
 

UNIT- I 

 

Finite Automata and Regular Expressions: Formal Languages and Regular expressions, 

Deterministic and Non-Deterministic Finite Automata, Finite Automata with ε-moves, 

Equivalence of NFA and DFA, Minimization of finite automata, Two-way finite automata, 

Moore and Mealy machines, Applications of finite automata. 
 

 

2 MARKS 

 

1. What is meant by Computations? 

Computation is executing an algorithm (i.e.) it involves taking some inputs and performing required 

operation on it to produce an output. 

 

                                             Input x                                                                              Output y=f(x) 

 

 Computation is the sequence of steps that can be performed by computer. 

 The computer which performs computation is not actual computers they are “abstract machines”. It 

can be defined mathematically. 

2. Give example of abstract machines? 

 Turing Machine (Powerful as real Computers) 

 Finite Automata (Simple) 

3. What is a formal language? 

Language is a set of valid strings from some alphabet. The set may be empty, finite or infinite. L(M) is the 

language defined by machine M and L(G) is the language defined by context free grammar. The two 

notations for specifying formal languages are:  

 Grammar or regular expression (Generative approach)  

 Automaton (Recognition approach)  

4. What is theory of computations? 

The theory of computation is the branch that deals with how efficiently problems can be solved on a 

model of computation, using an algorithm.  

The field is divided into three major branches:  

1. automata theory,  

2. computability theory, and  

3. computational complexity theory 

 

 

 

Function f 



 

5. What is Automata Theory? 

 Automata theory is the study of abstract machines (or abstract 'mathematical' machines or systems) 

and the computational problems that can be solved using these machines. These abstract machines 

are called automata.  

 Automata which means that something is doing something by itself. Automata theory is also closely 

related to formal language theory, as the automata are often classified by the class of formal 

languages they are able to recognize. An automaton can be a finite representation of a formal 

language that may be an infinite set. 

6. Why are switching circuits called as finite state systems? 

A switching circuit consists of a finite number of gates, each of which can be in any one of the two 

conditions 0 or 1. Although the voltages assume infinite set of values, the electronic circuitry is designed 

so that the voltages corresponding to 0 or 1 are stable and all others adjust to these values. Thus control 

unit of a computer is a finite state system. 

7. What are the Operations on strings? 

 Length of string 

 Empty or null string 

 Concatenation of string 

 Reverse of a string 

 Powers of an alphabet 

 Substring 

 Reversal 

 Kleene Closure 

8. Define alphabets in automata? 

An alphabet is a finite, non-empty set no of symbols. It is denoted by Σ. 

Example: 

 Σ = {a, b}, an alphabet of 2 symbols a and b. 

 Σ = {0, 1, 2} an alphabet of 3 symbols 0, 1, and 2. 

9. Define strings with examples? 

A String or Word is a finite sequence of symbols from Σ. The group of characters also referred as a String. 

Example: 

 a, b, and c  are symbols and abcb is a string. 

 If Σ = {a,b} then abab,aabbb,aaabb,…… are all strings over the alphabet Σ ={a,b}. 

 0, 1, 11, 00, and 01101 are strings over {0, 1}.  
10. What is substring with example? 

Let x and y be strings over an alphabet Σ.  

The string x is a substring of y if there exist strings w and z over Σ such that y = w x z.  

 ε is a substring of every string.  



 

 For every string x, x is a substring of x itself.  

Example: 

 ε, comput and computation are substrings of computation.  

11. What is Reversal with example? 

Let x be a string over an alphabet N.The reversal of the string x, denoted by x r, is a string such that  

 if x is ε, then xr is ε.  

 If a is in Σ, y is in Σ* and x = a y, then xr = yr a.  

  (automata)r = 

= (utomata)r a  

= (tomata)r ua  

= (omata)r tua  

= (mata)r otua  

= (ata)r motua  

= (ta)r amotua  

= (a)r tamotua  

= (ε)r atamotua 

 = atamotua The set of strings created from any number (0 or 1 or …) of symbols in an alphabet Σ 

is denoted by Σ*.  

12. Explain the following   a. Length of string   b. Empty or null string? 

       a. Length of string 

 Let w is a string. Length of the string is |w|=> number of symbols composing the string. 

Example: 

1) If w=abcd then |w|=4 

2) If x=01010110 the |x|=8 

3) If y= 0101 the |y|=4 

4) If  |Є| = 0 

       b. Empty or null string 

The string consisting of zero symbols. It is denoted by Є. 

Example:  

{Є}=0. 

13. Define Concatenation of string and Reverse of a string? 

Concatenation of string 

Appending the strings (2) referred as concatenation of strings. 

i.e  w=a1,a2,….am 

v=b1,b2,b3,……bn 

then  wv=a1,a2,….am b1,b2,…..bn 

Example: 



 

1.    x=00  y=1 

 xy=001, yx=100 

 x=AL y=GOL 

 xy=ALGOL 

      2. Empty string is the identity element for concatenation operator. i.e  

w Є= Єw=w 

Reverse of a string  

The reverse of a string is obtained by writing the symbols in reverse order. 

Let w is the string 

Reverse is wR 

i.e w=a1,a2,……am 

wR=am,……a2,a1 

Example: 

Let u=010111 

uR=1101010 

14. What is meant by Powers of an alphabet? 

Let Σ be the alphabet 

Σ * is the set of all strings over alphabet Σ. 

Σ m denotes the set of all strings over alphabet Σ of length m. 

Example: 

Σ = {0, 1} 

Σ0= {Є} empty string of length 0. 

Σ1= {0, 1} is the set of all strings of length one over Σ = {0, 1} 

Σ2= {00, 01, 10, 11} is the set of all strings of length two over Σ = {0, 1}. 

15. Define Kleen Closure? 

Let Σ be the alphabet 

“ Kleen Closure”-> Σ* denotes the set of all strings (Σ) over the alphabet 

Example: 

If Σ ={a} the Σ*={ Є,a,aa,aaa,………} 

If Σ ={0,1} the Σ*={ Є,0,1,00,10,10,………………..} 

Σ0={ Є} 

Σ1={a} 

Σ2={aa} 

Therefore Σ*= Σ0U Σ1U Σ2,…………….. 

16. Define a language. 

An alphabet is a finite set of symbols. A language is a set of strings of symbols from someone alphabet. 

e.g. If Σ = {0,1},then Σ*={ Є,0,1,01,11,10,111,………} 



 

17. List the applications of Computations? 

 Analysis of algorithms  

 Complexity Theory  

 Cryptography  

 Compiler Design 

 Circuit design  

 Robotics 

 Artificial Intelligence 

 Knowledge Engineering 

18. Define Finite Automata.  (NOV’15) 

     A finite automaton (FA) consists of a finite set of states and a set of transitions from state to state 

that occur on input symbols chosen from an alphabet Σ. 

     Each input symbol there is exactly one transition out of each state (possibly back to the state itself).  

     One State, usually q0, is the initial state, in which the automaton starts. 

      Some states are designated as final or accepting states. 

19. How does an FA work? 

 At the beginning,  

 an FA is in the start state (initial state)  

 its tape head points at the first cell  

 For each move, FA  

 reads the symbol under its tape head  

 changes its state (according to the transition function) to the next state determined by the 

symbol read from the tape and its current state  

 move its tape head to the right one cell  

20. Give the purpose of transition diagram?     (APR 2014)  

 A directed graph, called a transition diagram, is associated with an FA as follows: 

 The vertices of the graph correspond to the states of the FA. 

 If there is a transition from state q to state p on input a, then there is an arc labeled a from state q to 

state p in the transition diagram. 

 The FA accepts a string x if the sequence of transitions corresponding to the symbols of x leads from 

the start state to an accepting state. 

21. What is Transition Table? 

 The transition table is the tabular representation of the transition function “delta (∂)” with the rows 

denoting states and columns denoting input symbol. 

22. Write the DFA Specifications?      (APR 2014, NOV 2012)   

Deterministic Finite Automata (DFA) is generally specified by a 5 tuples (Q, Σ, δ, q0, F) 

 where 



 

1. Q is a finite set of states 

2. Σ is a finite input alphabet 

3. q0 in Q is the start state or initial state 

4. F⊆Q is the set of final states 

5. δ is the transition function mapping δ: QX ΣQ.(i.e.) δ(q,a) is a state for each state q and 

input symbol a. 

23. Explain Working of DFA? 

1. Initialisation 

 Reader (read head) should be over the leftmost symbol. 

 Finite Control is in start state. 

2. Single Step 

 Reader moves to the next symbol to the right. 

 Control enters a new state that (deterministically) depends on current state and current 

symbol. There may be no desired next state, Machine will stop. 

 The machine repeats this action. 

3. No current symbol 

 All Symbols have been read.  

 If control is in final state, the input string is accepted.  

 Otherwise, the input string is not accepted. 

24. What are the Applications of DFA? 

 Compiler Design 

 Design of Lexical Analyser 

 Text Editor   

 Pattern Matching 

 File searching Program 

 Text Processing 

25. Define NFA.       (APR 2012, 2013)   

 Non-Deterministic Finite Automata (NFA) is generally specified by a 5 tuples (Q, Σ, δ, q0, F) where 

1. Q is a finite set of states 

2. Σ is a finite input alphabet 

3. q0 in Q is the start state or initial state 

4. F⊆Q is the set of final states 

5. δ is the transition function mapping δ  Q x Σ* to 2 Q. 

    On receiving same inputs it goes to many states 

 the machine can move without consuming any symbols and sometimes there are possible moves and 

sometimes there are move then one possible moves. 

 the state is only partially determined by the current state and i/p symbol.  



 

26. What are the difference between NFA and DFA?  (MAY’15, NOV’15 , NOV’17) 
 

DFA NFA 

i. For each and every state and for each and 

every input symbol there exists at most one 

transition.  

ii. The transition mapping for DFA is Q×ΣQ.  

iii. The language accepted by DFA is denoted 

as L(M).  

iv. Epsilon transition is not possible.  

i. For each and every state and for each and every input 

symbol there exists more than one transition.  

ii. The transition mapping for NFA is Q × (Σ U {ε}) 2 Q.  

iii. The language accepted by NFA is denoted by L(M’).  

iv. Epsilon transition is possible.  

27. What are Transition Function and give their properties? 

Changing from one state to another state on applying the inputs 

Properties of Transition function: 

1. δ (q, ε)=q 

This means the state of the system can be changed only by an input symbol else remains in original 

state. 

2. For all strings w and input symbol a δ(q,aw)= δ(δ(q,a),w) 

  Similarly δ(q,wa)= δ(δ(q,w),a) 

3. The transition function δ can be extended to δ or δ that operates on states and strings.  

Basis: δ(q, ε)=q 

Induction: δ (q,xa)= δ(δ(q,x),a) 

28. Define finite automata with ε moves? 

 The Non deterministic finite automaton with ε moves to be a quintuple (Q, Σ, δ, q0, F) with all 

components as before, but δ, the transition function, maps δ: Q × (Σ U {ε})  2Q.  

 The intention is that δ(q,a) will consists of all states p such that there is a transition labeled a from q 

to p, where a is either ε or a symbol in Σ. 

ε- closure (q)  denotes the set of all vertices P such that there is path from q to P labeled ε. 

 

29. Define regular expressions? (NOV’14) 

The languages accepted by finite automata are easily described by simple expressions called regular 

expression. 

Let Σ be an alphabet. The regular expression over Σ and the sets that they denote are defined 

recursively as follows: 



 

1. Ф is a regular expression and denotes the empty set. 

2. ε is a regular expression and denotes the set { ε }. 

3. For each a ϵ Σ, ‘a’ is a regular expression and denotes the set {a}. 

4. If r and s are regular expressions denoting the languages R and S respectively then (r+s), (rs), 

and (r)* are regular expressions that denotes the sets RUS, RS and R* respectively.  

30. What is Kleene and positive closure? 

 The Kleene closure of L, denoted L*, is the set 

L* Li 

 The positive closure of L, denoted L+, is the set 

 L+ Li 

31. What are the Identities for Regular Expression? 

1. Ф + R = R    

2. ФR = R Ф = Ф   

3. λR = R λ = R      

4. λ* = λ and Ф* = λ   

5. R + R = R     

6. R* R* = R*    

7. RR* = R*R   

8. (R*)* = R*   

9. λ+ RR* = R* = λ+R*R   

10. (PQ)* P = P(QP)*   

11. (P + Q)* = (P* Q*)* = (P* + Q*)*    

12. (P + Q)R = PR + QR and R(P +Q ) = RP + RQ   

32. Define two way finite automata (2DFA)?    (APR 2012, NOV 2013) 

 A finite automata is a control unit that reads a tape, moving one square right at each move. 

 A two-way finite automaton is an extension of one- way finite automaton which has the ability to 

allow the tape head to move left as well as right. 

 Two-way finite automata accepts the input string if it moves the tape head, off the right end of the 

tape at the same time, entering an accepting state. 

 A two-way deterministic finite automata (2DFA) is a quintuple M= (Q, Σ, , q0, F) 

Where  is a map from Q X Σ Q X {L, R} 

33. Write the Formal Definition of 2DFA? 

  A two-way finite deterministic automata (2DFA) is a quintuple M= (Q, Σ,, q0, F) 

         Where  

1. Q is a finite set (the states) 

2. Σ is a finite set (the input alphabet) 



 

3. q0 in Q is the start state or initial state 

4. F⊆Q is the set of final states 

5.  is a map from Q X Σ  Q X {L, R} 

34. Define Instantaneous Description (ID) of 2DFA? 

 Instantaneous Description of 2DFA describes the input string, current state, and current position of 

input head.  

 The relation ├ M on Id’s such that I1 ├ M I2 if and only if M can go from instantaneous description I1 to 

I2 in one move. 

 An ID of M is a string in Σ*Q Σ*. The ID wqx, where w and x are in Σ* and q is a state in Q, represent 

the facts that  

1. wx is the input string 

2. q is the current state and  

3. Input head is scanning the first symbol of x. 

35. What is crossing sequences in 2DFA? 

 The list of states below each boundary between square is termed a crossing sequence. 

36. What is meant by behavior of 2DFA? 

In 2DFA consists of the input, the path followed by the head and the state each time the boundary 

between two tape squares is crossed, with the assumption that the controls enters its new state prior to 

moving the head. 

 

37. Define Moore and mealy machine? 

 In Moore machine the output depends upon the states. 

 In Mealy machine the output depends on transition and current state. 

38. Write the specifications of Moore machine?  

 A Moore machine is a 6 tuple (Q, Σ, Δ,  , λ ,q0), 

        Where  

1. Q is a finite set of states 

2. Σ is a finite input alphabet 

3. Δ is the output alphabet 

4. λ is the mapping from Q to Δ giving the output associated with each state 

5.  δ is the transition function  

6. q0 in Q is the start state or initial state 

 In Moore machine where the output alphabet is {0, 1} and state “accepting“  if only if λ(q)=1. 



 

39. Write the specifications of Mealy machine?  

        A Mealy machine is a 6 tuple M= (Q, ∑, Δ,  , λ ,q0), 

        Where  

1. Q is a finite set of states 

2. Σ is a finite input alphabet 

3. Δ is the output alphabet 

4. λ is the mapping from Q X ∑  Δ (i.e.) λ(q,a) gives the output associated with the 

transition from state q on input a. 

5.  δ is the transition function  

6. q0 in Q is the start state or initial state 

40. State the difference between Mealy and Moore machine? 

MEALY MACHINE MOORE MACHINE 

i. For each and every transition there will be an 

output.  

ii. An automaton in which the output depends on 

the state as well as on the input at any instant of 

time is called a Mealy machine.  

iii. The transition mapping is given by, λ:Q×ΣΔ  

i. For each and every state there will be an 

output.  

ii. An automaton in which the output depends 

on the states of the states of the machine is 

called Moore machine.  

iii. The transition mapping is given by, λ:QΔ  

41. Give the applications of finite automata?    (NOV 2012,NOV’14, NOV’17) 

 Lexical Analyzers 

 Tokens of a programming language are regular sets. 

 Example: ALGOL identifiers, which are upper-or lower-case letters followed by any sequence of 

letters and digits with no limit on length, expressed as, 

  (letter)(letter + digit)* 

where 

 letter stands for A + B + …… + Z + a + b + …… + z and  

 digit stands for 0 + 1 + ….. +9 

Text Editors 

 Certain text editor and similar programs permits substitution of string for any string matching given 

regular expression. 

 For example: the UNIX text editor allows a command such as  

s /bbb*/b* 

that substitutes a single blank for the first string of two or more blanks found in a given line. 

Let “any” represents expression a1+a2+…..+an.  

where ai are computer characters except “newline “character.  

 

 



 

42. Define FORTRAN identifiers? 

 FORTRAN identifiers, with length should limited of six and letters restricted to uppercase and 

symbol $, may be expressed as 

  (letter)( + letter + digit)* 

       Where, letter stands for ($ + A + B +…….  + Z) 

43. Define the SNOBOL? 

 SNOBOL arithmetic constants(do not permit the exponential notation) may be expressed as  

( + -)(digit+ (.digit* + ) +.digit+) 

 Lexical analyzers takes input as sequence of regular expressions describing the tokens and produce 

a single finite automaton recognizing the any token.  

 Usually Regular expression to NFA with  moves to NFA without  moves and to DFA. 

44. Construct DFA that accepts input stings of 0’s and 1’s that end with 11. 

     

    0  0          1   

Start            

    

                                  

          The language accepted by this automaton is   L = {11, 011, 01011, and 000111} 

1. Machine will be in start state qo. 

2. It will remain unchanged until it sees the input symbol ‘1’. 

3. On getting ‘1’ goes to q1. 

4.  From q1, on input symbol ‘0’ goes to qo. From q1, one i/p symbol ’1’ goes to q2 (acceptance state). 

5. From q2, any number of 1 is accepted and if any 0 comes it goes to start state.  

45. Check whether given input string 0111 is accepted or not? 

        Transition table 

 
States 

Input 

 0 1 

* q0 {q0} {q1} 

 q1 {q0} {q2} 

 q2 {q2} {q1} 

 

        M= ({q0, q1, q2}, {0, 1}, {q1}, δ) 

Solution 

 Let M be the Machine. It consists of the following attributes or tuples. 

M= (Q, Σ, δ, S, F) 

Q= {q0, q1, q2} 

Σ = {0, 1} 

q1 q0

00 q2

00 



 

S=q0 

F= {q0} 

Transition Diagram 

 

   δ (q0, 0) = {q0} 

     δ (q0, 1) = {q1} 

      δ (q1, 1) = {q2} 

     δ (q2, 1) = {q1} 

           Here {q1} is the final state. Hence the given input string 0111 is accepted by DFA. 

46. Define Equivalence Relation?     (NOV 2013) 

A relation R that is reflexive, symmetric, and transitive is said to be an equivalence relation. An 

important property of an equivalence relation R on a set S is that R partitions S into disjoint non-empty 

equivalence classes. That is S=S1 ∪ S2 ∪…, where for each i and j, with i≠j: 

1. Si Sj=𝜑 

2. For each a and b: n Si, aRb is true; 

3. For each a in Si and b is Sj,aRb is false. 

The Si’s are called equivalence classes. 

47. What are the applications of automata theory?  

1. In compiler construction.  

2. In switching theory and design of digital circuits.  

3. To verify the correctness of a program.  

4. Design and analysis of complex software and hardware systems.  

5. To design finite state machines such as Moore and mealy machines.  

48. Construct NFA equivalent to the regular expression: (0+1)01. (APR 2015) 

The NFA equivalent for the given Regular Expression is (0+1) 01 

 

 

 

 

 



 

11 MARKS 

 

1.  Explain the Operations on strings  or Formal Languages or Finite Automata or Automata Theory ? 

(11 marks) 

  The operations on Strings are  

i. Length of string 

ii. Empty or null string 

iii. Concatenation of string 

iv. Reverse of a string 

v. Powers of an alphabet 

vi. Substring 

vii. Reversal 

viii. Kleene Closure 

 

Alphabets: 

An alphabet is a finite, non-empty set no of symbols. It is denoted by Σ. 

Example: 

 Σ = {a, b}, an alphabet of 2 symbols a and b. 

 Σ = {0, 1, 2} an alphabet of 3 symbols 0, 1, and 2. 

 

Strings: 

A String or Word is a finite sequence of symbols from Σ. The group of characters also referred as a String. 

Example: 

 a, b, and c  are symbols and abcb is a string. 

 If Σ = {a,b} then abab,aabbb,aaabb,…… are all strings over the alphabet Σ ={a,b}. 

 0, 1, 11, 00, and 01101 are strings over {0, 1}.  
 

Substring: 

Let x and y be strings over an alphabet Σ.  

The string x is a substring of y if there exist strings w and z over Σ such that y = w x z.  

 ε is a substring of every string.  

 For every string x, x is a substring of x itself.  

Example: 

 ε, compute and computation are substrings of computation.  

 

Reversal: 

Let x be a string over an alphabet N.The reversal of the string x, denoted by x r, is a string such that  



 

 if x is ε, then xr is ε.  

 If a is in Σ, y is in Σ* and x = a y, then xr = yr a.  

  (automata)r = 

= (utomata)r a  

= (tomata)r ua  

= (omata)r tua  

= (mata)r otua  

= (ata)r motua  

= (ta)r amotua  

= (a)r tamotua  

= (ε)r atamotua 

 = atamotua The set of strings created from any number (0 or 1 or …) of symbols in an alphabet Σ 

is denoted by Σ*.  

 

Length of string: 

 Let w is a string. Length of the string is |w|=> number of symbols composing the string. 

Example: 

1) If w=abcd then |w|=4 

2) If x=01010110 the |x|=8 

3) If y= 0101 the |y|=4 

4) If  |Є| = 0 

 

Empty or null string: 

The string consisting of zero symbols. It is denoted by Є. 

Example:  

{Є}=0. 

 

Concatenation of string 

Appending the strings (2) referred as concatenation of strings. 

i.e  w=a1,a2,….am 

v=b1,b2,b3,……bn 

then  wv=a1,a2,….am b1,b2,…..bn 

 

Example: 

1.    x=00  y=1 

 xy=001, yx=100 

 x=AL y=GOL 



 

 xy=ALGOL 

     Reverse of a string  

The reverse of a string is obtained by writing the symbols in reverse order. 

Let w is the string 

Reverse is wR 

i.e  w=a1,a2,……am 

wR=am,……a2,a1 

Example: 

Let  u=010111 

uR=1101010 

Powers of an alphabet: 

Let Σ be the alphabet 

Σ * is the set of all strings over alphabet Σ. 

Σ m denotes the set of all strings over alphabet Σ of length m. 

 

Example: 

 Σ = {0, 1} 

 Σ0= {Є} empty string of length 0. 

 Σ1= {0, 1} is the set of all strings of length one over Σ = {0, 1} 

 Σ2= {00, 01, 10, 11} is the set of all strings of length two over Σ = {0, 1}. 

 

Kleen Closure: 

Let Σ be the alphabet 

“ Kleen Closure”-> Σ* denotes the set of all strings (Σ) over the alphabet 

 

Example: 

If Σ ={a} the Σ*={ Є,a,aa,aaa,………} 

If Σ ={0,1} the Σ*={ Є,0,1,00,10,10,………………..} 

Σ0={ Є} 

Σ1={a} 

Σ2={aa} 

Therefore Σ*= Σ0U Σ1U Σ2,…………….. 

2. Explain in detail Regular Expressions? (11 marks)      (NOV 2013,MAY’15) 

 The languages accepted by finite automata are easily described by simple expressions called regular 

expressions. 

 Let Σ be a finite set of symbols and let L, L1, and L2 be sets of strings from Σ*. 

 The operations of regular expressions are 



 

1. Concatenation  

2. Kleene closure 

3. Positive closure 

 The concatenation of L1 and L2, denoted L1L2, is the set {xy | x is in L1 and y is in L2}.That is, the 

strings in L1L2 are formed by choosing a string L1 and following it by a string in L2. 

 The Kleene closure of L, denoted L*, is the set 

L* Li 

 L*={ €, a, aa, aaa, …..} 

 

 The positive closure of L, denoted L+, is the set 

 L+ Li 

 L+ ={ a, aa, aaa, …..} 

Let Σ be an alphabet. The regular expression over Σ and the sets that they denote are defined 

recursively as follows: 

1. Ф is a regular expression and denotes the empty set. 

2. ε is a regular expression and denotes the set { ε }. 

3. For each a ϵ  Σ, ‘a’ is a regular expression and denotes the set {a}. 

4. If r and s are regular expressions denoting the languages R and S respectively then (r+s), (rs), 

and (r)* are regular expressions that denotes the sets RUS, RS and R* respectively.  

 

Equivalence of finite automata and regular expressions: 

The language accepted by finite automata are precisely the languages denoted by regular expressions. 

This equivalence for calling finite automaton languages regular sets. 

 

 

Regular Expression to NFA with €: or Prove that for every regular expression there is an equivalent 

NFA:  ( NOV 2013) 



 

 

 

 

 

 



 

 

3. Explain Deterministic Finite Automata (DFA) with an example? (11 marks) (NOV 2013) 

FINITE STATE SYSTEMS: 

 Finite Automata is a mathematical model of a system that represents discrete number of inputs and 

outputs. 

  The system can be in any one of a finite number of internal configurations or states.  

 The state of the system summarizes the information concerning past inputs that is needed to 

determine the behavior of the system on subsequent inputs.  

 The control mechanism of an elevator is a good example of a Finite State Machine (FSM). 

 The commonly used programs such as text editors and the lexical analyzers found in most compilers 

are often designed as finite state systems. 

 For example, a lexical analyzer scans the symbols of a computer programs to locate the string of 

characters corresponding to identifiers, numerical constants, reserved words etc. 

 

 FINITE AUTOMATA: 

    A finite automaton (FA) consists of a finite set of states and a set of transitions from state to state that 

occur on input symbols chosen from an alphabet Σ. 

 DEFINITION: 

 M=( Q, Σ, δ,q,F) 

Where Q= set of finite state 

 Σ= set of input alphabet 

 δ= transition function from Q* Σ -> Q 

 q0 = start state 

 F = set of final state 

    Each input symbol there is exactly one transition out of each state (possibly back to the state itself).  

    One State, usually q0, is the initial state, in which the automaton starts. 

    Some states are designated as final or accepting states. 

 

 Finite automata are computing devices that accept/recognize regular languages and are used to model 

operations of many systems we find in practice. Their operations can be simulated by a very simple. 

Components ( Model )of Finite Automata: 



 

1. Input tape: divided into number of cells. Each cell is capable of holding one cell. 

2. Read Head: reads one cell at time and moves ahead 

3. Finite Control: it acts like CPU. Depending on current state and input symbol read from tape, it 

changes state. 

How does an FA work? 

 At the beginning,  

 an FA is in the start state (initial state)  

 its tape head points at the first cell  

 For each move, FA  

 reads the symbol under its tape head  

 changes its state (according to the transition function) to the next state determined by 

the symbol read from the tape and its current state  

 move its tape head to the right one cell  

Two way of representation of Finite Automata: 

1. Transition diagram 

2. Transition table 

Transition diagram: 

    A directed graph, called a transition diagram, is associated with an FA as follows: 

 The vertices of the graph correspond to the states of the FA. 

 If there is a transition from state q to state p on input a, then there is an arc labeled a from state q to 

state p in the transition diagram. 

 The FA accepts a string x if the sequence of transitions corresponding to the symbols of x leads from 

the start state to an accepting state. 

 

Transition table: 

 It is the tabular listing of the transition function which by implication tells us set of states and an input 

alphabet. 

Input / State a b 

q0 

q1 

q1 

- 

q0 

q2 

 

The finite automata are of two types; 

1. Deterministic Finite Automata (DFA) 

2. Non-Deterministic Automata (NFA) 



 

 

DETERMINISTIC FINITE AUTOMATA (DFA): 

 Deterministic Finite Automata (DFA) is generally specified by a 5 tuples (Q, Σ, δ, q0, F)  

where 

1. Q is a finite set of states 

2. Σ is a finite input alphabet 

3. q0 in Q is the start state or initial state 

4. F⊆Q is the set of final states 

5. δ is the transition function mapping δ: QX ΣQ.(i.e.) δ(q,a) is a state for each state q and 

input symbol a. (i.e.) δ(q,a) is a state for each state q and input symbol a. 

 An FA as finite control, which is in some state from Q, reading a sequence of symbols from Σ 

written on tape. 

0 1 1 0 0 1 0 1 

 

 

 

A finite automaton as a machine can also be thought of as the device shown below consisting of a tape and a 

control circuit which satisfy the following conditions:  

1. The tape has the left end and extends to the right without an end.  

2. The tape is divide into squares in each of which a symbol can be written prior to the start of the 

operation of the automaton.  

3. The tape has a read only head.  

4. The head is always at the leftmost square at the beginning of the operation.  

5. The head moves to the right one square every time it reads a symbol.  

It never moves to the left. When it sees no symbol, it stops and the automaton terminates its 

operation.  

6. There is a finite control which determines the state of the automaton and also controls the 

movement of the head.  

 

 A string x is said to be accepted by a finite automaton M= (Q, Σ, δ, q0, F) if δ (q, x) =p for some p in F. 

 The language accepted by M, designated L (M), is the set {x| δ (q0, x) is in F}. 

 A language is a regular set if it’s the accepted by some finite automaton. 

Example:  

Consider the formal notation this FA is denoted M= (Q, Σ, δ, q0, F), where Q= {q0, q1, q2, q3}, Σ= {0, 1},  

F= {q0} and δ is shown as 

 

Transition Diagram: 

Finite Control 



 

 

 

Transition Table: 

 

 
States 

Inputs 

 0 1 

* q0 q2 q1 

 q1 q3 q0 

 q2 q0 q3 

 q3 q1 q2 

 

 Check whether given input string 110101 are accepted or not. 

 

Solution: 

  The given input string is 110101 to machine M. We denote that 

      δ (q0, 1) = {q1} 

     δ (q1, 1) = {q0} 

      δ (q0, 0) = {q2} 

     δ (q2, 1) = {q3} 

   δ (q3, 0) = {q1} 

   δ (q1, 1) = {q0} 

         Therefore q0 is the accepting or final state. 

         Hence the given input string 110101 is accepted by DFA. 

