
1

VLSI Design – Notes

Unit-1

Basic Introduction:

 CMOS or Complementary Metal Oxide Semiconductor is a combination of NMOS and PMOS transistors.

NMOS is an N-type Metal Oxide Semiconductor, and PMOS is a P-type Metal Oxide Semiconductor. N-type is a

type of pentavalent impurities, and P-type is a type of trivalent impurities doped on the semiconductor. The

three terminals of the transistors are Gate (G), Source (S), and Drain (D). The doping of p-type/n-type is applied

on the D and S terminals.

Basis of
Difference

CMOS Technology NMOS Technology

Full form CMOS stands for Complementary Metal
Oxide Semiconductor.

NMOS stands for N-channel Metal Oxide
Semiconductor.

Definition A metal oxide semiconductor technology
that combines both PMOS and NMOS
technologies is called CMOS.

A metal oxide semiconductor technology
that uses N-type channel between source
and drain terminals is called NMOS.

Operation The CMOS performs its operation by
employing symmetrical as well as
complementary pairs of P-type and N-type
MOSFETs.

The NMOS performs its operation by
making an inversion layer within a Ptype
substrate.

Logic level The logic level of CMOS is 0 V / 5 V. The logic level of NMOS depends on the β
ratio as well as noise margins.

Layout CMOS has more regular layout. NMOS has irregular layout.

Power
dissipation

In case of CMOS, the power dissipation is
zero, when it is in standby mode.

The power dissipates in NMOS, when its
output is zero (0).

Power supply For CMOS, the power supply may vary from
1.5 V to 15 V.

For NMOS, the power supply is fixed
depending on VDD.

Packing density CMOS has less packing density. Where, it
requires 2N devices for N inputs.

The packing density of NMOS is high. It
requires (N+1) devices for N inputs.

Load to drive
ratio

CMOS has load / drive ratio 1:1 or 2:1. NMOS has load / drive ratio 4:1.

Transmission The transmission gate of CMOS allows to The transmission gate of NMOS allows to

2

gate pass both ‘0’ and ‘1’ logic well. pass only the logic ‘0’ well. If it pass logic
‘1’, then it will have VT drop.

Static power
consumption

CMOS consumes low static power. NMOS consumes relatively more static
power.

Noise immunity CMOS has high noise immunity. NMOS has comparatively low noise
immunity.

Applications The CMOS is used to design various types of
digital logic circuits, microprocessors,
microcontrollers, memories, etc.

NMOS is used to design several types of
digital logic circuits such as
microprocessors, memory chips, and
many other MOS devices.

1. NMOS Fabrication

The doping on the NMOS will be a Pentavalent (five valence electrons) impurity, such as boron and antimony.

It has a p-substrate on which the n-type channel is created. As the name implies, the majority carriers

participating in the current are electrons. The movement of electrons is fast as compared to the holes. Thus,

NMOS is faster than the PMOS.

The NMOS fabrication includes eight steps, which are listed as follows:

Step 1: Processing the substrate

The first step is to create a p-type substrate. The p-type has trivalent impurities (three valence electrons), such

as boron with a concentration upto 1016/cm3. A pure thin film of the silicon wafer is selected on which the p-

type impurities are applied as crystals. The diameter of the wafer can be upto 0.15m or 150mm. The chosen

wafer material is silicon because it is a clean and high-quality semiconductor material preferred for fabrication.

Step 2: Silicon dioxide layer

Silicon dioxide is made up of two materials silicon (Si) and oxygen (O2). It is also known as oxide. Silicon has a

stable structure and is considered as the most abundant metal available on the Earth. It is combined with

oxygen that acts as an insulator or conductor under various conditions.

SiO2 layer is grown over the surface of the p-type substrate to prevent it from external factors. It also acts as a

barrier to the dopants applied on the layer during the processing. The silicon dioxide thickness is very small,

around 0.000001m or 1um.

3

Step 3: Photoresist material is applied on the SiO2 layer

The silicon dioxide layer is covered with the photoresist material. It is a light-sensitive material that forms the

coating over the surface of the SiO2 layer. It is useful in reducing the size of the transistors.

After the photoresist is applied on the silicon dioxide layer, a mask with the desired pattern is used as a

medium to expose UV (Ultra-Violet) lights. The UV light through the mask reaches the photoresist material.

The exposed resist remains on the surface and the unexposed part is removed from the surface.

Step 4: Etching the regions

The unexposed window is removed from the surface and the regions are etched together to form a clean

wafer surface. It is shown below:

Step 5: Formation of Gate

The remaining photoresist layer is removed from the wafer. A thin silicon dioxide layer of 0.0000001m or 0.1

um is grown over the surface. The polysilicon is further added to the surface that forms a gate structure, which

is deposited by CVD process. The Chemical Vapor Deposition produces solid materials of high quality. The

polysilicon is preferred for the gate because of its high melting point. Its properties are also similar to that of

SiO2.

Note: The number of doping concentrations, the thickness of the layer, and the resistivity are the three

essential elements to be considered for the fabrication process.

Step 6: Creating the area for drain and source terminals

4

The thin oxide layer on the surface of the silicon wafer is removed and the n-type impurities are inserted with

the help of the diffusion process in the specified exposed area. It forms the n-channel at the source and drain

terminals. The wafer is first heated at a very high temperature and the gas in passed into it. The area exposed

is filled with the gas containing n-type impurities, such as phosphorous.

Step 7: SiO2 and photoresist is again deposited on the source and drain terminals

The same process is again carried to protect the S and D terminals. The oxide layer was removed from the

surface of the wafer to create the two terminals, as discussed in step 6. The silicon dioxide and the photoresist

are deposited, etched, and masked to protect it. The contact holes are left exposed for the connections.

Step 8: Making of the metal layer

It is almost the last step of the NMOS fabrication process. The metal layer of aluminum is deposited on the

surface of wafer including the contact holes. The thickness of the aluminum is around 1um. The metal layer is

further masked and etched to form the required interconnection pattern.

The layer of different materials was applied to the silicon wafer at each step. Thus, the NMOS fabrication

process involves the deposition of four major layers. It includes silicon dioxide, photoresist, polysilicon, and the

aluminum metal layer.

**

2. N-well Fabrication Or CMOS Fabrication process.

It is a CMOS fabrication process. It means that the PMOS and NMOS are fabricated in different ways. PMOS is

created by placing it in the n-well that has a p-type channel. The NMOS is created similarly as discussed above,

i.e., on the substrate. Hence, the fabrication of CMOS is known as N-TUB.

The steps involved in the N-TUB fabrication process are as follows:

1. Wafer

The silicon wafer is selected for doping p-type impurities on it. The doped wafer formed will be the p-type

substrate with the trivalent impurities.

5

2. Oxidation of wafer

The Silicon dioxide layer or oxide layer is created on the surface that protects the substrate. Silicon is one of

the metals that are easily available with properties suitable for the fabrication process.

3. Photoresist deposition

The photoresist material is deposited on the wafer. It allows the formation of the n-well on the p-type

substrate.

4. N-well Mask

The n-well mask is exposed on the wafer with a particular pattern. The soft part or the unexposed part of the

photo resist material is removed to expose the SiO2 layer.

5. Oxide Etch

As discussed, the right part of the wafer is not covered by the photoresist. It is due to the area left for the

formation of the n-well. To protect it, the oxide layer is etched with the Hydrofluoric acid. The silicon atoms of

the SiO2 layer and the fluoride atoms of HF acid form the strong bond. The silicon wafer is now ready to be

exposed to the n-well area.

The leftover photoresist material is removed with the help of the etching process.

6. N-well formation

The diffusion process is used to make the n-well on the right side of the wafer. Diffusion is a method of adding

impurities from a high concentration region towards a low concentration region. We can also use the ion

implantation process to create an n-well.

7. Oxide removal

The remaining oxide on the surface of the wafer is stripped off with the help of HF acid. The oxide protects and

needs to be removed to create a gate junction. It is done to expose the n-well formed in the above step

directly.

6

8. Gate formation

The polysilicon is added to the surface that forms a gate structure deposited by CVD process. It is a heavily

doped layer of polysilicon present over the thinox, which is a type of thin gate oxide.

9. Poly patterning

The wafer surface is exposed with the photoresist and the mask to create the two G terminals. It is because

CMOS is a combination of NMOS and PMOS, and both have separate gates, as shown below:

10. Diffusion pattern

A protective layer of oxide and photoresist is again applied on the wafer to protect the two gate terminals.

11. Creating area for source and drain

To create the area for S and D, the protective oxide is removed present on the surface of the wafer. It creates

the two vacant areas.

12. N-diffusion regions

The two vacant areas include two source terminals and two drain terminals on each side. The n+ diffusion

regions are created by injecting the n+ impurities to those vacant areas. It automatically forms the S and D

terminals adjacent to the gate. The n-well on the right side is also created through n+ diffusion.

The wafer is heated at a high temperature to create the n-well regions through the diffusion process.

7

13. P-diffusion

The NMOS has n+ S and D regions, while the PMOS has p+ regions. The n+ regions are already created with the

help of above step. Next, the p+ diffusion mask is used that completes the formation of all the active regions of

the MOS transistors.

14. Field oxide

To insulate the wafer, the field oxide (SiO2) is deposited on its surface.

15. Metal formation

The metal layer of aluminum is deposited on the surface of wafer including the contact holes. It also fills the

cut holes. It is patterned with the help of metal mask.

The entire process of the N-TUB fabrication can be summarized with the help of flow diagram shown below:

8

The above process shows the formation of NMOS (left side) and the PMOS transistors. We can also create an

inverted circuit fabricated using the same steps. It consists of the PMOS and the NMOS (right side) transistors.

The NMOS transistors perform better as compared to PMOS. Thus, n-wells are created to overcome the poor

performance of the PMOS.

3. P-TUB Fabrication Or P-well Fabrication

It is also a CMOS fabrication process. The NMOS transistors are created by placing them in the p-well with a p-

type channel. The PMOS is created on the n-type substrate. Hence, the fabrication of NMOS is known as P-

TUB.

Here, the substrate is n-type, and the doping on the source and drain regions is p-type. A p-well is diffused into

the substrate through the diffusion process. The doping concentration and depth of the p-well affect the n-

type devices' voltage. Thus, special care is required. The deeper the wells, the larger the surface area it may

require.

P-TUB combines the PMOS and the NMOS (right side). The n-type acts as a substrate for the PMOS, and the p-

well acts as the substrate for the NMOS. These two areas are electrically isolated. The p-well CMOS inverter is

shown below:

9

The masking, diffusion, etc. are similar to that of N-TUB. The various mask used in the steps for fabrication are

used to defines the areas for deep wells, thick stripped oxide deposition, contacts areas, interconnections,

deposition of polysilicon layer, p-diffusions, and metal layer patterns.

4. Twin-TUB Fabrication

Twin-TUB is a combination of p-well and n-well processes formed on the same substrate. It is also known

as dual well process. The high resistivity n-type substrate with both n-well and p-well regions is created, as

shown below:

It is an inverting arrangement of twin-tub. The separate transistors and their arrangement help to optimize the

n-type devices, p-type devices, and other parameters, such as body effect and threshold voltage. The wafer

has two layers. The top layer is the epitaxial layer and the main substrate layer is of n-type.

The steps of the twin-TUB fabrication are as follows:

Step 1: Deposition of thin oxide layer of silicon dioxide (SiO2).

Step 2: The deposition of silicon nitride layer using the CVD process. It has various advantages, such as high

temperature stability and light weight.

Step 3: The third step includes creating trenches and filling them with SiO2, which is an insulating material. The

trenches are created to prevent the current leakage.

10

Step 4: The oxide and nitride is removes to deposit the n-well and p-well regions with the help of diffusion.

Step 5: The p-well and the n-well mask are used to dispose of the specific areas on both sides. The implant and

annealing are required to adjust the doping concentration of the two wells. The annealing process reduces the

hardness for efficient doping.

Step 6: A thin layer of SiO2 and polysilicon is applied on the surface of the silicon wafer.

Step 7: The source, gate, and drain regions are created using the diffusion process.

Step 8: The oxide and nitride layer is again deposited.

Step 9: The metal layer of aluminum is deposited on the surface of wafer including the contact holes. It also

fills the cut holes.

Step 10: A protective glass layer is deposited on the transistor in the last step.

5. CMOS fabrication by SOI technology:-

The SOI (Silicon-on-Insulator) process involves several steps to create a thin layer of silicon on top of an

insulating substrate, typically silicon dioxide. The following are the typical steps involved in the SOI process:

1. Substrate Preparation: The first step in the SOI process is to prepare the substrate, which involves

cleaning and polishing the surface to ensure that it is free of contaminants and defects.

2. Buried Oxide Formation: The next step is to create a layer of silicon dioxide on the surface of the

substrate. This is typically done using a process called thermal oxidation, which involves heating the

substrate in the presence of oxygen.

3. Silicon Layer Deposition: Once the silicon dioxide layer has been formed, a layer of silicon is deposited

on top of it. This is typically done using a process called chemical vapor deposition (CVD), which

involves heating a gas that contains silicon to deposit a layer of silicon on the substrate.

4. Silicon Layer Thinning: The next step is to thin the silicon layer to the desired thickness. This is typically

done using a process called ion implantation, which involves bombarding the silicon with ions to create

a thin, uniform layer.

5. Annealing: Once the silicon layer has been thinned, the substrate is heated in a process called

annealing. This step helps to repair any defects in the silicon layer and improves the overall quality of

the SOI substrate.

6. Device Fabrication: The final step in the SOI process is to fabricate devices on the SOI substrate. This

typically involves using lithography and etching techniques to create patterns in the silicon layer, which

can then be used to create transistors, diodes, and other electronic components.

Overall, the SOI process involves several steps to create a thin layer of silicon on top of an insulating substrate.

While the process is more complex and expensive than traditional bulk silicon processing, it offers several

advantages in terms of improved device performance and radiation hardness.

11

Advantages:

1. Reduced Parasitic Capacitance: In traditional bulk silicon processing, parasitic capacitance can reduce

device performance. SOI reduces parasitic capacitance because the insulating layer isolates the silicon

from the substrate, reducing interference and allowing for faster operation.

2. Improved Transistor Performance: SOI technology improves transistor performance because it reduces

the effects of device-to-device interactions. The thin insulating layer and the substrate reduce the

number of charged particles near the transistor channel, allowing for faster switching and lower

leakage currents.

3. Radiation Hardness: SOI is also more radiation-hard than traditional bulk silicon because of its reduced

parasitic capacitance and improved transistor performance. This makes SOI technology an attractive

option for applications such as military and aerospace.

4. Reduced Power Consumption: The reduced parasitic capacitance and improved transistor performance

in SOI technology can lead to reduced power consumption in devices.

Disadvantages:

1. High Cost: The SOI process is more expensive than traditional bulk silicon processing because it

involves additional manufacturing steps and requires specialized equipment.

2. Thermal Issues: The thin insulating layer in SOI can cause thermal issues, such as localized heating,

which can reduce device reliability and performance.

3. Substrate Stress: The insulating layer in SOI can create stress in the substrate, which can cause defects

in the silicon layer and reduce device performance.

4. Design Complexity: SOI technology requires specialized design considerations, such as the need for

floating-body effects and parasitic bipolar transistors.

