
SUBJECT: LANGUAGE TRANSLATORS 1

Page 1

LANGUAGE TRANSLATORS
QUESTION BANKWITH ANSWERS

Note: * - Repeated Questions

UNIT - 1

Part - A
1. What is interpreter?

Interpreter is a set of programs which converts high level language program
to machine language program line by line.

2. What are the fields available in an assembly language instruction?
Opcode, operand ,label and address

3. Define assembler?

The Assembler function is to translate source program into object
program.

The translation of source program to object code requires accomplishing the
following function.
 Converts mnemonic operation code to their machine language equivalents.

Eg. Translate RETADR to 1033

4. Define System Software?

It consists of variety of programs that supports the operation of the computer.
This software makes it possible for the user to focus on the other problems to be
solved without needing to know how the machine works internally.

Eg: operating system, assembler, and loader.

5. Define system software.

It consists of variety of programs that supports the operation of the computer. This

software makes it possible for the user to focus on the other problems to be solved

without needing to know how the machine works internally.

SUBJECT: LANGUAGE TRANSLATORS 2

Page 2

Eg: operating system, assembler, loader .

6. Define Interpreter.

Interpreter is a set of programs which converts high level language program to machine
language program line by line.

7. Define instruction set.
An instruction set, or instruction set architecture (ISA), is the part of the computer
architecture related to programming, including the native data types,
instructions, registers, addressing modes, memory architecture, interrupt and exception
handling, and external I/O. An ISA includes a specification of the set
of opcodes (machine language), and the native commands implemented by a particular
processor

8. How could literals be implemented in one pass assembler

 The basic data structure needed for the assembler to handle literal operand is LITTAB.

LITTAB Contains

Address assigned to the operand when it is placed in a literal pool.
Literal name
Operand value

Length

PASS1

 As each literal operand is recognized during pass1 the assembler reaches the LITTAB
specifies literal name.

 If the literal is already present no action,otherwise it is added to the LITTAB.

9. What is meant by literal pool?
All literal operands used in a program are gathered into one or more literal pools

Literals are placed into the literal pool at the end of the program (eg instruction in the line
number 55 started next).

http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/Addressing_mode
http://en.wikipedia.org/wiki/Memory_model_(computing)
http://en.wikipedia.org/wiki/Interrupt
http://en.wikipedia.org/wiki/Exception_handling
http://en.wikipedia.org/wiki/Exception_handling
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Opcode
http://en.wikipedia.org/wiki/Machine_language

SUBJECT: LANGUAGE TRANSLATORS 3

Page 3

10.List out the some assembler directives.

Name of the Assembler

Directive

Function

START Specifies name & starting address of the program

END Indicates End of the source program

BYTE Generates character or hexadecimal constant,occupying

as many bytes as needed to represent the constant.

WORD Generates one-word integer constant

RESB Reserves the indicated number of bytes for a data area.

RESW Reserves the indicated number of words for a data area.

Part – B (11 Marks)
11.a. Draw the format of an instruction and explain.(5)
SIC - Instruction formats :

All machine instructions on the standard SIC have the following 24-
bit format

24 bits

SUBJECT: LANGUAGE TRANSLATORS 4

Page 4

SIC/XE - Instruction formats
Maximum memory in SIC/XE system is 1 megabyte(220 bytes),address will
no longer fit into a 15-bit field so, the instruction format used on the standard
version of SIC is not suitable (SIC Instruction format uses 15-bit address,
SIC/XE require 20-bit address)

Instruction that reference memory uses. In addition, SIC/XE provide two more
instruction format(format 1, format 2) that do not reference memory at all.

CISC- Complex instruction set computers
Vax- Instruction formats

VAX m/c instructions use variable length instruction format.

To indicate indexed-addressing mode

SUBJECT: LANGUAGE TRANSLATORS 5

Page 5

Each instruction consists of operation code followed by up to 6 operand
specifiers which depend on the type of instruction. Each specifier give
information to locate the operand.

b. Describe the machine structure. (6)

System Software and Architecture:

 Machine dependency of system software
o System programs are intended to support the operation and use of the

computer.
o Machine architecture differs in:

 Machine code
 Instruction formats
 Addressing mode
 Registers

 Machine independency of system software
o General design and logic is basically the same:

 Code optimization
 Subprogram linking

 Two versions
o Standard model (SIC) and an XE version (SIC/XE)
o Upward compatible

 Programs for SIC can run on SIC/XE
SIC Architecture

 Memory
 It consist of 8-bit bytes
 3 consecutive bytes forms word(24 bits)
 All addresses on SIC are byte addresses.
 Words are addressed by the location of their lowest numbered byte
 32,768(215) bytes in the computer memory.