4. Explain Non-Deterministic Finite Automata (NFA) with an example? (11 marks)(APR 2014) 

 Consider modifying the finite automaton model to allow zero, one, or more transitions from a state 

on the same input symbol. This new model is called a Non-Deterministic Finite Automata (NFA). 

 Non-deterministic finite automaton is a useful concept in proving theorems. 

 NFA plays a central role in both the theory of languages and the theory of computation. 

 Any set accepted by a NFA can also accepted by a DFA. 



 

 

NFA Mathematical Specification: 

Non-Deterministic Finite Automata (NFA) is generally specified by a 5 tuples (Q, Σ, δ, q0, F) where 

1. Q is a finite set of states 

2. Σ is a finite input alphabet 

3. q0 in Q is the start state or initial state 

4. F⊆Q is the set of final states 

5. δ is the transition function mapping δ  Q x Σ* to 2 Q. 

    On receiving same inputs it goes to many states 

 The machine can move without consuming any symbols and sometimes there are possible moves 

and sometimes there are move then one possible moves. 

 The state is only partially determined by the current state and i/p symbol.  

Examples: 

Consider the given NFA to check whether the string is accepted or not W=01001. 

Transition diagram: 

 

Solution : 

In Non-Deterministic Finite Automata (NFA), Consider a machine M= (Q, Σ, δ, q0, F), 

where, 

  Q = {q0, q1, q2, q3, q4} 

  Σ = {0, 1} 

  {q0}=initial state  

  {q2, q4}=Final state  

 

 

 

 

 



 

Transition table: 

 
States 

Input 

 0 1 

 q0 {q0,q3} {q0,q1} 

 q1 Ф {q2} 

* q2 {q2} {q2} 

 q3 {q4} Ф 

* q4 {q4} {q4} 

 

Method1: 

The given input string is 01001 

 

δ (q0, 0)  = {q0, q3} 

 

δ (q0, 01)  = δ (δ (q0, 0), 1) 

   = δ ({q0, q3}, 1) 

   = δ (q0, 1) U δ (q3, 1) 

  = {q0, q1} U {Ф} 

  = {q0, q1} 

δ (q0, 010)  = δ (δ (q0, 01), 0) 

  = δ ({q0, q1}, 0) 

  = δ (q0, 0) U δ (q1, 0) 

  = {q0, q3} U {Φ} 

  = {q0, q3} 

δ (q0, 0100)  = δ (δ (q0, 010), 0) 

   = δ ({q0, q3}, 0) 

   = δ (q0, 0) U δ (q3, 0) 

   = {q0, q3} U {q4} 

   = {q0, q3, q4} 

δ (q0, 01001)  = δ (δ (q0, 0100), 1) 

   = δ ({q0, q3, q4}, 1) 

   = δ (q0, 1) U δ (q3, 1) U δ (q4, 1)  

   = {q0, q1} U {Φ} U {q4} 

   = {q0, q1, q4} 

 The given input string 010001 is accepted by machine. Therefore q4 is the final state or accepting state.  

5. Explain about Finite Automata with Epsilon (ε ) – moves with an example? (11 marks) 

 In our model of the non-deterministic finite automaton to include transitions on the empty input ε.  



 

 The transition diagram for NFA accepting the language consisting of any number (including zero) of 

0’s followed by any number of 1’s followed by any number of 2’s. 

 NFA with ε move is defined as  

  (Q, Σ, δ, q0, F) where 

 Q is a finite set of states 

 Σ is a finite input alphabet 

 q0 in Q is the start state or initial state 

 F⊆Q is the set of final states 

 δ is the transition function mapping δ  Q x Σ U  Σ  to 2 Q. 

 An NFA accepts a string ω if there is some path labeled ω from the initial state to a final state.  

 The edges labeled ε may be included in the path, although the ε’s do not appear explicitly in ω. 

1. EPSILON CLOSURE 

2. EXTENDED TRANSITION FUNCTION   

3. LANGUAGE ACCEPTED BY NFA WITH ε MOVE 

4. ELIMINATING ε TRANSITIONS 

5. EQUIVALANCE OF NFA WITH ε MOVES TO DFA 



 



 

 



 



 

 



 



 

 



 



 

 

 

 



 

 

6. Construct a DFA equivalent to NFA, where M = ({q0, q1, q2}, {0, 1, 2}, δ, q0, {q0, q1, q2}). 

The Transition is given by the transition diagram and transition table. (11 marks) 

Transition Table: 

 

 

 

 

 

 

 

Transition Diagram: 

 

 

CONSTRUCTING DFA: 

Solution: 

The equivalent DFA is M’ = (Q, {0, 1, 2}, δ’, S’, F’) 

Q = {q0, q1, q2} 

∑ = {0, 1, 2} 

Q' = 2Q   

S’= [q0] Є Q’ 

 

All subsets = { [φ],[q0],[q1],[q2],[q0,q1,q2],[q0q1],[q0q2],[q1q2][q0q1q2]} 

Transition Function: 

δ'(q0,0) = [q0q1q2] 

δ'(q0,1) = [q1q2] 

δ'(q0,2) = [q2] 

δ'(q1,0) = [φ] 

δ'(q1,1) = [q1q2] 

δ'(q1,2) = [q2] 

δ'(q2,0) = [φ] 

δ'(q2,1) = [φ] 

 
States 

Inputs 

 0 1 2 

* q0 {q0,q1,q2} {q1,q2} {q2} 

*  q1 {φ} {q1,q2} {q2} 

*  q2 {φ} {φ} {q2} 



 

δ'(q2,2) = [q2] 

δ'(q0q1,0)  = δ'(q0,0) U δ'(q1,0) 

      = [q0, q1, q2] U {φ} 

      = [q0, q1, q2]  

δ'(q0q1,1)  = δ'(q0,1) U δ'(q1,1) 

      = [1q2] U [q1q2] 

      = [q1, q2]  

δ'(q0q1,2)  = δ'(q0,2) U δ'(q1,2) 

        = [q2] U [q2] 

       = [q2] 

δ'(q0q2,0)  = δ'(q0,0) U δ'(q2,0) 

         = [q0q1q2] U {φ} 

        = [q0q1q2]  

  δ'(q0q2,1)  = δ'(q0,1) U δ'(q2,1) 

         = [q1q2] U {φ} 

        = [q1q2]  

δ'(q0q2,2) = δ'(q0,2) U δ'(q2,2) 

         = [q2] U [q2] 

    = [q2] 

δ'(q1q2,0)  = δ'(q1,0) U δ'(q2,0) 

         = {φ} U {φ} 

      = [φ]  

δ'(q1q2,1)  = δ'(q1,1) U δ'(q2,1) 

         = [q1q2] U {φ} 

        = [q1q2]  

δ'(q1q2,2)  = δ'(q1,2) U δ'(q2,2) 

         = [q2] U [q2] 

        = [q2]  

δ'(q0q1q2,0) = δ'(q0,0) U δ'(q1,0) U δ' (q2,0) 

      = {q0q1q2} U {φ} U {φ} 

       = [q0q1q2]  

δ (q0q1q2,1)  = δ'(q0,1) U δ'(q1,1) U δ' (q2,1) 

         = [q1q2] U [q1q2] U {φ} 

         = [q1q2]  

δ'(q0q1q2,2)  = δ'(q0,2) U δ'(q1,2) U δ' (q2,2) 

         = [q2] U [q2] U [q2] 

       = [q2]  



 

Transition Table for DFA: 

 

States 
Inputs 

0 1 2 

[q0] [q0q1q2] [q1q2] [q2] 

[q1] φ [q1q2] [q2] 

[q2] φ φ [q2] 

[q0q1] [q0q1q2] [q1q2] [q2] 

[q0q2] [q0q1q2] [q1q2] [q2] 

[q1q2] φ [q1q2] [q2] 

[q0q1q2] [q0q1q2] [q1q2] [q2] 

 

  Final States are {[q2], [q1q2], and [q0q1q2]} 

Transition Diagram: 

 

 

 

 

 

7. Explain the Equivalence of NFA and DFA 

q0 

q1 

 
q0q2 

 
q1q2 

 

q2 

 

q0q1q2 

 

q0q1q2 

 

q0q1q2 

 

q1q2 

 

q1q2 

 



 



 



 



 



 

 

8. Explain Minimization of Finite Automata with an example? (11 marks) 

DFA minimization is the task of transforming a given Deterministic Finite Automaton (DFA) into an 

equivalent DFA that has a minimum number of states. Here, two DFAs are called equivalent if they 

recognize the same regular language. Several different algorithms accomplishing this task are known 

and described in standard textbooks on automata theory.  

A DFA can recognize a unit language. It is possible to construct a new DFA where it contains only 

minimal number of states. The central idea in minimizing the DFA, partition the states into blocks such 

http://en.wikipedia.org/wiki/Deterministic_finite_automaton
http://en.wikipedia.org/wiki/Regular_language


 

that all the   states in the block are equivalent. No two states chosen from two different blocks are 

equivalent. 

       Property of Equivalent States: 

   A= (Q, Σ, δ, q0, F) 

       Equivalent states are transitive 

     P&Q equivalent   A&Bequivalent 

       Q&Requivalent   B&Cequivalent 

(P&R equivalent i.e. PR)  (A&B equivalent i.e. AB) 

      Partitioning: 

 Split Q into two parts or sets, the first set containing the final state and the second set containing the 

non-final state. 

 If we create for each state 

1. q [DFA], a block consisting of q, then the different blocks of stated form a partition of set of states. 

2. Each state is in exactly one block. 

Example: 

Construct a minimized DFA from the equivalent the given DFA. 

 

 

 

 

 

 

 

Given 
 

Let Q = {1, 2, 3, 4, 5} 
 

Σ = {a, b} 
 

S = {1} 

F = {3} 

 

Split Q into two parts or sets, the first set containing the final state and the second set containing the non-

final state. 

 

Let A = {3} 
 

B = {1, 2, 4, 5} 
 
Then the list containing non-final state and according to the output of each transition, gives the set 

representation. 

 



 

 

 

 

 

Then consider the set with a larger number of states 
 

A = {3} 
 

B = {1,4} equivalent 
 

C = {2,5} non-equivalent  
 
 
 
 
 
 
 
 

Transition for A  
 
 
 
 
 

 

Transition for B 
 
 

 

 

 

Transition for C 
 

 

 

 

 

Transition Table: 

STATES INPUTS 

 a b 

A C A 

B C B 

C B A 

 

Transition Diagram: 
 



 

 

 

 

 

 

 

 

9. Explain two – way finite automata with an example? (11 marks) (APR 2012) 

 A finite automaton is a control unit that reads a tape, moving one square right at each move. Two 

way finite automatons is an extension of one- way finite automaton which has the ability to allow the 

tape head to move left as well as right. Such a finite automaton is called a two-way finite automaton.  

 Two ways finite automaton accepts the input state if it moves the tape head, off the right end of the 

tape, at the same time, entering an accepting state. 

 A two-way finite deterministic automaton (2DFA) is a quintuple M= (Q, Σ, δ, q0, F) 

          Where  

1. Q is a finite set (the states) 

2. Σ is a finite set (the input alphabet) 

3. q0 in Q is the start state or initial state 

4. F⊆Q is the set of final states 

5.  is a map from Q X Σ  Q X {L, R}. 

 

 If δ(q,a)=(p,L), then in state q, scanning input symbol a, the 2DFA enters state p and moves its head 

left one square.  

 If δ(q,a)=(p,R), then in state q, scanning input symbol a, the 2DFA enters state p and moves its head 

right one square. 

 

Instantaneous Description (ID): 

 Instantaneous Description of 2DFA, which describes  

 the input string,  

 current state, and  

 current position of input head 

 The relation ├ M on ID’s such that I1 ├ M I2 if and only if M can go from instantaneous description I1 to 

I2 in one move.  

 An ID of M is a string in Σ*Q Σ*. The ID wqx, where w and x are in Σ* and q is a state in Q, represent 

the facts that  

1. wx is the input string 

2. q is the current state and  



 

3. the input head is scanning the first symbol of x. 

If x= ε, the input head has moved off the right end of the input. 

   

Example: 

Consider 2DFA as follows M=({q0,q1,q2},{0,1},,q0,{q0,q1,q2}).Show that the string w=101001 is 

accepted or not. The transition table is given by  

 

 

 

 

 

 

 

Solution: 

q0101001 ├ 1 q1 01001 

 

├ 10 q1 1001 
 

├ 1 q2 01001 
 

├ 1 0 q0 1001 
 

├ 101 q1 001 
 

├ 1010 q1 01 
 

├ 1010 0 q1 1 
 

├ 1010 q2 01 
 

├ 1010 0 q0 1 
 

├ 1010 01 q1 
 

Here q1 is final state. So the given input string 01001 is accepted. 

Crossing Sequences: 

 In 2DFA consists of the input, the path followed by the head and the state each time the boundary 

between two tape squares is crossed, with the assumption that the controls enters its new state prior to 

moving the head. 

 
States 

Inputs 

 0 1 

 q0 {q0,R} {q1,R} 

 q1 {q1,R} {q2,L} 

 q2 {q0,R} {q2,L} 



 

 

The list of states below each boundary between square is termed a crossing sequence. If a 2DFA 

accepts its input, no crossing sequence may have a repeated state with the head moving in the same 

direction, otherwise the 2DFA being deterministic, would be in a loop and thus could never fall off the right 

end. 

In crossing sequences is that the first time a boundary is crossed, the head must be moving right. 

Subsequent crossings must be in alternate directions. Thus odd-numbered elements of a crossing sequence 

represent right moves and even-numbered elements represent left moves. If the input is accepted, it follows 

that all crossing sequences are of odd length. 

 A crossing sequence q1, q2… qk is said to be valid if it’s of odd length, and no two odd and no two 

even-numbered elements are identical. A 2DFA with s states can have valid crossing sequence of length at 

most 2s, so the number of valid crossing sequence is finite. 

 

10. Explain Moore and Mealy machines with an example? (11 marks) (NOV 2012,MAY’15) 

The finite automaton defined that its output is limited to a binary signal: “accept/don’t accept”. There 

are two different approaches are  

1. Moore Machine 

2. Mealy Machine 

MOORE MACHINE: 

 Moore Machines was developed by E.F.Moore in the year 1956. 

 In Moore machine the output depends upon the states. 

 It can be represented by transition tables and transition diagram. 

 A Moore machine is a 6 tuple (Q, Σ, Δ,  , λ ,q0), 

          Where  

1. Q is a finite set of states 

2. Σ is a finite input alphabet 

3. Δ is the output alphabet 

4. λ is the mapping from Q to Δ giving the output associated with each state 

5. δ is the transition function  

6. q0 in Q is the start state or initial state 

 The output of M in response to input a1 a2… an, n≥0, is λ(q0) λ(q1).. λ(qn) where q0,q1, … qn is the 

sequence of states such that δ(qi-1,ai)=qi for 1 ≤ i ≤n.  

 Any Moore machine gives output λ(q0) in response to input n. 



 

 The DFA as a special case of a Moore machine where the output alphabet is {0, 1} and state 

“accepting “ if only if λ(q)=1. 

 In a Mealy machine, the outputs are a function of the present state and the value of the inputs as shown 

in Figure 1.  

 Accordingly, the outputs may change asynchronously in response to any change in the inputs.  

 

 

Figure 1: Mealy Type Machine 

 In a Moore machine the outputs depend only on the present state as shown in Figure 2.  

 A combinational logic block maps the inputs and the current state into the necessary flip-flop inputs to 

store the appropriate next state just like Mealy machine.  

 However, the outputs are computed by a combinational logic block whose inputs are only the flip-flops 

state outputs.  

 The outputs change synchronously with the state transition triggered by the active clock edge.  

 

 

Figure 2: Moore Type Machine 

MEALY MACHINE: 

 Mealy Machine was developed by G.H.Mealy. 

 In Mealy machine the output depends on transition and current state. 

 The output is fixed for particular input symbols. 



 

 It can be represented by transition tables and transition diagram. 

A Mealy machine is a 6 tuple M= (Q, ∑, Δ,  , λ ,q0), 

        where  

1. Q is a finite set of states 

2. Σ is a finite input alphabet 

3. Δ is the output alphabet 

4. λ is the mapping from Q X ∑ to Δ (i.e.) λ(q,a) gives the output associated with the 

transition from state q on input a. 

5. δ is the transition function  

6. q0 in Q is the start state or initial state 

 

 The output of M in response to input a1 a2… an is λ(q0,a1) λ(q1,a2).. λ(qn-1,ai) where q0,q1, … ,qn is the 

sequence of states such that δ(qi-1,ai)=qi for 1 ≤ i ≤n.  

 In this sequence has length n rather than length n+1 as for the Moore machine, and on input ε a 

Mealy machine gives output ε. 

 

Comparison of the Moore and Mealy Machine: 

 Consider a finite state machine that checks for a pattern of ‘10’ and asserts logic high when it is 

detected.  

 The state diagram representations for the Mealy and Moore machines are shown in figure below.  

 The state diagram of the Moore machine lists the inputs with their associated outputs on state 

transitions arcs.  

 The value stated on the arrows for Mealy machine is of the form Zi/Xi where Zi represents input 

value and Xi represents output value.  

 A Mealy machine produces a unique output for every state irrespective of inputs.  

 Accordingly the state diagram of the Moore machine associates the output with the state in the form 

state-notation/output-value.  

 The state transition arrows of Moore machine are labeled with the input value that triggers such 

transition.  

 Since a Mealy machine associates outputs with transitions, an output sequence can be generated in 

fewer states using Mealy machine as compared to Moore machine. This was illustrated in the 

previous example.  

 



 

 

 

11. Give applications of finite automata? (6 marks) 

There are a variety of software design problems that are simplified by automatic conversion of regular 

expression notation to an efficient computer implementation of the corresponding finite automaton. 

The two applications are  

1. Lexical analyzers  

2. Text editors 

 

LEXICAL ANALYZERS: 

 Tokens of a programming language are regular sets. 

 For example: ALGOL identifiers, which are upper-or lower-case letters followed by any sequence of 

letters and digits with no limit on length, expressed as, 

   (letter)(letter + digit)* 

where 

 “letter“ stands for A + B + …… + Z + a + b + …… + z and  

 “digit“ stands for 0 + 1 + ….. + 9 

 FORTRAN identifiers, with length should limited of six and letters restricted to uppercase and 

symbol $, may be expressed as 

(letter)( + letter + digit)* 

where, “letter” stands for ($ + A + B + …….  + Z). 

 A number of lexical analyzers takes input as sequence of regular expressions describing the tokens 

and produce a single finite automaton recognizing the any token.  

 Usually, they convert the regular expression to an NFA with -transitions and then construct subset 

of states to produce a DFA directly rather than first eliminating -transitions. 

 Each final state indicates the particular token found, so the automaton is really a Moore Machine. 



 

 The transition function of the FA is encoded in one of several ways to take less space than the 

transition table represented as a two-dimensional array. 

 The lexical analyzer produced by the generator is a fixed program that interprets coded tables, 

together with the particular table that represents the FA recognizing the tokens. 

 This lexical analyzer can be used as a module in a compiler. 

TEXT EDITORS: 

 Certain text editor and similar programs permits substitution of string for any string matching given 

regular expression.


 For example: the UNIX text editor allows a command such as
s/bbb*/b/ 

that substitutes a single blank for the first string of two or more blanks found in a given line. 

 Let “any” represents expression a1+a2+…..+an, where ai’s are computer characters except the


“newline “character. 

 We could convert a regular expression r to a DFA that accepts any *r.


 The presence of any* allows to recognize a member of L(r) beginning anywhere in the line.
 The conversion of a regular expression to a DFA takes more time than it takes to scan a single sort 

line using the DFA and the DFA have a number of states that is an exponential function of the length 

of the regular expression.

 In UNIX text editor is that Regular expression of any*r converted to an NFA with -transitions and 

NFA is then simulated directly.

However once a column has been constructed listing all the states the NFA can enter on a particular prefix of 

the input, the previous column is no longer needed and is thrown away to save space. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Deterministic finite automata have many practical applications: 

1. Almost all compilers and other language-processing systems use DFA-like code to divide an input 

program into tokens like identifiers, constants, and keywords and to remove comments and white 

space. 

2. For many applications that accept typed commands, the command language is quite complex, almost 

like a little programming language. Such applications use DFA-like code to process the input command. 

3. Text processors often use DFA-like code to search a text fi le for strings that match a given pattern. 

This includes most versions of UNIX tools like awk, egrep, and Procmail, along with a number of 

platform-independent systems such as MySQL. 

4. Speech-processing and other signal-processing systems often use a DFA-like technique to transform 

an incoming signal. 

5. Controllers use DFA-like techniques to track the current state of a wide variety of finite-state systems, 

from industrial processes to video games. They can be implemented in hardware or in software.  

6. Sometimes, the DFA-like code in such applications is generated automatically by special tools such as 

lex. 

12.With a suitable transition diagram differentiate DFA and NFA    (MAY’15 APR’16)           

S.NO DFA NFA 
1 “DFA” stands for “Deterministic Finite 

Automata”  
“NFA” stands for “Nondeterministic Finite 
Automata.” 
 

2 Both are transition functions of automata. In 
DFA the next possible state is distinctly set  

In NFA each pair of state and input symbol can 
have many possible next states. 
 

3 DFA cannot use empty string transition. 
 

NFA can use empty string transition 

4 it is more difficult to construct DFA. 
 

NFA is easier to construct 

5 Backtracking is allowed in DFA   In NFA it may or may not be allowed. 
 

6 DFA requires more space  NFA requires less space. 
 

7 DFA can be understood as one machine and a 
DFA machine can be constructed for every 
input and output,  

NFA can be understood as several little machines 
that compute together, and there is no possibility of 
constructing an NFA machine for every input and 
output. 

Steps: The method of converting NFA to its equivalent DFA. Let M = (Q, Σ, δ, q0, F) is a NFA which accepts 

the language L(M). There should be equivalent DFA denoted by M’= (Q’, Σ’, δ’, q0’, F’) such that L (M) =L (M’). 

The conversion method will follow following steps: 

1. The start state of NFA M will be the start for DFA M’. Hence add q0 of NFA(start state) to Q’. Then find 

the transitions from this start state. 
 
2. For each state [q1,q2..qi] in Q the transition for each input symbol Σ can be obtained as, 

 



 

 δ'([q1,q2...qi],a) = δ(q1,a)U δ(q1,a)U ...........δ(qi,a) =[q1,q2....qk] may be some state.


 Add the state [q1,q2....qk] to DFA if it is not already added in Q’.


 Then find out the transition for every input symbol from Σ for state[q1,q2....qk]. if we get some state 

[q1,q2....qn] which is not in Q’ of DFA then add this state to Q’.


 If there is no new state generating then stop the process after finding all the transitions.


3. For the state [q1,q2.....qn] є Q’ of DFA if any one state qi is a final state of NFA then [q1,q2,,,,,qn] becomes 

a final state. Thus the set of all the final states є F’ of DFA. 

Example 
Consider a NFA with the transition diagram 

 

 

 

 

The NFA is given by 
 

Q= {q0, q1, q2} 
 

Σ= {a, b} 
 

q0= {q0} 
 

F= {q2} 
 

 

Transition Table 

δ a b 
   

q0 {q0,q1} {q1} 
   

q1 {q2} {q1,q2} 
   

q2 φ {q2} 
   

 

Converting to DFA 

The DFA can be expressed during conversion M´ = (Q, Σ, δ ´, q0, F´) 
 

where 
 

Q´=2Q 

 

Σ= {a, b} 
 

q0=q0 
 

F´= {{q2}, {q1, q2}, {q0, q2}, {q0, q1, q2}} 
 
 

 



 

Transition table for DFA 

δ a b 
   

{q0} {q0,q1} {q1} 
   

{q1} {q2} {q1,q2} 
   

{q2} φ {q2} 
   

{q0,q1} {q0,q1,q2} {q1,q2} 
   

{q1,q2} {q2} {q1,q2} 
   

{q0,q1,q2} {q0,q1,q2} {q1,q2} 
   

Transition diagram for DFA 

 

 

 

 

 

 

 

 

 

 

 

 

 

13. Construct a DFA equivalent to NFA, where M = ({q0, q1, q2}, {0, 1, 2}, δ, q0, {q0, q1, q2}). 

The Transition is given by the transition diagram and transition table.  

 

Transition Table: 

 

 

 

 

 

 

 

 

 

 

 
States 

Inputs 

 0 1 2 

* q0 {q0,q1,q2} {q1,q2} {q2} 

*  q1 {φ} {q1,q2} {q2} 

*  q2 {φ} {φ} {q2} 



 

Transition Diagram: 

 

 

CONSTRUCTING DFA: 

Solution: 

The equivalent DFA is M’ = (Q, {0, 1, 2}, δ’, S’, F’) 

Q = {q0, q1, q2} 

∑ = {0, 1, 2} 

Q' = 2Q   

S’= [q0] Є Q’ 

 

All subsets = { [φ],[q0],[q1],[q2],[q0,q1,q2],[q0q1],[q0q2],[q1q2][q0q1q2]} 

Transition Function: 

δ'(q0,0) = [q0q1q2] 

δ'(q0,1) = [q1q2] 

δ'(q0,2) = [q2] 

δ'(q1,0) = [φ] 

δ'(q1,1) = [q1q2] 

δ'(q1,2) = [q2] 

δ'(q2,0) = [φ] 

δ'(q2,1) = [φ] 

δ'(q2,2) = [q2] 

δ'(q0q1,0)  = δ'(q0,0) U δ'(q1,0) 

      = [q0, q1, q2] U {φ} 

      = [q0, q1, q2]  

δ'(q0q1,1)  = δ'(q0,1) U δ'(q1,1) 

      = [1q2] U [q1q2] 

      = [q1, q2]  

δ'(q0q1,2)  = δ'(q0,2) U δ'(q1,2) 

        = [q2] U [q2] 

       = [q2] 

δ'(q0q2,0)  = δ'(q0,0) U δ'(q2,0) 



 

         = [q0q1q2] U {φ} 

        = [q0q1q2]  

  δ'(q0q2,1)  = δ'(q0,1) U δ'(q2,1) 

         = [q1q2] U {φ} 

        = [q1q2]  

δ'(q0q2,2) = δ'(q0,2) U δ'(q2,2) 

         = [q2] U [q2] 

    = [q2] 

δ'(q1q2,0)  = δ'(q1,0) U δ'(q2,0) 

         = {φ} U {φ} 

      = [φ]  

δ'(q1q2,1)  = δ'(q1,1) U δ'(q2,1) 

         = [q1q2] U {φ} 

        = [q1q2]  

δ'(q1q2,2)  = δ'(q1,2) U δ'(q2,2) 

         = [q2] U [q2] 

        = [q2]  

δ'(q0q1q2,0) = δ'(q0,0) U δ'(q1,0) U δ' (q2,0) 

      = {q0q1q2} U {φ} U {φ} 

       = [q0q1q2]  

δ (q0q1q2,1)  = δ'(q0,1) U δ'(q1,1) U δ' (q2,1) 

         = [q1q2] U [q1q2] U {φ} 

         = [q1q2]  

δ'(q0q1q2,2)  = δ'(q0,2) U δ'(q1,2) U δ' (q2,2) 

         = [q2] U [q2] U [q2] 

       = [q2]  

Transition Table for DFA: 

States 
Inputs 

0 1 2 

[q0] [q0q1q2] [q1q2] [q2] 

[q1] φ [q1q2] [q2] 

[q2] φ φ [q2] 

[q0q1] [q0q1q2] [q1q2] [q2] 

[q0q2] [q0q1q2] [q1q2] [q2] 

[q1q2] φ [q1q2] [q2] 

[q0q1q2] [q0q1q2] [q1q2] [q2] 

 



 

  Final States are {[q2], [q1q2], and [q0q1q2]} 

 

Transition Diagram: 

 

 

 

14. Prove that for every regular expression there is an equivalent NFA? (11 MARKS) 

Statement:  
   

 
Let r be a regular expression. Then there exists an NFA with ε-transitions that accepts L(r). 

 
Proof: 
 

We prove by induction on the number of operators in the regular expression r that there is an NFA M that 

there is an NFA M with ε-transition, having one final state and no transitions out of this final state, such 

that L(M)= L(r). 

 

Basis Step (Zero operators): 
 

The expression ‘r’ must be ε (epsilon), Ф or ‘a’ for some a ϵ Σ. Then the equivalent NFA’s are (a), (b) and (c) 

clearly satisfy the conditions. 

 

 

 

 

 

 

Induction (One or more operators): 

 

Assume that the theorem is true for regular expressions with fewer than i operators, i≥1. Let r have i 

operators. There are three cases depending on the form of ‘r’. 

q0 

q1 

 
q0q2 

 
q1q2 

 

q2 

 

q0q1q2 

 

q0q1q2 

 

q0q1q2 

 

q1q2 

 

q1q2 

 



 

Case (1): 
 

Let r= r1+ r2. Both r1 and r2 must have fewer than i operators. 
 

Thus there are NFA’s, 
 

M1 = (Q1, Σ1, δ1, q1, {f1}) and M2 = (Q2, Σ2, δ2, q2, {f2}) with L(M1)= L(r1) and L(M2)= L(r2). 
 

Assume Q1 and Q2 are disjoint. Let q0 be a new initial and f0 a new final state. 
Construct M = (Q1  Q2  {q0, f0}, Σ1  Σ2, δ, {q0}, {f0}), where δ is defined by 
 

1. δ(q0, ε) = {q1, q2} 
 

2. δ(q, a) = δ1(q, a) if q ϵ Q1 {f1}, a ϵ Σ1  { ε } 
 

3. δ(q1, a) = δ2(q, a) if q ϵ Q2  {f1}, a ϵ Σ2 U { ε } 
 

4. δ1(f1, ε)= {f0}. 
 

 

 

 

 

 

 

 

 

All the moves of M1 and M2 are present in M any path in the transition diagram of M from q0 to f0 must 

begin by going to either Q1 or Q2 on ε. If the path goes to Q1, it may follow any path in M1 to f1 and go to f0 

on ε. Similarly paths begins by going to Q2 may follow any path in M2 to f2 and then go to f0 on ε. These are 

the only paths from g0 to f0. If there is a path labeled ‘x’ in M1, from Q1 to f1 or a path in M2 from q2 to f2. 

Hence L(M)= L(M1)  L(M2). 