12

6. Dynamic and Static Power

Dynamic Power Reduction Static Power Reduction

Reduces power consumption when the circuit is
switching or changing state

Reduces power consumption when the circuit
is in a steady state

Achieved through techniques such as clock gating,
power gating, and dynamic voltage and frequency
scaling (DVFS)

Achieved through techniques such as
reducing supply voltage, threshold voltage
scaling, and transistor sizing

Dynamic power reduction techniques typically result
in larger power savings

Static power reduction techniques typically
result in smaller power savings compared to
dynamic techniques

Suitable for applications where the circuit operates
with high activity factors

Suitable for applications where the circuit
operates with low activity factors

May result in a decrease in circuit performance due to
the need for extra circuitry for control and
management of the dynamic power reduction
techniques

May not affect circuit performance or may
result in a small increase in circuit
performance

Examples of dynamic power reduction techniques
include clock gating, power gating, and dynamic
voltage and frequency scaling (DVFS)

Examples of static power reduction
techniques include reducing supply voltage,
threshold voltage scaling, and transistor
sizing

Overall, dynamic power reduction techniques focus on reducing power consumption during the
switching or changing of circuit states, while static power reduction techniques focus on reducing
power consumption during steady-state operation. Both types of power reduction techniques have
their own advantages and disadvantages, and the choice of which technique to use depends on the
specific requirements of the application.

The formulas for dynamic power and static power are as follows:

Dynamic Power = 0.5 x Capacitance x Voltage^2 x Frequency

Static Power = Leakage Current x Supply Voltage

where:

 Capacitance is the effective capacitance of the circuit (including wires, transistors, and other

components)

 Voltage is the operating voltage of the circuit

 Frequency is the operating frequency of the circuit

 Leakage Current is the current that flows through a transistor when it is supposed to be turned off

 Supply Voltage is the voltage supplied to the circuit.

Dynamic power reduction techniques focus on reducing the capacitance, voltage, and frequency of the

circuit, while static power reduction techniques focus on reducing the leakage current and supply voltage

of the circuit. By reducing these parameters, the power consumption of the circuit can be reduced,

resulting in energy savings and increased battery life in portable devices.

13

7. Stick diagram and layout

 Mask Layout and Stick Diagram for a CMOS Inverter

 Transistors

A transistor exists where a polysilicon stick crosses either an N diffusion stick (NMOS transistor) or a P

diffusion stick (PMOS transistor).

Note that there is no difference in the construction of a transistor source and a transistor drain. The

source is determined as the source of conductors (electrons for NMOS / holes for PMOS) when current

flows through the channel. In some pass transistor circuits, the source and drain may swap over during

use.

 Implied Connections and Crossovers

Where two sticks of the same colour meet or cross there is always a connection.

Where two sticks of different colours meet or cross there is no implied connection.

Note that N and P diffusions may not cross each other. Where poly crosses diffusion we have a

transistor (see above).

 Contacts

A connection may be explicitly defined using a filled black circle. In the general case a connection is

permitted where the mask layers will be separated by just one layer of insulator (through which a

"contact cut" may be defined). Thus P diffusion may connect to Metal1 but not directly to Metal2.

14

In a process where stacked contacts are permitted, we may draw a contact between non-adjacent

conductors; e.g. between Poly and Metal3, in which case the connection to intermediate layers

(Metal1 and Metal2) is implied.

 Taps

The tap represents a connection to something we can't see; either the N-Well (not shown on our stick

diagram) or the wafer substrate. A tap is defined using an unfilled black square. Here there will be only

one conductor crossing the square (Metal1 power or ground rail).

An N-Well Tap is inferred where the connection is from a power rail while a Substrate Tap is inferred

where the connection is from a ground rail.

 Combined Contacts & Taps

We can often save space by using a combined contact and tap. Here the tap shares the same Active

Area as the contact. A combined contact and tap is defined using a filled black square in place of the

source contact (filled black circle).

A combined contact and tap can only be used where the end of a diffusion stick coincides with a

contact to the power or ground rail.

 Stick Diagram Colour Code

Layout rules:

15

1. Stick diagram is a simple schematic representation of the layout of an integrated circuit. It shows the

relative positions and sizes of the different components and interconnects on the chip. A stick diagram

can be drawn by hand or using a computer-aided design (CAD) tool.

2. The basic components of the MOS technology used in integrated circuits are the substrate, gate oxide,

polysilicon gate electrode, and metal interconnects. The stick diagram shows the position and size of

each of these components in the layout.

3. Layout rules are guidelines that specify the minimum dimensions and spacing requirements for various

elements of the layout, such as the width and spacing of the metal interconnects, the minimum

feature size of the transistor gate electrode, and the spacing between adjacent transistors.

4. The layout rules ensure that the final layout can be reliably fabricated using the available

manufacturing technology. The rules also ensure the reliability and performance of the integrated

circuit.

5. When creating a stick diagram, the designer should follow the layout rules to ensure that the final

layout is manufacturable and reliable. The stick diagram can then be used as a basis for creating a

more detailed layout.

6. Once the stick diagram is complete, the designer can use a CAD tool to create a more detailed layout.

The CAD tool will automatically enforce the layout rules to ensure that the final layout is

manufacturable and reliable.

8. Draw the stick diagram and layout of inverter, NAND and NOR gates

CMOS-Layout-Design

Layout of Logic gates:

Three Input NAND Gate :

Figure below shows, the schematic, stick diagram and layout of three input NAND gate.

16

Two Input NAND Gate :

Figure below shows the schematic, stick diagram and layout of two input NAND gate implemented using
complementary CMOS logic.

Two Input NOR Gate :

Figure below shows the schematic, stick diagram and layout of two input NOR gate implemented using
complementary CMOS logic.

17

Transmission Gate :

Figure below shows the schematic, stick diagram and layout of the transmission gate.

18

9. CMOS Lambda design rules

CMOS Lambda design rules are a set of guidelines for the physical layout of complementary metal-

oxide-semiconductor (CMOS) circuits. The term "lambda" refers to the minimum feature size of the

process, which is typically represented as a multiple of the wavelength of light used in

photolithography. For example, a 0.18 micron process might be referred to as a "0.18 micron Lambda"

process, where the feature size is approximately one-half of the wavelength of the light used in

photolithography.

Here are some common CMOS Lambda design rules:

1. Minimum feature size: The minimum feature size, or the smallest dimension that can be reliably

patterned, is typically 0.5 to 0.7 times the Lambda. For example, in a 0.18 micron Lambda process, the

minimum feature size might be 0.1 to 0.13 microns.

2. Minimum spacing between features: The minimum spacing between adjacent features should be at

least twice the minimum feature size. This helps to prevent short circuits between adjacent

components.

3. Active area spacing: The spacing between the active areas of adjacent transistors should be at least 3

times the minimum feature size. This helps to reduce capacitive coupling between adjacent

transistors.

4. Metal width and spacing: The minimum width of a metal line is typically 2 to 3 times the minimum

feature size. The spacing between adjacent metal lines should be at least twice the metal width.

5. Via size: The size of a via, which connects one metal layer to another, should be at least the same as

the minimum metal width.

6. Contact size: The size of a contact, which connects a metal layer to the underlying active area, should

be at least the same as the minimum feature size.

7. Gate spacing: The spacing between the gate and the active area of a transistor should be at least 2 to 3

times the minimum feature size. This helps to prevent leakage between the gate and the active area.

These are just a few of the many design rules that must be followed when creating CMOS circuits. The

specific rules may vary depending on the process technology and the requirements of the circuit being

designed.

CMOS 'λ' Design Rules :

The MOSIS stands for MOS Implementation Service is the IC fabrication service available to universities

for layout, simulation, and test the completed designs. The MOSIS rules are scalable λ rules.

The MOSIS design rules are as follows :

(1) Rules for N-well as shown in Figure below.

1. Minimum width = 10λ

2. Wells at same potential with spacing = 6λ

3. Wells at same potential = 0λ

4. Wells of different type, spacing = 8λ

(2) Rules for Active area shown in Figure below.

1. Minimum width = 3λ

19

2. Minimum spacing = 3λ

3. Source/Drain active to well

edge = 5λ

4. Substrate/well contact active

to well edge = 3λ

3) Rules for poly 1 as shown in Figure below.

1. Minimum width = 2λ

2. Minimum spacing = 2λ

3. Minimum gate extension of active = 2λ

4. Minimum field poly to active = 1λ

(4) Rules for contact to poly 1 as shown in Figure below.

 2 λ1. Exact contact size = 2 λ

2. Minimum poly 1 overlap = 1 λ

3. Minimum contact spacing = 2 λ

 2λ 2. Minimum active overlap = 1λ 3. Minimum contact spacing = 2λ 4. Minimum spacing to gate of

transistor = 2λ(5) Rules for contact to active as shown in Figure below. 1. Exact contact size = 2λ

(6) Rules for metal 1 as shown in Figure below.

1. Minimum width = 3λ

20

2. Minimum spacing = 3λ

3. Minimum overlap of poly contact = 1λ

4. Minimum overlap of active contact = 1λ

(7) Rules for via 1 as shown in Figure below.

 λ1. Minimum size = 2λ

2. Minimum spacing = 3λ

3. Minimum overlap by metal 1 = 1λ

(8) Rules for metal 2 as shown in Figure below.

1. Minimum size = 3λ

2. Minimum spacing = 4λ

(9) Rules for metal 3 as shown in Figure below.

1. Minimum width = 6λ

2. Minimum spacing = 4λ

Design Rule Check :

In order to ensure that none of the design rules are violated CAD tools named Design Rule Checking

(DRC) is used. If DRC is not verified then it leads to the non functional design.

The layout rules are grouped in three categories that are transistor rules, contact and via rules and

well and substrate contact rules.

Transistor rules :

m which is the minimum width of active layer.m which is minimum width of polysilicon, whereas the

width of the transistor is atleast 0.3 The transistor can be created by overlapping the the active and

polysilicon layers. The minimum length of transistor equals 0.24

Figure below shows the layout of PMOS transistor.

21

Fig1-Design-Rule-Check

Contact and Via rules :

A contact forms an interconnection between metal and active or polysilicon layer whereas via forms

an interconnection between two metal lines. A contact or via is formed by overlapping the two

interconnecting layers and provides a contact hole filled with metal between the two.

Figure below shows the contacts and via used in layout.

Fig1-Design-Rule-Check

Well and substrate contact rules :

For digital circuit design it is important for the well and substrate regions to be connected to the

supply voltages. If this is not done then a resistive path is created between the substrate contact of the

transistors and the supply rails which leads to parasitic effects such as latch up.

CMOS-Layout-Design

Inverter Layout :

The schematic diagram of the inverter is as shown in Figure.

Fig1-Inverter-Layout

The stick diagram of the schematic shown in Figure.

22

Fig2-Inverter-Layout

Here, the most important point to note is that as we change the placing of the components in the

schematic the stick diagram and hence, the layout of the circuit will change accordingly. For example,

if we place the components vertically the stick diagram will be vertical and if we place the components

horizontally the stick diagram will be horizontal. Figure below shows the physical layout of inverter

which is drawn in tanner tool.

Fig2-Inverter-Layout

**

10. Micron-Design-Rules

Design Rules : Industry uses the micron design rules and code designs in terms of these micron

dimensions. The micron design rules are as follows : ()Micron

(1) Rules for N-well as shown in Figure below.

1. Width = 3

2. Space = 9

(2) Rules for active area as shown in Figure below.

1. Minimum size = 3

2. Minimum spacing = 3

2. N+ active to N-well = 7

(3) Rules for poly 1 as shown in Figure below.

1. Width = 2

23

2. Spacing = 3

3. Gate overlap of active = 2

4. Field poly 1 to active = 1

(4) Rules for contact to poly 1 as shown in Figure below.

 2 1. Exact contact size = 2

2. Minimum poly overlap = 1

3. Minimum contact spacing = 2

(5) Rules for contact to active as shown in Figure below.

 2 1. Exact contact size = 2

2. Minimum active overlap = 1

3. Minimum contact spacing = 2

4. Minimum spacing to gate = 2

(6) Rules for metal 1 as shown in Figure below.

1. Width = 3

2. Spacing = 3

3. Overlap of contact = 1

4. Overlap of via = 2

(7) Rules for metal 2 as shown in Figure below.

1. Width = 3

2. Space = 3

3. Metal 2 overlap of via = 2

24

11. Determination of Pull up to pull down ratio.

The pull-up to pull-down ratio is an important consideration in the design of CMOS circuits, as it affects

the speed, power consumption, and noise immunity of the circuit. The pull-up to pull-down ratio is

defined as the ratio of the resistance of the pull-up network to the resistance of the pull-down

network in a CMOS inverter.

In general, the pull-up to pull-down ratio should be as close to 1 as possible to achieve balanced rise

and fall times and minimize power consumption. However, the pull-up to pull-down ratio can also

affect the noise margin and stability of the circuit. For example, a smaller pull-up to pull-down ratio

can result in a lower noise margin but a faster switching speed, while a larger pull-up to pull-down

ratio can result in a higher noise margin but a slower switching speed.

The determination of the pull-up to pull-down ratio can be done through simulation or analytical

calculations. Here are some steps for the analytical calculation method:

1. Determine the switching threshold voltage (Vth) of the inverter. This is the input voltage at which the

output voltage switches from high to low or low to high.

2. Calculate the resistance of the pull-up network (Rp) and pull-down network (Rn) using the following

equations:

Rp = Vdd / (Ileak + Isat(p) * (Vdd - Vth))

Rn = Vdd / (Ileak + Isat(n) * Vth)

where

Vdd is the supply voltage,

Ileak is the leakage current,

Isat(p) and Isat(n) are the saturation currents of the PMOS and NMOS transistors, respectively.

3. Calculate the pull-up to pull-down ratio (Rp/Rn) and evaluate its effect on the noise margin, switching

speed, and power consumption of the circuit.

4. Adjust the size of the transistors in the pull-up and pull-down networks to achieve the desired pull-up

to pull-down ratio.

It is important to note that the determination of the pull-up to pull-down ratio is highly dependent on

the specific requirements of the circuit being designed and should be optimized based on the desired

trade-offs between speed, power consumption, and noise immunity.

**

25

12. Comparing NMOS , PMOS CMOS and BiCMOS

NMOS:
 NMOS stands for "N-type Metal-Oxide-Semiconductor".
 It is a type of transistor that uses n-type semiconductor material for the channel.
 In NMOS, the gate voltage is typically higher than the source voltage to turn the transistor ON.
 NMOS is used primarily in digital circuits due to its fast switching speed and low power consumption.
 However, NMOS is not suitable for analog circuits due to its high output impedance and low noise

immunity.
PMOS:

 PMOS stands for "P-type Metal-Oxide-Semiconductor".
 It is a type of transistor that uses p-type semiconductor material for the channel.
 In PMOS, the gate voltage is typically lower than the source voltage to turn the transistor ON.
 PMOS is used primarily in digital circuits due to its slow switching speed and high power consumption.
 However, PMOS is not suitable for analog circuits due to its high output impedance and low noise

immunity.
CMOS:

 CMOS stands for "Complementary Metal-Oxide-Semiconductor".
 It is a type of transistor that uses both n-type and p-type semiconductor materials for the channel.
 In CMOS, both NMOS and PMOS transistors are used together in a complementary pair to achieve low

power consumption and high noise immunity.
 CMOS is used extensively in digital circuits, including microprocessors, memory, and logic circuits.

BiCMOS:
 BiCMOS stands for "Bipolar Complementary Metal-Oxide-Semiconductor".
 It combines both bipolar junction transistors (BJTs) and CMOS transistors on the same chip.
 BiCMOS is used in applications that require high-speed switching, high current drive, and high voltage

operation.
 BiCMOS is commonly used in mixed-signal circuits, such as ADCs, DACs, and voltage regulators.