SUBJECT: LANGUAGE TRANSLATORS 6

Page 6

bytes 232768 15

A word (3 bytes, or 24 bits)

 Registers

 Five 24-bit registers

 Data formats
Characters: 8-bit ASCII codes
Integers: 24-bit binary numbers

2’s complement for negative values
Floating-point numbers: No

 Instruction formats:
All machine instructions on the standard SIC have the following 24-
bit format

24 bits

SUBJECT: LANGUAGE TRANSLATORS 7

Page 7

Addressing modes:
Two addressing modes:

1. Direct
2. Indexed

Target address calculation for direct addressing mode is

Target address calculation for indexed addressing mode is

 Instruction set

To indicate indexed-addressing mode

(): Contents of a register
or a memory location

TA= 2001

TA= 2000 + (X)

= 2000+1

= 2001

SUBJECT: LANGUAGE TRANSLATORS 8

Page 8

SIC provides a basic set of instructions that are sufficient for most simple
tasks

– Load and store registers
• LDA, LDX, STA, STX

– Integer arithmetic operations (involve register A and a word in
memory, save result in A)

• ADD, SUB, MUL, DIV
– Comparison instruction
– Comparison instruction

COMP instruction compares the value in the register A with another value
of a variable and set the condition code CC to indicate the accumulator value is
(<, =, >) the other values of a variable or word in the memory with which it is
compared.

– Conditional jump instructions (according to CC)
• JLT (Jump Less Than), JEQ(Jump Equal To), JGT(Jump

Greater Than) instruction test the setting of CC and jumps
accordingly.

• Eg.

– Subroutine linkage
• JSUB (jumps and places the return address in register L)
• RSUB (returns to the address in L)

 Input and output
Read data (RD) or Write data (WD) instructions are used to perform input or
output operations.
Program, which has to perform data transfer, has to wait until the device is
ready and then execute the RD or WD.
Input and output operations are performed by transferring 1 byte to or from
the rightmost byte of register A
Eg.

:
:
COMP B { compare value of B with the accumulkator
JLT WLOOP {if accumulator content is < B jump to WLOOP}

WLOOP ADD INCR { Add the value of INCR to the accumulator}

SUBJECT: LANGUAGE TRANSLATORS 9

Page 9

 Test Device Instruction
Test Device Instruction (TD) test whether the device is ready to send or receive
data. The CC contains the result of this test. (If the condition code (CC) is set
for ‘<’ it implies that the device is ready and CC set for ‘=’ indicates that the
device is not ready)

2. Describe the features of machine –independent assembler. **

Machine independent Assembler features

 Some features of the assembler that are not closely related to m/c architecture are
called m/c independent assembler features.

 Such fetures are generally found on most large and complex machines.

Literals:

 It is convenient for a programmer to write the value of a constant operand as a part
of the instruction that uses it.

 Such an operand is called literal because its value is stated “literally” in the
instruction.

 Literal is identified by the prefix ‘=’.
11 001A ENDFIL LDA =C ‘EOF’ 032010
:
:
:
47 1062 WLOOP TD =X’05’ E32011

RD INPUT {Read character into register A}
:
:

RLOOP TD INPUT {test the input device to see if it is ready}

JEQ RLOOP{if the input device is not ready jump to’ RLOOP’}

:

:

INPUT BYTE X’F1’ {X’F1’ {F1 is the code for input device}

SUBJECT: LANGUAGE TRANSLATORS 10

Page 10

 The Literal in the line number 11 given above specifies a three byte operand whose
character string is EOF.

 |||ly the line number 46 specifies a one byte literal with the hexadecimal value 05.

Advantage:

1. Literal avoids having to define constant else where in the program and make up a
label for it.

Difference between literal and an immediate operand

Immediate operand Literal

The operand value is assembled as a part
of machine instruction.