 

Case (2): 
 

Let r= r1r2. 
 

Let M1 = (Q1, Σ1, δ1, q1, {f1}) and M2 = (Q2, Σ2, δ2, q2, {f2}) with L(M1) = L(r1) and L(M2) = L(r2). 
 

 

 

 

 

 

Construct M = (Q1 Q2, Σ1  Σ2, δ, {q1}, {f2}), 
 
where δ is defined as, 
 

1. δ(q, a) = δ1(q, a) for q in Q1 {f1}, a in Σ { ε} 
 



 

2. δ(f1, ε) = {q2} 
 

3. δ(q, a) = δ(q, a) for q in Q2 and a in Σ2  { ε} 
 
Every path in M< from q1 to f2 is a path labeled by some string ‘x’ from q1 to f1, followed by some string ‘y’ 

from q2 to f2. Thus L(M) = {xy | x is in L(M2) and y is in L(M2)}. And L(M)= L(M1)L(M2). 

Case (3): 
 

Let r= r*. Let M1= (Q1, Σ1, δ1, q1, {f1}) and L(M1) = r1. 
 

Construct M= (Q1 {f0}, Σ1, δ1, q0, {f0}) 
 

 

 

 

 

 

Where δ is given by 
 

1. δ(q0, ε) = δ(f1, ε) = {q1, f0} 
 

2. δ(q, a) = δ1(q, a) for q in Q1  {f1} and a in Σ1 { ε}. 
 

 

Any path from q0 to f0 consists either of a path from q0 to f0 or a path from q0 to q1 on ε followed by 

same no. of paths from q1 to f1, then back to q1 on ε. There is a path in M from q0 to f0 labeled ‘x’ if we 

write 
 

x= x1, x2, ……xj for some j≥ 0 such that each xi belongs to L(M1). Hence L(M)= L(M1*). 
 

15. Prove: A language L is accepted by some ε-NFA if and only if L is accepted by some DFA. (APR ,15) 
 

To Prove: 
 

The Language accepted by NFA is equal to the language set 

accepted by DFA. i.e. L(M)=L(M´) , 
 

Where M is the NFA and M´ is the DFA. 
 

Proof: 
 

Let M= (Q, Σ, δ, q0, F) be an NFA, accepting L and we can 

define a DFA M´ = (Q, Σ, δ´, q0, F´) as follows. 
 

The states of M´ are all the subsets of the set 

of states of M. That is, Q´ = 2Q 
 

M´ will keep track in its states of all the states M could be in at any given time. F´ is the set all 

the states in Q´ containing the final state of M. An element of Q´ will be denoted by [q1, q2, 

q3....qi] are in Q. 
 

Observe that, [q1, q2, q3....qi] is a single state of DFA corresponding to the 

states of the NFA. Note q0´= [q0] 



 

 

We define 
 

δ´([q1 ,q2, q3.... qi], a)= [P1, P2, P3 .... Pj] 
 

if and only if 
 

δ([q1, q2, q3....qi], a)= [P1, P2, P3 .... Pj] 
 

that is 
 

δ´ applied to an element [q1, q2, q3 ....qi] of Q´ is computed by applying δ to each state of Q represented 
 

by [q1, q2, q3 .... qi] in applying δ to each of [q1, q2, q3 .... qi] and taking “union” we get some new set of 
 

states P1, P2, P3 .... Pj. This new set of states has a representative P1, P2, P3.... Pj in Q´ and that element is 
 

the value of δ´([q1, q2, q3 .... qi], a). 
 

 

It is easy to show by induction for the length of the input string x, that 
 

δ´( q0´, x) =[q1, q2, q3 .... qi] 
 

if and only if, 
 

δ( q0, x) ={q1, q2, q3 .... .qi} 
 

 

Basis 
 

Consider |x|=0 then x must be since q0´= [q0] 
 

Then 
 

δ´( q0, ε )=( q0) 
 

if and only if 
 

δ( q0, ε )= { q0} 
 

Hence the result is trivial. 
 
Induction 
 

Let us assume that the hypothesis is true for inputs of length m, Let xa be a string of length m+1 with a in 

Σ, then 
 

δ´( q0’,xa ) = δ´( δ´( q0’,x),a) 
 

By the inductive hypothesis, 
 

δ´( q0’, x) = [P1, P2, P3. ... Pj] 
 

If and only if , 
 

δ( q0, x) = {P1, P2, P3 .... Pj}. 
 

But by the definition of δ´, 
 

δ´[(P1, P2, P3 .... Pi), a] = [r1, r2, r3 .... rk] 
 

If and only if, 
 

δ({P1, P2, P3 .... Pi}, a) = [r1 ,r2, r3 .... rk] 
 

Thus, 
 

δ´( q0, xa)= [r1, r2, r3 .... rk] 



 

 

If and only if, 
 

δ(q0, xa )= [r1, r2, r3 .... rk] 
 

Which establishes the inductive hypothesis, 
 

To complete the proof, we have only to add that δ´( q0’,x) is in F´ exactly when δ( q0 ) contains a state of Q 

that is F. 
 

Thus, L(M)=L(M´) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

PONDICHERRY UNIVERSITY QUESTIONS 

2 MARKS 

 

1. Give the purpose of transition diagram? (APR 2014)(Ref.Qn.No.20, Pg.no.8)  

2. Write the DFA Specifications? (APR 2014, NOV 2012) (Ref.Qn.No.22, Pg.no.9)  

3. Define NFA. (APR 2012, 2013)(Ref.Qn.No.25, Pg.no.10)  

4. Define two way finite automata (2DFA)? (APR 2012, NOV 2013) (Ref.Qn.No.32, Pg.no.12)  

5. Give the applications of finite automata? (NOV 2012,NOV’14) (Ref.Qn.No.41, Pg.no.14)  

6. Define Equivalence Relation? (NOV 2013) (Ref.Qn.No.46, Pg.no.16)  

7. What are the difference between NFA and DFA?  ( MAY ’15,NOV’15) (Ref.Qn.No.26, Pg.no.10)  

8. Define regular expressions? (NOV’14) (Ref.Qn.No.29, Pg.no.11) 

9. Define Finite Automata.  (NOV’15) (Ref.Qn.No.18, Pg.no.8) 

 

11 MARKS 

1. Explain Non-Deterministic Finite Automata (NFA) with an example? (APR 2014) (Ref.Qn.No.4, 

Pg.no.24) 

2. Explain about converting DFA’s to regular expression by eliminating states. (APR 2014) 

3. Let r be a regular expression. Then there exists an NFA with ε-transitions that accepts L(r). 

(NOV 2013) (Ref.Qn.No.11, Pg.no.43) 

4. If L is accepted by a 2DFA, then L is regular set. (NOV 2013) 

5. Explain the DFA with example? (APR 2013) (Ref.Qn.No.3, Pg.no.21) 

6. Explain about Regular Expressions with an example? (APR 2013, APR 2012,MAY’15) 

(Ref.Qn.No.2, Pg.no.19) 

7. Describe in detail about two-way automation with an example. (APR 2012) (Ref.Qn.No.8, 

Pg.no.36) 

8. Define the Moore and Mealy Machine. State the configuration and illustrate the same with an 

example. (NOV 2012,MAY’15) (Ref.Qn.No.9 Pg.no.38) 

9. Define Regular expression. Write a r.e. denote a language L which accepts all the strings which begin 

or end with either 00 or11. (NOV 2012) 

10. With a suitable transition diagram differentiate DFA and NFA (MAY’15)  ) (Ref.Qn.No.12 Pg.no.45) 

 

 

 

 

 

 



 

UNIT II 

 

Regular Sets and Context Free Grammars: Properties of regular sets, Context-Free Grammars 

– Derivation trees, Chomsky Normal Forms and Greibach Normal Forms, Ambiguous and 

unambiguous grammars. 

 
2 Marks 

1. What is pumping Lemma for regular sets? 

 A basic result called the pumping lemma, which is a powerful tool for proving certain languages, is 

regular or not. 

 It is also useful in the development of algorithms to answer certain questions concerning finite automata, 

such as whether the language accepted by a given FA is finite or infinite. 

 If a language is regular, it is accepted by a DFA M= (Q, Σ, δ, q0, F) with particular number of states. 

 Let L be a regular set. Then there is a constant n such that if Z is any word in L, and |z|≥n. we may write 

Z=uvw in such a way that |uv| ≤ n, |v| ≥ 1and for all L ≥0 then uviw is in L.  

2. List the applications of the pumping lemma?     (APR 2014) 

The applications of pumping lemma for regular set are 

 The pumping lemma is a powerful tool providing and proving certain language is regular or not.  

 It is also useful in the development of algorithms to answer certain question concerning finite 

automata, such as whether the language accepted by a given FA is finite or infinite.  

      (Or) 

1) The pumping lemma is useful in proving that certain sets are not regular. The application is an 

“adversary arguments” of the following form. 

2) Select the language L to prove non-regular. 

3) The “adversary” picks n, the constants mentioned in the pumping lemma. 

4) Select a string z in L. 

5) The adversary breaks z into u, v and w, subject to the constraints that |uv|≤n and |v|≥ 1. 

6) A contradiction to the pumping lemma by showing, for any u, v, and w, determined by the adversary, 

that there exists an i for which uviw is not in L. It may then be concluded that L is not regular.  

3. What are the properties of Regular Sets? 

If a class of languages is closed under a particular operation we call that fact a closure property of the class of 

languages. The properties of regular sets are  

i. Union 

ii. Concatenation 

iii. Kleene closure  

iv. Complementation 

v. Intersection 



 

vi. Substitution 

vii. Homomorphism 

4. What is homomorphism with example?     (APR 2014) 

A string homomorphism is a function on strings that works by substituting a particular string for each 

symbol.  

Example:  

 The function h given by h(0) = abb and h(1) = ba is a homomorphism which replaces each 0 by abb  and 

each 1 by ba. Thus h(1011) = baabbbaba. 

5. What is inverse homomorphism? 

Homomorphism can also applied in reverse and in this mode they also preserve regular language. That is, 

suppose h is a homomorphism from some alphabet Σ to strings in another (possibly the same) alphabet T-1. 

Let L be a language over alphabet T. Then h-1 is the set of strings w in Σ* such that h(w) is in L. 

6. Write the principal closure properties for regular language? 

The principal closure properties for regular language are 

i. The union of two regular languages is regular. 

ii. The intersection of two regular languages is regular. 

iii. The complement of a regular language is regular. 

iv. The difference of two regular languages is regular. 

7. Write the closure properties of regular set under Boolean operations?  

The first closure properties are the three Boolean operations: Union, Intersection, and Complementation. 

i. Let L and M be language over alphabet Σ. Then LM is the language that contains all strings that 

are in either or both of L and M.  

ii. Let L and M be language over alphabet Σ. Then L∩M is the language that contains all strings that 

are in both of L and M.  

iii. Let L be a language over alphabet Σ. Then, the complement of ¬L, is the set of strings in Σ* that are 

not in L. 

8. Define Context Free Grammar (CFG)?     (NOV 2013) 

 A context free grammar (CFG) is a finite set of variables (also called non-terminals or syntactic 

categories) each of which represents a language. 

 CFG is a way of describing languages by recursive rules or substitution rules called productions. 

 A CFG consists of sets of variables, a set of terminal symbols and a start variable, and productions. Each 

production consists of a starting variable and a body consists of a string of zero or more variables or 

terminals. 

9. Write the formal specification of Context Free Grammar (CFG)? 

A Context Free Grammar (CFG) is denoted G= (V, T, P, S),  

Where   

1) V is a finite set of variables or non-terminals. 



 

2) Tis a finite set of terminal symbols. 

3) P is a finite set of productions; each production is of the form Aα, where A is a non-terminal or 

variable and α is a string of symbols from (V U T)*. 

4) S is a special variable called the start symbol. 

10. What are the notations used in Context Free Grammar (CFG)? 

1) The capital letters A, B, C, D, E, and S denote variables or non-terminals. 

2) The lower case letters a, b, c, d, e, digits and boldface strings are terminals. 

3) The capital letters X, Y, and Z denote symbols that may be either terminals or non-terminals. 

4) The lower case letters u, v, w, x, y, and z denote strings are terminals. 

5) The lower case Greek letters α, β, and γ denote strings having variables and terminals.  

11. Give the applications of context free grammar? 

Context free languages are used in:  

 Defining programming languages 

 Formalizing the notation of parsing 

 Translation of programming languages 

 String processing applications 

12. What are the uses of context free grammars?  

 Construction of compliers.  

 Simplified the definition of programming languages.  

 Describes the arithmetic expressions with arbitrary nesting of balanced parenthesis {(,)}.  

 Describes block structure in programming languages.  

 Model neural nets.  

13. What is meant by derivation? (NOV’15) 

 Derivation is a process of producing any string derivable from start symbol of the grammar using the 

production of the grammar. 

 Beginning with the start symbol, we derive terminal strings by repeatedly replacing a variable by the 

body of some production with that variable in the head. The language of the CFG is the set of terminal 

strings we can so drive; it is called a context-free language.      

14. Define derivation trees? (NOV 2014) 

 Derivation or parse trees, is structure on the words of a language that is useful in applications such as the 

compilation of programming languages. 

 The vertices of a derivation tree are labeled with terminal or variable symbols of the grammar. 

15. What is meant by parse tree? 

 The parse tree is a tree that shows the essentials of a derivation. Interior nodes are labeled by variables, 

and leaves are labeled by terminals or ε.  

 For each internal node, there must be a production su ch that the head of the production is the label of the 

node, and the labels of its children, read from right to left, from the body of that production. 



 

16.  What is yield of a parse tree? 

If we look at the leaves of any parse tree and concatenate them from the left, we get a string, called the yield 

of the tree, which is always a string that is derived from the root variable. The fact that the yield is derived 

from the root will be proved shortly. Of special importance are those parse tree such that: 

a. The yield is a terminal string. That is, all leaves are labeled either with a terminal or with ε. 

b. The root is labeled by the start symbol. 

17. Give the Formal definition of derivation tree? 

Let G= (V, T, P, S ) be a CFG. A tree is a derivation or parse tree for G if: 

1) Every vertex has a label, which is a variable or terminal or ε. i.e. V U T U (ε). 

2) The label of the root is S (start symbol). 

3) If a vertex is interior and has label A, then A must be in V. 

4) If n has label A and vertices n1, n2, n3, ……nk are the sons of vertex n, in order from the left, with 

labels x1, x2, ……xk respectively, thenAx1, x2, x3, ……, xk must be a production in P. 

5) If vertex n has label ε, then n is a leaf and is the only son of its father.  

18. Define subtree? 

 A subtree of a derivation tree is a particular vertex of the tree together with all its descendants, the edges 

connecting them and their labels. 

 It looks like a derivation tree, except that the label of the root may not be the start symbol of the 

grammar. If a variable A labels the root, then we call the subtree an A-tree. 

 Thus “S-tree” is a synonym for “derivation tree” if S is the start symbol. 

19. Give an example for a subtree? 

 A Subtree (A  bbba)  A ba which is derived  from the above derivation tree  

 S  abbbab       A  bbba 

    

A subtree looks like a derivation tree except that the label of the root may not be S. It is called A- Tree, if the 

label of the root is A. 

20. What are the types of Derivation? 

The two types of derivations are 

i. Left most derivation  

ii. Right most derivation  

 



 

21. Define LMD with suitable examples?     (APR 2013,MAY’15) 

If at each step in a derivation a production is applied to the leftmost variable then the derivation is called “Left 

Most Derivation (LMD)”. 

 

Example: 

The grammar G= ({E}, {+, *, (, ), id}, P, E) 

   P1 : E  E + E 

       P2 : E  E * E 

        P3 : E  id 

       The input string is ω = id + id * id 

 

Left Most Derivation (LMD): 

                 E E + E 

              E + E * E 

  id + E * E 

  id + id * E 

  id + id * id 

 

       If the string is matched with the given production means, it is a correct grammar.    

22. Define the RMD with example? 

If at each step in a derivation a production is applied to the right most variable then the derivation is called 

“Right Most Derivation (RMD)”. 

 

Example:  

The Grammar G= ({E}, {+, *, (, ), id}, P, E) 

      P1 : E  E + E 

        P2 : E  E * E 

         P3 : E  id 

         The input string is ω = id + id * id 

 

Right Most Derivation (RMD): 

              E   E + E 

           E + E * E 

         E + E * id  

            E + id * id 

           id +id * id 

        The above string is matched with the given string. 

 

 



 

23. Consider a grammar given as G = ({S, A}, {a, b}, P, S), where P consists of  

   S aAS |a 

  A SbA | SS | ba 

Find Derive the input string ω= aabbaa using LMD and RMD.  

          Solution 

 The Productions are  

  P1:  S aAS 

  P2:  S  a  

  P3:  A  SbA 

  P4:  A  SS 

  P5:  Aba 

LMD 

  S aAS  by P1 

         aSbAS by P3 

           aabAS    by P2 

         aabbaS   by P5 

         aabbaa   by P2 

 The above string is matched with the given string. 

  

 RMD 

  S  aAS   by P1 

        aAa   by P2 

        aSbAa  by P3 

        aabAa  by P2 

        aabbaa   by P5 

 The above string is matched with the given string. 

24. Consider the production S aSb | ab. Find LMD and RMD for the input string aaabbb. 

Solution 

  P1 : S aSb 

  P2 : S  ab 

LMD 

          SaSb 

   aaSbb by P1 

   aaabbb by P2 

RMD 

          S asb 



 

   aasbb by P1 

   aaabbb by P2 

 The given input string is accepted. 

 Consider the grammar G = ({S, A},{a,b},P,S), where P consists of S aAS | b , A SbA | ba.  Draw its 

equivalent derivation tree. 

 

1) The vertices are numbered for reference 1, 2. . . 10 

2) The label of the vertices are variables | terminals 

3) The label of the root vertex is S-start symbol  

4) The interior vertices are 1,3,4,5,7 which are variables 

 Thus the left-to-right ordering of derivation is: S aAS aSBAb abbbab 

26. What is left sentential form? 

If the string is produced or derived from the start symbol from left most derivation, then the string is called 

left sentential form. 

27. What is right sentential form? 

If the string is produced or derived from the start symbol from right most derivation, then the string is called 

right sentential form. 

28. What is ambiguous grammar?         (APR, NOV 2013) 

 A context free grammar G such that string or word has two parse trees is said to be ambiguous. 

 For some CFG’s, it is possible to find a terminal string with more than one parse tree, or equivalently, 

more than one leftmost derivation or more than one rightmost derivation. Such a grammar is called 

ambiguous grammar. 

29. What is unambiguous grammar? 

For some CFG’s, it is possible to find a terminal string with at most one parse tree, or equivalently, at most 

one leftmost derivation or at most one rightmost derivation. Such a grammar is called unambiguous 

grammar. 

30. What is meant by inherent ambiguity? 

A context-free language L is said to be inherent ambiguous if all its grammars are ambiguous. If even one 

grammar for L is unambiguous, then L is an unambiguous language. 

 



 

31. What is meant by eliminating ambiguity? 

For many useful grammars, such as those that describe the structure of programs in a typical programming 

language, it is possible to find an unambiguous grammar that generates the same language. Unfortunately, 

the unambiguous grammar is frequently more complex than the simplest ambiguous grammar for the 

language. There are also some context-free languages, usually quite contrived, that are inherently ambiguous, 

meaning that every grammar for that language is ambiguous. 

32. What are the 3 ways to Simplify Context Free Grammar? 

1) By removing the useless symbols from set of productions. 

2) Elimination of empty or null production (Aε). 

3) Elimination of unit productions (AB). 

33. Give the productions obtained from CFG? 

Every production should be in the form of ABC, A a, 

        Where A, B, C are variables and ‘a’ is a terminal. 

34. Define useless symbol? 

Every production of G be one of the form Aaα where α is the string of variable only. This is called as useless 

symbols. 

35. Define useful symbol? 

 A symbol x is useful, if there exists a derivation S α X β w , where α,β are sentential form (VUT)*, w 

is any string in T*. 

 The variable or terminals which do not appear in any derivation of a terminal string from a start symbol 

are called as useless symbol.  

36. What is meant by nullable productions? 

The elimination of productions of the form A  ε, then A is called nullable or ε-productions.   

37. Define unit production? 

A production of the form AB where A and B are variables is called unit productions. 

38. What are the types of normal forms in CFG? 

 The two types of normal forms are  

 Chomsky Normal Form (CNF) 

 Greibach Normal Form (GNF) 

39. Define Chomsky Normal Form (CNF)?       (APR 2012,MAY’15) 

The context free language is in Chomsky Normal Form (CNF) is generated by a grammar in which all 

productions are of the form:  

 ABC or 

 Aa 

 where  

  A, B, and C are variables or non-terminals and a is a terminal. 

 



 

40. Define Greibach Normal Form (GNF)?      (APR 2012,NOV’15) 

A context free grammar is said to be in Greibach Normal Form (GNF) if all productions are in the following 

form: 

 A  αX 

 A  a 

                 where 

 A is a non-terminal symbols 

 α is a terminal symbol 

 X is a sequence of non-terminal symbols.  

41. Consider the grammar G= ({S, C}, {a,b},P,S} where P consists of SaCa,CaCa/b. Find L(G). 

Solution: 

  S  aCa 

     aaCaa 

     aaaCaaa 

     ………. 

      aiCai 

      anban   Because C  b 

The language L(G)={ anban/n>0} 

42. What is the language generated by the grammar G= (V, T, P, S) where P={S->aSb|a  S->ab}? 

             S ==> aSb  

  ==>aaSbb  

  ==>aaabbb  

i.e the general form is anbn. Thus the language L(G)={ anbn | n≥1}. The language has strings with equal number 

of a’s and b’s. 

43. Is the grammar G with following productions ambiguous? Justify.  (NOV 2012) 

 SSS | aSb | bSa | ε 
 

Solution: 

The given grammar is SSS | aSb | bSa | ε 

Let the input string is abab 
 

LMD 1: 

              S  aSb 

  abSab 

  bεab 

  abab 

LMD2: 

 SSS 



 

  aSbS 

  aSbε 

  aSb 

  aaSbb 

  aaεbb 

  aabb             

Here, we get two leftmost derivations for the same input string. Hence it is ambiguous grammar.  

44. What is sentential form?  (MAY 2015) 

String that are derived or produced from the start symbol is called sentential form.  

Let G ={ V,T,P,S}be a CFG then a string of terminals and variables α  is called a sentential form if  

(ie) α   in T* such that is a sentential form. 

45. Give an example for an ambiguous grammar (MAY’15) 

Ambiguous grammar: 

A grammar G is ambiguous if and only if there exist at least one string w εT* .For which two or more 

different parse tree exist by applying either by LMD or RMD 

Let the string w = aaba , parse tree for the string shown below. 

  

 

   For the same string two different parse trees can be generated. Hence the given grammar is ambiguous. 

 



 

 

11 Marks 

1. Explain the closure properties of Regular Sets? (11 marks)   (APR’14,NOV’15) 

 A basic result called the pumping lemma, which is a powerful tool for proving certain languages, is 

regular or not. 

 It is also useful in the development of algorithms to answer certain questions concerning finite automata, 

such as whether the language accepted by a given FA is finite or infinite. 

If a class of languages is closed under a particular operation we call that fact a closure property of the class of 

languages. 

1. Union 

2. Intersection 

3. Complement 

4. Difference 

5. Homomorphism 

6. Inverse homomorphism 

  REFER CLASS NOTES FOR THEOREM  

2. Explain Context Free Grammar (CFG)? (11 marks)    (APR 2012, 2013) 

 A context free grammar (CFG) is a finite set of variables (also called non-terminals or syntactic categories) 

each of which represents a language. 

 CFG is a way of describing languages by recursive rules or substitution rules called productions. 

 A CFG consists of sets of variables, a set of terminal symbols and a start variable, and productions. Each 

production consists of a starting variable and a body consists of a string of zero or more variables or 

terminals. 

A Context Free Grammar (CFG) is denoted G= (V, T, P, S),  

Where   

1. V is a finite set of variables or non-terminals. 

2. Tis a finite set of terminal symbols. 

3. P is a finite set of productions; each production is of the form Aα, where A is a non-terminal 

or variable and α is a string of symbols from (V U T)*. 

4. S is a special variable called the start symbol. 

Notations: 

 The capital letters A, B, C, D, E, and S denote variables or non-terminals. 

 The lower case letters a, b, c, d, e, digits and boldface strings are terminals. 

 The capital letters X, Y, and Z denote symbols that may be either terminals or non-terminals. 

 The lower case letters u, v, w, x, y, and z denote strings are terminals. 

 The lower case Greek letters α, β, and γ denote strings having variables and terminals.  



 

Example: 

 Consider this grammar as ({E}, {+,*, (,), id}, P, E), where P consists of 

  EE+E 

  EE*E 

  E(E) 

  Eid 

 

Applications of context free grammar are 

 Defining programming languages 

 Formalizing the notation of parsing 

 Translation of programming languages 

 String processing applications 

 

3. What are derivation trees with an example? (11 marks)  (APR 2012, 2014) 

 Derivation or parse trees, for CFG G=(V,T,P,S) is tree which satisfies following condition. 

o Every vertex has label which is variable or terminal symbol  

o The root has label S 

o The label of an internal vertex is a variable. 

o If S has a label A and vertices x1,x2,x3,…xn are son of vertex x in order from left to right with 

labels x1,x2,x3,….xk 

o A vertex x is a leaf if it is labeled as E then x is only son of its fathet 

Example of derivation tree: 

 Consider this grammar as ({E}, {+,*, (,), id}, P, E), where P consists of 

  EE+E 

  EE*E 

  E(E) 

  Eid 

 The input string is (id+id) *id 

 

 

Derivation tree 



 

Let G= (V, T, P, S) be a CFG. A tree is a derivation or parse tree for G if: 

1. Every vertex has a label, which is a variable or terminal or ε. i.e. V U T U (ε). 

2. The label of the root is S (start symbol). 

3. If a vertex is interior and has label A, then A must be in V. 

4. If n has label A and vertices n1, n2, n3, ……nk are the sons of vertex n, in order from the left, with 

labels x1, x2, ……xk respectively, then A x1, x2, x3, …… , xk must be a production in P. 

5. If vertex n has label ε, then n is a leaf and is the only son of its father.   

Consider the grammar G = ({S, A}, {a,b},P,S), where P consists of 

   S aAS | a   

  A SbA | SS|ba 

  Draw its equivalent derivation tree. 

Solution: 

S->aAS 

S->a 

A-.SbA 

A->SS 

A->ba 

  aAS 

  aSbAS 

  aabAS 

  aabbaa 

 

1) The interior vertices are numbered for reference 1,3,4,5, and 7. 

2) The label of the vertices are variables | terminals 

3) The label of the root vertex is S-start symbol  

4) The interior vertices are 1,3,4,5,7 which are variables 

Thus the left-to-right ordering of derivation is: S aAS aSbAS  aabAS aabbaS abbbab 

Subtree: 



 

 A subtree of a derivation tree is a particular vertex of the tree together with all its descendants, the edges 

connecting them and their labels. 

 It looks like a derivation tree, except that the label of the root may not be the start symbol of the 

grammar. If a variable A labels the root, then we call the subtree an A-tree. 

 Thus “S-tree” is a synonym for “derivation tree” if S is the start symbol. 

 Example for a Subtree: 

 A Subtree (A Sba  abA abba)  A Sba which is derived  from the above derivation tree  

           S  aabbaa      A  abba 

 

A subtree looks like a derivation tree except that the label of the root may not be S. It is called A-Tree, if the 

label of the root is A. 

Types of Derivation: 

The two types of derivations are 

 If at each step in a derivation a production is applied to the leftmost variable then the derivation is 

called “Left Most Derivation (LMD)”. 

 If at each step in a derivation a production is applied to the right most variable then the derivation is 

called “Right Most Derivation (RMD)”. 

Example: 

Consider a grammar given as G = ({S, A}, {a, b}, P, S), where P consists of  

   S aAS |a 

  A SbA | SS | ba 

Derive the input string ω= aabbaa using LMD and RMD.  

 

 Solution 

 The Productions are  

  P1:  S  aAS 

  P2:  S  a  



 

  P3:  A  SbA 

  P4:  A  SS 

  P5:  A  ba 

Left Most Derivation (LMD): 

  S aAS  

         aSbAS  

           aabAS     

         aabbaS    

         aabbaa    

 The above string is matched with the given string. 

 Right Most Derivation (RMD): 

  S  aAS   by P1 

        aAa   by P2 

        aSbAa  by P3 

        aabAa  by P2 

        aabbaa   by P5 

 The above string is matched with the given string. 

4. Give a grammar to generate the CFL L= {a n bn: n <= m+3}.  (5 marks) 

     1. S aABb 

A aa 

B bb 

  S aABb 

  SaaaBb 

  Saaabbb 

  L= {a n bn: n <= m+3} 

      2.  SaaSbb 

 Sab 

(i) SaaSbb 

       Saaabbb 

5. Prove whether {0n | n is a power of 2} is regular set or not? OR 

Verify whether {  | n>=1} is regular set or not?  (NOV’14)  (5 marks) 

Let the given language L={0n, n is a power of 2} 

L={00,0000,00000000, …}  

CASE 1:  

 Consider z= 00 

 Here u=0, w=0, V=ε  



 

 V must not have ε value.  

 

CASE 2: 

  Consider z= 0000  

 Here u=0, w=0 and v=00  

 |uv|≤n 

 3 ≤ 4 

  |v|≥1  

  uviw  

 = 0(00)i0 

 

  When     i=1 

             =0(00)10  

             =0000  

 

 When  i=2  

     =0(00)20 

     =000000  

Thus the string 000000 is not present in the set so it is not a regular set. 

6. Prove whether {0n1n | n ≥ 1} is regular set or not?   (5 marks) 

 Let the given language L={0n1n, n≥1}  

 L={01,0011,000111, …}  
 

CASE 1:  

 Consider z= 01  

 Here u=0, w=1, V=ε  

 V must not have ε value.  

 

CASE 2:  

 Consider z= 0011  

 Here u=0, w=1 and v=01  

 |uv|≤n  

 3 ≤ 4 

 |v|≥1  

  uviw 

  = 0(01)i1  

 

 When  i=1 

    =0(01)11  



 

    =0011  

 

 When  i=2  

    =0(01)21 

     =001011 

Thus the string 001011 is not present in the set so it is not a regular set. 