Comparing NMOS , PMOS CMOS and BiCMOS

Parameter NMOS PMOS CMOS BiCMOS

Device Type

N-Channel

MOSFET

P-Channel

MOSFET

Complementary MOSFET (Both N-

and P-Channel MOSFET)

Combination of Bipolar

and CMOS transistors

Voltage polarity Negative Positive Both Both

Switching speed Fast Slow Fast Very Fast

Power
consumption Low High Low Very Low

Noise immunity Low High High Very High

Fabrication
complexity Low High Medium High

Input impedance Low High Very High Very High

Output
impedance High Low Very Low Very Low

Output swing Large Small Large Large

Voltage gain High Low Very High High

Current gain Low High N/A High

Application Digital Digital Digital Analog and Digital

VLSI Design -Notes

1

1. Transmission-Gate | Pass-Transistor-Logic
Transmission Gate Logic: The transmission gate logic is used to solve the
voltage drop problem of the pass transistor logic. This technique uses the
complementary properties of NMOS and PMOS transistors. NMOS devices
passes a strong '0' but a weak '1' while PMOS transistors pass a strong '1' but
a weak '0'. The transmission gate combines the best of the two devices by
placing an NMOS transistor in parallel with a PMOS transistor as shown in
Figure below. The control signals to the transmission gate C and -----C are
complementary to each other. The transmission gate is mainly a bi-directional
switch enabled by the gate signal 'C'. When C = 1 both MOSFETs are ON and
the signal pass through the gate i.e. A = B if C = 1. Whereas C = 0 makes the
MOSFETs cut off creating an open circuit between nodes A and B.

In this section CMOS logic circuits that are based on transmission gate are
implemented. This indicates the use of transmission gate to implement logic
circuits.
Basic Structure:
The basic structure of transmission gate is shown in Figure below which
consists of NMOS and PMOS transistors. Here, VG is applied to NMOS, and
(VDD- VG) applied to the PMOS.

2

The transmission gate work voltage-controlled switch. When VG is high,
NMOS and PMOS are conducting hence switch is closed. Therefore,
conduction path between left and right sides exist.
When VG is low, then the MOSFETs are in cutoff and switch is open.
Therefore, there is no direct relationship between VA and VB.
Figure below shows the symbol of transmission gate controlled by switching
signals X and X* that are applied to the gates of NMOS and PMOS
respectively.

2. The CMOS Inverter or NOT Gate
A NOT gate reverses the input logic state. Figure 1 shows a NOT gate
employing two series-connected enhancement-type MOSFETS, one n-channel
(NMOS) and one p-channel (PMOS).

Figure 1. A CMOS NOT gate.

The input is connected to the gate terminal of the two transistors, and the
output is connected to both drain terminals.
Applying +V (logic 1) to the input (Vi), transistor Q2 is “on,” and transistor Q1
remains “off.” Under this condition, the output voltage (Vo) is close to 0 V
(logic 0).
Connecting the input to ground (Vi = 0 V), transistor Q2 is “off,” and transistor
Q1 is “on.” Now, the output voltage is close to +V (logic 1).

3

Table 1 summarizes these results.

A Y

0 1

1 0

Table 1. The truth table for a NOT circuit.

The CMOS NAND Gate
NAND denotes NOT-AND.
Table 2 shows the truth table for a NAND circuit.

 A B Y

0 0 1

0 1 1

1 0 1

1 1 0

Table 2. The truth table for a two-input NAND circuit.

Figure 2 shows a CMOS two-input NAND gate. P-channel transistors Q1 and
Q2 are connected in parallel between +V and the output terminal. N-channel
transistors Q3 and Q4 are connected in series between the output terminal
and ground.

Figure 2. A CMOS two-input NAND gate.

With Q3 and Q4 transistors ”on” and Q1 and Q2 transistors “off,” the output
is a logic 0. This condition happens when both inputs, A and B, are logic 1,
confirming the lowest row in the above truth table.

4

With logic 0 in inputs A and B, Q3 and Q4 transistors are “off,” and Q1 and Q2
transistors are “on,” producing a logic 1 output. This is consistent with the first
row of the truth table.
When one of the inputs is a logic “1” and the other one is a logic “0”, either
Q3 is “off” and Q2 is “on” or Q4 is “off” and Q1 is “on.” The output in both
cases is a logic “1,” validating the second and the third rows of the truth table.

The NOR Gate
NOR signifies NOT-OR.

Table 3 shows the truth table for a NOR circuit.

 A B Y

0 0 1

0 1 0

1 0 0

1 1 0

Table 3. The truth table for a two-input NOR circuit.

The output of a NOR gate is logic 1 with logic 0 in both inputs. The outcomes
for other input combinations are logic 0.
Figure 3 shows a CMOS two-input NOR gate. P-channel transistors Q1 and Q2
are connected in series between +V and the output terminal. N-channel
transistors Q3 and Q4 are connected in parallel between the output and
ground.

Figure 3. A CMOS two-input NOR gate.

When both inputs, A and B, are logic 0, Q1 and Q2 are “on,” and Q3 and Q4
are “off,” and the output is logic 1. This confirms the first row of the truth
table above.

5

With both inputs logic 1, Q3 and Q4 are “on,” and Q1 and Q2 are “off,”
producing a logic 0 output that confirms the last row of the truth table.
For the two remaining input combinations, either Q1 is “off” and Q3 is “on” or
Q2 is “off” and is Q4 “on”. In these cases, the output is logic 0 which is
consistent with the above truth table.

3. Programmable Logic Devices (PLD) is the integrated circuits. They
contain an array of AND gates & another array of OR gates. There are
three kinds of PLDs based on the type of arrays, which has
programmable feature.

 Programmable Read Only Memory(PROM)
 Programmable Array Logic(PAL)
 Programmable Logic Array(PLA)

The process of entering the information into these devices is known
as programming. Basically, users can program these devices or ICs electrically
in order to implement the Boolean functions based on the requirement. Here,
the term programming refers to hardware programming but not software
programming.
Programmable Read Only Memory PROM
Read Only Memory (ROM) is a memory device, which stores the binary
information permanently. That means, we can’t change that stored
information by any means later. If the ROM has programmable feature, then it
is called as Programmable ROM PROM. The user has the flexibility to program
the binary information electrically once by using PROM programmer.

PROM is a programmable logic device that has fixed AND array &
Programmable OR array. The block diagram of PROM is shown in the following
figure.

Here, the inputs of AND gates are not of programmable type. So, we have to
generate 2n product terms by using 2n AND gates having n inputs each. We

6

can implement these product terms by using nx2n decoder. So, this decoder
generates ‘n’ min terms.
Here, the inputs of OR gates are programmable. That means, we can program
any number of required product terms, since all the outputs of AND gates are
applied as inputs to each OR gate. Therefore, the outputs of PROM will be in
the form of sum of min terms.

Example
Let us implement the following Boolean functions using PROM.
A(X,Y,Z)=∑m(5,6,7)
B(X,Y,Z)=∑m(3,5,6,7)
The given two functions are in sum of min terms form and each function is
having three variables X, Y & Z. So, we require a 3 to 8 decoder and two
programmable OR gates for producing these two functions. The
corresponding PROM is shown in the following figure.

Here, 3 to 8 decoder generates eight min terms. The two programmable OR
gates have the access of all these min terms. But, only the required min terms
are programmed in order to produce the respective Boolean functions by
each OR gate. The symbol ‘X’ is used for programmable connections.
Programmable Array Logic (PAL)
PAL is a programmable logic device that has Programmable AND array & fixed
OR array. The advantage of PAL is that we can generate only the required

7

product terms of Boolean function instead of generating all the min terms by
using programmable AND gates. The block diagram of PAL is shown in the
following figure.

Here, the inputs of AND gates are programmable. That means each AND gate
has both normal and complemented inputs of variables. So, based on the
requirement, we can program any of those inputs. So, we can generate only
the required product terms by using these AND gates.
Here, the inputs of OR gates are not of programmable type. So, the number of
inputs to each OR gate will be of fixed type. Hence, apply those required
product terms to each OR gate as inputs. Therefore, the outputs of PAL will be
in the form of sum of products form.
Example
Let us implement the following Boolean functions using PAL.
A=XY+XZ′
A=XY′+YZ′
The given two functions are in sum of products form. There are two product
terms present in each Boolean function. So, we require four programmable
AND gates & two fixed OR gates for producing those two functions. The
corresponding PAL is shown in the following figure.

The programmable AND gates have the access of both normal and
complemented inputs of variables. In the above figure, the inputs X, X′, Y, Y′, Z
& Z′, are available at the inputs of each AND gate. So, program only the

8

required literals in order to generate one product term by each AND gate. The
symbol ‘X’ is used for programmable connections.
Here, the inputs of OR gates are of fixed type. So, the necessary product terms
are connected to inputs of each OR gate. So that the OR gates produce the
respective Boolean functions. The symbol ‘.’ is used for fixed connections.

Programmable Logic Array (PLA)
PLA is a programmable logic device that has both Programmable AND array &
Programmable OR array. Hence, it is the most flexible PLD. The block
diagram of PLA is shown in the following figure.

Here, the inputs of AND gates are programmable. That means each AND gate
has both normal and complemented inputs of variables. So, based on the
requirement, we can program any of those inputs. So, we can generate only
the required product terms by using these AND gates.
Here, the inputs of OR gates are also programmable. So, we can program any
number of required product terms, since all the outputs of AND gates are
applied as inputs to each OR gate. Therefore, the outputs of PAL will be in the
form of sum of products form.
Example
Let us implement the following Boolean functions using PLA.
A=XY+XZ′
B=XY′+YZ+XZ′
The given two functions are in sum of products form. The number of product
terms present in the given Boolean functions A & B are two and three
respectively. One product term, Z′X′ is common in each function.
So, we require four programmable AND gates & two programmable OR gates
for producing those two functions. The corresponding PLA is shown in the
following figure.

9

The programmable AND gates have the access of both normal and
complemented inputs of variables. In the above figure, the inputs X, X′, Y, Y′, Z
& Z′, are available at the inputs of each AND gate. So, program only the
required literals in order to generate one product term by each AND gate.
All these product terms are available at the inputs of each programmable OR
gate. But, only program the required product terms in order to produce the
respective Boolean functions by each OR gate. The symbol ‘X’ is used for
programmable connections.

**

4. Difference between PAL and PLA
The Difference between PAL and PLA in Tabular Form mainly includes PAL and
PLA full form, construction, availability, flexibility, cost, number of functions,
and speed which are discussed below.

Programmable Array Logic (PAL) Programmable Logic Array (PLA)

The full form of PAL is
programmable array logic

The full form of the PLA is a
programmable logic array

The construction of PAL can be done
using the programmable collection
of AND & OR gates

The construction of PLA can be done
using the programmable collection
of AND & fixed collection of OR
gates.

The availability of PAL is less prolific The availability of PLA is more

The flexibility of PAL programming is
more The flexibility of PLA is less

The cost of a PAL is expensive The cost of PLA is middle range

The number of functions
implemented in PAL is large

The number of functions
implemented in PLA is limited

The speed of PAL is slow The speed of PLA is high

**

10

5. Multipler

Multiplexer is a combinational circuit that has maximum of 2n data inputs, ‘n’
selection lines and single output line. One of these data inputs will be
connected to the output based on the values of selection lines.

Since there are ‘n’ selection lines, there will be 2n possible combinations of
zeros and ones. So, each combination will select only one data input.
Multiplexer is also called as Mux.

4x1 Multiplexer

4x1 Multiplexer has four data inputs I3, I2, I1 & I0, two selection lines s1 &
s0 and one output Y. The block diagram of 4x1 Multiplexer is shown in the
following figure.

One of these 4 inputs will be connected to the output based on the
combination of inputs present at these two selection lines. Truth table of 4x1
Multiplexer is shown below.

Selection Lines Output

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

From Truth table, we can directly write the Boolean function for output, Y as

11

We can implement this Boolean function using Inverters, AND gates & OR
gate. The circuit diagram of 4x1 multiplexer is shown in the following figure.

We can easily understand the operation of the above circuit. Similarly, you
can implement 8x1 Multiplexer and 16x1 multiplexer by following the same
procedure.

Implementation of Higher-order Multiplexers.

Now, let us implement the following two higher-order Multiplexers using
lower-order Multiplexers.
 8x1 Multiplexer
 16x1 Multiplexer

8x1 Multiplexer

In this section, let us implement 8x1 Multiplexer using 4x1 Multiplexers and
2x1 Multiplexer. We know that 4x1 Multiplexer has 4 data inputs, 2 selection
lines and one output. Whereas, 8x1 Multiplexer has 8 data inputs, 3 selection
lines and one output.

So, we require two 4x1 Multiplexers in first stage in order to get the 8 data
inputs. Since, each 4x1 Multiplexer produces one output, we require a 2x1
Multiplexer in second stage by considering the outputs of first stage as inputs
and to produce the final output.

Let the 8x1 Multiplexer has eight data inputs I7 to I0, three selection lines s2,
s1 & s0 and one output Y. The Truth table of 8x1 Multiplexer is shown below.

Selection Inputs Output

12

S2 S1 S0 Y

0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

1 0 0 I4

1 0 1 I5

1 1 0 I6

1 1 1 I7

We can implement 8x1 Multiplexer using lower order Multiplexers easily by
considering the above Truth table. The block diagram of 8x1 Multiplexer is
shown in the following figure.

The same selection lines, s1 & s0 are applied to both 4x1 Multiplexers. The
data inputs of upper 4x1 Multiplexer are I7 to I4 and the data inputs of lower
4x1 Multiplexer are I3 to I0. Therefore, each 4x1 Multiplexer produces an
output based on the values of selection lines, s1 & s0.

13

The outputs of first stage 4x1 Multiplexers are applied as inputs of 2x1
Multiplexer that is present in second stage. The other selection line, s2 is
applied to 2x1 Multiplexer.
 If s2 is zero, then the output of 2x1 Multiplexer will be one of the 4 inputs

I3 to I0 based on the values of selection lines s1 & s0.
 If s2 is one, then the output of 2x1 Multiplexer will be one of the 4 inputs

I7 to I4 based on the values of selection lines s1 & s0.

Therefore, the overall combination of two 4x1 Multiplexers and one 2x1
Multiplexer performs as one 8x1 Multiplexer.

**

 Example: Implementation of given function using 8 to 1 multiplexer

F(A,B,C,D) = Ʃ (1,3,4,11,12,13,14,15)

Solution.

Total number of variable n = 4 (A,B,C,D)

Number of select lines: n-1= 3 (B, C, D)

The given function has 4 variable, so 16 possible minterms (0 – 15) are
entered in the implementation table.

All the minterms are divided into 2 groups

The first group (0-7) minterms are entered in the first row (Variable A =0)

The second group (8–15) minterms are entered in the second row (Variable
A= 1)

Circle the minterm number as per function, which you have to implement (in
this case it’s 1,3,4,11,12,13,14,15)

Find out the multiplexer input as per above given steps.

Example

14

Implement the following Boolean function using 8 : 1 MUX

F(A,B,C,D) = Ʃ m(0,1,2,4,6,9,12,14)

Solution.

Select lines are B, C and D

Follow all the steps as per above points.

Example

Implement the following Boolean function with 8 : 1 multiplexer

F(A,B,C,D) = ∏M (0,3,5,6,8,9,10,12,14)

Solution

The given maxterms are inverted to obtain minterms. From the minterms, we
can implement the above Boolean function by using 8 : 1

multiplexer. Select lines are B, C and D, the input variable is A.

F(A,B,C,D) = Ʃ m(1,2,4,7,11,13,15)

Example

15

Implement the following Boolean function with 8 : 1 multiplexer

F(A,B,C,D) = Ʃ m (0,2,6,10,11,12,13) + Ʃ d(3,8,14)

Solution.

