:

 The components in a set is said to be in series from a reliability if they must all work

then only the entire system will meet a success. If any one component meet failure

then the entire system will get fail.

.

6

(b) Parallel Systems:

The components in a set is said to be in parallel from a reliability if any one of

them may work then the entire system will meet a success. If all component meet

failure then the entire system will get fail.

.

7

(c) Series parallel Systems:

Solution:

.

8

4.3 Introduction to clock synchronization:

Clock: Clock ci is a mapping real time to system clock time. That is at real time t, ci(t) is

the time hold by clock ci.

The clock of a computer is accurate to the clock of the real world. The clock should

not gain or loss time at too high rate

The drift rate is the rate at which the clock can gain or loss time. The drift rate is

given by

.

9

The clock in the computer are square wave generator and time is expressed in

multiple of square wave periods. Simplest digital clock is odd number of invertors as

shown below. The propagation time for gate vary from gate to gate.

.

10

An another approach is to use feedback loop as an amplifier. If the gain of loop is at least

one and amplifier is not saturated , then the output is sine wave output. If gain of loop is

atleast one and amplifier is saturated , then the output is square wave output. It is better to

use quartz crystal as filter.

Synchronization:

4.4 Non fault tolerant synchronisation algorithm:

 At regular interval of T, each clock sends out its timing signals to the other clocks.

 A clock compares its own timing signals with those it receives from the others and adjusts

itself appropriately.

 Clock c1 will slow itself down, clock c3 will speed itself up so that their next clock ticks will

align as closely as possible with the next clock tick of clock c2.

 Adjust the clocks so that the next comparison point, they try to be aligned.

 The signal propagation times are zero

 The skew becomes worse when the propagation times are not exactly known.

C1 can deliver its next clock tick in the r-interval

𝐼1 = [1 − 𝜌 𝑇 + 𝑡2 +𝜇2,1 − 𝑥, 1 + 𝜌 𝑇 + 𝑡2 + 𝜇2,1 − 𝑥]

C3 delivers its next clock tick in the r-interval

𝐼3 = [1 − 𝜌 𝑇 + 𝑡2 + 𝜇2,3 − 𝑥, 1 + 𝜌 𝑇 + 𝑡2 + 𝜇2,3 − 𝑥]

Clock c2 delivers its next clock tick in the r-interval

𝐼2 = [1 − 𝜌 𝑇 + 𝑡2 , (1 + 𝜌)T + 𝑡2]

.

11

The clock skew is given by

[(1+𝜌)T + 𝑡2 + 𝜇𝑚𝑎𝑥 − 𝑥] − 1 − 𝜌 𝑇 + 𝑡2 + 𝜇𝑚𝑖𝑛 − 𝑥 = 2𝜌𝑇 + 𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛

 An alternative to mutual synchronization is to use a master-slave structure.

 The slave clocks try to align themselves to the master clock.

 Sending a read-clock request to the master, which responds with a message containing its

clock time when it received this request.

T +
𝑟(1+𝜌)

2
−𝜇𝑚𝑖𝑛

The error in making this estimate

𝑟(1 + 𝜌)

2
− 𝜇𝑚𝑖𝑛

The duration of r, when measured, may be as great as (1+𝜌)r

𝐼′ = [𝑇 + 𝜇𝑚𝑖𝑛 1 − 𝜌 ,𝑇 + 𝑟 1 + 𝜌 − 𝜇𝑚𝑖𝑛 1 + 𝜌]

The estimate of the time may be

T +
𝑟(1+𝜌)2

2
− 𝜇𝑚𝑖𝑛

The estimate error is thus upper-bounded by

𝑟(1 + 𝜌)2

2
− 𝜇𝑚𝑖𝑛 ≈

𝑟(1 + 2𝜌)

2
− 𝜇𝑚𝑖𝑛

If the messages between master and slave clocks pass over a network that is shared by other traffic,

The slave clock can try to limit the estimation error by simply discarding all the messages

4.5 Fault tolerant synchronisation algorithm in hardware:

 To synchronize in hardware, we can use phase-locked loops.

 The output of the oscillator with an oscillatory signal input.

 The comparator puts out a signal that is proportional to the difference between the phase of

the input and that of the oscillator.

 Filter is used to modify the frequency of a voltage controlled oscillator(VCO)

𝑣𝑐 𝑡 = 𝑘𝑐{∅𝑖 𝑡 − ∅𝑟 𝑡 }

∅𝒊 𝒕 the output voltage of the comparator at any time t proportional to the difference between the

phase of the signal input

∅𝒓(𝒕) VCO

.