7. Prove whether {0n10n | n ≥ 1} is regular set or not?   (5 marks) 

 Let the given language L={0n10n, n≥1}  

 L={010,00100,0001000, …}  

 

CASE 1:  

 Consider z= 010  

 Here u=0, w=0, V=1  

 |uv|≤n  

 2 ≤ 3  

 |v|≥1  

 uviw 

  = 0(1)i0  

 

 When i=1  

  =0(1)10  

  =010  
 

 When i=2  

  =0(1)20 

   =0110  

Thus the string 0110 is not present in the set so it is not a regular set. 

8. Prove whether {01n1| n ≥ 1} is regular set or not?   (5 marks) 

 Let the given language L ={01n1, n≥1} 

  L={011,0111,01111, …}  
 

CASE 1:  

 Consider z= 011 

  Here u=0, w=1, V=1 

  |uv|≤n  

 2 ≤ 3  

 |v|≥1  

 uviw 

  = 0(1)i1  



 

 When i=1  

  =0(1)11 

  =011  

 When i=2 

   =0(1)21  

  =0111 

 Thus the string 0111 is present in the set so it is a regular set or regular language. 

9. Discuss about Chomsky normal form (CNF) with an example?  

State and prove Chomsky normal form   (NOV’14,NOV’15)   (11 marks) 

The each state that all context free grammars are equivalent to grammar with restrictions in the form of 

production. 

The context free language is in Chomsky Normal Form (CNF) is generated by a grammar in which all 

productions are of the form  

 ABC or 

 Aa 

 where  

  A, B, and C are variables or non-terminals and a is a terminal 

 

For a given grammar, we have to eliminate 

1. useless symbol 

2. productions 

3. unit productions 

 Then check whether the production contains ABC and Aa more than 2 non-terminals are present, so it is 

not a CNF and combination of terminals and non-terminals are present it is also not CNF. 

 A context free grammar G is in CNF if every production is of the form Aa or ABC and Sλ is in G if  

λ ϵ L (G). When λ is in L (G) we assume that S does not appear on the R.H.S of any production. 

Example: 

 Consider the grammar for ({S, A, B}, {a,b},P,S) that has the productions:  

  SbA|aB 

  AbAA|aS|a 

  BaBB|bS|b 

Solution: 

 The given productions are 

 
SbA 

SaB 

AbAA 



 

AaS 

Aa 

BaBB 

BbS 

Bb 

Step 1: Simplification of a Grammar 
 

In the given grammar there are no useless symbols, no unit productions and no ε-productions. 

 
Step 2: Converting CFG into CNF 

P1: SbA 

P2: SaB 

P3: AbAA 

P4: AaS 

P5: Aa 

P6: BaBB 

P7: BbS 

P8:  Bb 

Step 3: 
 

The only productions P5, P8 are Aa and Bb are of the form CNF. 
 

The following other production consists of more than two non-terminal and combination to replace 

to form a CNF 
 

SbA SaB 
 

AbAA AaS 
 

BaBB BbS 
Consider P1: 
 

SbA 
 

Introduce a new temp variable (Cbb) 
∴ SCbA  

Consider P2: 
 

SaB 
 

Introduce a new temp variable (Caa) 
∴  S CaB  

Consider P3: 
 

AbAA 

A CbAA (Cbb) 
Consider P4: 
 

AaS 

∴  ACaS (Caa) 

Consider P6: 
 



 

BaBB 
 

BCaBB (Caa) 
 
Consider P7: 
 

BbS 

∴  B CbS (Cbb) 

 
Step 4: 
 

The remaining productions P3 and P6 are ACbAA , BCaBB which are not in CNF form. Because it 

contains more than two non-terminals. 
 

We have to replace them. 

 

Again Consider P3:  
ACbAA 

Introduce a new temp variable (D1AA) 
∴ A CbD1 

 
Again Consider P6:  

BCaBB 
Introduce a new temp variable (D2BB) 

∴ BCaD2 

 
The Productions for the grammar in CNF form  

SCbA | CaB D1AA 
ACaS | CbD1| a D2BB 
BCaD2| CbS Caa 

Cbb 
 

10. Explain Greibach Normal Form (GNF) with an example? (11 marks) 

A context free grammar is said to be in Greibach Normal Form (GNF) if all productions are in the following 

form: 

 A  αX 

 A  a 

                 where 

 A is a non-terminal symbols 

 α and a  is a terminal symbol 

 X is a sequence of non-terminal symbols.  
 

Every CFL without ε can be generated by a grammar for which every productions of the form Aaα. Where A 

is a variable, a is a terminal, and α is a string of variables. This type of G is said to be GNF. So RHS should 

contain only one terminal symbol that should be the left most symbols on the RHS followed by 0 or more no of 

variables.  

 

Greibach Normal Form (GNF) algorithm: 

   begin 



 

1) for k=1 to n do 

 begin 

2) for j=1 to k 1 do 

3) for each production of the form A k  A j  do 

   begin 

   for all production A j   do 

     add production A k   ; 

    remove production Ak  A j   

   end; 

4) for each production A k A k  do 

   begin 

    add productions B k   and B k   B k ; 

    remove productions A k  A k   

                         end; 

5) for each production Ak  , where  does not   

   begin with A k do 

    add production Ak   Bk  

 end; 

    end 

 

Rules: 

In Greibach Normal Form (GNF), it uses the production whose R.H.S. each starts with the terminal symbol 

perhaps followed by some variables or non-terminals. 

 

Steps to solve GNF problem: 

1) Simplification of CFG grammar 

2) Converting CFG grammar into CNF form 

3) Converting CNF form into GNF form 

i. Change the variables to include suffix numbers 

ii. Preliminary verification step 

iii. Substitute a correct production into incorrect production 

Example: 

   Convert the following grammar to GNF form 

  SAA |a 

 ASS | b 

Solution: 

 



 

Step1: Simplification of a Grammar 

In the given grammar there are no useless symbols, no unit productions and no ε-productions. 

 

Step2: Convert CFG into CNF form 

Here all the productions are already in the CNF form. 

 

Step3: Convert CNF form into GNF form 

i. Change the variables to include suffix numbers 

The given productions are in the form of CNF. So we have to convert this into GNF form,  

Let rename above production by S=A1 and A=A2 

 P1:  A1  A2A2 

P2:  A1  a 

 P3:  A2 A1A2 

 P3:  A2 b 

 

ii. Preliminary verification step 

    The first productions i value=1 and j value=2. So i<j. No need to disturb now. 

  P1:  A1  A2A2  

1<2   // temporary correct production 

    The Second production 

 P2:  A1  a   // already in GNF form 

    The first productions i value=2 and j value=1. So i<j. No need to disturb now. 

 P3:  A2 A1A2   

2<1   // temporary correct production 

    The fourth production 

 P4:  A2  b  // already in GNF form 

 

iii. Substitute a correct production into incorrect production 

Substitute all A1 Production value P3 production, 

 A1  A2A2 and A1  a   

P3: A2  A1A1 

  A2  A2A2A1 and A2  aA1 

 

Consider the production A2  A2A2A1 

    This productions of the form of Ak  Ak  α means 

add Bk  α and Bk  αBk and remove  Ak  Ak α 

Ak=A2, k=2 and α= A2A1 

 



 

i) Add  Bk  α  

Bk=B2 

B2  A2A1 

ii) add Bk  αBk 

B2  A2A1B2 

iii)  remove Ak  Ak α 

Now A2  A2A2A1 is removed 

  

        ∴ 

   

 

Consider the production A2 aA1 

 This production is of the form Ak  β means add Ak  β Bk 

Now Ak=A2, β =aA1, Bk=B2 and k=2, then 

Add Ak  β Bk 

 

      ∴ 

  

 

Consider the production P4:  A2  b  

This production of the form Ak  β 

Now Ak=A2, β =b, Bk=B2 and k=2, then 

Add Ak  β Bk 

 

        ∴ 

 

 

  Substitute all A2 production value in B2 productions, we get 

B2  A2A1 

 

B2  bB2A1 | bA1 | aA1A1 | aA1B2A1 

 

B2  A2A1B2 

B2  bB2A1B2 | bA1B2 | aA1A1B2 | aA1B2A1B2 

 

P1: A1  A2A2  

A1 aA1B2A2 | aA1A2 | bB2A2 |bA2 

B2  A2A1 

B2  A2A1B2 

A2  aA1B2 

A2 aA1 

A2  bB2 

A2  b 



 

 

Consider the production P2: A1 a 

This production of the form Ak  β 

Now Ak=A1, β =a, Bk=B1 and k=1, then 

Add Ak  β Bk 

 

                   ∴ 

 

   Substitute all A1 production value in above P3 productions, we get 

P3: A2  A1A1 

 

A2  aB1A1 | aA1 

  

The resulting GNF grammar productions are 

 

A1 aA1B2A2 | aA1A2 | bB2A2 |bA2 | aB1 | a 

A2  aB1A1 | aA1|aA1B2 | bB2| b 

B2  bB2A1 | bA1 | aA1A1 | aA1B2A1 | bB2A1B2 | bA1B2 | aA1A1B2 | aA1B2A1B2 

 

11. Explain Ambiguous Grammar with example?  (11 marks) 

 A context free grammar G such that string or word has two parse trees is said to be ambiguous. 

 For some CFG’s, it is possible to find a terminal string with more than one parse tree, or equivalently, 

more than one leftmost derivation or more than one rightmost derivation. Such a grammar is called 

ambiguous grammar. 

 The grammar G is said to be ambiguous when the same start symbol produces same language with ‘n’ 

number of left most and right most derivation. 

 

Example 1: 

Consider the Grammar G is the grammar  

SS b S | a 

 Prove that given grammar is ambiguous. 

 

Solution: 

 Consider the string or word ω= a b a b a b a 

 

LMD 1: 

             S S b S 

  a b S  

A1 aB1 

A1 a 



 

  a b S b S 

  a b a b S 

  a b a b S b S 

  a b a b a b S 

  a b a b a b a 

   

RMD: 

             S  S b S 

    S b a  

    S b S b a 

    S b a b a 

    S b s b a b a  

    S b a b a b a  

   a b a b a b a  

If both LMD and RMD give same string, it is called ambiguous. 

 

Example 2: 

Show that the CFG with production S->a|Sa|bSS|SSb|SbS is ambiguous? 
 

Solution: 

 Consider the input string or word w=babaa 

LMD: 

            S bSS 

  baS 

  babSS 

   babaS 

   babaa 

RMD: 

              SbSS 

  bSa 

  bSbSa 

   bSbaa 

  babaa 

Both LMD and RMD are same. Hence the given grammar is ambiguous. 

 

 

Example 3: 



 

Show that the grammar SaB|ab 

  AaAB|a 

   BABb|b is ambiguous. 

Solution: 

  Consider the input string or word ω =ab 

 LMD 

  The LMD of G are    

    Sa B  

       a b  

    Sa b 

 Here ab is ambiguous available by the grammar and so the given grammar is ambiguous. 

12. Prove that the language, L= {an/n≥1} is unambiguous. Even though L there exist a ambiguous 

grammar generating it.  (5 marks) 

Let G= ({S},a,p,S} 

Where p1={SSS, S1} 

We observe that 

 L(G)={ an/n≥1} 

Consider the word a3 ε L (G) 

Now, 

LMD1: 

 SSS 

  SSS 

  aSS 

 aaS 

 aaa 

LMD2: 

 SSS 

 aS 

 aSS 

 aaS 

 aaa 

Thus a3 has different LMD Grammar is ambiguous. Thus there exist an unambiguous grammar generating    

{ an/n≥1}. 

13. Consider the grammar   

EE+E 

EE*E 



 

E (E)  

E id 

   The input string is id + id * id. Show that it is ambiguous grammar or not?  (5 marks) 

 

Solution: 

 

The given grammar   

EE+E 

EE*E 

E (E)  

E id 

 

LMD1: 

                E ===> E + E 

    ===> id+ E 

   ===> id + E * E 

  ===> id + id * E  

  ===> id + id * id 

 

Parse tree 1: 

       E 

      /|\ 

     / | \ 

    E  +  E 

    |    /|\ 

    |   / | \ 

   id  E  *  E 

       |     | 

      id     id 

 

 

LMD2: 

                  E ===> E * E 

    ===> E + E * E 

    ===> id + E * E 

    ===>id + id * E  

    ===> id + id * id     

 

 

 

 

 

 



 

Parse tree 2: 

 

          E 

         /|\ 

        / | \ 

       E  *  E 

      /|\    | 

     / | \   | 

    E  +  E  id 

    |     | 

   id     id 

 

The given input string id+id*id has two leftmost derivation and parse tree. Hence given grammar is 

ambiguous grammar. 

 Explain unambiguous grammar with an example? (6 marks) 

For some CFG’s, it is possible to find a terminal string with at most one parse tree, or equivalently, at most 

one leftmost derivation or at most one rightmost derivation. Such a grammar is called unambiguous 

grammar. 

 

Example: 

Consider the grammar  EE+T | T 

TT*F | F 

F (E) | id  

      The input string is id + id * id and id * id + id. Show that it is unambiguous grammar or not?  

 

Solution: 

The given grammar is 

EE+T | T 

TT*F | F 

F (E) | id  

LMD: 

              E  ===> E + T 

 ===> T + T 

    ===> F + T 

    ===> id + T 

    ===> id + T * F 

    ===> id + F * F  

    ===> id + id * F 

    ===> id + id * id 

 
 
 



 

Parse tree: 
 

      E 

      /|\ 

     / | \ 

    E  +  T 

    |    /|\ 

    T   T * F 

    |   |   | 

    F   F   id 

    |   | 

   id   id 

              
RMD: 

E ===> E + T 

   ===> T + T 

   ===> T * F + T 

   ===> F * F + T 

   ===> id * F + T 

   ===> id * id + T 

   ===> id * id + F  

   ===> id * id + id 

 

Parse tree: 

         

       E 

         /|\ 

        / | \ 

       E  +  T 

       |     | 

       T     F 

      /|\    | 

     / | \   id 

    T  *  F 

    |     | 

    F     id 

    | 

    id 

 

Hence, we have unique leftmost derivation and unique rightmost derivation for the input string. Hence the 

given grammar is unambiguous grammar. 

15.Write the applications of pumping lemma. (5 marks)      (NOV 2013) 

The applications of Pumping Lemma are 

 A basic result called the pumping lemma, which is a powerful tool for proving certain languages, is 

regular or not. 



 

 It is also useful in the development of algorithms to answer certain questions concerning finite automata, 

such as whether the language accepted by a given FA is finite or infinite. 

 If a language is regular, it is accepted by a DFA M= (Q, Σ, δ, q0, F) with particular number of states. 

 Let L be a regular set. Then there is a constant n such that if Z is any word in L, and |z|≥n. we may write 

Z=uvw in such a way that |uv| ≤ n, |v| ≥ 1and for all L ≥0 then uviw is in L. 

    

1. The pumping lemma is useful in proving that certain sets are not regular. The application is an 

“adversary arguments” of the following form. 

2. Select the language L to prove non-regular. 

3. The “adversary” picks n, the constants mentioned in the pumping lemma. 

4. Select a string z in L. 

5. The adversary breaks z into u, v and w, subject to the constraints that |uv|≤n and |v|≥ 1. 

6. A contradiction to the pumping lemma by showing, for any u, v, and w, determined by the adversary, that 

there exists an i for which uviw is not in L. It may then be concluded that L is not regular. 

 

16.Simplify the following grammar and find its equivalent in CNF 

SAB | CA, B BC | AB , Aa , C aB | b (5 mark)  UQ MAY’15) 

Solution: 

CNF Format: 

NT  NTNT 

NT  T  

Where , NT – Non terminal 

  T – Terminal 

Given  

P :   SAB | CA 

 B BC | AB  

 Aa  

 C aB | b 

Step 1: 

In the given grammar the below three production are already in CNF form. They are : 

 SAB | CA 

 B BC | AB  

Aa  

To convert the remaining production into CNF, do the following  

Simplification of grammar: 

(i) Elimination of ε production 

ε production of the form : 



 

NT  ε 

There is ε production in the given grammar. Therefore P’ is same as P  

(ii) Elimination of Unit production 

Unit production of the form : 

NT  NT 

There is Unit production in the given grammar. Therefore P’’ is same as P’ 

(iii) Elimination of Useless symbol production 

 

The symbol B doesn’t lead to a terminal string .therefore B is the useless symbol. Therefore eliminate 

B from P’’ 

 

Before elimination After elimination 

P’’ :   SAB | CA 

 B BC | AB  

 Aa  

 C aB | b 

P’’’ :   S CA 

 Aa  

 C b 

 

 

(iv) Elimination of symbol from P’’’ that is not reachable from start state 

 

 

 

 

Now all the states are reachable from the start state. .Hence there is no elimination from p’’’. 

 

Simplified CNF Productions 

P’’’ :   S CA 

 Aa  

 C b 

 

 

S A C 



 

17.Find the GNF equivalent of the grammar S AA | 0 , A  SS | 1 (6 mark)  (MAY 2015) 

Solution: 

GNF Format: 

NT  TNTNTNT………….. 

NT  T  

Where , NT – Non terminal 

  T – Terminal 

OR 

A context free grammar is said to be in Greibach Normal Form (GNF) if all productions are in the 

following form:  

A αX  

A a  

where  

 A is a non-terminal symbols  

 α is a terminal symbol  

 X is a sequence of non-terminal symbols.  

  Every CFL without ε can be generated by a grammar for which every productions of the form Aaα. 

Where A is a variable, a is a terminal, and α is a string of variables. This type of G is said to be GNF. So RHS should 

contain only one terminal symbol that should be the left most symbols on the RHS followed by 0 or more no of 

variables.  

Given  

S AA | 0  

A  SS | 1   

Convert the following grammar to GNF form  

 

S AA 

S 0  

A  SS  

A 1  

 

Solution: 

Step1: Simplification of a Grammar 

In the given grammar there are no useless symbols, no unit productions and no ε-productions. 

 

Step2: Convert CFG into CNF form 

Here all the productions are already in the CNF form. 

 



 

Step3: Convert CNF form into GNF form 

iv. Change the variables to include suffix numbers 

The given productions are in the form of CNF. So we have to convert this into GNF form,  

Let rename above production by S=A1 and A=A2 

P1:  A1  A2A2 

P2:  A1  0 

 P3:  A2 A1A1 

 P3:  A2 1 

v. Preliminary verification step 

    The first productions i value=1 and j value=2. So i<j. No need to disturb now. 

  P1:  A1  A2A2  

1<2   // temporary correct production 

    The Second production 

 P2:  A1  0  // already in GNF form 

    The first productions i value=2 and j value=1. So i<j. No need to disturb now. 

 P3:  A2 A1A1   

2<1   // temporary correct production 

    The fourth production 

 P4:  A2  1  // already in GNF form 

 

vi. Substitute a correct production into incorrect production 

Substitute all A1 Production value P3 production, 

 A1  A2A2 and A1  0   

P3: A2  A1A1 

  A2  A2A2A1 and A2  0A1 

 

Consider the production A2  A2A2A1 

    This productions of the form of Ak  Ak  α means 

add Bk  α and Bk  αBk and remove  Ak  Ak α 

Ak=A2, k=2 and α= A2A1 

 

iv) Add  Bk  α  

Bk=B2 

B2  A2A1 

v) add Bk  αBk 

B2  A2A1B2 



 

vi)  remove Ak  Ak α 

Now A2  A2A2A1 is removed 

  

        ∴  

   

 

Consider the production A2 0A1 

 This production is of the form Ak  β means add Ak  β Bk 

Now Ak=A2, β =0A1, Bk=B2 and k=2, then 

Add Ak  β Bk 

 

      ∴   

 

Consider the production P4:  A2  1  

This production of the form Ak  β 

Now Ak=A2, β =1, Bk=B2 and k=2, then 

Add Ak  β Bk 

 

        ∴  

 

 

  Substitute all A2 production value in B2 productions, we get 

B2  A2A1 

B2  1B2A1 | 1A1 | 0A1A1 | 0A1B2A1 

 

B2  A2A1B2 

B2  1B2A1B2 | 1A1B2 | 0A1A1B2 | 0A1B2A1B2 

 

 

P1: A1  A2A2  

A1 0A1B2A2 | 0A1A2 | 1B2A2 |1A2 

 

Consider the production P2: A1 0 

This production of the form Ak  β 

Now Ak=A1, β =0, Bk=B1 and k=1, then 

Add Ak  β Bk 

B2  A2A1 

B2  A2A1B2 

A2  0A1B2 

A2 0A1 

A2  1B2 

A2  1 



 

 

                   ∴  

 

 

   Substitute all A1 production value in above P3 productions, we get 

P3: A2  A1A1 

 

A2  0B1A1 | 0A1 

  

The resulting GNF grammar productions are 

 

A1 0A1B2A2 | 0A1A2 | 1B2A2 |1A2 | 0B1 | 0 

A2  0B1A1 | 0A1|0A1B2 | 1B2| 1 

B2  1B2A1 | 1A1 | 0A1A1 | 0A1B2A1 | 1B2A1B2 | 1A1B2 | 0A1A1B2 | 0A1B2A1B2 

 

18. Show that the grammar S  a |Sa |bSS | SSb | SbS is ambiguous    (5 mark)  ( MAY 2015) 

Ambiguous grammar: 

A grammar G is ambiguous if and only if there exist at least one string w εT* .For which two or more 

different parse tree exist by applying either by LMD or RMD 

Let the string w = aaba , parse tree for the string shown below. 

  

 

   For the same string two different parse trees can be generated. Hence the given grammar is ambiguous. 

 

19. Consider the productions  

SaB | bA 

AaS | bAA |a 

B  bS |aBB |b 

For the string aaabbabbba ,find a left most derivation.  (6 mark)  (UQ MAY’15) 

S  aB         

   aaBB   B aBB 

A1 0B1 

A1 0 



 

   aaaBBB  B aBB 

   aaabBB  B  b 

   aaabbB        B  b 

   aaabbaBB    B aBB 

   aaabbabB       B  b 

   aaabbabbS    B  bS 

   aaabbabbbA     S bA 

   aaabbabbba     Aa 

Hence the proof. 

 

20. Convert the grammar G with productions to Chomsky normal form 

SaSA | aAA | b , A  bBBB , B b | ε (11 mark)  UQ MAY’15) 

Solution: 

CNF Format: 

NT  NTNT 

NT  T  

 

Given  

P :  S aSA | aAA | b 

A  bBBB  

B b | ε  

Refer class notes 

21. If G is the grammar S SbS | a.Show that G is ambiguous. (6 MARKS) (NOV 2015) 
 
Let the string w = ababa, below is the two different derivation tree for the same string. 
 

 

 

 

 

 

 

 

 

Hence the grammar is ambiguous. 

 



 

22. Show that the language L = { ai bi ci | i>=1} is not context free .(7 marks )(NOV’15) 

Solution: 

The given language L = { ai bi ci | i>=1} 

Let i=p 

 

u = ap  

vwx= bp-i  

y = cp  

z= uviwxiy  

= u vi-1 v1 w xi-1 x1y  

= uvwx vi-1 xi-1 y  

z = uvwx vxi-1 y --------(1) 

vx= b p-m 

sub . in eqtn (1) 

 z = ap bp (b p-m)i-1 cp 

z = ap bp b(p-m)(i-1) cp   --------(2) 

case (i) 

I = 1 p = 3 m= 2 

sub . in eqtn (2) 

z = a3 b3 b(3-2)(1-1) c3    

z = a3 b3 b(1)(0) c3    

z = a3 b3 c3   ε L 

case (ii) 

I = 2 p = 3 m= 2 

sub . in eqtn (2) 

z = a3 b3 b(3-2)(2-1) c3    

z = a3 b3 b(1)(1) c3    

z = a3 b4 c3    L 

the given language is not accepted. 

 

 

 

 



 

23. Find the derivation tree of a * b + a* b given that  a * b + a* b is in L(G).where G is given by S  S + S , S 

 S * S ,S   a|b  (3 marks) (NOV’15) 

 

 



 

 

Pondicherry University Questions 

2 Marks 

1. List the applications of the pumping lemma?  (APR 2014) Ref.Qn.No.2 

2. What is Homomorphism? (APR 2014) (Ref.Qn.No.4) 

3. What is context free grammar? (NOV 2013)  (Ref.Qn.No.8) 

4. What is left most derivation? (APR 2013,MAY’15)  (Ref.Qn.No.21) 

5. What is ambiguous grammar? Give example. (APR, NOV 2013)  (Ref.Qn.No.28) 

6. Define Chomsky Normal Form (CNF)?   (APR 2012,MAY’15) (Ref.Qn.No.39) 

7. Is the grammar G with following productions ambiguous? Justify.  (NOV 2012) 

SSS | aSb | bSa | ε          (Ref.Qn.No.43) 

8. List any two applications of Regular expressions? (APR 2014)  (Ref.Qn.No.2) 

9. Specify CNF theorem. (APR 2012) (Ref.Qn.No.39) 

10. Write down GNF. (APR 2012)  (Ref.Qn.No.40) 

11. Eliminate useless productions from the following:  (NOV 2012)  (Ref.Qn.No.43) 

 Sa| aA | B| C   AaB| ε    BAa    CcCD     Dddd  

12. What is meant by derivation? (NOV’15) (Ref.Qn.No.13) 

13. Define derivation trees? (NOV 2014)  (Ref.Qn.No.14) 

14. Define Greibach Normal Form (GNF)?  (APR 2012,NOV’15) (Ref.Qn.No.40) 

15. What is sentential form?  (MAY 2015)    (Ref.Qn.No.44) 

16. Give an example for an ambiguous grammar (MAY’15)  (Ref.Qn.No.45) 

11 Marks 

1. Describe on Closure Properties of Regular Sets? (APR’14,NOV,15) (Ref.Qn.No.1) 

2. Discuss on Derivation tree or Parse trees? (APR 2012, 2014) (Ref.Qn.No.3) 

3. Discuss on Pumping Lemma for regular language and give its applications. (APR 2013) 

4. Discuss briefly about Context-Free Grammars. (APR 2012, 2013) (Ref.Qn.No.2) 

5. Write the applications of pumping lemma. (5)   (NOV 2013) (Ref.Qn.No.15) 

6. Verify whether the set of all strings that do not have consecutive 0’s is regular set or not. (6) (NOV 2013) 

7. Let G= (V, T, P, S) be a context free grammar. Then prove that sa  a if and only if there is a derivation 

tree in grammar G with yield a. (NOV 2013) 

8. State and prove the properties of regular language. Let L the set of all strings over the alphabet of the 

form “ x + y = z ”, where x, y and z are the binary representation of three numbers such that the sum of x 

and y equals z. Prove that the language L is not regular using the Pumping Lemma.  (NOV 2012) 

9. Construct a RE for the language which accepts all strings with at least two c’s over the set ∑={c,b} and 

design an equivalent finite automata for the same. (NOV 2012) 

10. Simplify the following grammar and find its equivalent in CNF 

SAB | CA, B BC | AB , Aa , C aB | b (5 mark)  ( MAY 2015)  (Ref.Qn.No.16) 



 

11. Find the GNF equivalent of the grammar S AA | 0 , A  SS | 1(6 mark)  ( MAY 2015)  (Ref.Qn.No.17) 

12. Consider the productions  

SaB | bA AaS | bAA |a B  bS |aBB |b 

For the string aaabbabbba ,find a left most derivation.  (6 mark)  ( MAY 2015)  (Ref.Qn.No.19) 

13. Show that the grammar S  a |Sa |bSS | SSb | SbS is ambiguous    (5 mark)  ( MAY 2015)  (Ref.Qn.No.18) 

14. State and prove Chomsky normal form   (NOV’14,NOV’15) (Ref.Qn.No.9) 

15. Verify whether {  | n>=1} is regular set or not?  (NOV’14) (Ref.Qn.No.5) 

16. Convert the grammar G with productions to Chomsky normal form 

    SaSA | aAA | b , A  bBBB , B b | ε (11 mark)  UQ MAY’15) (Ref.Qn.No.20) 

17.  If G is the grammar S SbS | a.Show that G is ambiguous   (4 marks) (NOV’15)  

 (Ref.Qn.No.21) 

18. Show that the language L = { ai bi ci | i>=1} is not context free .(NOV’15) (Ref.Qn.No.22) 

19. Find the derivation tree of a * b + a* b given that  a * b + a* b is in L(G).where G is given by S  S + S , S  

S * S ,S   a|b  (3 marks) (NOV’15) (Ref.Qn.No.23) 

 

 

 



UNIT III 

 

Pushdown Automata and Parsing Algorithms: Pushdown Automata and Context-Free Languages; Top-down 

parsing and Bottom-up parsing, Properties of CFL, Applications of Pumping Lemma, Closure properties of CFL 

and decision algorithms 

 

2 Marks 

 

1.What is push down automata? (NOV’14 ) 

An automata equivalent to context free language is push down automata Finite automata cannot 

recognize all context free languages. Since some CFG’s are not regular. 

 Finite automaton has finite memories, whereas recognition of CF language may require storing 

unbounded productions. 

2. Give an example for PDA 

 Let l={wwk :wε{a,b}*} to handle this language,we need more than unlimited counting. We need to store an 

matches the sequence of symbols in reverse order. 

PDA is a machine similar to FA that will accept CFL has more powerful. 

3. What technique is used for PDA? 

STACK(FIRST IN FIRST OUT) Is the technique  used for  PDA. 

4.How stack is being implemented in PDA? 

The symbol can be entered or removed only on the top of storage. When a symbol is added on top, the 

symbol previously on the top becomes the second and so on. Similarly when a symbol is removed from top of 

stack the symbol previously second from top becomes top symbol and so on. 

Input tape 

A b b B a b a 

                                                     Reading head                     

 

 

 

 

 

5.Difference between context free language and regular language? 

S.No Context Free Language Regular Language 
1 A language cannot be described by DFA/NFA. Can be described by DFA/NFA 

2 There is no memory. There is memory 
3 This may be ambiguous or unambiguous. this is always unambiguous. 
4 With the help of context free grammar we can 

generate this language. 
With the help of regular grammar we can generate 
Regular Language. 