The Boolean function has three don’t care conditions which can be treated as
either 0’s or 1’s. In this example don’t care condition is consider as

3. Code converter

 Binary to BCD Conversion
 BCD to Binary Conversion
 BCD to Excess-3
 Excess-3 to BCD

(a) Binary to BCD Conversion

16

(b) BCD to Excess-3

17

(c) BCD to Gray Code

18

19

BCD To 7 segments

6. Parity Generator and Parity Check

Parity Generator
It is combinational circuit that accepts an n-1 bit data and generates the
additional bit that is to be transmitted with the bit stream. This additional or
extra bit is called as a Parity Bit.
In even parity bit scheme, the parity bit is ‘0’ if there are even number of 1s in
the data stream and the parity bit is ‘1’ if there are odd number of 1s in the
data stream.
In odd parity bit scheme, the parity bit is ‘1’ if there are even number of 1s in
the data stream and the parity bit is ‘0’ if there are odd number of 1s in the
data stream. Let us discuss both even and odd parity generators.

Even Parity Generator
Let us assume that a 3-bit message is to be transmitted with an even parity
bit. Let the three inputs A, B and C are applied to the circuit and output bit is
the parity bit P. The total number of 1s must be even, to generate the even
parity bit P. The figure below shows the truth table of even parity generator in

20

which 1 is placed as parity bit in order to make all 1s as even when the
number of 1s in the truth table is odd.

The K-map simplification for 3-bit message even parity generator is

From the above truth table, the simplified expression of the parity bit can be
written as

The above expression can be implemented by using two Ex-OR gates. The
logic diagram of even parity generator with two Ex – OR gates is shown below.
The three bit message along with the parity generated by this circuit which is
transmitted to the receiving end where parity checker circuit checks whether
any error is present or not.
To generate the even parity bit for a 4-bit data, three Ex-OR gates are required
to add the 4-bits and their sum will be the parity bit.

21

Odd Parity Generator
Let us consider that the 3-bit data is to be transmitted with an odd parity bit.
The three inputs are A, B and C and P is the output parity bit. The total
number of bits must be odd in order to generate the odd parity bit.
In the given truth table below, 1 is placed in the parity bit in order to make the
total number of bits odd when the total number of 1s in the truth table is
even.

The truth table of the odd parity generator can be simplified by using K-map
as

The output parity bit expression for this generator circuit is obtained as

The above Boolean expression can be implemented by using one Ex-OR gate
and one Ex-NOR gate in order to design a 3-bit odd parity generator.
The logic circuit of this generator is shown in below figure, in which two inputs
are applied at one Ex-OR gate, and this Ex-OR output and third input is applied

22

to the Ex-NOR gate, to produce the odd parity bit. It is also possible to design
this circuit by using two Ex-OR gates and one NOT gate.

Parity Check
It is a logic circuit that checks for possible errors in the transmission. This
circuit can be an even parity checker or odd parity checker depending on the
type of parity generated at the transmission end. When this circuit is used as
even parity checker, the number of input bits must always be even.

Even Parity Checker
Consider that three input message along with even parity bit is generated at
the transmitting end. These 4 bits are applied as input to the parity checker
circuit, which checks the possibility of error on the data. Since the data is
transmitted with even parity, four bits received at circuit must have an even
number of 1s.
If any error occurs, the received message consists of odd number of 1s. The
output of the parity checker is denoted by PEC (Parity Error Check).
The below table shows the truth table for the Even Parity Checker in which
PEC = 1 if the error occurs, i.e., the four bits received have odd number of 1s
and PEC = 0 if no error occurs, i.e., if the 4-bit message has even number of 1s.

The above truth table can be simplified using K-map as shown below.

23

The above logic expression for the even parity checker can be implemented by
using three Ex-OR gates as shown in figure. If the received message consists of
five bits, then one more Ex-OR gate is required for the even parity checking.

Odd Parity Checker
Consider that a three bit message along with odd parity bit is transmitted at
the transmitting end. Odd parity checker circuit receives these 4 bits and
checks whether any error are present in the data.
If the total number of 1s in the data is odd, then it indicates no error, whereas
if the total number of 1s is even then it indicates the error since the data is
transmitted with odd parity at transmitting end.

24

The expression for the PEC in the above truth table can be simplified by K-map
as shown below.

After simplification, the final expression for the PEC is obtained as

PEC = (A Ex-NOR B) Ex-NOR (C Ex-NOR P)
The expression for the odd parity checker can be designed by using three Ex-
NOR gates as shown below.

Parity Generator/Checker ICs

This IC consists of eight parity
inputs from A through H and two
cascading inputs. There are two outputs even sum and odd sum. In
implementing generator or checker circuits, unused parity bits must be tied to
logic zero and the cascading inputs must not be equal.

25

7. D Latch And D Flip flop

D-LATCH
Latch is an electronic device that can be used to store one bit of information.
The D latch is used to capture, or 'latch' the logic level which is present on the
Data line when the clock input is high. If the data on the D line changes state
while the clock pulse is high, then the output, Q, follows the input, D. When
the CLK input falls to logic 0, the last state of the D input is trapped and held in
the latch.

Timing diagram

From the timing diagram it is clear that the output Q's waveform resembles
that of input D's waveform when the clock is high whereas when the clock is
low Q retains the previous value of D (the value before clock dropped down to
0)

D FLIP FLOP

The working of D flip flop is similar to the D latch except that the output of D
Flip Flop takes the state of the D input at the moment of a positive edge at the
clock pin (or negative edge if the clock input is active low) and delays it by one
clock cycle. That's why, it is commonly known as a delay flip flop. The D
FlipFlop can be interpreted as a delay line or zero order hold. The advantage
of the D flip-flop over the D-type "transparent latch" is that the signal on the D

26

input pin is captured the moment the flip-flop is clocked, and subsequent
changes on the D input will be ignored until the next clock event.

Timing diagram

From the timing diagram it is clear that the output Q changes only at the
positive edge.At each positive edge the output Q becomes equal to the input
D at that instant and this value of Q is held untill the next positive edge

D-Latch D-Flip Flop

Level-sensitive latch Edge-triggered flip-flop

Uses enable signal
Does not use enable
signal

Can have transparent
or opaque latch

Can have rising or falling
edge trigger

27

D-Latch D-Flip Flop

Output changes
according to input
when enable is high

Output changes only at
the clock edge

Can be implemented
using NOR or NAND
gates

Can be implemented
using NAND gates

Used in asynchronous
circuits

Used in synchronous
circuits

Has a single input and
output

Has separate input,
output, and clock signals

Can be used for simple
storage or delay
operations

Can be used for
synchronization and
timing operations

28

8. Memory

Memory Type DRAM SRAM PSRAM

Volatility Volatile Volatile Volatile

Storage Method Charge in
capacitor

Flip-flop circuit Charge in
capacitor

Cell Structure Single transistor
and capacitor

Six transistors
arranged in a
cross-coupled
configuration

Single transistor
and capacitor with
additional circuitry
for automatic
refreshing

Refresh Requires
constant
refreshing

Does not require
refreshing

Refreshes
automatically

Speed Slower Faster Faster than
DRAM, slower
than SRAM

Power
Efficiency

Less power-
efficient

More power-
efficient

More power-
efficient than
DRAM, less
power-efficient
than SRAM

Area Smaller Larger Intermediate

29

9. Inverting and Non inverting

Register
Type Inverting Register Non-inverting Register

Output Inverted Non-inverted

Functionality Negative edge-triggered Positive edge-triggered

Input Active low Active high

Feedback
Feedback from output to input
is inverted

Feedback from output to input
is non-inverted

Timing

Delay from input to output is
propagation delay plus setup
time

Delay from input to output is
propagation delay only

Applications

Used in applications that
require a negative edge-
triggered signal, such as
clocking

Used in applications that require
a positive edge-triggered signal,
such as data sampling

30

10. Barrel Shifters
A barrel shifter is a logic circuit for shifting a word by a varying amount. Its has
a control input that specifies the number of bit positions that it shifts by.
A barrel shifter is implemented with a sequence of shift multiplexers, each
shifting a word by 2k bit positions for different values of k. The diagram below
shows a right-shifting barrel shifter for 32-bit words.

With more complex multiplexers and some extra circuitry for dealing with end
fill options, a barrel shifter can handle all of the standard bit shift instruction
in a processor's instruction set.

Barrel shifter functionality
The Barrel shifter component is applicable for cases where an efficient logical
shift or rotate with a selectable shift amount is required. The component
supports either shift or rotate operations depending on the ROTATION
parameter. When the ROTATION parameter is set to 1, the barrel shifter
performs rotation and when it is set to 0, a logical shift operation is
performed, shifting logical 0 in. the DIRECTION parameter determines if the
barrel shifter performs a left or right shift. Setting the DIRECTION parameter
to 0 would result in a left shift and setting it to 2 would result in a right shift.
The following table summarizes the operation modes of the barrel shifter:

Mode ROTATION DIRECTION Description

shift left
logical

0 0 Logic shift left, 0 is shifted through
the rightmost (LSB) bit.

rotate left 1 0 Left rotate, the rightmost bit is
shifted back in from the right.

shift right
logical

0 1 Logical shift right, 0 is shifted
through the leftmost (MSB) bit

rotate right 1 1 Right rotate, the rightmost bit is
shifted back in from the left.

31

Logarithmic shift and rotate
The shift or rotate operation is done in stages where each stage performs a
shift or rotate operation of a different size. For example, a 5 bits shift
operation would result in a shift of 4 and a shift of 1 where the stage that
performs the shift of 2 would not do any shift. The select vector binary
encoding is actually to enable the different stages of the barrel shifter.

Logical shift operation
The logical shift operation inserts 0 value for each shift operation. The input
vector is shifted in the selected direction according to the number of bits in
the select indication.

Rotate operation
The rotate operation is a shift where the bit which is shifted out of the vector
MSB is inserted at its LSB.
 Rotate and shift direction
The direction of the rotate and shift operation is implemented by reversing
the input and output vector. Using this method allows for the shift or rotate
logic to be kept simple, performing only right shift. For a left shift, the input
vector is reversed at the input, goes through the shift logic which performs a
right shift according to the select input and at the output stage, it is reversed
again, resulting in a left shift of the vector.

32

11. Difference between Combinational and Sequential Circuit

Key Combinational Circuit Sequential Circuit

Definition A Combinational Circuit is a
type of circuit in which the
output is independent of time
and only relies on the input
present at that particular
instant.

A Sequential circuit is a type
of circuit where output not
only relies on the current
input but also depends on
the previous output.

Feedback Since output does not depend
on the time instant, no
feedback is required for its
next output generation.

The output relies on its
previous feedback so output
of previous input is being
transferred as feedback used
with input for next output
generation.

Performance As the input of current instant
is only required in case of
Combinational circuit, it is
faster and better in
performance as compared to
that of Sequential circuit.

Sequential circuits are
comparatively slower and
has low performance as
compared to that of
Combinational circuit.

Complexity No implementation of
feedback makes the
combinational circuit less
complex as compared to
sequential circuit.

The implementation of
feedback makes sequential
circuit more complex as
compared to combinational
circuit.

Elementary
Blocks

The elementary building
blocks of a combinational
circuit are its logic gates.

The building blocks of a
sequential circuit are the
logic gates along with flip
flops.

Operation Combinational circuits are
mainly used for arithmetic as
well as Boolean operations.

Sequential circuits are
mainly used for storing data.

Example Adder, Subtractor, MUX,
Encoders, etc.

Flip Flops, Registers,
Counters, etc.

1

VLSI Design

1. Dynamic CMOS logic

Dynamic logic In static logic families the pull up and pull down networks operate concurrently.

Dynamic logic on the other hand uses a sequence of precharge and conditional evaluation

phases governed by the clock to realize complex logic functions.

Figure 1 Dynamic logic A dynamic logic block is shown in Fig. 1. Both forms of Fig.1 can be used.

In our analysis we will concentrate on Fig.1 n-logic network. The operation of the pulldown

network (PDN) can be divided into two major phases. The precharge and the evaluation phase.

In what mode the circuit is operating is determined by the signal φ, the “clock” signal.

2

2. Domino CMOS logic

Domino logic offers a simple technique to eliminate the need for complex clocking scheme, by

utilizing a single phase clock. A Domino logic module consists of a φ n block followed by a static

inverter as shown in Fig. 9. This ensures that all inputs to the next logic block are set to 0 after

the precharge periods. Hence, the only possible transition Figure 9 The block of Domino logic

during the evaluation period is 0 to 1 transition. The introduction of the static inverter has the

additional advantage of the output having a low-impedance output, which increases noise

immunity and drives the fan-out of the gate. The buffer furthermore reduces the capacitance of

the dynamic output node by separating internal and load capacitance. The buffer itself can be

optimized to drive the fan-out in an optimal way for high speed. The inverter will introduce

another problem that this type of logic family is non inverting.

Consider now the operation of a chain of Domino gates. During precharge, all inputs are set to

0. During the evaluation, the output of the first Domino block either stays at 0 or makes a 0 to 1

transition, affection the second Domino. This effect might ripple through the whole chain, one

after the other, as with a line of falling dominoes.

Domino CMOS has the following properties:

• Each gate requires N+4 transistors

• Logic evaluation propagates as falling dominoes hence minimum evaluation period is

determined by the logic depth.

• The nodes must be precharged during the precharge period. Total precharge time depends on

size of pmos.

• Inputs must be stable (only one rising transition) during the evaluation period.

• Gates are ratio less and are non inverting. Domino gates can be made more immune to

parasitic effects by adding a level-restoring transistor to the static CMOS inverter.

 Even though CMOS logic gates have very low power dissipation, they have the following
limitations:

1. They occupy larger area than NMOS gates.
2. Due to the larger area, they have larger capacitance.
3. Larger capacitance leads to longer delay in switching.

3

These limitations of the CMOS gates can be reduced by several alternative structures discussed
below. These structures resemble the CMOS structure in some way; yet, they are able to reduce
the chip area and hence the capacitive delay. Pseudo-NMOS logic, dynamic NMOS logic,
and domino logic are some of these special CMOS structures.

3. Pseudo-NMOS (p-NMOS) Logic Gates

Figure 3.32 shows a pseudo-NMOS inverter (p-NMOS NOT) gate, Fig. 3.33 shows a pseudo-
NMOS NAND (p-NMOS NAND) gate, and Fig. 3.34 shows a pseudo-NMOS NOR (p-NMOS NOR)
gate. As shown in all these figures, there is a block of NMOS FETs, which will contain one or
more NMOS transistors, as required by the structure of the gate. However, there will be only
one PMOS transistor in any pseudo-NMOS logic, and this will be always grounded.

The p-NMOS circuit is a modification of NMOS circuits with DMOS loads. In p-NMOS circuits, we
use a PMOS transistor, instead of the DMOS transistor, as its load. The advantages of using a
PMOS load are:

 The circuit retains its basic CMOS structure. Hence, the chip area is minimum compared with

the conventional CMOS structure.
 The circuit becomes compatible with CMOS devices.

 The channel resistance of the pseudo-NMOS devices is higher than that of the NMOS devices.
Hence, power dissipation is lower for the pseudo devices.

 Pseudo-NMOS circuits are useful in applications where the output remains in logic-1 state
most of the time.

 However, the pseudo circuits have the disadvantage that they possess greater
propagation delay than the NMOS devices. Pseudo NMOS Logic Circuit is shown below.

4. One bit adder

Half adder

The half adder adds two single binary digits A and B. It has two outputs, sum (S) and carry (C).

The carry signal represents an overflow into the next digit of a multi-digit addition. The value of

the sum is 2C + S. The simplest half-adder design, pictured on the right, incorporates an XOR

gate for S and an AND gate for C.

https://2.bp.blogspot.com/-4YLUWmca1CY/W69pwv6H47I/AAAAAAAAA2M/fxW1V4KVe2sP_PX-96kdj62CBuu7Nm__QCLcBGAs/s1600/Pseudo+NMOS+Logic+Circuit.jpg

4

Full Adder is the adder that adds three inputs and produces two outputs. The first two inputs
are A and B and the third input is an input carry as C-IN. The output carry is designated as C-
OUT and the normal output is designated as S which is SUM. A full adder logic is designed in
such a manner that can take eight inputs together to create a byte-wide adder and cascade
the carry bit from one adder to another. we use a full adder because when a carry-in bit is
available, another 1-bit adder must be used since a 1-bit half-adder does not take a carry-in
bit. A 1-bit full adder adds three operands and generates 2-bit results.