12

𝑘𝑐 is the comparator gain

The Laplace transform of the output is given by

𝑣𝑐 𝑠 = 𝑘𝑐{∅𝑖 𝑠 − ∅𝑟 𝑠 }

The output of the filter has the laplace transform

𝑉𝑉𝐶𝑂 𝑠 = 𝑉𝑐 𝑠 𝐿(𝑠)

The output of the filter is applied to the VCO. The frequency of the ideal VCO signal is given by

𝜔 𝑡 = 𝜔𝑐 + 𝑘𝑉𝐶𝑂𝑣𝑉𝐶𝑂(𝑡)

Limited to the range [𝜔𝑚𝑖𝑛 ,𝜔𝑚𝑎𝑥]. 𝐾𝑉𝐶𝑂 is called the VCO gain factor.

The laplace transform of the VCO frequency is given by

𝛺𝑟 𝑠 =
𝜔𝑐

𝑠
+ 𝐾𝑉𝐶𝑂𝑉𝑉𝐶𝑂(𝑠)

The phase of a signal is the integral of its frequency,

∅𝑟 𝑠 =
𝛺(𝑠)

𝑠
=

𝜔𝑐

𝑠2
+

𝐾𝑉𝐶𝑂𝑉𝑉𝐶𝑂(𝑠)

𝑠

Solving these equations,

∅𝑟 𝑠 =
𝜔𝑐

𝑠(𝑠 + 𝐾𝑐𝐾𝑉𝐶𝑂𝐿(𝑠)
+

𝐾𝑐𝐾𝑣𝑐𝑜𝐿(𝑠)

𝑠 + 𝐾𝑐𝐾𝑣𝑐𝑜𝐿(𝑠)
 ∅𝑖(𝑠)

Laplace transform of the tracking error between the input phase and the VCO output.

∅𝑖 𝑠 − ∅𝑟 𝑠 =
𝑠𝛩𝑖(𝑠)

𝑠 + 𝐾𝑐𝐾𝑉𝐶𝑂𝐿(𝑠)

4.5.1 Completely connected, zero propagation-time system

PLL has ability to track the input signal and thus synchronise the output with respect to input signal.

Thus if we can define a reference input as a function of clock, we can synchronise the clock.

Fig shows the structure of each of the clock. Every clock is connected by dedicated line to every other

clock in the system. We assume to begin with signal propagation time are zero.

 Each clock has a reference circuit (accept as input the clock ticks)

 Generates a reference signal to which its VCO tries to align itself.

.

13

 To make the reference signal equal to the median of the incoming signal

We can define ordered partition G1, G2 of the good clocks with respect to K
th

 clock tick. We group

good clock into sets of G1 and G2.

C1:- If all the clocks in G1 use the reference signal that is faster than any clock in G2. Then there must

be at least one clock in G2 used reference either slower clock in G1.

C2:- If good clock “X” uses as the reference signal of faulty clock “Y” , then there must exists non

faulty clock Z1 and Z2. Z1may be faster than or slower than Z2.

Condition of correctness C1, C2

Case (i) 𝑚𝑎𝑥𝑥∈𝐺1𝑓𝑝 𝑥 𝑁,𝑚 ≤ 𝐺1 + 𝑚:

If clock in G1 faster than G2 clock, no reference to any clock outside G1

Case (ii) 𝑚𝑖𝑛𝑦∈𝐺2𝑓𝑝(𝑦) 𝑁,𝑚 ≥ 𝐺1 + 1:

Similar to case(i) this requires that there be at least one clock in G1 whose reference is drawn from

G2.

Case(iii) 𝑚𝑎𝑥𝑥∈𝐺1𝑓𝑝(𝑥) 𝑁,𝑚 >||G1|| + m:

No potential exists for the formation of nonoverlapping cliques.

Conditions of correctness thus boil down to the following requirement

 If 𝑚𝑎𝑥𝑥∈𝐺1𝑓𝑝(𝑥) 𝑁,𝑚 ≤ 𝐺1 + 𝑚, then 𝑚𝑖𝑛𝑦∈𝐺2𝑓𝑝(𝑦) 𝑁,𝑚 ≤ 𝐺1 .

 Otherwise, if 𝑚𝑖𝑛𝑦∈𝐺2𝑓𝑝(𝑦) 𝑁,𝑚 ≥ 𝐺1 + 1 , then 𝑚𝑎𝑥𝑥∈𝐺1𝑓𝑝(𝑥) 𝑁,𝑚 ≥ 𝐺1 + 𝑚 +

1

.

14

Assumptions:

 That the clocks form a completely connected structure, with each clock having a dedicated

line to every other clock

 That the signal propagation times are zero.

 4.5.2 Sparse-Interconnection, Zero-propagation times system

 Instead of a completely connected structure, clocks organized into multiple clusters.

 Each clock in a cluster is connected by a dedicated link to every other clock in that cluster.

 𝐶𝐿𝑖 𝑎𝑛𝑑 𝐶𝐿𝑗 pair of clusters

 Assume signal propagation times are zero

 Each clock can run the phase-locked algorithm

 Failures can increase the skew between clusters.

3m – M + 2≤ 𝑝𝑖 ≤ 2𝑀− 2, for i = 1,2,......,M,

M≥ 𝑚 + 1

For every pair of clusters, there will either be a direct link between two clusters or a link through a

third cluster. The skew is no greater than 3𝛿.