6. Difference between CFL and PUSHDOWN AUTOMATA? 

b 

a 

b 

a 

a 

Finite cell 



S.No Context Free Language Push Down Automata 

1 A language cannot be described by 
DFA/NFA. 

Push down automata can accept CFL. It is essentially an 
NFA with a stack. 

2 There is no memory. It has a memory, which can be used to count the number. 
 

7. Comparison of NFA and PDA 

NFA 

1. (P,a,q) ε Δ means if machine M is in state P, then on reading “a” from input tape go to stack q. 

2. (P, ε,q) ε Δ means if machine M is in state P, goes to state q, without consuming input. 

PDA 

1. ((P,a,β),(q,y))           if machine is in state P, the symbol read from input state is ‘a’, and β is on top of stack, 

goes to state q, and replace β by y on top of stack. 

2. ((s,a,e),(s,a))             if machine M is in state s reads ‘a’, remains in state s and push a onto stack. 

3. ((s,c,e),(f,e))           if read ‘c’ in state s and stack is empty, goes to final state f and nothing to push onto the 

stack. 

4. ((s,e,e),(f,e))              if in state s, goes to state f. 

5. ((f,a,q),(f,φ))              if read a in stack f, remain in state f and pop a from stack. 

6. PDA’s are non-deterministic. 

8.Say true or false 

Is PDA is non  deterministic?- true 

9. What are the properties of PDA? 

A push down automata M is defined by (Q,Σ,Ѓ,δ,q0,z0.F) where, 

  Q is the finite set of states 

  Σ is the alphabet called input alphabet  

  Ѓ is the stack alphabet , is a finite alphabet os stack symbols. 

  q0 ε Q is the stack state/initial state 

  z0  in Ѓ is the particular stack symbol called start symbol. 

  F≤Q is the set of final states. 

  δ is the transition relation. 

 i.e, δ is a subset of (Q x Σ U{e}x Ѓ*)      (2Q x T*) 

10. What is the transition function? 

1. Let ((P,a,β),(q,γ)) ε δ 

2. It means that we, 

a. Read a from tape. 

b. Pop the string β from stack. 

c. Move from stack P to state q. 

d. Push string γ onto stack.  

3. We will draw it as  



            P    a, β, γ     q 

 

11. What are the functions of the PDA? 

a. Read a from tape. 

b. Pop the string β from stack. 

c. Move from stack P to state q. 

d. Push string γ onto stack.  

12. What do you mean by push operation? 

1. When we push β, we must push the symbols of β as we read them right to left. 

2. i.e, if we push abc, then we can pop a, then pop b, then pop c. so e push like this 

 

    Left most  

a 

b 

c 

                                         Rightmost 

13. What do you mean by pop operation? 

When we pop γ, we pop the symbols of γ as we read them from left to right. 

14. How will we know whether the PDA has accepted the given string or not? 

1. Acceptance by final state 

Let M=(Q,Σ,Ѓ,δ,q0,z0.F) be a PDA. Then, the language accepted by M is set of strings that, 

 L(M)=(w/(q0,w, z0)├* (p, ε, γ) for some P ε F, γ ε Ѓ*).  

2. Acceptance by empty stack: 

Let N(M) be the language accepted by M is given by, 

 N(M)= (w/(q0,w, z0)├* (p, ε, ε) for some P ε Q. 

15. What is the equivalence of PDA and CFG? 

Equivalence of PDA and CFG 

A language is generated by a CFG.  

a) If and only if it is accepted by a PDA by empty stack. 

b) If and only if it is accepted by a PDA by final state.  

 

 

 GRAMMAR                   

                                         PDA BY EMPTY STACK                                     PDA BY FINALSTAT 

 

16. What are the steps to convert CFL  TO  PDA? 



1) For a context free grammar G, there is a equivalent CFG with GNF. 

2) We can construct PDA for the CFG + GNF. 

3) The PDA we are about to construct will represent the derivation by keeping the variables in the right part 

of the sentential form on its stack, while the left part, consisting of terminals is identical with the input 

read. 

4) We begin by pumping the start symbol on the stack. After that, to simulate the application of production 

A→ ax, we must have the variable A on top of stack and terminal a as the input symbol. The variable on 

the stack is removed and replaced by the variable string x. 

17. Give an example for the PDA that accepts  the language  of the grammar? 

S → AB 

A → aA / e 

B → aBb / e (e = null state) and check for string aaaabb. 

 Solution:  

 We can construct PDA  

 M = (Q, Σ, Γ, δ, q0, Z, F) where  

 Q = {s, f} 

 Σ = {a, b} terminals of grammar  

 Γ = variables of grammar U {Z0} 

    = {S, A, B, a, b, Z0} 

 F = {f} 

 δ is  

 R1 : δ(S, 𝜀, Z0) = { (f, SZ0)} 

 R2 : δ(f, 𝜀, S) = { (f, AB)} for prod 1 

 R3 : δ(f, ϵ, A) = { (f, aA)} for prod 2 

 R4 : δ(f, ϵ, A) = { (f, ϵ)} for prod 2 

 R5 : δ(f, ϵ, B) = { (f, aBb), (f, ϵ)} for prod 2 

 R6 : δ(f, a, a) = { (f, ϵ)} 

 R7 : δ(f, b, b) = { (f, ϵ)} 

 R8 : δ(f, ϵ, Z0) = { (f, ϵ)} 

 Processing of string aaaabb: 

 (S, aaaabb, Z0) ⊢ (f, aaaabb, SZ0) – R1 

   ⊢ (f, aaaabb, ABZ0) – R2 

   ⊢ (f, aaaabb, aABZ0) – R3  

   ⊢ (f, aaabb, ABZ0) – R6 

   ⊢ (f, aaabb, aABZ0) – R3 

   ⊢ (f, aabb, ABZ0) – R6 

   ⊢ (f, aabb, BZ0) – R4 



   ⊢ (f, aabb, aBbZ0) – R5 

   ⊢ (f, abb, BbZ0) – R6 

   ⊢ (f, abb, aBbbZ0) – R5 

   ⊢ (f, bb, BbbZ0) – R6 

   ⊢ (f, bb, bbZ0) – R5 

   ⊢ (f, b, bZ0) – R7 

   ⊢ (f, ϵ, Z0) – R7 

   ⊢ (f, ϵ) – R8 

 Hence the string is accepted. 

18.Construct  A PDA  USING THIS  INPUT  abcbaGiven G(V, T, P, S) where V= {S, a, b, c} T= {a, b, c} P= {S → 

aSa, S→ bSb, S → c}. 

Solution 

M = (Q, Σ, Γ, δ, q0, Z0, F) be a PDA. 

Q = {P, q} P = start state  q=  final state    

 Σ = {a, b, c} terminals of grammar 

  Γ = {S, a, b, c} U {Z0} 

  F = {q} 

  δ is 

 R1 : δ(P, ϵ, Z0) = {(q, SZ0)} start symbol put on the stack  

 R2 : δ(q, ϵ, S) = {(q, aSa)} prod 1 

 R3 : δ(q, ϵ, S) = {(q, bSb)} prod 2 

 R4 : δ(q, ϵ, S) = {(q, c)} prod 3 

 R5 : δ(q, a, a) = {(q, ϵ)} 

 R6 : δ(q, b, b) = {(q, ϵ)}  

 R7 : δ(q, c, c) = {(q, ϵ)} 

 R8 : δ(q, ϵ, Z0) = {(q, ϵ)}   

    

     

 Processing of abcba: 



 (P, abcba, Z0) ⊢ (q, abcba, SZ0) – R1 

   ⊢ (q, abcba, aSaZ0) – R2 

   ⊢ (q, bcba, SaZ0) – R5 

   ⊢ (q, bcba, bSbaZ0) – R3 

   ⊢ (q, cba, SbaZ0) – R6 

   ⊢ (q, cba, cbaZ0) – R4 

   ⊢ (q, ba, baZ0) – R7 

   ⊢ (q, a, aZ0) – R6 

   ⊢ (q, ϵ, Z0) – R5 

   ⊢ (q, ϵ) – R8 

Hence string is accepted. The stack variable is as follows. 

 

19. What is parsing? 

Processor recognizes the input. It is a machine which is present in the automata m/c. Tokens are identified by the 

parsing. Tokens are nothing but identifiers or keywords. There are two types of parsing. They are  

1. Bottom up 

2. Top down ( Recursive descent parsing) 

20. Give a schematic representation of  parsing? 

 

 

21. What is bottom up parser? 



It is also called as shift reducing parsing. Implementation of SRP called operator parsing. A general format 

or method of SRD is LR parsing which is used in automatic parser. Shift reduce parser consists for a given i/p 

string “reducing” a string ω to start symbol of a G. At each reduction a particular substring is matching right side 

of a production is replaced by symbol on the left of that production. 

22. What is the other name of bottom up parser? 

It is also called as shift reducing parsing 

23. What are the steps included in bottom up parsing? 

1. Right most derivation 

2. Left most derivation 

3. Identify handles/production 

4. Stack implementation 

24. What are the two operations performed in stack implementation? 

Action contains 2 operations 

1. Shift 

2. Reduce 

25.Give an example  for  bottom up parsing? 

EE+E/E * E /(E)/id  w = id1+id2*id3 

1. Right most derivation  2.Left most derivation 

3.identify handles/production 4.Stack implementation 

Right most derivation 

 EE+E 

 E+E*E 

 E+E*id3  

 E+id2*id3 

 id1+id2+id3 

Left most derivation 

 EE*E 

 E+E*E 

 id1+E*E 

 id1+id2*E 

 id1+id2*id3 

Identify production handles 

 EE*E 

 EE+E 

 Eid1|id2|id3 

 Stack implementation:  

  Action contains 2 operations 



1. Shift 2.Reduce 

STACK INPUT ACTION 

$ 

$id1 

$E 

$E + 

$E + id2 

$E + E 

$E 

$E * 

$E * id3 

$E * E 

$E 

id1+id2+id3$ 

+id2*id3$ 

+id2*id3$ 

+id2*id3$ 

*id3$ 

*id3$ 

*id3$ 

id3$ 

$ 

$ 

$ 

Shift id1 to stack 

Reduce Eid1 

Shift 

Shift 

Reduce Eid2 

Reduce EE+E 

Shift * 

Shift 

Reduce Eid3 

Reduce EE+E 

Accepted 

 

26. What do you mean by top down parsing? 

It involves backtracking ie marking repeated scans of the input. It can be viewed as an attempt to find a 

LMD for an input string. Equivalently, it can be viewed as attempting to construct a parse tree. For the input 

starting from the root and creating the nodes of the parse tree in preorder. 

27. What is the other name for top down parsing? 

TOP DOWN PARSING is otherwise called as RECURSIVE DESCENT PARSING 

28. What are the steps involved  in  top down parsing? 

It has 5 steps. They are 

1. Elimination of left recursion. 

2. Leftmost derivation 

3. Rightmost derivation  

4. Identify handles 

5. Stack implementation   

29. What are the difficulties in top down parsing? 

1. Left recursion 

  A grammar a is said to be left recursion if it has a non-terminal A such that there is a derivation 

A Aα for some α. A left- recursion grammar can cause a top-down parser to go into an infinite loop. This 

cycling will surely occur on an erroneous input string, it may also occur on legal inputs, depending on the 

order in which the alternatives for A are tried. Therefore to use top-down parsing, we must eliminate left 

recursion from the grammar. 

2. Backtracking 

  If we make a sequence of erroneous expansion and subsequently discover a mismatch, we may 

have to undo the semantic effects of machine this erroneous expansions. 



 Eg: Entries made in the symbol table might have to remove. Since undoing semantic  actions requires a 

substantial overhead, it is reasonable to consider top-down parsers that do no backtracking. 

The order in which alternatives are tried can affect language accepted 

  Eg: We used a and ab as the order of alternatives for A. we could fuel to accept cabd. 

    

  With parse tree already matched, the failure of next input symbol, B to match, would imply that 

the alternate C A d for s was wrong. 

30. What are the closure properties of CFL? (NOV’15) 

1) Closure under union 

2) Closure under concatenation 

3) Closure under kleen star 

31.The set of all strings aver alphabet { a,b} with exactly twice as many a’s and b’s. 

Solution 

 L ={ the set of all the strings over the alphabet { a,b } with exactly twice as many a’s and b’s } 

 Construct the grammar, G = {N,T,P,S} 

 Where  N= {S} 

  T= {a,b} 

  P= { S  s a s b s a s,  

           S s  a s a s b s, 

           S s b s a s a s, 

         Sε } 

Ss a s b s a s  

s as a s b s a s b s a s 

s b s a s a s a s a s b s a s b s a s 

b a a a a b a b a 

Since all the productions rules are involved on the rhs 2 a’s and 1 b’s. 

The effect of applying each of them at any point of derivation to provide twice as many a’s and b’s to get terminal 

strings. So we have to finally apply S ε certain no. of times. Hence G generates the language L. 

32. What do you mean by homomorphism?  

A string homomorphism is a function on strings that works by substring a particular sting for 

each symbol. Eg. h(0) = ab h(1) =  is a homomorphism, where replace all 0’s by ab and replace all 1’s 

by . Let w = 0011 h(w) = abab 

 



33. Mention any two applications of pumping lemma (UQ:MAY’12) 

Pumping lemma is used to check if a language is regular or not. 

(i) Assume that the language(L) is regular.z=uvw 

(ii) Select a constant ‘n’. 

(iii) Select a string(z) in L, such that |z|>n. 

(iv) Split the word z into u,v and w such that |uv|<=n and |v|>=1. 

(v) You achieve a contradiction to pumping lemma that there exists an ‘i’ Such that uviw is not in L.Then L is not a 

regular language. 

34. Define Chomsky normal form. (UQ:MAY’13) 

Chomsky normal form(CNF): 

If the CFG is in CNF if it satisfies the following conditions - All the production must contain only one 

terminal or only two variables in the right hand side. 

35. What is multiple tracks Turing machine?  Or Give the significance of multiple tracks. 

(UQ:APR/MAY’13) 

A Turing machine in which the input tape is divided into multiple tracks where each track is having 

different inputs is called multiple tracks Turing machine. 

36. State the properties that are not closed under CFL (UQ:NOV’12) 

CFL are not closed under intersection , complementation. Closure properties of CFL’s are used to prove 

that certain languages are not context free. 

37. State the difference between top down parsing and bottom up parsing  (UQ:NOV’12) 

• Top-down parsers: starts constructing the parse tree at the top (root) of the parse tree and move down towards 

the leaves. Easy to implement by hand, but work with restricted grammars. 

examples: 

- Predictive parsers (e.g., LL(k)) 

• Bottom-up parsers: build the nodes on the bottom of the parse tree first. Suitable for automatic parser 

generation, handle a larger class of grammars.  

examples: 

– shift-reduce parser (or LR(k) parsers) 

38. What is recursively enumerable languages (UQ:NOV’14)  

The languages that is accepted by TM is said to be recursively enumerable (r. e ) languages. Enumerable 

means that the strings in the language can be enumerated by the TM. The class of r. e languages includes CFL’s.  

39. Design PDA for the language L={ an b3n    | n >= 0} 

 



36. State decision algorithm? 
 

Decision algorithm for CFL is mainly to check the string generated by a language is 
 

 empty,


 finite and


 infinite 
11 marks 

1.Discuss about PDA or Explain the Deterministic push down automata (UQ:DEC’09,MAY’10,MAY’15) 

PUSH DOWN AUTOMATA(PDA):- 

DEFNITION 

Regular language can be characterized as the language accepted by finite automata. Similarly, we can 

characterize the context-free language as the language accepted by a class of machines called "Pushdown 

Automata" (PDA). Pushdown automation is an extension of the NFA. It is observed that FA has limited capability. 

(in the sense that the class of languages accepted or characterized by them is small). This is due to the "finite 

memory" (number of states) and "no external memory" involved with them.  

A PDA is simply an NFA augmented with an "external stack memory". The addition of a stack provides the 

PDA with a last-in, first-out memory management capability. This "Stack" or "pushdown store" can be used to 

record a potentially unbounded information. It is due to this memory management capability with the help of the 

stack that a PDA can overcome the memory limitations that prevents a FA to accept many interesting languages 

like {an bn | n>=0} . Although, a PDA can store an unbounded amount of information on the stack, its access to the 

information on the stack is limited.  

It can push an element onto the top of the stack and pop off an element from the top of the stack. To read 

down into the stack the top elements must be popped off and are lost. Due to this limited access to the 

information on the stack, a PDA still has some limitations and cannot accept some other interesting languages. 

 

As shown in figure, a PDA has three components: an input tape with read only head, a finite control and a 

pushdown store.The input head is read-only and may only move from left to right, one symbol (or cell) at a time. 

In each step,the PDA pops the top symbol off the stack; based on this symbol, the input symbol it is currently 

q0 q1 q3

 

Q2 

 
B 

 



reading, and its present state, it can push a sequence of symbols onto the stack, move its read-only head one cell 

(or symbol) to the right, and enter a new state, as defined by the transition rules of the PDA. PDA are 

nondeterministic, by default. That is, - transitions are also allowed in which the PDA can pop and push, and 

change state without reading the next input symbol or moving its read-only head. Besides this, there may be 

multiple options for possible next moves. 

Formal Definitions : Formally, a PDA M is a 7-tuple . 

A push down automata M is defined by (Q,Σ,Ѓ,δ,q0,z0.F) where, 

  Qis the finite set of states 

  Σ is the alphabet called input alphabet  

  Ѓ is the stack alphabet , is a finite alphabet os stack symbols. 

  q0 ε Q is the stack state/initial state 

  z0  in Ѓ is the particular stack symbol called start symbol. 

  F≤Q is the set of final states. 

  δ is the transition relation. 

 i.e, δ is a subset of (Q x Σ U{e}x Ѓ*)                      (2Q x T*) 

Example Processing of 100001: 

(P, 100001, Z0) ⊢ (q, 100001, Z0)  

   ⊢ (q, 00001, 1Z0)  

  ⊢ (q, 0001, 01Z0)  

  ⊢ (q, 001, 001Z0)  

  ⊢ (q, 01, 01Z0)  

  ⊢ (q, 1, 1Z0)  

  ⊢ (q, ϵ, Z0)  

  ⊢ (q, ϵ)  

 Hence string is accepted 

Refer class notes for more examples 

 

Note: 

Regular language 

A language can be described by DFA/NFA. 

Context free language: 

Cannot be described by DFA/NFA, since there is no memory. 

Push down automata: 

It has a memory, which can be used to count the number. 

Push down automata can accept CFL. It is essentially an NFA with a stack 

 

2.Comparison of NFA AND PDA 



NFA 

 (P,a,q) ε Δ means if machine M is in state P, then on reading “a” from input tape go to stack q. 

 (P, ε,q) ε Δ means if machine M is in state P, goes to state q, without consuming input. 

PDA 

1. ((P,a,β),(q,y))             if machine is in state P, the symbol read from input state is ‘a’, and β is on top of 

stack, goes to state q, and replace β by y on top of stack. 

2. ((s,a,e),(s,a))               if machine M is in state s reads ‘a’, remains in state s and push a onto stack. 

3. ((s,c,e),(f,e))                if read ‘c’ in state s and stack is empty, goes to final state f and nothing to push onto 

the stack. 

4. ((s,e,e),(f,e))           if in state s, goes to state f. 

5. ((f,a,q),(f,φ))                if read a in stack f, remain in state f and pop a from stack. 

6. PDA’s are non-deterministic. 

Properties Of Pda/Characteristics Of Pda 

 A push down automata M is defined by (Q,Σ,Ѓ,δ,q0,z0.F) where, 

  Qis the finite set of states 

  Σ is the alphabet called input alphabet  

  Ѓ is the stack alphabet , is a finite alphabet os stack symbols. 

  q0 ε Q is the stack state/initial state 

  z0  in Ѓ is the particular stack symbol called start symbol. 

  F≤Q is the set of final states. 

  δ is the transition relation. 

 i.e, δ is a subset of (Q x Σ U{e}x Ѓ*)                      (2Q x T*) 

Transition Function 

1. Let ((P,a,β),(q,γ)) ε δ 

2. It means that we, 

a. Read a from tape. 

b. Pop the string β from stack. 

c. Move from stack P to state q. 

d. Push string γ onto stack.  

3. We will draw it as  

 

 

Pushing And Poping 

When we push β, we must push the symbols of β as we read them right to left. 

When we pop γ, we pop the symbols of γ as we read them from left to right. 



i.e, if we push abc, then we can pop a, then pop b, then pop c. so e push like this 

      Left most  

a 

b 

c 

               Rightmost 

Thus, if we push the string abc and then pop it, we will get back abc. 

Accepting Strings 

1. After processing the string on the tape. 

 The PDA is in either a favorable or an unfavorable state, and 

 The stack is either empty / not empty. 

2.The input string is accepted if 

 The  final state is favorable, and  

 The stack is empty. 

Acceptance By PDA 

3. Acceptance by final state 

Let M=(Q,Σ,Ѓ,δ,q0,z0.F) be a PDA. Then, the language accepted by M is set of strings that, 

 L(M)=(w/(q0,w, z0)├* (p, ε, γ) for some P ε F, γ ε Ѓ*).  

4. Acceptance by empty stack: 

Let N(M) be the language accepted by M is given by, 

 N(M)= (w/(q0,w, z0)├* (p, ε, ε) for some P ε Q. 

 

3. Explain PUSH DOWN AUTOMATA and CFL( Context Free Languages) 

Equivalence of PDA and CFG 

A language is generated by a CFG.  

a) If and only if it is accepted by a PDA by empty stack. 

b) If and only if it is accepted by a PDA by final state.  
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We already know how to go between null. Stack and final state. 

From CFL’s to PDA’s 

Let G=(V,T,P,S) be CFG , construct PDA P that accepts L(G) be empty stack as follows: 

 P={ (q), T, V ⋃ T, δ,q,S) where δ is defined by 



1. For each variable A,  

δ (q, ε, A)={(q,B) / A->ᵦ is a production in G} 

2. For every terminal symbol a, 

δ (q, a, a )= ( q, ε) 

Example: 

Convert the grammar S->0S1/A, A->1A0/S/ ε into PDA that accepts same language by empty stack. Check 

whether 0101 belongs to N(P). 

 Sol: 

 P=({q},{0,1},{S,A,0,1}, δ, q, S) where δ is defined by 

δ (q, ε, S)={(q,0S1),(q,A)} 

δ (q, ε, A)={(q,1A0),(q,S),(q, δ (q, ε, A)={()} 

δ (q, 0,0)=(q, ε) 

δ (q, 1, 1)=(q, ε) 

w=0101 

(q,0101,S) = (q,0101,S1) 

  =(q,0101,0S1) 

  =(q,101,S1) 

  =(q,101,1A01) 

  =(q,01,A01) 

  =(q,01,01) 

  =(q,1,1) 

  =(q, ε, ε) 

Therefore, 0101 ε N(P) 

4. Explain Top down Parsing and Bottom up Parsing (UQ:NOV’07,MAY’10) 

PARSING 

Processor recognizes the input. It is a machine which is present in the automata m/c. Tokens are 

identified by the parsing. Tokens are nothing but identifiers or keywords. There are two types of parsing. They 

are  

1. Bottom up 

2. Top down ( Recursive descent parsing) 

 

 

 

 

 

 

 



 

BOTTOM UP PARSER 

It is also called as shift reducing parsing. Implementation  of SRP called operator parsing. A general 

format \ method of SRD is LR parsing which is used in automatic parser. Shift reduce parser consists for a given 

i/p string “reducing” a string ω to start symbol of a G. At each reduction a particular substring is matching right 

side of a production is replaced by symbol on the left of that production. 

EXAMPLE PROBLEMS: 

1) Consider the following grammar, implement bottom up parsing. 

EE+E/E * E /(E)/id 

w = id1+id2*id3 

1. Right most derivation 

2. Left most derivation 

3. Identify handles/production 

4. Stack implementation 

Right most derivation 

 EE+E 

 E+E*E 

 E+E*id3 

 E+id2*id3 

 id1+id2+id3 

Left most derivation 

 EE*E 

 E+E*E 

 id1+E*E 

 id1+id2*E 

 id1+id2*id3 

Identify production handles 

 EE*E 

 EE+E 

 Eid1|id2|id3 

 Stack implementation 

  Action contains 2 operations 

1.  Shift 

2. Reduce 

 

 

 



STACK INPUT ACTION 

$ 

$id1 

$E 

$E + 

$E + id2 

$E + E 

$E 

$E * 

$E * id3 

$E * E 

$E 

id1+id2+id3$ 

+id2*id3$ 

+id2*id3$ 

+id2*id3$ 

*id3$ 

*id3$ 

*id3$ 

id3$ 

$ 

$ 

$ 

Shift id1 to stack 

Reduce Eid1 

Shift 

Shift 

Reduce Eid2 

Reduce EE+E 

Shift * 

Shift 

Reduce Eid3 

Reduce EE+E 

Accepted 

 

TOP DOWN PARSING or RECURSION DESCENT PARSING 

 It has 5 steps. They are 

1. Elimination of left recursion. 

2. Leftmost derivation 

3. Rightmost derivation  

4. Identify handles 

5. Stack implementation   

Introduction of Top down parsing 

It involves backtracking ie marking repeated scans of the input. It can be viewed as an attempt to find a 

LMD for an input string. Equivalently , it can be viewed as attempting to construct a parse tree. For the input 

starting from the root and creating the nodes of the parse tree in preorder. 

1.Left recursion 

A grammar a is said to be left recursion if it has a non-terminal A such that there is a derivation A Aα 

for some α. A left- recursion grammar can cause a top-down parser to go into an infinite loop. This cycling will 

surely occur on an erroneous input string, it may also occur on legal inputs, depending on the order in which the 

alternatives for A are tried. Therefore  to use top-down parsing, we must eliminate left recursion from the 

grammar. 

 

2. Backtracking 

If we make a sequence of erroneous expansion and subsequently discover a mismatch, we may have to 

undo the semantic effects of machine this erroneous expansions. 

With parse tree already matched, the failure of next input symbol, B to match, would imply that the 

alternate C A d for s was wrong. 

1. Elimination of left recursion 



A Aα / β  

  Where β does not begin with an A, there we can eliminate the left recursion by replacing 

this pair of productions with  

   A  βA΄ 

   A  αA΄/ε  

Example: 

 AAα 

 AAαα 

 AAααα…… 

This left recursion can be avoided by above formula. 

Problems: 

1.) Construct top down parser for the given grammer 

 EE+T|T 

 TT*F|F 

 F(E)|id 

 w= id +id*id 

Soln: 

1. Elimination of the left Recursion: 

 Consider the production 

 EE+T|T 

Apply the formula for removing left recursion 

 AβA΄ 

 A΄αA΄| ε 

 ETE΄ 

 E΄+TE΄|ε 

 

Consider the next production  

 TT*F|F 

 TFT΄ 

 T΄*FT΄|ε 

 F(E)|id 

The productions are 

 ETE΄ 

 E΄+TE΄|ε 

 TFT΄ 

 T΄*FT΄|ε 

 F(E)|id 



LMD 

ETE΄ 

FT΄E΄ 

idT΄E΄ 

idεE΄ 

idE΄ 

id+TE΄ 

id+FT΄E΄ 

id+idT΄E΄ 

id+id*FT΄E΄ 

id+id*idT΄E΄ 

id+id*id 

 

RMD 

ETE΄ 

T+TE΄ 

T+FT΄E΄ 

T+F*FT΄E΄ 

T+F*FT΄E΄ 

T+F*Fεε 

T+id*id 

FT΄+id*id 

id+id*id 

 

Identify Handles 

 TFT΄ 

 E΄+TE΄|ε 

 T΄*FT΄|ε 

 Fid 

 

Stack Implementation 

STACK INPUT ACTION 

$E 

$E΄T 

$E΄T΄F 

$E΄T΄id 

$E΄ 

id+id*id$ 

id+id*id$ 

id+id*id$ 

id+id*id$ 

+id*id$ 

ETE΄ 

TFT΄ 

Fid 

T΄ε 

E΄+TE΄ 



$E΄T+ 

$E΄T΄F 

$E΄T΄id 

$E΄T΄F* 

$E΄T΄id 

$ 

+id*id$ 

id*id$ 

id*id$ 

*id$ 

id$ 

$ 

TFT΄ 

Fid 

T΄*FT΄ 

Fid 

T΄ε, E΄ε 

Accepted 

 

5.Explain the closure properties of CFL or State the properties of CFL   

(UQ:DEC’09,NOV’07,DEC’08,MAY’15) 

CLOSURE PROPEERTIES OF CFL:- 

1) Regular verses CFL 

Theorem 

Statement 

 Every regular language is CFL. 

Proof: 

 Let L be a regular. 

 Given a DFA for L, add a stack , but don’t use the stack. Change each DFA transition (P,a,q) to a 

deterministic productions automata.  

  δ ( p,aq) ={ (q,x)} 

 The result is deterministic P A whose language is L. Therefore L is a context free language. 

2) Closure under union 

Statement 

 L1 and L2 be CFL. Then L1 U L2 is also a CFl. 

Proof 

 Let L1 have grammar (V1,T1,P1,S1) and L2 have grammar (V2,T2,P2,S2).  

L1 U L2 has grammar V3= V1 U V2 U S3 

    T3= T1 U T2 

    S3= new start symbol. 

    P3= P1 U P2 U {S3S1/S2} 

 Therefore L1 U L2 is CFL. 

3) Closure under concatenation 

Statement 

 Let L1 and L2 be CFl. Then L1 and L2 is also CFL. 

Proof: 

 Let L1 have grammar (V1,T1,P1,S1) 

 Let L2 have grammar (V2,T2,P2,S2) 

 Then L1L2 has grammar (V,T,P,S) 



  Where V= V1 U V2 {S} 

   T= T1 U T2  

   P= P1 U P2 U { SS1/S2 } 

   S= start symbol 

 Therefore L1 L2  is a CFL. 

4) Closure under kleen star 

      Statement 

  Let L be a CFL. Then L * is also a CFL. 

Proof 

 Let L have grammar  (V1,T1,P1,S1) 

 Then L* has grammar (V,T,P,S) 

   Where V= V1 U {S} 

    T=T1 

    P= P1 U { Se , SS1} 

    S= start symbol 

  Therefore L is a CFL. 

5) Intersection of CFL and regular expression 

Statement 

 Intersection of a CFL under RE is a CFl. 

Proof 

 Given  

                  Let  L1=L(M1) for some PDA. 