5. Differences between Dynamic CMOS logic, Domino CMOS logic, and Pseudo NMOS logic:

Feature Dynamic CMOS

logic

Domino CMOS logic Pseudo NMOS logic

Logic gates MOSFET transistors MOSFET transistors NMOS transistor and

resistor

Charge storage Capacitor Capacitor No charge storage

Precharge operation Not used Inverter chain

precharges output

node to high state

Not used

Clock signal

requirement

Yes Yes No

Noise immunity Limited Limited Less noise-immune

Power consumption Low Low High

Circuit complexity Moderate Moderate Simple

Usage in modern Widely used Widely used in high- Rarely used

5

Feature Dynamic CMOS

logic

Domino CMOS logic Pseudo NMOS logic

circuit design performance

applications

Ripple Carry Adder, Carry Skip Adder, and Carry Look Ahead Adder are three types of

adders used in digital circuits to perform binary addition.

Ripple Carry Adder (RCA): A ripple carry adder is the simplest form of adder that is used

for adding two n-bit binary numbers. It uses multiple full adders connected in series,

where the carry output of one full adder is connected to the carry input of the next full

adder. The main disadvantage of this adder is that it has a long propagation delay, which

increases with the number of bits to be added.

Carry Skip Adder (CSA): The Carry Skip Adder (also known as the Carry Bypass Adder) is

an improvement over the ripple carry adder. This adder uses a series of 2:1 multiplexers

to selectively skip groups of full adders when the carry input is not changing. The

advantage of this adder is that it reduces the propagation delay of the adder when the

carry input is constant.

Carry Look Ahead Adder (CLA): The Carry Look Ahead Adder (CLA) is another

improvement over the ripple carry adder. It uses a set of precomputed carry signals to

determine the carry output of each full adder in parallel, instead of sequentially. The

advantage of this adder is that it has a constant propagation delay, regardless of the

number of bits being added.

6. Comparison table of the Ripple Carry Adder, Carry Skip Adder, and Carry Look Ahead

Adder:

Feature
Ripple Carry Adder
(RCA) Carry Skip Adder (CSA)

Carry Look Ahead Adder
(CLA)

Logic
Simple, using full
adders

More complex, using full
adders and multiplexers

More complex, using
precomputed carry signals

Propagation
delay

Increases with the
number of bits

Reduces when carry input
is constant Constant

Gate delay High Low to moderate Low

Hardware
complexity Simple Moderate High

Area required Minimal Larger than RCA Largest

Power
consumption Low Moderate High

Application
Low-speed and low-
power applications

Medium-speed and
medium-power
applications

High-speed and high-
power applications

Cost Low Moderate High

Adder speed Slow Faster than RCA Fastest

Carry generation Sequential Concurrent Precomputed

Carry lookahead N/A Short Moderate

6

Feature
Ripple Carry Adder
(RCA) Carry Skip Adder (CSA)

Carry Look Ahead Adder
(CLA)

time

Critical path
length

Increases with the
number of bits

Increases with the number
of bits Constant

Carry lookahead
adder No No Yes

7. Ripple Carry Adders:

Arithmetic operations like addition, subtraction, multiplication, division are basic operations to

be implemented in digital computers using basic gates likr AND, OR, NOR, NAND etc. Among all

the arithmetic operations if we can implement addition then it is easy to perform multiplication

(by repeated addition), subtraction (by negating one operand) or division (repeated

subtraction).

Half Adders can be used to add two one bit binary numbers. It is also possible to create a logical

circuit using multiple full adders to add N-bit binary numbers. Each full adder inputs a Cin,

which is the Cout of the previous adder. This kind of adder is a Ripple Carry Adder, since each

carry bit "ripples" to the next full adder. The first (and only the first) full adder may be replaced

by a half adder.The block diagram of 4-bit Ripple Carry Adder is shown here below -

The layout of ripple carry adder is simple, which allows for fast design time; however, the ripple

carry adder is relatively slow, since each full adder must wait for the carry bit to be calculated

from the previous full adder. The gate delay can easily be calculated by inspection of the full

adder circuit. Each full adder requires three levels of logic.In a 32-bit [ripple carry] adder, there

are 32 full adders, so the critical path (worst case) delay is 31 * 2(for carry propagation) + 3(for

sum) = 65 gate delays.

Design Issues :

The corresponding boolean expressions are given here to construct a ripple carry adder. In the

half adder circuit the sum and carry bits are defined as

sum = A ⊕ B

carry = AB

In the full adder circuit the the Sum and Carry outpur is defined by inputs A, B and Carryin as

Sum=ABC + ABC + ABC + ABC

Carry=ABC + ABC + ABC + ABC

Having these we could design the circuit.But,we first check to see if there are any logically

equivalent statements that would lead to a more structured equivalent circuit.

With a little algebraic manipulation,one can see that

Sum= ABC + ABC + ABC + ABC

7

= (AB + AB) C + (AB + AB) C

= (A ⊕ B) C + (A ⊕ B) C

=A ⊕ B ⊕ C

Carry= ABC + ABC + ABC + ABC

= AB + (AB + AB) C

= AB + (A ⊕ B) C

8. Carry Lookahead Adders

To reduce the computation time, there are faster ways to add two binary numbers by using

carry lookahead adders. They work by creating two signals P and G known to be Carry

Propagator and Carry Generator. The carry propagator is propagated to the next level whereas

the carry generator is used to generate the output carry ,regardless of input carry. The block

diagram of a 4-bit Carry Lookahead Adder is shown here below -

The number of gate levels for the carry propagation can be found from the circuit of full adder.

The signal from input carry Cin to output carry Cout requires an AND gate and an OR gate, which

constitutes two gate levels. So if there are four full adders in the parallel adder, the output carry

C5 would have 2 X 4 = 8 gate levels from C1 to C5. For an n-bit parallel adder, there are 2n gate

levels to propagate through.

Design Issues :

The corresponding boolean expressions are given here to construct a carry lookahead adder. In

the carry-lookahead circuit we ned to generate the two signals carry propagator(P) and carry

generator(G),

Pi = Ai ⊕ Bi

Gi = Ai · Bi

The output sum and carry can be expressed as

Sumi = Pi ⊕ Ci

Ci+1 = Gi + (Pi · Ci)

Having these we could design the circuit. We can now write the Boolean function for the carry

output of each stage and substitute for each Ci its value from the previous equations:

C1 = G0 + P0 · C0

C2 = G1 + P1 · C1 = G1 + P1 · G0 + P1 · P0 · C0

C3 = G2 + P2 · C2 = G2 P2 · G1 + P2 · P1 · G0 + P2 · P1 · P0 · C0

C4 = G3 + P3 · C3 = G3 P3 · G2 P3 · P2 · G1 + P3 · P2 · P1 · G0 + P3 · P2 · P1 · P0 · C0

8

9. A Carry Skip Adder (CSA) is a type of digital circuit used in computer processors and other

digital systems to add two binary numbers together. It is a high-speed parallel adder that

can add two n-bit binary numbers in a single clock cycle.

The basic idea behind a CSA is to use a combination of carry look-ahead and carry select adders

to reduce the delay caused by ripple carry. A carry look-ahead adder generates carry bits for

each bit position based on the input bits, while a carry select adder selects the carry-in for each

block of bits based on the carry-out from the previous block.

The CSA divides the input bits into blocks of k bits, where k is a power of 2. The carry select

adder is then used to add these blocks together, and the carry look-ahead adder is used to

generate the carry bits between the blocks. The carry bits are then propagated from block to

block until they reach the final output.

One advantage of a CSA is that it can reduce the number of stages required to perform an

addition, which can lead to faster operation. Additionally, because the carry bits are generated

and propagated independently of the input bits, the CSA is well suited to parallel processing and

pipelining.

Overall, the Carry Skip Adder is a popular and efficient technique for fast addition of binary

numbers in digital systems.

Full adder with additional generate and propagate signals.

10. Parallel Adder –

A single full adder performs the addition of two one bit numbers and an input carry. But
a Parallel Adder is a digital circuit capable of finding the arithmetic sum of two binary
numbers that is greater than one bit in length by operating on corresponding pairs of bits in
parallel. It consists of full adders connected in a chain where the output carry from each full
adder is connected to the carry input of the next higher order full adder in the chain. A n bit
parallel adder requires n full adders to perform the operation. So for the two-bit number,
two adders are needed while for four bit number, four adders are needed and so on. Parallel
adders normally incorporate carry lookahead logic to ensure that carry propagation between
subsequent stages of addition does not limit addition speed.

9

1. As shown in the figure, firstly the full adder FA1 adds A1 and B1 along with the carry
C1 to generate the sum S1 (the first bit of the output sum) and the carry C2 which is
connected to the next adder in chain.

2. Next, the full adder FA2 uses this carry bit C2 to add with the input bits A2 and B2 to
generate the sum S2(the second bit of the output sum) and the carry C3 which is again
further connected to the next adder in chain and so on.

3. The process continues till the last full adder FAn uses the carry bit Cn to add with its
input An and Bn to generate the last bit of the output along last carry bit Cout.

11. Comparing the different schemes in terms of delay:

Scheme Basic Idea Advantages Disadvantages Delay Characteristics

Ripple Carry
Adder (RCA)

Add bits
sequentially
and propagate
carry bits

Simple and
easy to
implement

Linearly
increases with
the number of
bits being added

The delay increases
significantly for large
numbers of bits. The
output of each stage
depends on the carry-
out of the previous
stage, causing a ripple
effect that slows down
the circuit.

Carry Look-
Ahead Adder
(CLA)

Generate carry
bits for each
bit position
based on input
bits

Faster than
RCA, can add
large
numbers of
bits

Circuit size and
power
consumption
increase rapidly
with number of
bits

The delay is
proportional to the
number of bits, but it
is much faster than
RCA. The carry bits are
generated
independently of the
input bits, so the
circuit can operate in
parallel. However, the
circuit size and power
consumption increase
rapidly with the
number of bits,
making it less efficient
than more advanced
schemes.

10

Scheme Basic Idea Advantages Disadvantages Delay Characteristics

Carry Select
Adder (CSA)

Divide input
bits into blocks
and use
combination of
carry look-
ahead and
carry select
adders

Fast and
efficient, can
add two n-bit
binary
numbers in a
single clock
cycle

Requires
additional
hardware for
carry select
adder and carry
look-ahead
adder

Significantly reduced
delay compared to
RCA and CLA. The
circuit can add two n-
bit binary numbers in
a single clock cycle.
The carry bits are
generated and
propagated
independently of the
input bits, allowing for
parallel processing
and pipelining.
However, it requires
additional hardware
for the carry select
adder and carry look-
ahead adder.

Carry-Save
Adder (CSA)

Save carry bits
in a separate
register and
perform
addition once
all numbers
have been
added

Efficient for
adding
multiple
numbers

Requires
additional
hardware for
storing and
retrieving carry
bits

Reduces the delay by
performing addition
only once all numbers
have been added. The
carry bits are saved in
a separate register, so
they do not need to
be generated and
propagated through
the circuit. However,
it requires additional
hardware for storing
and retrieving the
carry bits, which can
increase the circuit
size and power
consumption.

Carry-
Completion
Adder (CCA)

Use carry
select adders
and a carry
completion
circuit to
reduce delay
caused by
ripple carry

Efficient and
can handle
large
numbers of
bits

Requires
additional
hardware for
the carry
completion
circuit

More efficient than
RCA and CLA, and
faster than CSA for
large numbers of bits.
The carry completion
circuit ensures that all
the carry bits are
correctly generated
and propagated
through the circuit.
However, it requires
additional hardware
for the carry
completion circuit.

11

12. The multiplier uses the serial-parallel method of addition to calculate the result of
multiplying two 8-bit numbers as shown in figure 2.1 below. The multiplier receives the
two operands A and B and outputs the result C. Operands A and B are loaded in parallel
into 8-bit registers and the result C is shifted into a 16-bit register. Multiplication begins
on the assertion of a START signal and once the calculation is complete a STOP signal is
asserted.

The serial-parallel multiplier is based on the addition of bits in the corresponding column of the

multiplication process as shown below. Each column is added in one clock cycle generating the

corresponding bit. The resulting bit is then shifted into output register. Therefore the entire

multiplication process for the 8 by 8-bit multiplier requires 16 clock cycles to complete the

calculation.

12

 The block diagram for the multiplier is shown in figure 2.2 below. The first operand, A, is loaded

in parallel and the most significant bit is shifted out during each clock cycle. Operand B is also

loaded in parallel and its value is stored in the register for the entire multiplication process. The

result C is generated by shifting the added bits of each column one by one into the resultant

register. Therefore register RA is a parallel load shift register, RB is a parallel load parallel

output register, and RC is a serial input parallel output register.

13. Serial/Parallel Multiplier The general architecture of the serial/parallel multiplier is shown

in the figure below. One operand is fed to the circuit in parallel while the other is serial. N

partial products are formed each cycle. On successive cycles, each cycle does the addition of

one column of the multiplication table of M*N PPs. The final results are stored in the output

register after N+M cycles. While the area required is N-1 for M=N. For snapshots of data

transfer through this multiplier please see the course website/slides of lecture.

 Multiplying two numbers represented in two's complement requires a series of bitwise

operations and additions. The following steps outline the general process:

1. Convert the two's complement numbers to their decimal equivalents.

2. Multiply the decimal values of the two numbers.

3. Convert the decimal result back to two's complement format.

Here's an example of multiplying two 4-bit two's complement numbers (in binary) using this

method:

1101 (-3)

x 0110 (6)

0000 (0)

+ 1101 (-3)

101110 (-18)

In this example, we're multiplying -3 and 6, which in two's complement representation are 1101

and 0110, respectively.

We begin by multiplying the decimal equivalents of these numbers (which are -3 and 6), which

gives us -18. We then convert -18 to binary in 4-bit two's complement format, which is 101110.

14. Booth encoding is a technique used in digital circuit design to reduce the number of partial

products that need to be added together when performing multiplication.

In binary multiplication, each bit of the multiplicand is multiplied with each bit of the multiplier,

resulting in multiple partial products. Booth encoding is a method that reduces the number of

partial products by representing adjacent groups of 1's in the multiplier as a single value.

13

For example, suppose we want to multiply the 4-bit binary numbers 0110 and 1011. Using the

standard multiplication method, we would obtain the following partial products:

0110

x1011

0110

0000

1100

0110

100010

Using Booth encoding, we can represent the multiplier as a sequence of 0's, 1's, and -1's, where

adjacent groups of 1's are combined into a single -1. For example, the multiplier 1011 would be

encoded as -101. Then, we perform the multiplication using the following steps:

1. Write the multiplicand in the first column and the encoded multiplier in the second

column, shifting the multiplier to the right by one position for each column.

0110

0

-1

 0

 1

2. Starting from the rightmost column, examine each pair of bits in the multiplier. If the

pair is 01, add the multiplicand to a running total; if the pair is 10, subtract the

multiplicand from the running total.

0110

0

-1

0

1

 0110

3. Shift the multiplicand and the encoded multiplier one position to the right and repeat

step 2 until all columns have been processed.

0110

0

-1

0

1

 0110

 0011

 0000

100010

14

As you can see, using Booth encoding reduced the number of partial products from four to

three, resulting in fewer additions and faster multiplication.