.

15

Analysis

 𝐼𝑁𝑙 = {𝐶𝐿𝑠 ∶ 𝑠, 𝑙 𝑖𝑠 𝑛𝑜𝑛𝑓𝑎𝑢𝑙𝑡𝑦}

 𝐼𝐹𝑙 = {𝐶𝐿𝑠 ∶ 𝑠, 𝑙 𝑖𝑠 𝑓𝑎𝑢𝑙𝑡𝑦}

 𝑂𝑁𝑙 = 𝐶𝐿𝑠: 𝑙, 𝑠 𝑖𝑠 𝑛𝑜𝑛𝑓𝑎𝑢𝑙𝑡𝑦

 𝑂𝐹𝑙 = {𝐶𝐿𝑠 : (l, s) is faulty}

4.5.3 Signal propagation delays

 Assume signal propagation times are negligible

 It is true if the geographical extent of the system is not large.

 ∅ is the nominal clock frequency and 𝜃 is the minimum phase difference

Signal propagation delays are negligible if they are less than 𝜃 2𝜋∅

If propagation times are much greater than 𝜃 2𝜋∅ , design the system to compensate for them.

Large variation in the propagation time between the various clock pairs, failure to correct(result in

the formation of multiple non overlapping cliques).

If the connections are point to point and dedicated to transmitting clock pulses, possible to

estimate propagation delays.

𝑐𝑘 𝑖 − 𝑐𝑘𝑗 +
𝑑 𝑖,𝑗 − 𝑑(𝑗 ,𝑖)

2

The output of the average approximations the correct skew.

.

1

UNIT V

Low Power Embedded System Design: Sources of Power Dissipation–Power Reduction

Techniques–Algorithmic Power Minimization–Architectural Power Minimization– Logic and

Circuit Level Power Minimization – Control Logic Power Minimization – System Level Power

Management.

.

2

.

3

.

4

11.2.2 Architectural power minimization:

The architectural power minimization generally used power saving purposes. It reduces

unwanted circuit that present in the system. The two generic technique to save power are as follows:

 Parallelism

 Pipelining

.

5

Parallelism:

Assume that the 16 x 16 multiplier, the power supply can be reduced from vref to vref/1.83.

.

6

Pipelining:

The hardware between the pipeline stages is reduced then the reference voltage Vref can

be reduced to Vnew to maintain the same worst case delay. For example, let a 50MHz multiplier

is broken into two equal parts as shown below. The delay between the pipeline stages can be

remained at 50MHz when the voltage Vnew is equal to Vref/1.83.

Retiming for pipeline design

11.2.3 Logic and Circuit Level Power Reduction Techniques

Transistor Sizing

Transistor sizing reduces the width of transistors to reduce their dynamic power

consumption, but reducing the width also increases the transistor’s delay; hence the transistors

that lie away from the critical paths of a circuit are usually the best suited for this technique.

.

7

Algorithms for applying this technique usually associate with each transistor a tolerable delay,

which tries to scale each transistor to be as small as possible without violating its tolerable delay.

Transistor Reordering

The arrangement of transistors in a circuit affects energy consumption. Figure shows two

possible implementations of the same circuit that differ only in their placement of the transistors

marked A and B. Suppose that the input to transistor A is 1, for B is 1 and for C is 0. Then

transistors A and B will be on, allowing current from 𝑉𝑑𝑑 to flow through them and charge the

capacitors C1 and C2.

Now, suppose the inputs change and that A’s input becomes 0, and for C it is 1. Then A will be

off while B and C will be on. Now the implementations in (a) and (b) will differ in the amounts

of switching activity. In (a), current from ground will flow through B and C, discharging both the

capacitors C1 and C2. However, in (b), the current from ground will only flow through C2 it will

not pass through A since A is turned off. Thus it will only discharge the capacitor C2, rather than

both C1 and C2 as in part (a). Thus the implementation in (b) will consume less power than that

in (a). Transistor reordering rearranges transistors to minimize their switching activity.

Logic Gates Restructuring

There are many ways to connect a circuit using logic gates but the way the gates and their

signals are connected affects power consumption. Consider two implementations of a four-input

AND gate shown in Figure 3.2 with signal probabilities (1 or 0) at each of the primary inputs

(A,B,C,D) with the transition probabilities (0→1) for each output (W, X, F, Y, Z). If each input

has an equal probability of being a 1 or a 0, then the calculation shows that implementation (a) is

likely to switch less than the implementation (b). This is because each gate in (a) has a lower

probability of having a 0→1transition. In (b) some gates may share a parent (in the tree

topology) instead of being directly connected together. These gates could have the same

transition probabilities. The circuit (a) do not necessarily save more energy than Circuit (b).

.

8

There may be many other issues such as glitches or spurious transitions which occur when a gate

does not receive all of its inputs at the same time.

.

9

.

10

.

11

	Unit 3
	Unit 3 cont....