  M1= (Q1, ∑1,Г1,δ1,S1,F1) 

  L2= L(M2) for some DFA  

  M2=(Q2, ∑2,Г2,δ2,S2,F2) 

Need to show 

 L1 ∩ L2 = L (M) for some PDA , M where M=(Q, ∑,Г,δ,S,F) 

Idea 

 Construct a PDA M that operates same way as M1 except that it also keeps track of the change in 

the M2 caused by reading the same input. 

Construction 

 Q = Q1 x Q2 , ∑ = ∑1 U ∑2 , Г= F1,  

 S = {S1, S2}, F = F1 x F2 for each transition { (q1,a,β) , (p,γ) }Є δ     for each state q2 Є Q2 add to δ 

transition (((q1,q2),a, β), ((p1,δ,(q2,a)),γ)). 

Pumping lemma for CFL and its applications: 

 The pumping lemma for CFL will allow us to show that some languages are context free. 

 If a CFL, contains a word ‘ω’ with sufficiently long derivations (S  ω). Then some non-terminal 



must appear more than once. 

(ie) we have S  uAz   uvAyz  uvxyz. 

Thus A vAy and A  x. We may repeat the derivation A vAy has many times as we like. (0 or 

more time ) producing uvnxynz for any n ≥ 0. 

 

6.Write short notes on Decision algorithm (UQ:DEC’08) 

Decision algorithm for cfl is mainly used to check whether  the given language is finite,empty or non 

finite(infinite). 

TO PROVE: 

To check whether the  language is finite,infinite or empty. 

ASSUMPTIONS: 

1.the grammar should be in Chomsky normal form(cnf) without ᶓ production. 

2.if ‘s’ is the start symbol and ’r’ is the rank of the symbol, then the string length will be greater then or equal 

to 2^r. 

 If ‘A’ is the reverse vertex associated with ‘s’ is the root node ,then the string length will not be greater than 

2^r-1. 

If ‘B’ is the reverse vertex associated with ‘s’ is the root  node,then the string length will not be greater  

than 2^r-2. 

BASIS  PART: (r=0) 

    Consider  a production A->a,it is a directed acyclic graph denoted by     A        .by the assumption a non 

terminal with rank ’r’ cannot generate a string of length greater than 2^r. 

Here, the rank of A is ’0’.i.e(r=0) 

By the condition l<=2^r,substitute ‘r’ value, 

We get         l<=2^0 

                      L<=1 

Hence it is proved by considering the form A->a,we may derive only a string of length ‘1’,which is finite. 

INDUCTION PART: 

If we use a production of the form A->a ,we may derive only a string of length 1.if we begin with A->BC, 

then as B and C are of rank r-1 or less,by the inductive  hypothesis,they derive only strings of length   2^r-1  

or less.thus BC cannot derive a string of  length greater than  2^r. 

A

 

A 



       Since s is of finite rank r0,and in fact,is of rank no greater than the number of variables,s derives strings 

oflength no greater than the number of variables,s derives strings of length no greater than 2 r^0.thus the 

language is finite. 

Consider an example, 

S->AB 

A->BC 

 B->CC 

C->a   

                              

 

 

 

                                       r (s)=3 

                                       r(A)=2   

                                       r(B)=1 

                                        r(c)=0 

rank of starting symbol ‘s’ (r(s)=3). 

Rank ‘A’ ,r(A) depends on root node ‘s’,it should be less than’s’ and rank of’b’,r(B) depends on both S and A 

,it should be less than both S and A . 

From, the figure check the condition l<=2^r 

        r (s)=3,    l<=2^3 

                        l<=8 

        r(A)=2,     l<=2^2 

                         l<=4 

       r(B) =1,      l<=2^1 

                          l<=2 

       r(c) =0,       l<=2^0 

                           l<=1 

hence the finite length for each string is derived ..hence it proved. 

A B 

C 



Now,consider the directed cyclic graph, 

 

 

 

  

For the figure, the rank cannot be specified. hence for the cyclic graph  the language is infinite. 

For cyclic graph the language is finite. hence the statement is proved. 

 

7.Given G(V, T, P, S) where V= {S, a, b, c} T= {a, b, c} P= {S → aSa, S→ bSb, S → c}. Construct a PDA and run 

for string abcba. 

Solution 

 

Let M = (Q, Σ, Γ, δ, q0, Z0, F) be a PDA. 
 

Q = {p, q} p = start state q= final state 
 

Σ = {a, b, c} terminals of grammar 
 

Γ = {S, a, b, c} U {Z0} 
 

F = {q} 
 

δ is 
 

R1 : δ(P, ϵ, Z0) = {(q, SZ0)} start symbol put on the stack 
 

R2 : δ(q, ϵ, S) = {(q, aSa)} prod 1 
R3 : δ(q, ϵ, S) = {(q, bSb)} prod 2 

R4 : δ(q, ϵ, S) = {(q, c)} prod 3 
 

R5 : δ(q, a, a) = {(q, ϵ)} 
 

R6 : δ(q, b, b) = {(q, ϵ)} 
 

R7 : δ(q, c, c) = {(q, ϵ)} 
 

R8 : δ(q, ϵ, Z0) = {(q, ϵ)} 
 

 

 

 

 

 

 

 

Processing of abcba: 
 

A B 

C 



(P, abcba, Z0) ⊢ (q, abcba, SZ0) – R1 
 

⊢ (q, abcba, aSaZ0) – R2 
 

⊢ (q, bcba, SaZ0) – R5 
 

⊢ (q, bcba, bSbaZ0) – R3 
 

⊢ (q, cba, SbaZ0) – R6 
 

⊢ (q, cba, cbaZ0) – R4 
 

⊢ (q, ba, baZ0) – R7 
 

⊢ (q, a, aZ0) – R6 
 

⊢ (q, ϵ, Z0) – R5 
 

 
⊢ (q, ϵ) – R8 

 
 
Hence string is accepted. The stack variable is as follows. 

 

 

 

 

 

 

 

 

 

8.Construct PDA that accepts the language generated by grammar with productions 

S →aSbb/a     (UQ:MAY’08) 

Solution: 

 Refer Class notes 

9.IF L is N(M) for some PDA M then there is a CFL prove OR If L is context free language ,then prove that 

there exists a PDA M such that L=N(M) (UQ:NOV’14) 

THEOREM 

                              For any context free language L, there exists an PDA M such that L = L(M). 

            Proof 

Let G= (V, P, T, S) be a grammar. There exists GNF, we can construct PDA which simulates leftmost 

derivations in this G’r.  

M = (Q, Σ, Γ, δ, q0, Z, F) 

Q = {q0, q1, qf} set of states  

Σ = terminals of grammar G. 

Γ = V U {Z} where V is variables in G’r.  



F = {q2} final state. 

The transition function will include δ(q1, ϵ, Z) = {(q1, S)} so that after the first move of M, the stack 

contains the start symbol S of the derivation. In addition, the set of transition rules is such that  

δ(q1, ϵ, A) = {(q, α)} for each A → α in P.  

δ(q, a, a) = {(q, ϵ)} for each a ϵ Σ 

E.g. consider the grammar G= (V, T, P, S) where  

S → aA 

A → aABC / bB/ a 

B →b 

C →c and find the PDA and process aaabc. 

 

10. Design a  PDA that accepts the  language  {an bn | n>=0 } 

Here is a PDA that accepts the language like {an bn | n>=0 } 

M= (Q,Σ,Ѓ,δ,q0,z0.F)  

Q = {q1,q2,q3,q4} 

Σ = {a,b} 

Ѓ = {a,b,z}     

F= {q1,q4} 

Solution: 

δ (q1, a , z) = {(q2 , az)} 

δ (q2, a , a) = {(q2 , aa)} 

δ (q2, b , a) = {(q3 , ε )} 

δ (q3, b , a) = {(q3 , ε )} 

δ (q3, ε , z) = {(q4 , z) } 

The PDA can also be described by the adjacent transition diagram. 

 

 

11. Explain Pumping Lemma for CFG  (or ) Application of Pumping Leema (NOV’15) 

A “Pumping Lemma” is a theorem used to show that, if certain strings belong to a language,  then certain 

other strings must also belong to the language. Let us discuss a Pumping Lemma for CFL. We will show that , if L 

is a context-free language, then strings of L that are at least ‘m’ symbols long can be “pumped” to produce 

additional strings in L. The value of ‘m’ depends on the particular language. Let L be an infinite context-free 

language. Then there is some positive integer ‘m’ such that, if S is a string of L of Length at least ‘m’, then  

(i) S = uvwxy (for some u, v, w, x, y) 



(ii) | vwx| <= m 

(iii) | vx| >=1 

(iv) uviwxiy ε L. 

for all non-negative values of i. 

It should be understood that 

(i) If S is sufficiently long string, then there are two substrings, v and x, somewhere in S. There is stuff (u) 

before v, stuff (w) between v and x, and stuff (y), after x. 

(ii) The stuff between v and x won’t be too long, because | vwx | can’t be larger than m. 

(iii) Substrings v and x won’t both be empty, though either one could be. 

(iv) If we duplicate substring v, some number (i) of times, and duplicate x the same number of times, the 

resultant string will also be in L. 

Definitions 

A variable is useful if it occurs in the derivation of some string. This requires that  

(a) the variable occurs in some sentential form (you can get to the variable if you start from S), and  

(b) a string of terminals can be derived from the sentential form (the variable is not a “dead end”). A 

variable is “recursive” if it can generate a string containing itself. For example, variable A is 

recursive if  

 

 

Proof of Pumping Lemma 

(a) Suppose we have a CFL given by L. Then there is some context-free Grammar G that generates L. Suppose 

(i) L is infinite, hence there is no proper upper bound on the length of strings belonging to L. 

(ii) L does not contain l. 

(iii) G has no productions or l-productions. 

There are only a finite number of variables in a grammar and the productions for each variable have 

finite lengths. The only way that a grammar can generate arbitrarily long strings is if one or more variables is 

both useful and recursive. Suppose no variable is recursive. Since the start symbol is non recursive, it must be 

defined only in terms of terminals and other variables. Then since those variables are non recursive, they have to 

be defined in terms of terminals and still other variables and so on. 



After a while we run out of “other variables” while the generated string is still finite. Therefore there is an 

upper bond on the length of the string which can be generated from the start symbol. This contradicts our 

statement that the language is finite. Hence, our assumption that no variable is recursive must be incorrect. (b) 

Let us consider a string X belonging to L. If X is sufficiently long, then the derivation of X must have involved 

recursive use of some variable A. Since A was used in the derivation, the derivation should have started as  

 

For some value of u and y .Since A was used recursively the derivation must have continued as  

 

Finally the derivation must have eliminated all variables to reach a string X in the language  

 

This shows the derivation steps  

 

And 

 

Are possible .Hence the derivation  

 

must also be possible.  

 

 
12. Construct a PDA accepting L = {an b3n : n ³ 1} by empty store. 
Solution : 

PDA should accept input strings with symbols ‘a’ and ‘b’ where number of b’s is thrice that 
of a’s. 
d(q0, a, z0) = (q1, a z0) 
d(q1, a, a) = (q1, aa) 
d(q1, b, a) = (q2, a) 
d(q2, b, a) = (q3, a) 
d(q3, b, a) = (q4, ) 



d(q4, b, a) = (q2, a) 
d(q4, , z0) = (q5, ) 

 
Consider the input string aabbbbbb 
d(q0, a, z0) = (q1, az0) 
d(q1, a, a) = (q1, aa) 
d(q1, b, a) = (q2, a) 
d(q2, b, a) = (q3, a) 
d(q3, b, a) = (q4, ) 
d(q4, b, a) = (q2, a) 
d(q2, b, a) = (q3, a) 
d(q3, b, a) = (q4, ) 
d(q4, , z0) = (q5, l) it halts in empty store and hence string is accepted. 

 
 
10. Design a PDA to accept palindromes over {a, b}. (APR 2015) 
 
Solution: 
 

Construct the PDA: 
 

M: Q= {q0, q1} 
 

Σ = {a, b} Γ 

= {a,} F= 

{q1} 
 
 
 
 
 
 
 
 
 
 

 

δ consists of the following transitions 
 

δ (q0, a , λ) = {[q0 ,A], [q1, λ]} 
 

δ (q0, b , λ) = {[q0 ,B], [q1, λ]} 
 

δ (q0, λ , λ) = {[q1, λ]} 
 

δ (q1, a , A) = {[q1, λ]} 
 

δ (q1, b , B) = {[q1, λ]} 
 

 

 

 

 



 

Pondicherry University Questions 

2 Marks 

1. Mention any two applications of pumping lemma (UQ:MAY’12) (Qn.No.33) 

2. Define Chomsky normal form. (UQ:MAY’13) (Qn.No.34) 

3. What is multiple tracks Turing machine?  Or Give the significance of multiple  

tracks. (UQ:APR/MAY’13) (Qn.No.35) 

4.  State the properties that are not closed under CFL (UQ:NOV’12) (Qn.No.36) 

5. State the difference between top down parsing and bottom up parsing  (UQ:NOV’12) 

 ( Qn.No.37) 

6. What is push down automata? (UQ:NOV’14)N  1  (Qn.No.1) 

7. What is recursively enumerable languages (UQ:NOV’14)  (Qn.No.38) 

8. What are the closure properties of CFL? (NOV’15)    (Qn.No.30) 

 

11 Marks 

1. Discuss about PDA (UQ:DEC’09,MAY’10)    (Qn.No.1) 

2. Explain Top down Parsing and Bottom up Parsing (UQ:NOV’07,MAY’10) (Qn.No.4) 

3. Explain the closure properties of CFL(UQ:DEC’09,NOV’07,DEC’08,MAY’15, APR’16) (Qn.No.5) 

4. Write short notes on Decision algorithm (UQ:DEC’08 APR,16) (Qn.No.6) 

5. Construct PDA that accepts the language generated by grammar with productions  

a. S →aSbb/a     (UQ:MAY’08) (Qn.No.8) 

6. IF L is N(M) for some PDA M then there is a CFL prove OR If L is context free language ,then prove  

that there exists a PDA M such that L=N(M) (UQ:NOV’14)  (Qn.No.9) 

7. Explain Pumping Lemma for CFG  (NOV’15) (Qn.No.11)         

 



UNIT IV 

 

Turing machines: Turing machines (TM) – computable languages and functions –Turing Machine constructions 

– Storage in finite control – variations of TMs – Recursive and Recursive. Enumerable languages, Recursive 

Function, Partial and Total Recursive Function, Primitive Recursive Function. 

 

2 Marks 

1.What is a turning machine? (UQ:APR/MAY’12) 

Turing machine is used for computing mathematical functions. It can be divided into n-no of cells (or) 

squares. TM is similar to finite automaton but with an unlimited and unrestricted memory. 

 Each cell contain finite no of symbols along with blank spaces. 

 

2.What is the operation of the turning  machine? 

The operation turing machine are follows, 

 The turing machine(TM) reads the start symbol i.e, is under the TM tape head. This symbol is referred as 

current symbol.The TM is similar to finite automaton but with an unlimited and unrestricted memory. 

 

3.Draw  the  diagram of the   model of turning  machine 

Model of TM 

 

 

4.What is the function of the turning machine? 

The turing machine can be thought of as a finite state automaton connected to a R/W head. It has a infinite 

tape which is divided into no of cells. Each cell stores one symbol. The input to and output from finite state 

automata or control unit are affected by R/W head which can examine one cell at a time. 

 



5.What does the first move performs? 

1) A new symbol to be written on the tape in the cell under the R/W head. 

2) A motion of the R/W head along the tape, either the head moves one cell left (L), or one cell to right 

(R). 

3) The next state if automaton. 

4) Whether to halt/not. 

6.What is the general form of the  turning  machine? 

M = (Q, Σ, Γ, δ, q0, B, F) where  

  Q = finite set of states. 

  Γ = finite set of tape symbols. 

  Σ = not including B, set of input symbols. 

  B = symbols of Γ, is the blank. 

  δ:QxΓ             Q x Γ x {L,R} 

  q0 belongs to Q                initial state. 

  F belongs to Q                  set of final state. 

 

7.What are the representations of the turning machine? 

1) Instantaneous descriptions. 

2) Transition table. 

3) Transition diagram. 

 

8.What is the instantaneous description OF A TM (MAY’15)  

An Instantaneous Description (ID)of the turing machine M is denoted by α1q α2.Henceqε Q is the current 

state of M. α1α2 is the string in Г* that is the contents of the tape upto the rightmost non blank symbol or symbol to 

the left of the head, whichever is rightmost. 

We define a move of M as follows. Let x1x2………xi-1qxi…….xn be an ID. Let (qi,xi)=(p,y,L).If i-1=n, then take 

xi as B(blank).If i=1, then there is no next ID, as the tape head is not allowed to fall off the left end of the tape. If 

i>1, then we write 

X1x2……..xi-1qxi…..xn├x1x2……xi-2pxi-1yxi+1…..xn--------------------


   1 

If δ(q,xi)=(p,y,R), thgen change of ID is  

X1x2……..xi-1qxi…..xn├x1x2……xi-1ypxi+1..xn------------------------------


   2 

If i-1=n, the string xi………xn is empty and the right side of     2    is longer that left side. 

(Or)   

The ID of a TM M is denoted as α1q α2 . Here q is the current state of M is in Q;  

α1 α2 is the string in Ґ * that is the contents of the tape up to the rightmost nonblank symbol or the symbol to the 

left of the head, whichever is the rightmost. 

 



  

9.What are the techniques of tuning machine construction? (NOV’15) 

• Storage in finite control.  

• Multiple tracks.  

• Checking off symbols.  

• Shifting over  

• Subroutines.  

10.Construct the TM to compute the concatenation function? 

Solution 

Idea 

 The symbol 1 seperates n1 and n2. The concatenation is implemented by removing the separator 

(removal is done by replacing separator input) and last 0 of n2 will be replaced by blank space B. 

Concept 

 From the start state it moves right until it finds the sytmbol 1. 

 1 is replaced by 0 and moves right until blank is reached. Then moves towards left cell symbols and it is 

replaced by blank symbol to get the derived symbol. 

The input is 0n1,0n2. The output should be 0n1n2 

Let M=  (Q, Σ, Γ, δ, q0, B, F) where 

 Q={ q0,q1,q2,q3} 

 Σ ={0,1} 

 F={q3} 

Initial State={q0} 

 Γ={0,1,B} 

Let n1=3,n2=2 

 

 

 

The machine falls at a acceptance state q3 leaving the output on the tape. 



 

11. Construct a TM that performs addition operators f(n,m)=n+m 

Solution 

 The input to the function f(n,m) are encoded as 0n10m. The output will be 0n+m place on the tape starting 

from the first ‘0’ in the 0n, the tape head moves till it finds a separator ‘1’. Replace it by ‘0’ move right to find the 

blank symbol. Then move left to one symbol replaces ‘s’ by 0 in that cell by a blank symbol. 

Let M=  (Q, Σ, Γ, δ, q0, B, F) where 

 Q={ q0,q1,q2,q3} 

 Σ ={0,1} 

 F={q3} 

Initial State={q0} 

 Γ={0,1,B} 

  

12. What is undeciability? 

A problem whose language is recursive is said to be decidable. Otherwise the problem is undecidable i.e, 

a problem is undecidable if there is no algorithm that takes as input an instance of the problem and determines 

whether the answer to that instance is yes/no. 

 

 



 

13.Show that The language l is defined as {“M”,”W”: M is a DFSM that accepts w } is recursive. 

 The TM MD decides L.  

 On input “M” “W”, where M is a DFSM. 

1. MD emulates M on input w. 

2. If the emulation ends in a final state of M, them MD halts in state y. if it ends in a non-final state 

of M, then MD halts in state n. 

One corresponding way to encode M is to adopt the TM encoding for FSMs and encode Q,Σ,δ,S and 

F. Before starting the emulation, MD first checks whether the input string is a legal encoding of a 

DFSM and DFSM’s input string. 

 

14. Show that the The language L defined as {“M”;M is a DFSM and L(M) = φ} is recursive. 

   The following Tm Mφ decides L: on input “M”, where M is a DFSM, 

1. Mφ  marks the start state of M. 

2. Repeat until no new state are marked. 

If (P,σ,q) ε δ and p is already marke, then mark q. 

3. If no final state is marked, Mφ halts in y; otherwise it halts in n. 

 

15.Show that The language L defined as {“M1” U “M2”: DFSM M1, M2 and L(M1) ≤ L(M2) is recursive. 

 The following TM ME decides L: on input “M1” and “M2”, where M1 and M2 are DFSMs. 

1. Construct DFSM M for the language L(M1) ∩ L(M2) . 

2. Apply Mφ to the input string “M”. 

3. If Mφ halts in y, ME halts in y.  

4. If Mφ halts in n, ME halts in n.  

 

16. Which are called as Turing Decidable and Turing acceptable languages? 

The Recursive and Recursive Enumerable languages are called as Turing Decidable and Turing acceptable 

languages respectively 

 

17. What is the general form of  recursive  language? 

Let M=(Q,∑, ,s,H) ba TM such that: 

H: {y,n}, where y means yes and n means no. 

 

18. What is decidable problem? 

1) Decidable problem: 

Given two DFSM’s M1 and M2 is L(M1)≤L(M2)? 

That is an algorithm is exist for the problem to decide the answer as yes/no. 



 

19. What is undecidable problem? 

Halting problem of turing machine. That is, given any TM M and any input string w, does M halt on w? 

Undecidabality is the situation where we could not develop an algorithm which will correctly give a solution to a 

given problem. 

 

                               Undecidability of death 

 

20. What is off-line Turing Machine? What is a multidimensional TM? (UQ:APR/MAY’12,MAY’15)  

off-line Turing Machine  

An Off-line Turing Machine is a multitape TM whose input tape is read only. The Turing Machine is not allowed to 

move the input tape head off the region between left and right end markers. 

multidimensional TM 

The device has a finite control , but the tape consists of a k dimensional array of cells infinite in all 2k 

directions, for some fixed k. Depending on the state and symbol scanned , the device changes state , prints a new 

symbol and moves its tape head in one of the 2k directions, either positively or negatively ,along one of the k 

axes. 

 

21. What is non deterministic TM (UQ:APR’13) 

A non-deterministic Turing machine (NTM), by contrast, may have a set of rules that prescribes more 

than one action for a given situation. For example, a non-deterministic Turing machine may have both "If you are 

in state 2 and you see an 'A', change it to a 'B' and move left" and "If you are in state 2 and you see an 'A', change 

it to a 'C' and move right" in its rule set. 

 

22.What are the required fields of an instantaneous description or configuration of a TM.  Or Define the 

basic guidelines for designing a TM (UQ:NOV’11) 

It requires  

 The state of the TM  

 The contents of the tape.  

 The position of the tape head on the tape.  

 

23.State the powers of single tape and multitape TM (UQ:NOV’12) 

The following models are single tape Turing machines but restricted with (i) restricted tape symbols { 

mark, blank }, and/or (ii) sequential, computer-like instructions, and/or (iii) machine-actions fully atomized. 



Multi-tape machines are similar to single-tape machines, but there is some constant k number of independent 

tapes. 

 

24. Define partial recursive function and total recursive function. (UQ:NOV’12) 

Total recursive 

If f(i1,i2,………ik) is defined for all i1,…..ik then we say f is a total recursive function. They are similar to 

recursive languages as they are computed by TM that always halt. 

Partial recursive 

A function f(i1,…ik) computed by a Turing machine is called a partial recursive function. They are similar 

to r.e languages as they are computed by TM that may or may not halt on a given input. 

 

25. What is off-line Turing Machine? (UQ:NOV’14) 

An Off-line Turing Machine is a multitape TM whose input tape is read only. The Turing Machine is not 

allowed to move the input tape head off the region between left and right end markers. 

26. Differentiate recursive and recursively enumerable languages.  

Recursive languages Recursively enumerable languages 

A language is said to be recursive if and 
only if there exists  a membership 
algorithm for it. 

1A language is said to be r.e if there exists 
a TM that accepts it. 

 A language L is recursive iff  there is a 
TM that decides L. (Turing decidable 
languages). TMs  that decide languages 
are algorithms. 

L is recursively enumerable iff  there is a 
TM that semi-decides L. (Turing 
acceptable languages). TMs  that semi-
decides languages are not algorithms. 

  

27. What are UTMs or Universal Turing machines?  

Universal TMs are TMs that can be programmed to solve any problem, that can be solved by any Turing 

machine. A specific Universal Turing machine U is:  

Input to U: The encoding “M “ of a Tm M and encoding “w” of a string w. Behavior : U halts on input “M” “w” if and 

only if M halts on input w.  

 

28.When a recursively enumerable language is said to be recursive ? Is it true that the language accepted 

by a non-deterministic Turing machine is different from recursively enumerable language? (APR’15) 

A language L is recursively enumerable if there is a TM that accepts L and recursive if there is a TM that 

recognizes L. Thus r.e language is Turing acceptable and  recursive language is Turing decidable languages.  

No , the language accepted by non-deterministic Turing machine is same as recursively enumerable 

language.  

 

 



29.When we say a problem is decidable? Give an example of undecidable problem?  

A problem whose language is recursive is said to be decidable. Otherwise the problem is said to be 

undecidable. Decidable problems have an algorithm that takes as input an instance of the problem and 

determines whether the answer to that instance is “yes” or “no”. (eg) of undecidable problems are (1)Halting 

problem of the TM.  

30. Differentiate PDA and TM.  

PDA TM 
 PDA uses a stack for storage. TM uses a tape that is infinite . 

The language accepted by PDA is 
CFL. 

Tm recognizes recursively  
enumerable languages. 

 

31. What is a 2-way infinite tape TM?  

In 2-way infinite tape TM, the tape is infinite in both directions. The leftmost square is not distinguished. 

Any computation that can be done by 2-way infinite tape can also be done by standard TM.  

 

32. What is the storage in FC?  

The finite control(FC) stores a limited amount of information. The state of the  Finite control represents 

the state and the second element represent a symbol scanned.  

 

33. What are the possibilities of a TM when processing an input string?  

TM can accept the string by entering accepting state. It can reject the string by entering non-accepting 

state. It can enter an infinite loop so that it never halts.  

 

34. What are the various representation of TM?  

We can describe TM using: Instantaneous description. Transition table. Transition diagram.  

 

35. What is the basic difference between 2-way FA and TM?  

Turing machine can change symbols on its tape , whereas the FA cannot change symbols on tape. Also TM 

has a tape head that moves both left and right side ,whereas the FA doesn’t have such a tape head.  

 

36. What are the applications of TM?  

TM can be used as:  

Recognizers of languages.  

Computers of functions on non negative integers. Generating devices.  

 

37. What are the special features of TM?  

In one move ,TM depending upon the symbol scanned by the tape head and state of the finite control:  



1. Changes state.  

2. Prints a symbol on the tape cell scanned, replacing what was written there. Moves the R/w head left or 

right one cell.  

 

38. What is a recursively enumerable language? 

The languages that is accepted by TM is said to be recursively enumerable (r. e ) languages. Enumerable 

means that the strings in the language can be enumerated by the TM. The class of r. e languages include CFL’s. 

 

39. Define nondeterministic TM? 

• Arbitrarily chooses move when more than one possibility exists 

• Accepts if there is at least one computation that terminates in an accepting state 

 

40. What are the difference between finite automata and Turing Machines? 

Turing machine can change symbols on its tape, whereas the FA cannot change symbols on tape. Also TM 

has a tape head that moves both left and right side, whereas the FA doesn’t have such a tape head. 

 

41.  What is Primitive recursive function? (APR 2016) 
 
The primitive recursive functions are the number- theoretic functions, which are functions, which are functions 

from the natural numbers {0, 1, 2…}. The basic primitive recursive functions are 

 Constant function 

 Successor function 

 Projection function 

 

43. Define recursive language? (NOV 2015) 
 

The Turing machine is a finite sequence of symbols as input, accepts it if belongs to the language and rejects 

it otherwise. Recursive languages are also called decidable. 
 

A recursive language is a formal language for which there exists a Turing machine with any finite input 

string, halts and accepts if the string is in the language and halts and rejects otherwise. The Turing machine 

always halts; it is known as decider and is said to decide the recursive language. 

 

44. List the properties of recursive and recursively enumerable languages? 
 

1) The complement of a recursive language is recursive. 
 

2) The union of two recursive languages is recursive. The union of two recursively enumerable language 

languages is recursively enumerable. 
 

3) If a language L and its complement L are both recursively enumerable, the L (and hence L) is recursive. 
 

 

 



45. What is Church’s Hypothesis? 
 

The notion of computable function can be identified with the class of partial recursive functions is known as 

Church-hypothesis or Church-Turing thesis. The Turing machine is equivalent in computing power to the 

digital computer. 

46. What is multi-stack machines? 
 

A deterministic two-stack machine is a deterministic Turing machine with a read-only input and two storage 

tapes. If a head moves left on either tape, a blank is printed on that tape. 

 

47. What is counter machines? 
 

Counter machines, which are off-line Turing machines whose storage tapes are semi-infinite, and whose tape 

alphabets contain only two symbols, Z and B (blank). 

 

 
 

 



 

11 Marks 

1. Explain in detail about Turing Machine (TM)? (6 MARKS) 

 
Turing Machine (TM), a simple mathematical model of a computer. The Turing Machine models the computing 

capability of a general-purpose computer. The Turing Machine is studied both for the class of languages it 

defines (called the recursively enumerable sets) and the class of integer functions it computes (called the 

partial; recursive functions). TM can be divided into n-no of cells (or) squares. TM is similar to finite 

automaton but with an unlimited and unrestricted memory. Each cell contain finite no of symbols along with 

blank spaces. 

 

Turning Machine Model 
 

It is a more powerful model than many models. It was introduced by Alan Turing in 1936. It can do everything 

that a real computer can do. It is mathematical model which recognize recursive enumerable languages 
 

The basic model of a Turing Machine has 
 

 a finite control,


 an input tape that is divided into cells, and


 a tape head that scans one cell of the tape at a time. 
 
 
 
 
 
 
 
 
 
 
 

The tape has a leftmost cell but is infinite to the right. Each cell of the tape may hold exactly one of a finite 

number of tape symbols. Initially, the n leftmost cells, for some finite n≥0, hold the input, which is a string of 

symbols chosen from a subset of the tape symbols called the input symbols. The remaining infinity of cells 

each hold the blank, which is a special tape symbol that is not an input symbol. 