Booth algorithm gives a procedure for multiplying binary integers in signed 2’s complement

representation in efficient way, i.e., less number of additions/subtractions required. It operates

on the fact that strings of 0’s in the multiplier require no addition but just shifting and a string

of 1’s in the multiplier from bit weight 2^k to weight 2^m can be treated as 2^(k+1) to 2^m. As

in all multiplication schemes, booth algorithm requires examination of the multiplier bits and

shifting of the partial product. Prior to the shifting, the multiplicand may be added to the partial

product, subtracted from the partial product, or left unchanged according to following rules:

1. The multiplicand is subtracted from the partial product upon encountering the first least

significant 1 in a string of 1’s in the multiplier

2. The multiplicand is added to the partial product upon encountering the first 0 (provided

that there was a previous ‘1’) in a string of 0’s in the multiplier.

3. The partial product does not change when the multiplier bit is identical to the previous

multiplier bit.

Hardware Implementation of Booths Algorithm – The hardware implementation of the booth

algorithm requires the register configuration shown in the figure below.

Booth’s Algorithm Flowchart –

We name the register as A, B and Q, AC, BR and QR respectively. Qn designates the least

significant bit of multiplier in the register QR. An extra flip-flop Qn+1is appended to QR to

facilitate a double inspection of the multiplier.The flowchart for the booth algorithm is shown

below.

15

Flow chart of Booth’s Algorithm.

 AC and the appended bit Qn+1 are initially cleared to 0 and the sequence SC is set to a number

n equal to the number of bits in the multiplier. The two bits of the multiplier in Qn and Qn+1are

inspected. If the two bits are equal to 10, it means that the first 1 in a string has been

encountered. This requires subtraction of the multiplicand from the partial product in AC. If the

2 bits are equal to 01, it means that the first 0 in a string of 0’s has been encountered. This

requires the addition of the multiplicand to the partial product in AC. When the two bits are

equal, the partial product does not change. An overflow cannot occur because the addition and

subtraction of the multiplicand follow each other. As a consequence, the 2 numbers that are

added always have a opposite signs, a condition that excludes an overflow. The next step is to

shift right the partial product and the multiplier (including Qn+1). This is an arithmetic shift right

(ashr) operation which AC and QR to the right and leaves the sign bit in AC unchanged. The

sequence counter is decremented and the computational loop is repeated n times. Product of

negative numbers is important, while multiplying negative numbers we need to find 2’s

complement of the number to change its sign, because it’s easier to add instead of performing

binary subtraction. Product of two negative number is demonstrated below along with 2’s

complement.

Example – A numerical example of booth’s algorithm is shown below for n = 4. It shows the

step by step multiplication of -5 and -7.

BR = -5 = 1011,

BR' = 0100, <-- 1's Complement (change the values 0 to 1 and 1 to 0)

BR'+1 = 0101 <-- 2's Complement (add 1 to the Binary value obtained after 1's complement)

QR = -7 = 1001 <-- 2's Complement of 0111 (7 = 0111 in Binary)

The explanation of first step is as follows: Qn+1

16

AC = 0000, QR = 1001, Qn+1 = 0, SC = 4

Qn Qn+1 = 10

So, we do AC + (BR)'+1, which gives AC = 0101

On right shifting AC and QR, we get

AC = 0010, QR = 1100 and Qn+1 = 1

OPERATION AC QR Qn+1 SC

 0000 1001 0 4

AC + BR’ + 1 0101 1001 0

ASHR 0010 1100 1 3

AC + BR 1101 1100 1

ASHR 1110 1110 0 2

ASHR 1111 0111 0 1

AC + BR’ + 1 0100 0111 0

ASHR 0010 0011 1 0

Product is calculated as follows:

Product = AC QR

Product = 0010 0011 = 35

Advantages:

Faster than traditional multiplication: Booth’s algorithm is faster than traditional multiplication

methods, requiring fewer steps to produce the same result.

Efficient for signed numbers: The algorithm is designed specifically for multiplying signed

binary numbers, making it a more efficient method for multiplication of signed numbers than

traditional methods.

Lower hardware requirement: The algorithm requires fewer hardware resources than

traditional multiplication methods, making it more suitable for applications with limited

hardware resources.

Widely used in hardware: Booth’s algorithm is widely used in hardware implementations of

multiplication operations, including digital signal processors, microprocessors, and FPGAs.

Disadvantages:

Complex to understand: The algorithm is more complex to understand and implement than

traditional multiplication methods.

Limited applicability: The algorithm is only applicable for multiplication of signed binary

numbers, and cannot be used for multiplication of unsigned numbers or numbers in other

formats without additional modifications.

Higher latency: The algorithm requires multiple iterations to calculate the result of a single

multiplication operation, which increases the latency or delay in the calculation of the result.

Higher power consumption: The algorithm consumes more power compared to traditional

multiplication methods, especially for larger inputs.

VLSI Design

1. Need of Testing in CMOS

Testing is particularly important in the context of Complementary Metal-Oxide-Semiconductor

(CMOS) technology because of the following reasons:

1. High integration and complexity: CMOS technology enables the integration of millions

of transistors on a single chip, resulting in highly complex electronic circuits. The

complexity increases the likelihood of defects or faults in the circuits, making testing

essential to ensure reliable operation.

2. Fabrication variability: Fabrication of CMOS circuits involves a complex set of processes,

and each process can have variations that can lead to defects or faults in the final

product. Testing helps to identify and correct these defects or faults.

3. Performance optimization: CMOS circuits are designed for specific performance criteria,

such as speed, power consumption, and noise immunity. Testing is essential to ensure

that the circuits meet these performance criteria and operate reliably under different

conditions.

4. Safety-critical applications: CMOS circuits are widely used in safety-critical applications,

such as medical devices, automotive systems, and aerospace systems. Testing is critical

to ensuring that these circuits operate safely and reliably under all conditions.

5. Time-to-market: Testing is essential to reducing the time-to-market for CMOS products.

Testing early in the development process helps to identify and correct defects or faults,

which reduces the time and cost required for later testing and corrections.

6. Product quality: Testing is essential to ensuring high product quality for CMOS circuits.

Quality testing helps to identify defects or faults that could affect product performance

or reliability, ensuring that the product meets customer expectations.

2. Test Procedure in CMOS

The test procedure in CMOS technology typically involves several stages of testing, including

wafer testing, package testing, and final testing. Here is a general overview of the test

procedure in CMOS technology:

1. Wafer testing: Wafer testing is the first stage of testing in CMOS technology. It involves

testing the individual dies on the wafer before they are packaged. The tests performed

during wafer testing include functional testing, parametric testing, and defect testing.

Functional testing checks the circuit's functionality, while parametric testing checks the

circuit's electrical characteristics. Defect testing checks for any defects or faults in the

circuit.

2. Package testing: After the dies are packaged, they undergo package testing. Package

testing checks the packaged devices for any defects or faults that may have occurred

during the packaging process. The tests performed during package testing include visual

inspection, electrical testing, and thermal testing.

3. Final testing: Final testing is the last stage of testing in CMOS technology. It involves

testing the final product after assembly. The tests performed during final testing include

functional testing, reliability testing, and environmental testing. Functional testing

checks the product's functionality, reliability testing checks the product's reliability, and

environmental testing checks the product's performance under different environmental

conditions.

The specific tests performed during each stage of testing may vary depending on the product

and its application. The test procedures are designed to ensure that the product meets the

required specifications, quality standards, and customer expectations. The testing process is

critical to ensuring the reliable operation of CMOS products and delivering high-quality

products to customers.

3. Boundary Scan in CMOS

Boundary scan is a test technique using scan methodology, involving digital services, digital
devices, designed with scan flip flops placed between each device pin and the internal logic.
These registers can control and observe signal values present at each input and output pin and
are connected together in serial fashion to form a data register chain, called boundary scan shift
register with shift and update stages.

The update stage latch prevents output from rippling as data is shifted through the shift register
during scan operation. Figure above shows how the boundary scan registers can be connected

in an ASIC. Test sets generated by automatic test pattern generation can be scanned into these
boundary scan registers through scan in port such that test stimuli are applied parallel, circuit
response can be captured in parallel by boundary scan registers connected between internal
logic and output pins and scanned out through scan out port.

Boundary Scan Standards :

To better address problems of board-level testing, several design for testability standards have
been developed. The primary goal of these proposed standards is to ensure that chips of VLSI
complexity contain a common denominator of DFT circuitry that will make the test
development and testing of boards containing these chips significantly more effective and less
costly. Some of these initiatives are known as the Joint Test Action Group (JTAG).

Advantages of Boundary Scan :

No need for complex testers in PCB testing.

The test engineer’s work is simplified and efficient.

The time spent on test pattern generation and application is reduced.

Fault coverage is increased.

Boundary Scan 1149.1 Standard :

The standards discussed above deal primarily with the use of a test bus which will reside on a
board, the protocol associated with this bus, elements of a bus master which controls the bus,
I/O ports that tie a chip to the bus, and some control logic that must reside on a chip to
interface the test bus ports to the DFT hardware residing on the application portion of the chip.
In addition, the JTAG boundary scan and IEEE 1149.1 standards also require that a boundary-
scan register exist on the chip. The description of a board-level test bus presented on IEEE
1149.1. Figure below shows a general form of a chip which supports IEEE 1149.1. The
application logic represents the normal chip design prior to the inclusion of logic required to
support IEEE 1149.1. The normal I/O terminals of the application logic are connected through
boundary-scan cells to the chips I/O pads.The test-bus circuitry, also referred to as the bus slave
consists of the boundary-scan registers, a 1-bit bypass register, an instruction register, several
miscellaneous registers, and the TAP. The boundary-scan bus consists of four lines, that are a
test clock (TCK), a test mode signal (TMS), the TDI line, and the TDO line. Test instructions and
test data are sent to a chip over the TDI line. Test results and status information are sent from a
chip over the TDO line serially. The sequence of operations are controlled by a bus master,
which can be either ATE or a component that interfaces to a higher-level test bus Control of the
test-bus circuitry is primarily carried out by the TAP, which responds to the state transitions on
the TMS line.

4. Built-in Self Test (BIST) :

As the complexity of VLSI circuits and as overall system complexity increases, test generation

and application becomes an expensive and not always very effective means of testing. Further

there are also very difficult problems associated with the high speeds at which many VLSI

systems are designed to operate. Such problems require the use of very sophisticated, but not

always affordable, test equipments. Built-in Self Test (BIST) is another solution. Figure below

shows the Built-in Self Test system

Advantages :

 Lower cost due to elimination of external tester

 In-system, at-system, high-quality testing

 Faster fault detection, ease of diagnosis

 Overcomes pin limitations and related interfacing problems

 Reduces maintenance and repair costs at system level.

5. Fault Modeling

Fault modeling is the technique to use stuck-at models the effects of the defects in an

integrated circuit. This model is found to be more realistic when small-scale integration

technology was established. However, the stuck-at model, for practical reasons, are still widely

used in the EDA software tools. In this model an input or output of a logic gate is stuck to a logic

value 0 or 1 and is not sensitive to signal event occurence from the signal that drives it. The

models in digital circuits are created and the faults are injected into the model. The fault-free

circuit and the faulted circuit are simulated and if the difference in response at an observable

I/O pin then the fault is considered to be detected. The fault model is an image when compared

to the various, complex kinds of defects that are occured in a system. Therefore, the predictions

of test effectiveness based on the stuck-at model are having errors.

AND Gate Fault Model:

The AND gate shown in figure is fault-modeled for inputs and the outputs. This results in n + 2

tests for an n-input AND gate. The input tested is controlling input which determines the value

appears on the output. Input pattern of all 1s tests for the output. It is not necessary to test for

an output fault because any input test also detect the output. Further, output is detected

without detecting any input fault if two or more inputs are at logic low.

OR Gate Fault Model:

An n-input OR gate, requires n + 2 tests. Further, the input values are the complement of the

values for an AND gate. The input tested is set to 1 and all other inputs are set to 0.

Inverter Fault Model:

The Inverter is modeled with output. When failed to invert a transistor and both stuck-at faults

are detected.

**

The chip manufacturing process is prone to defects and the defects are commonly referred as

faults. A fault is testable if there exists a well-specified procedure to expose it in the actual

silicon. To make the task of detecting as many faults as possible in a design, we need to add

additional logic; Design for testability (DFT) refers to those design techniques that make the

task of testing feasible. In this article we will be discussing about the most common DFT

technique for logic test, called Scan and ATPG. Before going into Scan and ATPG basics, let us

first understand the concept of fault model.

6. Fault Models

Fault models abstract the behavior of manufacturing defects so that test vectors can be

generated to detect them.

 • Functional Defects : Stuck-at Fault Model

 • Current defects : Pseudo Stuck-at Fault Model (IDDQ)

 • Speed defects: At-speed Fault Model, Path Delay Fault Model

However in this article we will be discussing about two most common fault models: stuck-at

and at-speed fault models.

 1. Stuck-at Faults

This is the most common fault model used in industry. It models manufacturing defects which

occurs when a circuit node is shorted to VDD (stuck-at-1 fault) or GND (stuck-at-0 fault)

permanently. The fault can be at the input or output of a gate. Thus a simple 2-input AND gate

has six possible stuck-at faults.

In the circuit shown in Figure 1, suppose we have a stuck-at-0 fault at the output of an AND

gate. Note one important thing, there are three input ports in the circuit, thus we can have a

combination of eight different inputs or patterns {000, 001, 010, 011, 100, 101, 110, 111}; out

of the eight patterns, only two patterns {011, 111} will be able to detect this fault because with

rest of the patterns the expected output will be same as the actual circuit output in the

presence of this s-a-0 fault. This is a small circuit so we can easily find the pattern that can

detect this fault, but what about much bigger circuits? Well we don’t have to worry about it as

the CAD tools (ATPG tools) will do that for us. The ATPG tools will try to generate the stuck-at

fault patterns required to test all the possible fault locations using complex algorithms, but if it

is unable to find patterns for few faults, then it will classify those faults as untestable.

Figure 1: stuck-at-0 fault in a circuit

 2. At-speed Faults

It models the manufacturing defects that behave as gross delays on gate input-output ports. So

each port is tested for logic 0-to-1 transition delay (slow-to-rise fault) or logic 1-to-0 transition

delay (slow-to-fall fault). Like stuck-at faults, the at-speed fault can be at the input or output of

a gate, thus a simple 2-input AND gate has six possible at-speed faults.

In the circuit shown in Figure 2, suppose we have a slow-to-fall fault at the output of an AND

gate. As shown, a slower 1-to-0 transition at the output of AND gate can affect the value

captured by the Flop 2 at its capture edge. It is important to note that only with an initial state

‘1’ in Flop 1 and 010 at the input, we will be able to detect this fault. And like stuck-at fault

pattern generation, the ATPG tools will try to generate the at-speed fault patterns required to

test all the possible fault locations.

Figure 2: slow-to-fall fault in a circuit

Scan and ATPG

Scan is the internal modification of the design’s circuitry to increase its test-ability. ATPG stands

for Automatic Test Pattern Generation; as the name suggests, this is basically the generation of

test patterns. In other words, we can say that Scan makes the process of pattern generation

easier for detection of the faults we discussed earlier.

Figure 3: A typical sequential circuit (before scan insertion)

To test a fault we need to initialize the flops to the required values as we had shown while

discussing about stuck-at faults and at-speed faults. In a bigger sequential circuit (without scan),

it is difficult to control the flop’s value through primary inputs and observe the captured

response in primary outputs. To solve this issue we do ‘Scan Insertion’ during synthesis.

The goal of ‘Scan Insertion’ is to make a difficult-to-test sequential circuit behave (during testing

process) like an easier-to-test combinational circuit. Achieving this goal involves two steps –

 1. Converting Regular Flop to Scan Flop

All the flops in the design are converted into scan flops (as shown in Figure 4), except –

 • The ones that are excluded by user. These are called non-scan flops.