The assembler generates the specific
value of the operand as a constant and
stores it at some other memory
location.The address of this generated
constant is used as the target address for
the machine instruction.

Literal Pools:

 All literal operands used in a program are gathered into one or more literal pools
 Literals are placed into the literal pool at the end of the program (eg instruction in the line

number 55 started next).
17 LTORG
18 002D * =C ‘EOF’ 454F46
:
54 END FIRST
55 1076 * =X ‘05’ 05

Literal Pools Listing Examples:

LTORG Assembler Directive

SUBJECT: LANGUAGE TRANSLATORS 11

Page 11

 Sometimes literals are placed into a pool at some other location in the object
program,other than the end of the program.

 To allow this we introduce the assembler directive LTORG.
 When LTORG is used the assembler creates a literal pool that contains all the literal

operands used since the previous LTORG or beginning of the program (eg line no 18).
 Literals placed using LTORG will not be repeated at the end of the program.

Advantage of LTORG directive

 Literal pool is placed too far away from the instruction referring it when LTROG
assembler directive is not used. Thus the need for LTORG arises when it is desirable to
keep the literal operand close to the instruction that uses it.

Duplicate Literal

Most assembler recognizes literals.

For eg:

47 WLOOP 1062 TD =X ‘05’ E32011

:

:

50 106B WD =X ‘05’
DF2008

In the above case the literal =X ‘05’ is used on lines 47 and 50.However only one data area
with this value is generated.thus both instructions refer the same address in the literal pool
for their operand.

How does the assembler Handles Literal Operand?

 The basic data structure needed for the assembler to handle literal operand is LITTAB.

LITTAB Contains

1. Address assigned to the operand when it is placed in a literal pool.
2. Literal name
3. Operand value
4. Length

PASS1

SUBJECT: LANGUAGE TRANSLATORS 12

Page 12

 As each literal operand is recognized during pass1 the assembler reaches the LITTAB
specifies literal name.

 If the literal is already present no action,otherwise it is added to the LITTAB.

Adding literal name to a LITTAB

Yes

No

 When pass1 encounter a LTORG,statement or end of program the assembler makes a
scan of the literal table.

 At this time literal currently in the table,is assigned an address,unless such an address has
already been filled in.

 As each address is assigned, the location counter is update to reflect the number f byte
occupied by each literal.

PASS 2

START

Literal operand is recognized during
Pass 1

Assembler searches the LITTAB for
specific literal name

Is literal
name

Add literal name to the LITTAB

Stop

SUBJECT: LANGUAGE TRANSLATORS 13

Page 13

 Operand address is got from the LITTAB for each literal operand encountered.
 The data values specified by the literals in each literal pool are inserted at the appropriate

places in the object program exactly as if these values had been generated by BYTE or
WORD statements.

 If literal value represents an address in the program ,the assembler must also generated
the appropriate modification record.

Symbol Defining Statements:

 Most assemblers provide an assembler directive that allows programmer to define
symbols and specify their values.

 The assembler directive generally used is EQU.

Syntax:

Symbol EQU Value

Use of EQU

It establishes symbolic names that can be used for improving the readability of the
statement.

For eg consider the following statement

+LDT #4096

 The statement loads the value 4096 into an integer.However the meaning of it is not clear.
 To make it more informative the assembler directive EQU can be used as specified next.

17 MAXLEN EQU 4096
:
:

+LDT #MAXLEN

 When the assembler encounters EQU,”MAXLEN” and “4096” are entered into the
SYMTAB.

 During assembly of the LDT instruction,the assembler searches SYMTAB for the symbol
MAXLEN,and uses its value as the operand in the instruction.

Advantages:

 The resulting object code is exactly the same as the original version of the instruction
however the source statement is easier to understand.

SUBJECT: LANGUAGE TRANSLATORS 14

Page 14

 If we want to change the maximum length it is easier to change MAXLEN value rather
than searching the whole program for all the statements where #4096 is used.

Assembler directive EQU

 In instructions like the assembler expects register numbers 0 and 1 instead of the
registers A and X respectively.

 In such cases the assembler directive EQU can be used so that A and X can be recognized
as ‘0’ and ‘1’ by the assembler.