In one move the Turing machine, depending upon the symbol scanned by the tape head and the state of the 

finite control, 
 

1. Changes state, 
 

2. Prints a symbol on the tape cell scanned, replacing what was written there, and 
 

3. Moves its head left or right one cell. 
Formally, a Turing Machine (TM) is denoted 

 
M = (Q, Σ, Γ, δ, q0, B, F) 

 
where 

 
Q is the finite set of states, 

 



Γ is the finite set of allowable tape symbols, 

B, a symbol of Γ, is the blank, 
 

Σ, a subset of Γ not including B, is the set of input symbols, 
 

δ is the next move function, a mapping from Q x Γ to Q x Γ x {L, R}. 

q0 in Q is the start state, 

F⊆Q is the set of final states. 

 
An Instantaneous Description (ID) of the Turing machine M is denoted by α1qα2. Here q, the current state of 

M is in Q; α1α2 is the string in Γ* that is the contents of the tape up to the rightmost non blank symbol or the 

symbol to the left of the head, whichever is rightmost. Finally, the tape head is assumed to be scanning the 

leftmost symbol of α2 or if α2= ε, the head is scanning a blank. 
 

We define a move of M as follows. Let X1X2………XI-1qxi…….Xn be an ID. Let (qi, Xi) = (p, y, L). If i-1=n, 
 

then take xi as B(blank). If i=1, then there is no next ID, as the tape head is not allowed to fall off the left end 
 

of the tape. If i>1, then we write  

X1X2……..XI-1qxi…..Xn├ X1X2……XI-2pXI-1YXi+1…..Xn -------------------- 1 

If δ(q,xi)=(p,y,R), thgen change of ID is  

X1X2……..XI-1qXI…..Xn├ X1X2……XI-1YpXi+1..Xn ---------------------- 2 

If i-1=n, the string Xi………Xn is empty and the right side of  2 is longer that left side. 
 

The language accepted by M, denoted L(M), is the set of words in Σ * that cause M to enter a final state when 

placed, justified at the left on the tape of M, with M in state q0, and the tape head of M at the leftmost cell. The 

language accepted by M = (Q, Σ, Γ, δ, q0, B, F) is 
 

{w | w in Σ * and q0w |---* α1 p α2 for some p in F and α1 and α2 in Γ* }. 
 

2.  Show that the class of Turing Machines with stay option is equivalent to the class of standard Turing 

machine  (UQ:MAY’08) 

Turing machine with stay options: 

Instead of always moving left or right, the head can stay in a move with a stay option. The transition f n is 

modified to be  δ: QxҐx{L,R,S} The class of Turing machines with stay option is equivalent to class of standard 

Turing machine A.  Tm M with stay option can be stimulated by a standard, the Turing machine . A move of 

M involving S can be stimulated by 2 moves in . δ(p,a)=(q,b,s)=> { δ^m(p,a)=(r,b,R)    δ^m(r,*)=(q,*,L)} if M 

accepts some string , it will be eventually get printed out. 

 

Computation of an enumerator: 

An enumerator starts out with a blank input tape. If an enumerator does not halt , it may print an infinite 

list of strings. 

The language recognizable by the enumerator is the collection of strings that is eventually prints out. An 

enumerator may generate strings of the language, it recognizes in any order possible with repetition. 



The class of TM with stay option is equivalent to the class of standard TM. Since a TM with stay option is 

clearly an extension of the standard model, it is obivious that any standard TM can be stimulated by one with a 

stay option . 

 

To show the converse, let  

M=( Q, Σ, Γ, δ, q0,B, F ) be a TM with stay option to be stimulated by a S TM ^m=(^Q,Σ,    

Ґ,^δ,q0,B,F) 

 

For each move of M, the stimulating machine ^m does the following: 

If the move of M does, not involve the stay option, the stimulating machine performs one move, 

essentially identical to the move to be stimulated. 

  δ : QxҐ   ̂->QxҐ   x̂{L<R}^ multidimensional. 

δ : QxҐ->2^QxҐx{L,R} 

q0w   x1qfx2, qf€F 

 

if S is involved in the move of M, then ^M will take 2 moves: the first rewrite the symbolsand moves the read –

write head right; the second moves the RW head left, leaving the tape contents unaltered. 

 The simulating machine can be constructed  by M by defining ^δ as follows: 

  For each transistion 

  δ(qi,a)=(qj,b,LorR) 

 

For each S transistion  δ(qi,a)=(qj,b,s) 

We put into ^δ , the corresponding transistion ^δ(^qi,a)=(^qjs,b,R) 

And ^δ(^qjs,c)=(^qj,c,L) for each c in Ґ. 

It is reasonable obvious that every computation of M has a corresponding computation of ^m. so that ^M can 

stimulate M. 

 

3.  Explain Turing machine as a computer of integer functions (NOV’07,NOV’15) 

The turing machine can be viewed by as a computer of integer functions. 

1. Represent integer in unary the integer i>=0 represented by a string 0i. 

2. If a function has k arguments i1,i2,i3…..ik then these integers are placed on tape represented by its as 

0i1,0i2,…….0ik 

3. If TM halts (whether or not in an accepted state) with a tape consisting of om for some m,f(i1,i2,…..in)=m 

where f-> function of k arguments computed by TM. 

4. Note that one TM may compute a function of one argument a different function of two arguments and so 

on. 



5. If TM computers functions of k arguments, then f need not have a value for all different k-tuples of 

integers i1,i2,….ik 

6. If  f(i1,….il) is defined for all i1….ik then f is total recursive function. 

7. A function f(i1…..ik) partial recursive function similar to regular expression language since they are 

computed by TM’s that they may or may not halt on given input. 

8. The total recursive functions corresponds to the recursive language, since they are comuted by TM’s that 

always halt. 

 

Example: 

F:N->N 

F(x)=x+1(note:  blank space replaced by zero) 

Solution 

Assume that the input is encoded in unary form. Find first blank(B) and changes it as 0. 

Let M= (Q, Σ, Γ, δ, q0, B, F) where  

  Q={q0,q1} 

F={q1} 

Initial State ={q0} 

Γ={0,B} 

Σ={0} 

 

δ  transition function, 

States 
Inputs 

0 B 

q0 (q0,0,R) (q1,0,R) 

q1 - - 

 

Let us consider output x=3. This can be encoded as 03 and placed on the tape 

 

(q0,000B)     ├ (q0,000B) 

 

  ├(q0,000B) 

 

  ├(q1,0000B)        

 

Note: 

 If found 0-> no state change 

 If found 1 -> state changed  



 If found ‘B’-> state changed control transferred to towards left cell. 

The machine halts an accepting state q1 computing the successor of x . This can be shown in following figure. 

 

0 0 0 B B…………….. 

 

The input 03 placed on the tape followed by blanks. 

Initial state =q0 

Current input symbol=0 

δ (q0,0)=(q0,0,R) 

 

The first blank symbol is replaced by 0 and the state is changed to q1 which is the acceptance state. The machine 

halts as state q1 leaving the output x+1 on the tape. 

Concept 

From the state q0 on input symbol , it moves right until it sees a blank symbol without changing the tape 

symbol or state. 

 On seeing the first blank symbol it is changed to 0, moves right and enters in a halt string . The tape now 

will contain the output. 

 

4. Give the technique for TM construction in detail (UQ:NOV’07,NOV’09,NOV’14,MAY’15) 

Technique of   TURING MACHINE CONSTRUCTION 

Storage in Finite control: 

 Finite control can be used to hold finite amount of information. It is considered as pair of elements like 

[q0,a]. 

Where first component exercising control. 

Second Component stores symbol infinite control. 

 

Let M = (Q, Σ, Γ, δ, [q0, B],B, F) 



Q is {q0,q1}X{0,1,B} 

Q={[q0,0],[q0,1],[q0,B],[q1,0],[q1,1],[q1,B]}  

F={[q1,B]} 

 

Where δ is defined as; 

1)a) δ([q0,B],0)=([q1,0],0,R) 

 b) δ([q0,B],1)=([q1,1],1,R) 

2a) δ([q1,0],0)=([q1,0],1,R) 

b) δ([q1,0],0)=([q1,1],0,R) 

Multiple tracks: 

  Tape of Turning Machine composed of several track. Each track can hold one symbol and tape 

occupied of turning machine , consist of tuples one component on each track. 

 

 0      1        0        1          1 

         

     B       B        1        0          B        B 

     B       B         1        0          B         B 

       

Procedure: 

1. Input is placed on tape. 

2. Turning machine writes number two in binary on second track. 

3. Copies the first track onto third track. 

4. Then second track is subtracted as many as possible from third track effectively, dividing third track by 

second track and leaving remainder. 

5. So third track contains remainder after execution. If remainder is Zero, the number on first track is not 

prime else if remainder is non zero, then increment second track by one and process is repeated until 

first track equals to second track. 

6. If first track equals second track, then number on first track is prime. 

 

Eg. 

Find the number 5 is prime or not 

5 

   2                                                                         

3 

5 

2 

5 



 

 

 

 

 

Here first track is equal to second track. 

Hence the number is prime. 

FINITE CONTROL:  Eg:   construct a turing machine that takes an input and checks whether it is even or not, the 

input is placed into first tape between and   . the integer 2 is placed on the second track. 

  The input on the first track is copied into third track. 

  The number on the second track, is subtracted from the third track if the remainder is same as the 

number ,in the second track then the number on the first track is even. 

  If it is >2, continue this process until the remainder on the third track <=2, if =2 , no. is  even 

otherwise odd. 

    

                                                             TRACK1: 

                                                             TRACK2: 

                                                                 TRACK3: 

 

Checking off symbols: 

 Checking of symbols is the useful method when a Turing Machine recognizes language definition by 

repeated strings and to compare the length of the substrings. 

{ww/w in S*} (or) {wwR/win Z*} 

 

The checking off symbol method is implemented in Turing machine by introducing a new track on the 

tape with symbols blank.  

It is also useful when length of the substrings must be compared. 

  {a^I b^i>=1} 

Or     

    {a^ib^jc^k/ i!=j, j!=k} in turing machine. 

  

Checking of symbols implemented by introducing new track on tape+ symbols blank of v. 

 

5 

2 

1 

5 

3 

5 

5 

3 

2 

5 

4 

5 

5 

4 

1 

5 

5 

1 

8 8 8 8 8 

2 2 2 2 2 

8 6 4 2 0 



Eg: consider a turing machine m=( Q, Σ, Γ, δ, q0,B, F ) which recognizes in the language. 

{wcw/ w in (a+b)*} let 

Q={{q,d}, q=q1,q2,…………q9 and d=a,bor B} 

The second component  of the state is used to store an input symbol. 

€={B,d}/d=a,b,or c} 

 

Shifting over: 

  Shifting all non blank symbols a finite number of cells to the right to left. The turing machine can 

return to the vacated cells and print symbols. 

 

Subroutines: 

* It is used for computer language which performs some task repeatedly. 

* A turing machine can simulate any type of subroutine found in any programming language . 

* A part of the turing machine can be used as subroutines. This subroutine can be called for any number of times 

in the main Turing machine programming. 

* Turing machine suboutine designed with a initial state ans a return stateand temporarily halts. 

* Then call is effected by entering the initial state for the subroutine and return is effected by the move from the 

return state. 

* To design a TM that “calls “ the subroutine a new set of states for the subroutine is made  and move from the 

return state is specified. 

 

5. Explain in detail the various types of Turing machine with neat sketch. (MAY’15) 

The basic model of the Turing Machine is equivalent to many other modified versions. They are  

1. Non deterministic Turing machine  

2. Two way infinite tape. 

3. Multi tape Turing machine 

4. Offline Turing machine  

5. Multi head Turing machine 

6. Multidimensional Turing machine 

7. Restricted Turing machine 

1. Non Deterministic Turing machine 

 It has a finite control and a single one way infinite tape. 

 For the given state and the tape symbol scanned by the tape head the TM has a finite number of 

possibilities for its next move. 

 Here the computation is like a tree whose branches correspond to different possibility. 

 If some branch of the computation leads to the accept state the machine accepts the input. 

2. Two way Infinite Turing machine 



 This is similar to the basic model. 

 But here the tape is infinite to the left as well as to the right. 

 Infinite number of blanks will be in both sides. 

 The initial ID is q0w 

3. Multi tape Turing machines 

 It has a finite control with many tapes say ‘k’ tape heads. 

 Each tape is too way infinite. 

 Initially the input will be on the first tape and the other tapes are kept blank. 

 Depending on the states of the PC and the symbol scanned by each of the tape heads the TM can  

i. Change the state  

ii. Print a new symbol on each of cells scanned by the tape heads. 

iii. Move each tape head independently [some to right, some to left and some other stationary]  

     

 

   

 

 

  

  

4. Offline Turing Machine 

 This is a multi tape TM whose input tape is read only. 

 The input is surrounded by some end markers. 

 The TM is allowed to move the input head in between the end markers. 

5. Multi head Turing machine 

 It has ‘k’ heads, k>1. 

 Depending on the state and the symbol scanned by each head, the heads move independently. 

6. Multidimensional Turing machine 

 It has a finite control and a tape consisting of k-dimensional arrangement of the cells infinite in all 

directions for some ‘k’. 

 Initially the input string is along one axis and the tap 

 Depending on the state and the symbol scanned the TM  

i. Changes state  

ii. Prints a new symbol. 

iii. Moves the tape head in one of the2k direction positively or negatively along the k-axes. 

7. Restricted Turing machine 

… β 0 0 1 0 1 0 β … 

… β β β β β Β β β … 

… β 0 1 0 β Β β β … 

FC 



i. Counter machines 

ii. Multi stack machines 

iii. Turing machine with semi infinite tapes. 

(i) Counter machine 

 It has the same structure as the multistack machine. 

 It has ability to store a finite number of the integers. (counters) 

 It can able to add or subtract one from the counter but it cannot tell two different nonzero 

counts from each other. 

(ii) Multistack machine 

 A k stack machine is a deterministic PDA with k stacks. 

 It has a Finite control which is in one of the state. 

 It has a finite stack alphabet which is used for all stacks. 

 A move of the multistack machine is based on 

a. The state of the finite control. 

b. The input symbol read. 

c. The top stack symbol on each stack. 

 

   

              Input Accept / Reject 

 

  

         

 

   

  A multi stack machine with 3 stacks 

           In one move the multi stack machine can  

(i) Change to a new state  

(ii) Replace the top symbol of each with a string or more stack symbols. 

(iii) Turing machine with semi infinite tapes 

 Here the tape is semi infinite that is, there are no dells to the left of the initial position of the 

tape head. 

 It can simulate one whether is infinite in both directions. 

 It accepts any regular language. 

Universal Turing machine [UTM] 

 

                                                           

 

 

 

 

 

 

 

 

 

 

 

 

Finite state 

control 



 It is a programmable computer. Since when it is given a program a description of another computer it 

makes itself as if it were that machine while processing the input. 

6. Explain the TMS as enumerations (UQ:NOV’07) 

Turing machine as enumerator: 

    

 

  A Turing machine with a printer . the language enumerated by E is all strings printed to the printer . 

strings can be repeated or in any order. 

  A language is turing machine recognizable iff some enumerator enumerates it. 

 

PROOF: 

If an enumerator E, enumerates a language A, then A is turing recognizable. We need to construct  M, the 

turing machine that recognize A, TM M works the following way: 

 M=” on input w” 

1. rune: every time that E outputs  a string , compare it with w. 

2. if  the outputof E matches w, accept else go to1. 

    Ie) if w=x, M accepts else go to 1. 

Clearly, M accepts those strings that appear on E’s list. 

If a language A  is turing recognizable, then some enumerator enumerates it. 

We need to show, if some TM recognizes A, then an enumerator E can be constructed  to enumerate A 

must be over some alphabet Σ.    Then A<=Σ*. 

Let  s1,s2,s3…………….. be aninfinite  list of all strings in Σ*.E=” ignore the input” 

 

1) for i=1,2,3 

a)run M for I steps on each input s1,s2,………………si. 

b)if M accepts any of these strings , print it. 

 

Eg: 

Run M for I steps , i 

i             String tested        Printer output 

1 S1  

2 S1,s2  

3 S1,s2,s3  



4 S1,s2,s3,s4 S2 

5 S1,s2,s3,s4,s5 S2,s5 

6 S1,s2,s3,s4,s5,s6 S2,s3 

7 S1,s2,s3,s4,s5,s6,s7 S5 

8 S1,s2,s3,s4,s5,s6,s7  

 

7. Discuss about Multidimensional and Non-Deterministic TM in detail (UQ:NOV’09) 

MULTIDIMENSIONAL TURING MACHINE 

A multidimensional Turing Machine has a finite contol and the tape consist of “K-dimensional “ array of 

cells infinite in all 2k directions, for some fixed “K”. Depending on the state and the symbols scanned, the devices 

change the state,  prints new symbols and moves its tape head in one 2kdirection,either positively or negatively, 

along one of the K axes. Initially the input is along one axis, and the head is at the left hand of the input. 

At anytime, only a finite number of rows on any dimension contain non_blank symbols. 

 

                         Figure: a Two dimensional Tape 

            

**BBBa1BBB*BBa2a3a4a5B*a6a7a8a9Ba10B*Ba11a12a13Ba14a15*BBa16a17BBB 

                          Figure: b one dimensional Tape 

 

Figure: a represents a two dimensional Turing machine. The rectangle can be represented row by row on a single 

tape which makes one dimensional simulation. The *’s represents the rows. 

 

NON-DETERMINISTIC TURING MACHINE: 

 A non deterministic turing machine  is advice with the finite control and a single one-way infinite tape. 

 For the given state and a tape head symbol scanned by the tape head. The machine has a finite number of 

choices for the next moves. 

 For δ(q,r) there is a set of triples like 

{(q1,Y1,D1),(q2,Y2,D2),……(qk,Yk,Dk)} 

 

Where k is any integer 



M accepts an input ‘w’ if there is any sequence of  choices of move that leads from the initial ID with the w 

as input to an ID with an accepting state. 

                     

8. Give the properties of recursive and recursively enumerable languages (UQ:NOV’09) 

Recursive and Recursively Enumerable Languages 

Result 1: 

If a language is recursive then it is recursive enumerable. 

Result 2: Recursive languages are closed under complementation. 

 i.e. If L is recursive then its complement is recursive  

To prove: The complement of L say L’ is recursive 

Proof: Let L be a recursive language. Then there is a Turing Machine M that accepts L. 

 

. 

 Construct a Turing machine M’ from M such that : M enters a final state on the input W in L, then M’ 

halts in a non accepting state. (Without accepting) 

 If M halts without accepting then M’ accepts the input ‘w’ in L’. Hence M’ is an algorithm and is 

given as below. 

 

 

       W 

                Start 

 

 

Here ‘Yes’ corresponds to ‘accept’ and ‘No’ corresponds to ‘Reject’. The language of M’ is L (M’) 

and is the complement of L. Hence the proof. 

 

Result 3: The union of two recursive language is recursive. 

To prove: L1U L2 is recursive. 

Proof: Let L1 and L2 two recursive languages. Then there exists Turing machine M1 and M2 such that M1 and 

M2 accept L1 and L2 respectively. 

Construct a Turing machine M that accepts L1U L2 as below: 

 First simulate M on M1. 

  If M1 accepts inputs w in L1U L2 then M accepts. 

 If mot, M simulates M2 and accepts iff M2 accepts. 

 

M 
Yes 

No No 

Yes 

 



Since M1 and M2 are algorithms (used to say Yes or No), M1 and M2 will not hang, they will halt (in accepting 

state or non accepting state). M will surely halt (It will not hang).  

 Hence M is an algorithm. M is given below: 

                         W 

                      Start   

 

 

Now the language of M is L1U L2. Hence the result. 

Result 4: The union of two recursively enumerable languages enumerable. 

Proof: Let L and L2 be two recursively enumerable languages. 

 There are Turing machine M1 and M2 such that M1 accepts L1 and M2 accepts L2. Construct a Turing 

machine M that accepts L1U L2 as below:  

 The above procedure will not work here. Since M1 may not halt for some input W in L1. Hence M is 

constructed as below: 

 

 

 

 

 

 

Now the language of M is L1U L2 . Hence L1U L2 is recursive enumerable. 

Result 5: If a language L and its complement L’ are both recursively enumerable, then L ( and hence L’ by 

result 2 ) is recursive. 

To prove: L is recursive 

Proof: Let a language L and its complement L’ are recursively enumerable. Then there are Turing machine 

M1 and M2 that accepts L and L’ respectively. 

 Construct a Turing machine M that accepts L and say either ‘Yes’ or ‘No’ as below: M is connected in 

such a way that M simulate M1 and M2 simultaneously. 

 

 If M1 accepts then M will accept it. 

 

M1 

M2 

Yes 

No 

No 

Start 

M1 

M2 

Yes 

Yes 

Yes 



 If M2 accepts then M will reject it. 

Hence M will always say either ‘yes’ or ‘no’ and not both. 

Hence M is an algorithm that accepts that accepts L. Hence L is recursive. {Proved Ans (1) } Hence L’ is 

recursive. {Ans (2)} 

M is shown below: 

  

        W 

     Start 

 

 

Hence we have If L and L’ are a pair of complementary languages then either  

i. Both L and L’ are recursive  (or) 

ii. Neither L nor L’ are recursively enumerable. 

9. Explain the Universal TM 

UNIVERSL TURING MACHINE: 

Turing machine that can be performed to solve any problem that can be solved by any Turing machine of any 

type is universal Turing machine. 

INPUT TO U: 

 The encoding ‘M’ of TM, M and encoding of w of string w€∑*. 

BEHAVIOUR:  

 U halts on input ‘M’, ‘w, if only if M halts on input w encoding of Turing machine and Input strings: 

Let M={Q,{0,1},{0,1,B},ᵟ,q1,{q2}} 

∑={0,1} 

┌={0.,1,B} 

Q={q1,q2,…q4} 

 q1=start state 

q2=final state 

 the universal language Lu consists of set of binary string in the form of pairs(M, W) 

where 

M-> Turing machine encoded in binary 

W-> its binary input string  

GENERIC MOVE: 

1. Symbols 0,1,B => X1,X2,X3 respectively 

M1 

M2 

Yes 

Yes 

Yes 

No 



0=X1 initial state  

1=X2 

0=X3 final state 

 Such that w€Lu(1,l) 

Lu=L(u) 

Where (M, W)<=L(u) 

 Since the input to u is binary string u is in fact some Lj in the form of binary string.TM from the 

table developed in the construction of language. The universal TM 

Describes the motion of the universal computability of the computer. 

 

10. Explain variation of TM. 

  Write about  Multitape TM ( Refer above answer) 

 It consist of n tapes. 

It has 5 tuples.  

T=( Q, Σ, Γ, δ, q0,B, F ) 

 Δ : Q * (Γ U {∆}n} 

Q U { ha. hr } * (Γ U {∆}n * (R,L,S)n 

(q1x1a1y1,x2a2y2,……xnanyn) 

(q0, ∆x1,………… ∆xn) 

 

11. Explain Primitive Recursive Functions. 

 Primitive Recursive Function over N and Σ 

1. Initial Function. 

Zero function Z=Z(x)=0 

Successor function S=S(x)=x+1 

Projection function Un=Un(X1,…..Xn)=xi 

Nil(x)=A 

Cons a(x)=ax 

Cons b(x)=bx 

A=abab 

Nil(abab)=A 

Cons a(abab)=aabab 

Cons b(abab)=babab 

Theorem: If f1,f2,….fk are partial function of n and g is Partial Function of k then 

g(f1(x1,x2,….xn),f2(x1,x2,….xn)……..fk(x1,x2…..xn)) 

Poof: 

Let f1(x,y)=x+y 



f2(x,y)=2x 

f3(x,y)=xy 

g(x,y,x)=x+y+z 

g(f1(x,y),f2(x,y),f3(x,y)) =g(x=y,2x,2y) 

    = x+y+2x+xy 

    =3x+y+xy 

H(x,y)    = 3x+y+xy 

Partial recursive Function over N 

 A total function f over N is called primitive recursive. 

i. If it is any one of three initial function 

ii. If it can be obtained by applying composition and recursion a finite number of times to set of 

initial funxtion. 

EXAMPLE: 

Show that function f1(x,y)=x+y is primitive recursive 

Solution 

 F1 is function with 2 variables  

Consider one variable x. 

F1(x,0)=x+0=x 

G(x)=x=U11(x) 

f1(x,y+1)=x+(y+1) 

=(x+y)+1 

=f1(x,y)+1 

H(x,y,f1(x,y))=f1(x,y)+1=S(f1(s,y)) 

=S(U33(x,y,f1(x1,y1)) 

 

Note: f(x1,x2,….xn,0)=g(x1,x2,…..xn) 

f(x1,…..xn,y+1)=h(x1,x2…..xn,yn) f(x1,x2…xn,y+1) 

Primitive Function: 

a. Predecessor function: 

P(x)=x-1 if x is not equal to 0 

P(x)=0 if x=1 

b. Proper Subtraction function: 

x-y=x-y if x is greater than equal to y 

c. Absolute value function 

|x|=x if x>=0 

|x|=-x if x<0 

d. Min(x,y) 



Used to find minimum of x and y 

Primitive function over {a,b} 

Σ={a,b}  w=ab 

f(A)=W 

f(ax)=h1(a,f(x)) 

f(bx)=h2(b,f(x)) 

where h1 and h2 are variables. 

Example: 

a. Constant function a and b 

a(x)=a 

        b(x)=b 

a(x)=consa(nil(x)) 

 a is pointing initial function so it is primitive recursive function 

b. Identity function 

id(A)=A 

id(ax1)=cons a(x1) 

id(bx2)=cons b(x2) 

c. Concatenation 

Concat(x1,x2)=x1,x2 

d. Transpose 

trans(x)=xT 

trans(A)=A 

trans(ax)=concat(trans(x),a(x)) 

trans(bx)=concat(trans(x),b(x)) 

e. Head Function (i.e head(a1,a2,….an)=a) 

head(A)=a 

head(ax)=ax 

head(bx)=bx 

f. Tail function (i.e. tail(a1,a2,….an)=a) 

tail(A)=A 

tail(ax)=id(x) 

tail(bx)id(x) 

g. Conditional function x1≠A then x2 else x3 

Cond(x1,x2,x3)=if x1 ≠ A then x2 else x3 

 

 

 



12. Explain Recursive function. 

 A function is recursive if it can be obtained from initial function by a finite number of application of 

composition, recursion and minimization over regular function. 

g(x,y)=2y-x 

2y-x where x is evev it will be achieved  

And x is equal to x/2 . So it is called partial function. 

Ackermann’s Function: 

A(0,y)=y+1 

A(x+1,0)=A(x,1) 

A(x+1,y+1)=A(x,A(x+1),y) 

Example: 

1. A(1,1) 

A(1,1)=A(0+1,0+0) 

 =A(0,A(1,0)) 

 =A(0,2) 

 =3 

2. A(1,2) 

A(1,2) =A(0+1,1+1) 

  =A(0,A(1,1)) 

  =A(0,3) 

  =4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Pondicherry University Questions 

2 Marks 

1. What is a turning machine? (UQ:APR/MAY’12, APR’16) (Qn.No.1) 

2. What is off-line Turing Machine? What is a multidimensional TM? (UQ:APR/MAY’12)  (Qn.No.20) 

3. What is non deterministic TM (UQ:APR’13) (Qn.No.21) 

4. What are the required fields of an instantaneous description or configuration of a TM.  Or Define the basic 

guidelines for designing a TM (UQ:NOV’11) (Qn.No.22) 

5. State the powers of single tape and multitape TM (UQ:NOV’12) ) (Qn.No.23) 

6. Define partial recursive fuction and total recursive function. (UQ:NOV’12) ) (Qn.No.24) 

7. What is off-line Turing Machine? (UQ:NOV’14,MAY’15) (Qn.No.25) 

8. What is the instantaneous description OF A TM (MAY’15)  (Qn.No.8) 

9. What are the techniques of tuning machine construction? (NOV’15)  (Qn.No.9) 

10. What is primitive recursive function ?(APR’16) (Qn.No. 41) 

 

11 Marks 

1. Show that the class of Turing Machines with stay option is equivalent to the class of standard  

Turing machine  (UQ:MAY’08) (Qn.No.1) 

2. Explain Turing machine as a computer of integer functions (NOV’07,NOV’15) (Qn.No.2) 

3. Give the technique for TM construction in detail (UQ:NOV’07,NOV’09,NOV’14,MAY’15) (Qn.No.3) 

4. Explain the TMS as enumerations (UQ:NOV’07) (Qn.No.4) 

5. Explain TM model in detail  (UQ:NOV’09)  (Qn.No.5) 

6. Discuss about Multidimensional and Non-Deterministic TM in detail (UQ:NOV’09) 

 (Qn.No.6) 

7. Give  the properties of recursive and recursively enumerable languages (UQ:NOV’09 APR’16)  

 (Qn.No.8) 

       8. Explain in detail the various types of Turing machine with neat sketch. (MAY’15 ,APR’16) (Qn.No.4) 

 

 

 

 

                   

 



UNIT V 

 

Introduction to Computational Complexity: Time and Space complexity of TMs –Complexity classes – 

Introduction to NP-Hardness and NP-Completeness 

 

2 Marks 

1.What is meant by Space complexity? (NOV’14) 

It is a Storage representation of language. . Turning machine cannot rewrite on the input and that only the 

length of the storage tapes used for counting. The language recognized by M is said to be of space complexity. 

 

2.What is meant by space bounded turing machine? 

M scans  at most S(n) cells on any storage tapes then M is said to be an S(n). Which represents “ Space 

complexity S(n) or Space bounded Turing machine”. 

 

3.What is meant by semi finite storage? 

Turing machine M can be considered as a machine which contains input tape with “end  markers” K can be 

referred as semi-finite storage tapes. 

 

4.What is meant by marker? 

It denotes the end of the edge. 

 

5.Give the diagram of space complexity? 

 

Fig) Multiple TM + Read Only Input 

 

6.What is meant by time complexity of TM? Nov’11,May ‘2012, Dec 2013 

The language recognized by M is said to be T(n)- Time bounded TM\ Time complexity T(n). The turning 

machine has K , two-way infinite tapes, one of which contains the input tape may be written upon. 