 • The ones that have DFT DRC violation(s).

Figure 4: Regular flop vs Scan flop

 2. Stitching the Scan Flops to form Scan Chains

The scan flops are stitched to form scan chain(s) (as shown in Figure 5). The number of scan

chains depends upon various user inputs like –

 • Length of scan chain

 • Clock domain mixing

 • Power domain mixing

 • Voltage domain mixing

Figure 5: A typical sequential circuit compatible for Scan and ATPG (after scan insertion)

To initialize any flop to a value (refer the Figure 5), we simply make the SE = 1, such that SI to Q

path is activated and we shift in the required values serially through a top level primary input

called Scan-Input. Once the required values are loaded to the flops, we capture the values from

combinational circuit by making SE = 0. And to observe the captured response we make the SE =

1 and serially shift out the captured data through a primary output called Scan-Output. Thus in

a way, we can say the scan flop’s output (Q) act as pseudo primary output of the design and the

scan flop’s input (D) act as pseudo primary inputs to the design, thereby making it a pseudo

combination circuit.

Once the patterns are generated, the expected response of the circuit for each pattern is

obtained in pre-silicon. The expected responses along with the patterns are then stored in the

memory of Automatic Test Equipment (ATE). In post-silicon, the manufactured chip is tested

using the ATE, which loads the pattern and compares it with the expected response for pass or

fail status.

Figure 6: A schematic showing how testing works

7. Fault simulation is a technique used to simulate the occurrence of faults or defects in

digital circuits to evaluate the effectiveness of the design for testability (DFT) techniques

and test patterns. The purpose of fault simulation is to identify and analyze the circuit's

response to different fault conditions and assess the test coverage, which is the

percentage of faults that can be detected by the test patterns.

Here are the key steps involved in the fault simulation process:

1. Fault model creation: The first step in fault simulation is to create a fault model, which

defines the types of faults that can occur in the circuit. Common fault models used in

fault simulation include stuck-at faults, bridging faults, and delay faults.

2. Test pattern generation: The next step is to generate test patterns that can be used to

detect the faults in the circuit. Test patterns are generated using test generation tools,

and the effectiveness of the test patterns is evaluated by simulating the circuit with the

fault models.

3. Fault simulation: In the fault simulation process, the test patterns are applied to the

circuit with the fault models, and the circuit's response is analyzed. The analysis involves

comparing the expected output of the circuit with the actual output under fault

conditions.

4. Test coverage analysis: The test coverage analysis involves evaluating the percentage of

faults that can be detected by the test patterns. The goal is to achieve high test

coverage, which indicates that a high percentage of faults can be detected by the test

patterns.

5. Fault diagnosis: Fault diagnosis involves identifying the location and type of faults that

are not detected by the test patterns. Fault diagnosis is an essential step in fault

simulation because it helps to identify design or manufacturing issues that need to be

addressed to improve the test coverage and overall product quality.

Overall, fault simulation is an important tool in the DFT process, as it helps to evaluate the

effectiveness of the test patterns and identify any design or manufacturing issues that may

affect the circuit's performance and reliability. By simulating faults in the circuit and analyzing

the test coverage, designers can improve the circuit's testability, reduce the cost of testing, and

ensure high-quality products.

8. Magnitude Comparator A magnitude comparator determines the larger of two binary

numbers. To compare two unsigned numbers A and B, compute B – A = B + A + 1. If

there is a carry-out, A f B; otherwise, A > B. A zero detector indicates that the numbers

are equal.

9. Field Programmable Gate Array (FPGA) Fully fabricated FPGA chips containing

thousands or even more, of logic gates with programmable interconnects, are available

to users for their custom hardware programming to realize desired functionality. This

design style provides a means for fast prototyping and also for cost-effective chip

design, especially for low-volume applications. A typical field programmable gate array

(FPGA) chip consists of I/O buffers, an array of configurable logic blocks (CLBs), and

programmable interconnect structures. The programming of the interconnects is

accomplished by programming of RAM cells whose output terminals are connected to

the gates of MOS pass transistors. Thus, the signal routing between the CLBs and the I/O

blocks is accomplished by setting the configurable switch matrices accordingly. The

general architecture of an FPGA chip from Xilinx . showing the locations of switch

matrices used for interconnect routing.

Important points to know about Field-Programmable Gate Arrays (FPGAs):

1. FPGAs are reprogrammable integrated circuits that can be programmed and
reprogrammed to perform a wide variety of digital logic functions.

2. FPGAs are made up of programmable logic blocks and programmable interconnects,
which can be configured and connected to create custom logic pathways between the
blocks.

3. FPGAs typically have other programmable features such as memory, input/output
interfaces, and specialized digital signal processing (DSP) blocks.

4. FPGAs are highly versatile and adaptable to a wide range of applications, including
digital signal processing, high-performance computing, and embedded systems.

5. FPGAs are commonly used in prototyping and testing of new digital circuits, as they
allow for quick and easy implementation of custom logic functions.

6. FPGAs can be more expensive than other types of integrated circuits, and their
programmable nature can make them more complex to design and debug.

7. FPGAs may not always be the most efficient solution for certain applications, as they
may require more power or take up more space than other integrated circuits.

8. FPGAs are commonly programmed using hardware description languages (HDLs) such as
VHDL or Verilog.

9. FPGAs can be programmed using either a hardware programming language, which
allows for greater control and customization, or a high-level language, which is easier to
use but may have more limited functionality.

10. FPGAs can offer several advantages over application-specific integrated circuits (ASICs),
including faster time-to-market, greater design flexibility, and lower development costs.

10. Test Pattern Generation (TPG) and Automatic Test Pattern Generation (ATPG)

Feature Test Pattern Generation (TPG)
Automatic Test Pattern Generation
(ATPG)

Definition

A technique used to manually
generate test patterns for a
circuit.

An automated process that uses
algorithms to generate test patterns.

Input
required

Circuit design and knowledge of its
expected behavior.

Circuit design, fault models, and
timing constraints.

Methodology
Manually creating test patterns
based on engineering expertise.

Using algorithms to generate test
patterns that achieve complete fault
coverage.

Scope
Used for simpler circuits with
known faults.

Used for complex circuits with
unknown faults.

Efficiency
Time-consuming and may not
achieve complete fault coverage.

More efficient and can achieve
complete fault coverage.

Accuracy

Highly dependent on the expertise
of the engineer creating the test
patterns.

More accurate and can detect hard-
to-find faults.

Cost
Relatively low cost, as it only
requires human labor.

Higher cost, as it requires expensive
software and computing resources.

Applications

Useful for simple circuits with
known faults, or for creating a
limited set of test patterns.

Essential for complex circuits with
unknown faults, or for creating large
numbers of test patterns.

11. Adhoc Testing

What is Adhoc Testing?

When a software testing performed without proper planning and documentation, it is said

to be Adhoc Testing. Such kind of tests are executed only once unless we uncover the

defects.

Adhoc Tests are done after formal testing is performed on the application. Adhoc methods

are the least formal type of testing as it is NOT a structured approach. Hence, defects found

using this method are hard to replicate as there are no test cases aligned for those

scenarios.

Testing is carried out with the knowledge of the tester about the application and the tester

tests randomly without following the specifications/requirements. Hence the success of

Adhoc testing depends upon the capability of the tester, who carries out the test. The tester

has to find defects without any proper planning and documentation, solely based on tester's

intuition.

When to Execute Adhoc Testing ?

Adhoc testing can be performed when there is limited time to do exhaustive testing and

usually performed after the formal test execution. Adhoc testing will be effective only if the

tester has in-depth understanding about the System Under Test.

Forms of Adhoc Testing :

1. Buddy Testing: Two buddies, one from development team and one from test team

mutually work on identifying defects in the same module. Buddy testing helps the

testers develop better test cases while development team can also make design changes

early. This kind of testing happens usually after completing the unit testing.

2. Pair Testing: Two testers are assigned the same modules and they share ideas and work

on the same systems to find defects. One tester executes the tests while another tester

records the notes on their findings.

3. Monkey Testing: Testing is performed randomly without any test cases in order to break

the system.

Various ways to make Adhoc Testing More Effective

1. Preparation: By getting the defect details of a similar application, the probability of

finding defects in the application is more.

2. Creating a Rough Idea: By creating a rough idea in place the tester will have a focussed

approach. It is NOT required to document a detailed plan as what to test and how to

test.

3. Divide and Rule: By testing the application part by part, we will have a better focus and

better understanding of the problems if any.

4. Targeting Critical Functionalities: A tester should target those areas that are NOT

covered while designing test cases.

5. Using Tools: Defects can also be brought to the lime light by using profilers, debuggers

and even task monitors. Hence being proficient in using these tools one can uncover

several defects.

6. Documenting the findings: Though testing is performed randomly, it is better to

document the tests if time permits and note down the deviations if any. If defects are

found, corresponding test cases are created so that it helps the testers to retest the

scenario.

12. Fault Simulation

 Simulation serves two distrinct purpose in electronic design. First it is used to verify the

correctness of design and second, it verifies the tests. Fault simulation can be classified

as

1. Serial Fault Simulation

2. Parallel Fault Simulation

3. Concurrent Fault Simulation

4. Nondeterministic Fault Simulation.

1. Fault models: Fault models define the types of faults that are injected into the circuit for

simulation, such as stuck-at-0, stuck-at-1, or bridging faults. It's important to select the

appropriate fault model to evaluate the circuit's fault tolerance.

2. Test vectors: Test vectors are input patterns that are applied to the circuit during

simulation. It's important to use a comprehensive set of test vectors that can detect as

many faults as possible to achieve high fault coverage.

3. Coverage metrics: Coverage metrics measure the effectiveness of the test vectors in

detecting faults. Examples of coverage metrics include stuck-at fault coverage, transition

fault coverage, and path delay fault coverage. High coverage for all relevant fault models

is important to ensure the circuit's reliability.

4. Simulation speed: Fault simulation can be computationally intensive, so it's important to

choose a fast and efficient fault simulator to minimize simulation time and improve

design turnaround time.

5. Analysis and debugging: After the simulation is complete, it's important to analyze the

results and identify any undetected faults or error-prone areas in the design. Debugging

techniques such as fault isolation and diagnosis can be used to pinpoint the root cause

of faults and improve the circuit's reliability.

6. Verification: Fault simulation is just one part of the overall verification process for digital

circuits. It's important to integrate fault simulation with other verification techniques

such as timing analysis, functional simulation, and formal verification to achieve a high

level of confidence in the circuit's functionality and reliability.

1. Verilog Basics:

Basics of Verilog

Verilog is a hardware description language (HDL) used to design and describe digital circuits.

Verilog programs are composed of modules, which are the basic building blocks of the design.

Modules contain input and output ports, which allow them to interact with other modules or

the outside world.

Example:

In the example above, the my_module module has two input ports (A and B) and one output

port (C). The assign statement assigns the output C to the bitwise AND of the inputs A and B.

Operators

Verilog supports a variety of operators for performing arithmetic, bitwise, and logical

operations. Here are some examples:

Arithmetic Operators:

 + Addition

 - Subtraction

 * Multiplication

 / Division

 % Modulus

Example:

Bitwise Operators:

 & Bitwise AND

 | Bitwise OR

 ^ Bitwise XOR

 ~ Bitwise NOT

 << Bitwise left shift

 >> Bitwise right shift

Example:

Logical Operators:

 && Logical AND

 || Logical OR

 ! Logical NOT

Example:

Data Types

Verilog supports several data types for representing different types of data, such as integers,

booleans, and arrays. Some of the commonly used data types include:

Integer Types:

 bit A single bit

 reg A one-dimensional array of bits

 wire A one-dimensional array of bits that can be used for interconnecting modules

Example:

In the example above, a is an 8-bit register initialized to the binary value 10101010. b is a wire

that is used to connect the my_module module to the outside world.

Boolean Types:

 logic A one-dimensional array of bits that can represent Boolean values

Example:

In the example above, a is a 4-bit logic array initialized to the binary value 1100.

Arrays:

 int An integer type that can represent signed or unsigned values

 real A floating-point type for representing real numbers

 parameter A constant value that can be used to parameterize modules

Example:

In the example above, WIDTH is a parameter that specifies the width of the a register. The

WIDTH-1:0 notation is used to specify the range of the register.

4. Continuous Assignments:

 Continuous assignments are used to assign a value to a signal continuously.

 Continuous assignments use the assign keyword and the = operator to assign a value to a wire.

 Continuous assignments are used to implement combinational logic in a Verilog module.

Continuous Assignments

Continuous assignments in Verilog allow you to assign values to nets (wires) in a module

continuously, without the need for a procedural block. This means that the assignment is made

continuously as the input values change. Continuous assignments are always executed in the

same order, from left to right.

Continuous assignments are defined using the assign keyword in Verilog. The syntax for a

continuous assignment is as follows:

Here, net is the name of the wire to be assigned, and expression is the value to be assigned to

the wire.

Example:

In the example above, a continuous assignment is used to assign the value of the bitwise AND of

a and b to the output y of the and_gate module. Whenever the inputs a or b change, the output

y will be updated automatically.

Continuous assignments can also be used to assign the output of a function to a wire. Here's an

example:

In the example above, a continuous assignment is used to assign the output of the my_function

function to the output y of the my_module module. Whenever the inputs a or b change, the

output y will be updated automatically.

Continuous assignments can also be used to assign values to an array of wires. Here's an

example:

In the example above, a continuous assignment is used to assign values to the 4-bit output array

y of the my_module module. The assignment uses concatenation to assign the values of a, b, a

& b, and a | b to the array elements y[3], y[2], y[1], and y[0], respectively. Whenever the inputs

a or b change, the output y will be updated automatically.

5. Sequential and Parallel Statement Groups:

 Sequential statements are executed one after the other in the order they are written in the

code.

 Examples of sequential statements include if-else statements, case statements, and loops.

 Parallel statement groups execute concurrently with other statements in the module.

 Examples of parallel statement groups include always blocks, initial blocks, and concurrent

assignments.

 Always blocks are used to define the behavior of registers and flip-flops in a circuit.

 Initial blocks are used to initialize the values of signals and variables at the start of simulation.

Sequential and Parallel Statement Groups

Sequential and parallel statement groups in Verilog allow you to group together multiple statements and

specify their order of execution. There are two types of statement groups:

1. Sequential Statement Group

A sequential statement group consists of a block of statements that are executed one after the other in

the specified order. The statements in a sequential statement group are enclosed within a begin and

end block.

Example:

In the example above, the seq_example module uses an always block with a sequential statement group

to assign the output signals C and D to the values of the third and fourth bits of the data register. The

begin and end blocks enclose the assignment statements and ensure that they are executed

sequentially.

2. Parallel Statement Group

A parallel statement group consists of a block of statements that are executed simultaneously and in no

specified order. The statements in a parallel statement group are enclosed within a pair of curly braces

{}.

Example:

In the example above, the par_example module uses an always block with a parallel statement group to

assign the output signals C and D to the values of the third and fourth bits of the data register. The {}

curly braces enclose the assignment statements and ensure that they are executed in parallel and in no

specified order.

Sequential and parallel statement groups are useful for organizing and controlling the execution order of

statements in a Verilog module. Sequential statement groups ensure that the statements are executed

in the specified order, while parallel statement groups allow multiple statements to be executed

simultaneously and in no specified order.

6. Timing Control:

 Timing control is used to specify when a particular section of code should be executed.

 There are two types of timing control: level-sensitive and edge-sensitive.

 Level-sensitive timing control is used to specify when a section of code should be executed

based on the value of a signal.

 Edge-sensitive timing control is used to specify when a section of code should be executed

based on the change in value of a signal.

7. Delays:

 Delays are used to specify the amount of time that should pass before a particular section of

code is executed.