 

 



7.Differentiate between space and time complexity? (NOV’15) 

SPACE  COMPLEXITY TIME COMPLEXITY 

In space complexity we can use more than one 

tape at a time. 

But in Time complexity, possible to use only one 

at a time 

In space complexity, one way  infinite tapes are 

available. 

In time complexity, two-way infinite tapes are 

available. 

 

8.What are complexity classes? What are they? 

All the families of language are called complexity classes. They are 

 DSPACE (S(n)) 

 NSPACE (S(n)) 

 DTIME (T(n)) 

 NTIME (T(n)) 

 

9.What is NP complete problem? 

It includes many problems that are nature and examine seriously to get efficient result. This 

problem will have polynomial solutions, it has 2 types 

 1. NP 

 2. Satisfiability problem. 

    

10. What is the satisfiability problem? APR 2014 

  It is used for Boolean expressions which are composed of variables, parenthesis and 

operators. The operators have logical and , logical or and negation. 

The order is ך,^,v. 

                     variables are referred as 0  and 1. 

       

11. What are the example  for NP complete problems? 

 1.Vertex cover problem. 

 2.Hamilton circuit problem. 

 3.Linear integer programming. 

     

  12. What is the vertex cover problem? 

 Three-CNF, Satisfiability is a convenient problem is reduced to another problem in order to show in 

complete problem. 

  Another NP - complete problem is easy to reduce other problem is the vertex cover problem. 

 Let G={V,E} - undirected graph with set of vertices and edges. 



 A subset A  V said to be a vertex cover of  G if for every edge (V,W) in E. 

  It represents in terms of language Lvc, (Lvc-vertex cover problem). 

        

 13. Define Hamilton circuit problem? 

 Parallel to directed graph. 

  represented in terms of language Lh and Ldh by encoding graphs in vertex cover problem. 

 

14.What is DSPACE (S(n))? 

Family of space complexity S(n) is denoted by DSPACE (S(n)). DSPACE (n) log2n 

 

15.What is NSPACE (S(n)? 

Non-Deterministic space complexity S(n) is called as NSPACE (S(n)).  NSPACE (n)log2nn1/2 

 

16.What is DTIME (T(n))? 

The family of time complexity T(n) is denoted as DTIME (T(n)). DTIME (n)  nn2 

 

17.What is NTIME(T(n))? 

Non-Deterministic time complexity T(n) is denoted as NTIME (T(n)). NTIME (n)n. 

 

18.What are the Conditions of satisfiability problem? 

E1  E2  E1٨E2 

1  1  1 

E1  E2  E1٧E2 

0  1  1 

E1  ךE1 

1  0 

 

19.what is the vertex cover problem? 

  Three-CNF, Satisfiability is a convenient problem is reduced to another problem in order to show in 

complete problem. 

  Another NP - complete problem is easy to reduce other problem is the vertex cover problem. 

 Let G={V,E} - undirected graph with set of vertices and edges. 

 A subset A  V said to be a vertex cover of  G if for every edge (V,W) in E. 

  It represents in terms of language Lvc, (Lvc-vertex cover problem). 

 

 



20.Define NP  Hardness. Nov’11 

NP-hard (Non-deterministic Polynomial-time hard), in computational complexity theory, is a class of 

problems that are, informally, "at least as hard as the hardest problems in NP". More precisely, a problem H is 

NP-hard when every problem L in NP can be reduced in polynomial time to H.As a consequence, finding a 

polynomial algorithm to solve any NP-hard problem would give polynomial algorithms for all the problems in 

NP, which is unlikely as many of them are considered as hard.[ 

 

21. Specify any two complexity classes May ‘2012 

Example for a complexity class , the class NP is the set of decision problems whose solutions can be 

determined by a non-deterministic Turing machine in polynomial time, while the class PSPACE is the set of 

decision problems that can be solved by a deterministic Turing machine in polynomial space. 

 

22. What is NP completeness? Nov’13,MAY'15 

In computational complexity theory, a decision problem is NP-complete when it is both in NP and NP-

hard. The set of NP-complete problems is often denoted by NP-C or NPC. The abbreviation NP refers to 

"nondeterministic polynomial time". 

 

23.What are P classes APR’13 

 Class P: The Turing machine restricted to a number of moves bounded by a  fixed polynomial in n, p(n), 

where n = |x|, n is the length of the   input string.  The machine must accept all strings in a language in   

polynomial time in order to be in P.  P is a set of languages, also called a class of languages. 

 

24. State Travelling Salesperson problem? APR’13. 

Given a set of cities and the distance between each possible pair, the Travelling Salesman Problem is to 

find the best possible way of ‘visiting all the cities exactly once  and returning to the starting point 

 

25.What is DFA With NFA APR’14 

Deterministic vs nondeterministic 

For every nondeterministic automata, there is an equivalent deterministic automata 

Finite acceptors are equivalent iff they both accept the same language 

L(M1) = L(M2) 

In DFA, label resultant state as a set of states 

{q1, q2, q3,…} 

For a set of |Q| states, there are exactly 2Q subsets 

Finite number of states 

 

 

http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Polynomial_time
http://en.wikipedia.org/wiki/NP-hard#cite_note-2
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/Non-deterministic_Turing_machine
http://en.wikipedia.org/wiki/Polynomial_time
http://en.wikipedia.org/wiki/PSPACE
http://en.wikipedia.org/wiki/Deterministic_Turing_machine
http://en.wikipedia.org/wiki/Polynomial_space


26.What are NP classes? ( APR’14,NOV’15) 

Problems solvable in time which increases faster than polynomial in N, but once the solution is obtained , 

it can be verified in time polynomial in N 

 

27.When will you call an expression is satisfiable? Dec 2013 

Does there exist a truth assignment making the function true. 

 



 

 

11 Marks 

1.Discuss the Time and Space complexity of TMs    APR’11, NOV’2011 

SPACE COMPLEXITY 

 Storage representation of language. 

  Consider the off line TM of fig 1(a). M has a read only input tape . Here M can be considered as a machine 

which contains input tape with “end  markers” K can be referred as semi-finite storage tapes. 

 M scans  at most S(n) cells on any storage tapes then M is said to be an S(n). Which represents “ Space 

complexity S(n) or Space bounded Turing machine”? 

 Turning machine cannot rewrite on the input and that only the length of the storage tapes used for 

counting. The language recognized by M is said to be of space complexity. 

 

 

Fig 1(a): Multiple TM + Read Only Input 

First, we prove the existence of a space hierarchy. For this we will need the following lemma. 

Lemma 3.4 For any function s : IN ! IN, any O(s(n)) space bounded multi-tape Turing machine can be simulated by a 

single-tape Turing machine with O(s(n)) space. 

Proof. Let M = (Q;§; ¡; ±; q0; F) be an arbitrary k-tape Turing machine. Our aim will be to simulate M by a single-

tape Turing machine M0 = (Q0;§0; ¡0; ±0; q00; F0) that uses (asymptotically) the same amount of space. To 

achieve this, we choose a tape alphabet of ¡0 = (¡[f"g)2k (\"" is a symbol that is not in ¡). This is possible, because k 

is a constant. The alphabet allows us to view the tape of M0 as consisting of 2k tracks. Let these tracks be 

numbered from 1 to 2k. The purpose of the odd tracks is to store the contents of the tapes of M, and the purpose 

of the even tracks is to store the positions of the heads of M: 

track 1 contents of tape 1 

track 2 " (position of head 1) 

track 3 contents of tape 2 

track 4 " (position of head 2) 

: : : : : : 



Let Q0 = Q £ ¡k. This set of states allows M0 to store the current state of M plus the k symbols that are read by the 

heads of M. In this case, a single step of M can be simulated by M0 in two phases. In the ¯rst phase, the head of M0 

searches for the positions of the heads of M and stores the symbols that are read by the heads in its state. In the 

second phase, M replaces the symbols and moves the head pointers according to the transition function ± and 

stores in its state the next state of M. Since the space required by M0 is obviously bounded by the space required 

by M, the lemma follows. Ut Given a function s : IN ! IN, the language Ls is de¯ned as Ls = fhMiw j M is a single-tape 

TM that started with hMiw uses at most s(jhMiwj) cellsg : 

 

TIME COMPLEXITY 

 Consider the multiple tapes TM of fig 1(b). The turning machine has K , two-way infinite tapes, one of 

which contains the input tape may be written upon. 

  N-input word of length \ total no of strings. 

  M-makes at most T(n) moves before halting. 

  The language recognized by M is said to be T(n)- Time bounded TM\ Time complexity T(n). 

 The difference between 2 concepts is , in space complexity we can use more than one tape at a time. But 

in Time complexity, possible to use only one at a time. 

 

Fig 1(b): Multiple tape TM 

 Gaps and Speed-ups 

First, we show that in certain situations there can be large gaps between complexity classes. Theorem 3.1 For every 

computable function f : IN ! IN there are monotonically increasing functions s; t : IN ! IN with 

DSPACE(s(n)) = DSPACE(f(s(n)) and 

DTIME(t(n)) = DTIME(f(t(n))) : 

The theorem implies that there are functions t; s with 

DSPACE(s(n)) = DSPACE(22s(n)) and 

DTIME(t(n)) = DTIME(22t(n)) 

At first glance, this seems to be quite surprising. However, it has been shown, for instance, that DSPACE(o(log log 

n)) = DSPACE(1), which explains why such gaps can occur. We will see that for \well behaved" functions s and 

t it is not possible to create such gaps.Another phenomenon is that it is quite easy to achieve constant 

improvements in space or time. 



 

Theorem 3.2 If L can be decided by an s(n) space-bounded Turing machine, then L can be also decided by an s(n)=2 

space-bounded Turing machine. 

Proof. Let M be any s(n) space-bounded Turing machine that decides L, and let ¡ be the tape alphabet of M. In order 

to obtain an s(n)=2 space-bounded Turing machine for L, simply extend the alphabet by ¡£¡. This will allow to 

encode two cells of M in one cell and therefore to reduce the space requirement by a factor of two. Ut 

 

Theorem 3.3 If L can be decided by a t(n) time-bounded Turing machine, then L can be also decided by an n + t(n)=2 

time-bounded Turing machine.  

Proof. The proof will be an assignment. Ut Next we will show that there are hierarchies of complexity classes. 

Recall that we defined the complexity classes over multi-tape Turing machines. 

 

2.Discuss the Complexity classes of Turning machines?  (NOV’15) 

Family of space complexity S(n) is denoted by DSPACE (S(n)). 

Non-Deterministic space complexity S(n) is called as NSPACE (S(n)).  

The family of time complexity T(n) is denoted as DTIME (T(n)). 

Non-Deterministic time complexity T(n) is denoted as NTIME (T(n)). 

All the families of language are called complexity classes. 

  DTIME (n)  nn2 

  DSPACE (n) log2n 

  NTIME (n)n 

  NSPACE (n)log2nn1/2 

THEOREM 

TAPE COMPRESSION 

STATEMAENT 

IF L is accepted by an S(n), storage tape = K, for any C>0, L is accepted by C.S(n) 

PROOF 

Let M1 be an S(n) tape bounded off-line turning machine accepting L.  

M2 new turning machine which simulates M1. 

rconstants 

M2keeps track of which of the cells of M1 scanned. 

Let r r, C≥2. 

M2 can simulate M, using no more than (S(n)/r) cells. 

If S(n)≥r, this number is no more than C∙S(n) 

If S(n)<r, then m2 can store in one cell, the contents of any tapes. 

 

 



3.What is Hardness   in  NP?Explain  NOV 2013,NOV’14,MAY;15 

Let NTIME[pk(n)] be the nondeterministic time-complexity class with pk(n) = nk. The class NP is defined 

as  NP = k_0  NTIME[pk(n)]  Many problems of practical importance, which have been extensively investigated  

by researchers and for which no deterministic polynomial-time algorithm has been found, belong to NP. 

 

Example satisfiability is a generalization of 2-satisfiability introduced in Example 4.4 where each clause Ci may 

include any number of literals rather than exactly two.A nondeterministic algorithm for satisfiability can be 

obtained by guessing any of the 2n assignments of values to the n variables of f and verifying whether it satisfies 

f:begin {input: f} guess t in set of assignments of values to the n variables of f;if t satisfies f then accept else reject; 

end.  Since both the guessing and the checking of the ith assignment can be done in polynomial time, it turns out 

that such a nondeterministic algorithm is a polynomial-time one 

 

Example 5.2 3-colorability is a generalization of 2-colorability introduced in where the colours available are 

three instead of two.1A nondeterministic algorithm is said to be polynomial-time if the required number of steps 

is O[nk] with k constant.A polynomial-time nondeterministic algorithm for 3-colorability can be obtained by 

guessing any of the 3n colourings of a graph of n nodes and verifying whether it has the required property. 

 

Example traveling salesman: given a complete weighted graph G and a natural number k, does a cycle exist 

passing through all nodes of G such that the sum of the weights associated with the edges of the cycle is, at most, 

k?  

A polynomial-time nondeterministic algorithm for traveling salesman can be obtained by guessing any of the n! 

permutations of n nodes and verifying whether it corresponds to a cycle whose cost is, at most, k. The richness of 

the class NP is justified by the following theorem. This intuitively states that a problem belongs to this class if and 

only if the possible solutions are words of a length polynomially related to the length of the instance and it is 

polynomial-time decidable whether a possible solution is a feasible one. (Note that most of the combinatorial 

problems we usually encounter share this property.) 

 

Theorem  

A language L belongs to NP if and only if a language Lcheck 2 P and a polynomial p exist such that   L = {x : 9y[hx, 

yi 2 Lcheck ^ |y| _ p(|x|)]}.  

Proof. If L = {x : 9y[hx, yi 2 Lcheck ^ |y| _ p(|x|)]} where Lcheck 2 P and p is a polynomial, then the following 

nondeterministic algorithm decides L in polynomial time: 

begin {input: x} guess y in set of words of length, at most, p(|x|); 

if hx, yi 2 Lcheck then accept else reject; 

end. 

Conversely, let L be a language in NP. Then a nondeterministic Turing machine 



NT exists which decides L in polynomial time. It is easy to verify that, for any x, each computation path of NT(x) 

can be encoded into a word of a length of,at most, p(|x|) where p is a polynomial (see Problem 2.7). The language 

Lcheck is then defined as follows. hx, yi 2 Lcheck if and only if y encodes an accepting computation path of NT(x). 

It is clear that Lcheck 2 P and that, for any x, x 2 L $ 9y[|y| _ p(|x|) ^ hx, yi 2 Lcheck]. This concludes the proof. 2 

Our aim is to identify within NP problems that are inherently more complex.For this, we need the basic concept 

of an NP-complete problem. 

 

4.Explain NP Complete Problems  APR’11, APR’13,MAY’15,NOV’15  (or) 

Neat diagram about vertex cover in NP Completeness problem NOV’2011 ,NOV’14 

It includes many problems that are nature and examine seriously to get efficient result. This problem will 

have polynomial solutions, it has 2 types 

 1. NP 

 2. Satisfiability problem. 

Satisfiability problem 

 It is used for Boolean expressions which are composed of variables, parenthesis and operators. 

The operators have logical and , logical or and negation. 

The order is ך,^,v. 

 variables are referred as 0  and 1. 

Conditions 

E1  E2  E1٨E2 

1  1  1 

E1  E2  E1٧E2 

0  1  1 

E1  ךE1 

1  0 

 An expression is satisfied if there are some assignments of to the variables that give the expression value 

is 1. 

 Satisfiable determines given a Boolean expression is giving a value or not.  

 It represents Satisfiability problem has a language L sat as follows. 

 Variables of some expressions x1,x2.…………xm code xi as the symbol x followed by I, so alphabet Lsat is { 

^,v, ך,(),x,0,1}. 

  A Boolean expression is said to be conjunctive normal form (CNF) . It is said to be E1^E2^.………^Ek and 

each E1- clause of form αi1 v αi2  

Eg for NP complete problems: 

 1.Vertex cover problem. 

 2.Hamilton circuit problem. 

 3.Linear integer programming. 



VERTEX COVER PROBLEMS 

DEFINITION 

 Three-CNF, Satisfiability is a convenient problem is reduced to another problem in order to show in 

complete problem. 

  Another NP - complete problem is easy to reduce other problem is the vertex cover problem. 

 Let G={V,E} - undirected graph with set of vertices and edges. 

 A subset A  V said to be a vertex cover of  G if for every edge (V,W) in E. 

  It represents in terms of language Lvc, (Lvc-vertex cover problem). 

 Contains strings of the form: K in binary followed by a marker, followed by list of vertices. 

THEOREM 

STATEMENT 

 Lvc , the vertex cover problem is NP complete. 

PROOF 

 To show Lvc is NP , guess a subset of K vertices and check that it covers all edges. 

  Let F=F1^F2^……..^Fq be an expression in 3-CNF where each Fi- clause of form (αi1 v αi2  v αi3 ) each  αij  

being a literal. 

 We construct unidirectional graph. G=(V,E) where vertices are pairs of integer (i,j,1<=i<=q,1<=j<=3) 

Edge of graph is : 

1.) [(i,j),(i,k)] , j≠k 

2.) [(i,j),(k,l)] , if αij  =  ך αk1 

 Each pair of vertices corresponding to same clause is connected by an edge in the first rule. 

  Each pair of vertices corresponding to literal and its complement connected by an edge in rule 2.  

 

 G has been constructed so that it has a vertex cover of size (2q,q) vertices from 0 to n iff F is satisfiable.  

 Each clause expression  & must have a literal whose value is 1. 

  Select one such literal for each clause delete the q vertices corresponding to those literals from vertex V. 

some (i,j) will be missing so that we should maintain 2 counters to consider all pair of literals . Thus we 

conclude that Lvc is the Np complete problem. 

 

HAMILTON CIRCUIT PROBLEM 

Definition 

 Parallel to directed graph. 

  represented interms of language Lh and Ldh by encoding graphs in vertex cover problem. 



Theorem: 

Statement: 

 Ld Directed Hamilton circuit problem NP- complete . 

Proof: 

 To show Ldh in NP, guess a list of arcs and verify that the arcs form a cycle through all vertices. To 

show Ldh is NP- complete , reduce CNF Satisfiability problem to Ldh. Let F=F1 ^ F2 ^……^Fq be an 

expression . 

 Fi clause of form (αi1 V αi2 Vαi3) 

 α ij literal 

 Let x1,x2…..xn be the variable of F we construct a graph composed of two types of subgraphs. For 

each  variable xi’ there is a subgraph of the form shown in figure. 

 

                

 

Case (i) 

The next 2 vertices on the circuit are Sj and Tj. Then the circuit must continue with Wj or Vj , Uj is 

inaccessible. Thus in this case it leaves at Uj. 

Case(ii) 

The next 2 vertices on the circuit Sj and Vj. If the circuit doesnot go to Uj then Vj will be inaccessible. 

Case(iii) 

The circuit goes directly to Uj. If it goes to Wj. The circuit cannot include TJ, because it is successor and it 

is already used, So again it must leave by Vj. 

 

INTRGER LINEAR PROGRAMMING 

Theorem 

Statement 

 Integer linear programming in NP-complete. 

Proof 



We begin by guessing the sign’s of xi’s and adding n constraints xi≤ 0 depending on the sign guessed.  

Then guess a row I and a constant Ci in the range bi≤ci<bi+α such that in some solution xo , we have aix0=Ci.  

We have to recorder the guessed C1,C2……Ck such that  

1) Bi ≤ ci <bi + (αq)2q+1  

2) Ax ≥ b  has non negative integer  

iff  aiX = Ci  ,  1 ≤ i ≤ k , 

  aiX ≥ bi ,  k ≤ i ≤ m. 

 Let Akfirst rows of A. 

 Cvector (C1,C2,….Ck)     

Case(i) 

 The rank of Ak<n an integer vector Z , Z ≠ 0  magnitude greater than            (αq)2q such that  

 AkZ = 0  position value. 

 Z integer matrix 

 A11value is 0 

Therefore if AXX0 = C it follows Ak(Xo+dz) = C for any integer d. 

Case(ii) 

The rank of Ak is in n, unique X satisfying AkX=C. the non-deterministic process of guessing Ci’s repeats 

almost n times, follows any number of times. 

Best caselog2 α 

 Ciconstants 

 diseries of integers 

 Amatrix 

 α powers 

 Avg casen log n 

 Worst casen2 

 

6. Discuss on restricted satisfiability problem  NOV’12 (or)Discuss Cook’s problem    APR’13 

Cook has shown that 3-SAT, the Boolean satisfiability problem restricted to instances with exactly three 

variables per clause, is NP-complete. This is a tightest possible restriction on the number of variables in a clause 

because as Even et al. demonstrate, 2-SAT is in P. Horowitz and Sahni point up the importance of finding the 

strongest possible restrictions under which a problem remains NP complete. 

First, this can help clarify the interesting boundary between problems known to be in P and those that 

are not. Second, it can make it easier to establish the NP-completeness of new problems by allowing easier 

transformations. To prove the Euclidean travelling salesman problem NP-hard, Papadimitriou  first reduces 3-

SAT to 3-SAT where each variable appears in at most five clauses. 

The question arises, are any further reductions in this direction possible? In this note we show that 3-SAT 

remains NP-complete even when each variable appears at most four times.  



Let r,s-SAT denote the class of instances with exactly r variables per clause and at most s occurrences per 

variable. We prove the 3,4-SAT result to be the strongest possible and show that 3,3-SAT is in fact trivial. In 

addition we show that the Boolean satisfiability problem is solvable in linear time if no variable appears more 

than twice, regardless of the number of variables per clause.  

All Boolean expressions are taken to be in conjunctive normal form with no repeated variables in a 

clause. 

2. The reduction 

Start with any 3-SAT instance. For each variable x which appears in more than three clauses (by ‘appears’ 

we mean that it or its complement is in the clause)perform the following procedure: Suppose x appears in k 

clauses. Create k new variables x ,, . . . . xk and replace the ith occurrence of x with xi, i = 1, . . . , k. Append the 

clause {x,vx~+,} for i=l,...,k-1 and the clause {Xkvn,}. 

In the new instance, the clause {XiVZ;+l} implies that if xi is false, xi+, must be false as well. The cyclic 

structure of the clauses therefore forces the xi to be either all true or all false, so the new instance is satisfiable if 

the original one is. Moreover the transformation requires polynomial time. We have proved: 

 

Theorem 2.1. Boolean satisfiability is NP-complete when restricted to instances with 2 or 3 variables per clause 

and at most 3 occurrences per variable.  

An amusing corollary is: 

Corollary 2.2. For any sr3, either  

(i) every Boolean expression with exactly 3 variables per clause and no more than s occurrences per 

variable, is satisfiable, or 

(ii) 3,s-SAT is NP-complete. 

Proof. Suppose (i) does not hold, so an unsatisfiable expression in the variables. x9 _Y, 2, . . . exists. 

Without loss of generality, the first clause of the expression includes an ‘x’, uncomplemented. Let B denote the 

rest of the expression; clearly we may assume that B is satisfiable. B now has the properties, that x appears at 

most s- 1 times, and that it can only be satisfied when x is false. 

Now consider an arbitrary 3-SAT instance and perform the procedure in the construction from Theorem 

2.1. For the ith clause, (aV6) containing two variables,append an ith copy of B using variables Xi, y. I7 Z, ,,“‘, and 

change the clause to (aV6vx;). So if (i) is false, then (ii) is true. Note that (i) and (ii) cannot both be true unless 

P=NP. 

Theorem 2.3. 3,4-St\T is NP-complete. 

Proof. The only thing lacking in the construction from Theorem 2.1 is that the clauses (XiVZi+,) contain 

only two variables. For each such clause, introduce a new variable _Yi, so that the clause becomes (xiVZj+, VJ~). 

Now note that we can force each yj to be true by means of the clauses below in which yi appears only three times. 

The construction is, we suspect, as small as possible. The first three clauses require y; to be true if any of the 

pairs aj, bj are both false; the other ten clauses force this to happen: 

{YVajVbj}, i= 1, . . . . 3, 



{djVDjV6j), {djVOjVbj), {djVajV6"}, j=1,...,3, 

G%V&V41. 

 

7.Discuss polynomial time and reduction NOV’12 

Reductions Polynomial-Time Reductions Classify Problems According to Computational Requirements 

Q. Which problems will we be able to solve in practice? 

A working definition. [von Neumann 1953, Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966] 

Those with polynomial-time algorithms. 

Yes                          Probablyno 

Shortest path             Longest path 

Min cut                      Max cut 

2-SAT                       3-SAT 

Matching                  3D-matching 

Primality testing         Factoring 

Planar 4-color             Planar 3-color 

Bipartite vertex cover  Vertex cover4 

Classify Problems 

Desiderata. Classify problems according to those that can be solved in polynomial-time and those that cannot. 

Provably requires exponential-time. 

 Given a Turing machine, does it halt in at most k steps? 

 Given a board position in an n-by-n generalization of chess, can black guarantee a win? 

Frustrating news. Huge number of fundamental problems have defied classification for decades. 

Today and Wed. Show that these fundamental problems are "computationally equivalent" and appear to be 

different manifestations of one really hard problem.5 Polynomial-Time Reduction  Reduction. Problem X 

polynomial-time reduces to problem Y if arbitrary instances of problem X can be solved using: 

 Polynomial number of standard computational steps, plus 

 Polynomial number of calls to oracle that solves problem Y. 

Notation. X  P Y. 

Remarks. 

 We pay for time to write down instances sent to black box  

instances of Y must be of polynomial size. 

 Note: Cook reducibility (vs. Karp reducibility) 

Means we can solve X in polynomial time IF we can solve Y in polynomial time!6 

Polynomial-Time Reduction Purpose. Classify problems according to relative difficulty. 

Design algorithms. If X P Y and Y can be solved in polynomial-time,then X can also be solved in polynomial 

time.Establish intractability. If X P Y and X cannot be solved in 



polynomial-time, then Y cannot be solved in polynomial time. Establish equivalence. If X  P Y and Y  P X, we 

use notation X  P Y.Reduction By Simple Equivalence 

 

Basic reduction strategies. 

 Reduction by simple equivalence. 

 Reduction from special case to general case. 

 Reduction by encoding with gadgets.8 

Independent Set 

 

INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S  V such that |S|  k, and for each edge at most 

one of its endpoints is in S? 

Ex. Is there an independent set of size  6? Yes. 

Ex. Is there an independent set of size  7? No. 

independent set9 

Vertex Cover 

 

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S  V such that |S|  k, and for each edge, at least 

one of its endpoints is in S? 

Ex. Is there a vertex cover of size  4? Yes. 

Ex. Is there a vertex cover of size  3? No. 

vertex cover10 

Vertex Cover and Independent Set 

Claim. VERTEX-COVER P 

 

 

INDEPENDENT-SET. 

Pf. We show S is an independent set iff V  S is a vertex cover.vertex cover  independent set Reduction from 

Special Case to General Case Basic reduction strategies. 

 Reduction by simple equivalence. 

 Reduction from special case to general case. 

 Reduction by encoding with gadgets.13 

 

 

Set Cover 

SET COVER: Given a set U of elements, a collection S1, S2, . . . , Sm of 



subsets of U, and an integer k, does there exist a collection of  k of 

these sets whose union is equal to U? 

Sample application. 

 m available pieces of software. 

 Set U of n capabilities that we would like our system to have. 

 The ith piece of software provides the set Si  U of capabilities. 

 Goal: achieve all n capabilities using fewest pieces of software. 

Ex: 

U = { 1, 2, 3, 4, 5, 6, 7 } 

k = 2 

S1 = {3, 7} S4 = {2, 4} 

S2 = {3, 4, 5, 6} S5 = {5} 

S3 = {1} S6 = {1, 2, 6, 7}14 

SET COVER 

U = { 1, 2, 3, 4, 5, 6, 7 } 

k = 2 

Sa = {3, 7} Sb = {2, 4} 

Sc = {3, 4, 5, 6} Sd = {5} 

Se = {1} Sf= {1, 2, 6, 7} 

 

8.Describe Kruskal’s algorithm APR’ 2014 

Theorem: Kruskal's algorithm finds a minimum spanning tree. 

Proof: Let G = (V, E) be a weighted, connected graph. Let T be the edge set that is grown in Kruskal's algorithm. 

The proof is by mathematical induction on the number of edges in T. 

o We show that if T is promising at any stage of the algorithm, then it is still promising when a new 

edge is added to it in Kruskal's algorithm 

o When the algorithm terminates, it will happen that T gives a solution to the problem and hence an 

MST. 

Basis: T =  is promising since a weighted connected graph always has at least one MST. 

Induction Step: Let T be promising just before adding a new edge e = (u, v). The edges T divide the nodes of G 

into one or more connected components. u and v will be in two different components. Let U be the set of nodes in 

the component that includes u. Note that 

o U is a strict subset of V 

o T is a promising set of edges such that no edge in T leaves U (since an edge T either has both ends 

in U or has neither end in U) 



o e is a least cost edge that leaves U (since Kruskal's algorithm, being greedy, would have chosen 

eonly after examining edges shorter than e) 

 Kruskal algorithm ueses a greedy technique to compute a minimum 

spanning tree. This algorithm selects the edges in the order of smallest 

weight and accept an edge if it does not cause a cycle.The algorithm 

terminates if enough edges are accepted. 
  

 ALGORITHM 
  
 Void Kruskal(graph G) 

 { 

 int EdgesAccepted=0; 

 while(EdgesAccepted<Numvertx -1) 

 { 

 USet=Find(U,S); 

 VSet=Find(V,S); 

 if(USet!=VSet) 

 { 

 EdgesAccepted++; 

 SetUnion(S,Uset,VSet); 

 } 

 } 

 } 

 EXAMPLE: 

  

 Step 1: Initially each vertex is in its own set 



  

 Step 2: Now select the edge with minimum weight 

  

  

 Edge(a,b) is added to minimum spanning tree 

 Step 3: Select the next edge , with minimum weight and check whether it 

forms a cycle. If it forms a cycle then that edge is rejected. else add the 

edge to minimum spanning tree. 

  

 (c,d) is next minimum weighted edge. 

 Step 4: Repeat stpe 3 until all vertices included in minimum spanning 

tree. 



  

 The minimum cost of spanning tree is 4 (2 + 1 + 1 = 4) 

  

  
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