 Delays can be specified using the # operator, followed by the delay time in units of time.

 Delays can also be specified using the $delay system task.

Delay

Delay is the time taken by a signal to propagate through a combinational logic circuit. It is an important

parameter in timing analysis and can be specified in Verilog using delay expressions.

There are two types of delays in Verilog:

1. Constant Delay

A constant delay is a fixed time delay specified as a number followed by a time unit, such as 1ns, 10ps,

etc. It represents the delay through a combinational logic gate.

Example:

In the example above, the delay_example module uses a bitwise AND operator to compute the output C

from the inputs A and B. The #1 delay expression specifies a constant delay of 1 time unit.

2. Net Delay

A net delay is a delay that represents the time taken by a signal to propagate through a wire or a net. It

is specified as a number followed by a time unit, and is added to the delay of the gate that drives the

net.

Example:

In the example above, the delay_example module uses a wire D to connect the inputs A and B to a

bitwise AND operator. The #1 delay expression specifies a delay of 1 time unit for the output C, which

includes the delay of the AND gate and the delay of the wire D.

Delay expressions can be used to model timing constraints in the design and ensure that the circuit

meets timing requirements.

It is important to note that delays in Verilog are not always deterministic and can vary depending on the

implementation of the circuit and the timing characteristics of the hardware. Therefore, delay should be

used with caution and verified using timing analysis tools.

Example:

8. Tasks and Functions:

 Tasks and functions are used to encapsulate a section of code that can be reused in different

parts of the design.

 Tasks are used for executing a sequence of statements and do not return a value.

 Functions are used for executing a sequence of statements and return a value.

 Tasks and functions can have input and output arguments.

Tasks

A task is a reusable block of code that can contain multiple procedural statements. It can be called from

other parts of the Verilog code using a task call statement.

Example:

In the example above, the add task takes two 8-bit input arguments A and B and an output argument C.

It adds A and B and assigns the result to C. The testbench module calls the add task and displays the

value of C.

Tasks can be useful for creating reusable blocks of code and improving the readability of the Verilog

code.

Functions

A function is a reusable block of code that returns a value. It can be called from other parts of the

Verilog code using a function call statement.

Example:

In the example above, the add function takes two 8-bit input arguments A and B. It adds A and B and

returns the result. The testbench module calls the add function and assigns the result to C.

Functions can be useful for creating reusable blocks of code and improving the readability of the Verilog

code. They can also be used to compute intermediate values that are used in multiple places in the code.

9. Control Statements

Control statements are used in programming languages to alter the flow of program execution. There

are three types of control statements:

1. Sequential: The default flow of the program is sequential. Statements are executed one after

another in the order they are written in the program.

2. Selection: Control statements such as if-else and switch are used for selection, where a block of

code is executed depending on the condition that is met.

3. Iteration: Control statements such as for, while, and do-while are used for iteration, where a

block of code is executed repeatedly until a condition is met.

10. Blocking and Non-Blocking Assignments

In Verilog, there are two types of assignments: blocking and non-blocking. Blocking assignments use the

"=" operator, and non-blocking assignments use the "<=" operator.

Blocking Assignments

In a blocking assignment, the statement on the right-hand side of the "=" operator is evaluated

immediately, and the value is assigned to the variable on the left-hand side. The next statement in the

code is not executed until the current statement has completed.

Example:

In the example above, the assignment a = b is a blocking assignment. The value of b is evaluated

immediately, and the value is assigned to a. The next statement, c = a, is not executed until the blocking

assignment is complete.

Non-Blocking Assignments

In a non-blocking assignment, the statement on the right-hand side of the "<=" operator is evaluated at

the end of the current time step, and the value is assigned to the variable on the left-hand side at the

beginning of the next time step. This means that all non-blocking assignments in a given always block are

executed simultaneously.

Example:

In the example above, the assignment a <= b is a non-blocking assignment. The value of b is not assigned

to a until the beginning of the next time step. The assignment c <= a is also a non-blocking assignment,

and it will be executed simultaneously with the first non-blocking assignment.

11. If-Else Statements

The if-else statement is a selection control statement that allows the programmer to execute a block of

code if a condition is met, and a different block of code if the condition is not met.

Example:

In the example above, the condition is evaluated, and if it is true, the block of code in the first "begin-

end" block is executed. If the condition is false, the block of code in the second "begin-end" block is

executed.

12. Case Statements

The case statement is a selection control statement that allows the programmer to execute a block of

code based on the value of a variable.

Example:

In the example above, the value of the variable is evaluated,

13. For Loop

The for loop is an iteration control statement that allows the programmer to execute a block of code a

specified number of times. It has three parts: the initialization, the condition, and the increment.

Example:

In the example above, the for loop initializes i to 0, checks if i is less than n, and increments i by 1 after

each iteration of the block of code.

14. While Loop

The while loop is an iteration control statement that allows the programmer to execute a block of code

repeatedly while a condition is true.

Example:

In the example above, the while loop checks the condition before each iteration of the block of code. If

the condition is true, the block of code is executed. If the condition is false, the loop exits.

15. Repeat Loop

The repeat loop is an iteration control statement that allows the programmer to execute a block of code

a specified number of times. It has one part: the count.

Example:

In the example above, the repeat loop executes the block of code n times.

16. Forever Loop

The forever loop is an iteration control statement that allows the programmer to execute a block of

code repeatedly without any condition or iteration count.

Example:

In the example above, the forever loop executes the block of code repeatedly without any condition or

iteration count.

17. Rise, Fall, Min, and Max Delays

Delays are used in Verilog to specify timing relationships between signals. There are four types of delays:

rise delay, fall delay, minimum delay, and maximum delay.

Rise Delay

The rise delay is the time it takes for a signal to transition from 10% to 90% of its final value.

Example:

assign y = #5 x;

In the example above, the rise delay is 5 time units. The signal y will transition from 10% to 90% of its

final value 5 time units after the signal x makes a transition.

Fall Delay

The fall delay is the time it takes for a signal to transition from 90% to 10% of its final value.

Example:

assign y = #(2,3) x;

In the example above, the fall delay is 3 time units. The signal y will transition from 90% to 10% of its

final value 3 time units after the signal x makes a transition.

Minimum Delay

The minimum delay is the shortest amount of time it takes for a signal to propagate through a logic gate.

Example:

assign y = #0.5 x;

In the example above, the minimum delay is 0.5 time units. The signal y will be updated 0.5 time units

after the signal x is updated.

Maximum Delay

The maximum delay is the longest amount of time it takes for a signal to propagate through a logic gate.

Example:

assign y = #2 x;

In the example above, the maximum delay is 2 time

18. Behavioural Coding Style

Behavioural coding style describes the intended behavior of a circuit without specifying its

implementation. In Verilog, this is achieved using procedural blocks, such as always blocks.

Example:

In the example above, the combinational_logic module adds the inputs A and B and assigns the result to

the output C. The always @(*) block specifies that C is updated whenever A or B changes.

The behavioural coding style is useful for describing complex combinational logic and can be used for

verification and simulation.

19. Synthesizable Coding Style

Synthesizable coding style describes the implementation of a circuit using hardware primitives that can

be synthesized into physical gates. In Verilog, this is achieved using gate-level modelling or RTL

modelling.

Example:

In the example above, the combinational_logic module uses the assign statement to specify the

implementation of the circuit. The + operator is used to add the inputs A and B and assign the result to

the output C.

The synthesizable coding style is useful for implementing circuits on FPGAs or ASICs and can be used for

synthesis and place-and-route. It is important to follow synthesizable coding guidelines and avoid

constructs that cannot be synthesized into physical gates.

20. Behavioral Coding Style

Behavioral coding style describes the intended behavior of a circuit without specifying its

implementation. In Verilog, this is achieved using procedural blocks, such as always blocks.

Example:

In the example above, the sequential_logic module uses an always block triggered by the rising edge of

input A to update the value of the state register. The if statement inside the always block specifies the

behavior of the circuit. The output D is assigned the value of the state register.

The behavioral coding style is useful for describing complex sequential logic and can be used for

verification and simulation.

21. Synthesizable Coding Style

Synthesizable coding style describes the implementation of a circuit using hardware primitives that can

be synthesized into physical gates. In Verilog, this is achieved using state machines and flip-flops.

Example:

In the example above, the sequential_logic module uses a state machine to implement the circuit. The

state register stores the current state of the machine, and the case statement inside the always block

specifies the transitions between states. The output D is assigned the value of the state register.

The synthesizable coding style is useful for implementing circuits on FPGAs or ASICs and can be used for

synthesis and place-and-route. It is important to follow synthesizable coding guidelines and avoid

constructs that cannot be synthesized into physical gates.

22. Differences between behavioral and synthesizable coding styles for modelling combinational

and sequential logic, along with examples

Coding Style
Combinational Logic
Modeling

Sequential Logic
Modeling Example

Behavioral

Uses high-level constructs
such as if-else statements
and functions to describe
the functionality of the
circuit.

Uses flip-flops and
other hardware-
specific constructs to
model the behavior
of the circuit.

A behavioral model of a 4-bit adder
would describe the functionality of the
circuit in terms of the inputs and
outputs, using if-else statements to
describe the addition of two 4-bit
numbers.

Synthesizable

Uses low-level constructs
such as gates and flip-
flops to describe the
hardware implementation
of the circuit.

Uses hardware-
specific constructs
such as registers and
clock signals to
model the behavior
of the circuit.

A synthesizable model of a 4-bit adder
would describe the circuit in terms of
the gates and flip-flops used to
implement the circuit, using registers to
store the input and output values and a
clock signal to synchronize the
operation of the circuit.

Overall, the main difference between behavioral and synthesizable coding styles is that behavioral

coding focuses on describing the functionality of the circuit using high-level constructs, while

synthesizable coding focuses on describing the hardware implementation of the circuit using low-level

constructs. Behavioral coding is typically easier to write and understand, but may not be suitable for

synthesis into hardware. Synthesizable coding is more complex, but allows for a more accurate

representation of the hardware implementation and is necessary for actual hardware implementation.

23. Behavioral and Synthesizable Coding Styles for Modelling Combinational Logic

Introduction: In digital design, two coding styles are commonly used to model combinational logic:

behavioral and synthesizable coding styles. Both coding styles can be used to describe the functionality

of a digital circuit, but they differ in terms of their level of abstraction and the constructs used to

describe the circuit.

Behavioral Coding Style: The behavioral coding style uses high-level constructs such as if-else statements

and functions to describe the functionality of the circuit. It is more abstract and allows for a more

concise and easy-to-understand description of the circuit. This style is used primarily for simulation and

verification of the circuit, but not for actual hardware implementation.

Advantages:

 Easy to write and understand

 More concise and abstract

 Can be used for simulation and verification

Disadvantages:

 Not suitable for synthesis into hardware

 Not accurate in describing the hardware implementation

Examples:

 A behavioral model of a 4-bit adder would describe the functionality of the circuit in terms of

the inputs and outputs, using if-else statements to describe the addition of two 4-bit numbers.

Synthesizable Coding Style: The synthesizable coding style uses low-level constructs such as gates and

flip-flops to describe the hardware implementation of the circuit. It is more detailed and accurate in

describing the circuit, and is necessary for actual hardware implementation.

Advantages:

 More accurate in describing the hardware implementation

 Suitable for synthesis into hardware

 Can be used for simulation and verification

Disadvantages:

 More complex and difficult to write and understand

 Less concise and more detailed

Examples:

 A synthesizable model of a 4-bit adder would describe the circuit in terms of the gates and flip-

flops used to implement the circuit.

Conclusion: In conclusion, both behavioral and synthesizable coding styles can be used to model

combinational logic, but they differ in terms of their level of abstraction and the constructs used to

describe the circuit. Behavioral coding is more abstract and easier to understand, while synthesizable

coding is more detailed and accurate in describing the hardware implementation. It is important to

choose the appropriate coding style depending on the specific requirements of the design.

24. Behavioral and Synthesizable Coding Styles for Modelling Sequential Logic

Introduction: In digital design, two coding styles are commonly used to model sequential logic:

behavioral and synthesizable coding styles. Both coding styles can be used to describe the behavior of a

digital circuit that depends on the history of its inputs and outputs, but they differ in terms of their level

of abstraction and the constructs used to describe the circuit.

Behavioral Coding Style: The behavioral coding style uses high-level constructs such as if-else statements

and functions to describe the behavior of the circuit. It is more abstract and allows for a more concise

and easy-to-understand description of the circuit. This style is used primarily for simulation and

verification of the circuit, but not for actual hardware implementation.

Advantages:

 Easy to write and understand

 More concise and abstract

 Can be used for simulation and verification

Disadvantages:

 Not suitable for synthesis into hardware

 Not accurate in describing the hardware implementation

Examples:

 A behavioral model of a sequential circuit such as a counter would describe the behavior of the

circuit in terms of the inputs and outputs, using if-else statements to describe the counting

sequence and state transitions.

Synthesizable Coding Style: The synthesizable coding style uses low-level constructs such as registers,

clock signals and flip-flops to describe the hardware implementation of the circuit. It is more detailed

and accurate in describing the circuit, and is necessary for actual hardware implementation.

Advantages:

 More accurate in describing the hardware implementation

 Suitable for synthesis into hardware

 Can be used for simulation and verification

Disadvantages:

 More complex and difficult to write and understand

 Less concise and more detailed

Examples:

 A synthesizable model of a sequential circuit such as a counter would describe the circuit in

terms of the registers, flip-flops and clock signals used to implement the circuit, and how they

are interconnected to perform the counting and state transitions.

Conclusion: In conclusion, both behavioral and synthesizable coding styles can be used to model

sequential logic, but they differ in terms of their level of abstraction and the constructs used to describe

the circuit. Behavioral coding is more abstract and easier to understand, while synthesizable coding is

more detailed and accurate in describing the hardware implementation. It is important to choose the

appropriate coding style depending on the specific requirements of the design, taking into consideration

the target platform and the level of detail required in the design.

25. Table summarizing the differences between behavioural and synthesizable coding styles for

modelling combinational and sequential logic, along with examples:

Behavioral Coding Style Synthesizable Coding Style

Modelling
Combinational
Logic

Focus High-level behavior of the system
Low-level implementation of the
system

Language
High-level languages, such as C, Python, and
MATLAB

Hardware description languages, such
as Verilog and VHDL

Constructs
High-level constructs, such as loops,
conditionals, and arrays

Low-level constructs, such as logic
gates and multiplexers

Example `z = (a & b) (~a & c);`

Description
Describes the behavior of the
combinational circuit

Describes the implementation of the
circuit

Simulation Accuracy
More accurate in simulation, as it focuses
on the high-level behavior of the system

Less accurate in simulation, as it
focuses on the low-level
implementation details

Implementation
Effort

Lower implementation effort, as the code is
closer to a human-readable specification of
the system behavior

Higher implementation effort, as the
code requires hardware-specific
knowledge

Modelling
Sequential Logic

Focus Behavior of the system over time
Low-level implementation of the
system over time

Language
High-level languages, such as C, Python, and
MATLAB

Hardware description languages, such
as Verilog and VHDL

Constructs
High-level constructs, such as loops,
conditionals, and functions

Low-level constructs, such as registers
and flip-flops

Example always @(posedge clk) begin y <= x; end
always @(posedge clk) begin y <= x;
end

Description
Describes the behavior of the sequential
circuit over time

Describes the implementation of the
circuit over time

Simulation Accuracy
Accurate in simulation, as it describes the
behavior of the sequential circuit over time

Accurate in simulation, as it describes
the implementation of the circuit over
time

Implementation
Effort

Higher implementation effort, as the code
requires an understanding of sequential
circuits and their behavior over time

Lower implementation effort, as the
code can be directly translated into
hardware implementation