 That is the programmer could include the sequence of statement like

A EQU 0
X EQU 1
L EQU 2

In this case A,X,L are entered into the SYMTAB with values 0,1,and 2 respectively.the
assembler will search the values for A,X,L from the SYMTAB and then assemble the
instruction,of the form

 If the register R0,R1 etc are present,some of them
can be used as BASE registers,some as index registers.
Statements which follows can be used,for used ,for such purpose

Assembler directive ORG

 The directive called ORG (for “origin”) is of the form ORG value,in which value may be
constant or an expression with constants or symbols.

 When this statement is encountered the assembler resets its location counter to the specified value.
 The ORG statement will affect the location of all the statement which follows them until the next

ORG statement is encountered.

RMO 0,1

RMO A,X

BASE EQU R1
INDEX EQU R2

SUBJECT: LANGUAGE TRANSLATORS 15

Page 15

 Suppose we hve symbol table (STAB) with the following structure.
STAB(100 entries)

Symbol value Flags
6 Bytes 3 bytes 2 bytes

 The SYMBOL fields contains a 6 byte user-defined symbol.
 “VALUE” is a one word (3 byte) representation of the value assigned to the symbol.
 “FLAGS” is a 2 byte field that specifies symbol type and other information.

We can reserve space for the table using the following statement

 Entries in the table can be referred using indexed addressing.
 Index register holds the offset of the desired entry.
 If we want to refer to the fields SYMBOL,VALUE and FLAGS individually, we must also define

labels using the following EQU statements.
 SYMBOL EQU STAB
 VALUE

EQU STAB+6
FLAGS EQU STAB+9

This would allow us to write for eg

To fetch the VALUE field from the table entry indicated by the content of register X.

 We can accomplish the same symbol definition using ORG in the following way:

STAB RESB 1100

LDA VALUE ,X

SUBJECT: LANGUAGE TRANSLATORS 16

Page 16

 In some assemblers previous value of STAB is already known so just the ORG statement is
sufficient instead of

Restrictions in using EQU and ORG statements

In case of EQU

 Any symbol can be used only after defining it.
(e.g) the sequence

ALPHA RESW 1
:
BETA EQU ALPHA

Would be allowed where else the sequence

STAB RESB 1100 → Reserve ‘1100’ bytes for the symbol table.
ORG STAB →Resets the location counter to the beginning

address of the table
SYMBOL RESB 6 →Starting location of SYMBOL is STAB (beginning address

of the table)and it occupies 6 bytes.
VALUE RESB 3 →Starting location of VALUE is STAB+6 and it occupies 3

Bytes
FLAGS RESB 2 → Starting location of FLAGS is STAB+9 and it occupies 2

Bytes
ORG STAB+1100 →This sets the LOCCTR back to the address of next

unsigned byte of memory after STAB.

ORG STAB+1100

BETA EQU ALPHA
ALPHA RESW 1

SUBJECT: LANGUAGE TRANSLATORS 17

Page 17

Is not allowed.

In case of ORG

 All symbols used to specify the new location counter value must have been previously
defined.
e.g:The sequence

Would not be permitted.

Expressions:

 So far assembler language statements have used labels,literals etc as instruction
operands.most assemblersallow the use of expressions which when evaluated,gives the
operand address or value.

 Assembler allow arithmetic expressions with the operators “+”,”-“,”*” and “/”.
 Expressions may have user defined symbols,constants or special symbols.

For eg consider the following statement

 It gives BUFFEND a value that is the address of next byte after the BUFFER area.
 Some values in the object program are relative to the beginning address (eg labels)while

some others absolute (insependent of the program location eg constants).
 Values of expressions are either relative or absolute.
 The symbol whose value is given by EQU may be an absolute or relative term,depending

upon the expression used to define its value.

Expressions are classified depending on the value they produce as

1. Absolute Expression
2. Relative expression

Comparison of absolute & Relative Expression

Absolute Expression Relative expression

An expression with only absolute terms is
called expression. it may also contain

A relative is one in which all of the
relative terms except one can be paired,

ORG STAB
STAB RESB 1100

BUFFER RESB 4096
BUFFEND EQU *

SUBJECT: LANGUAGE TRANSLATORS 18

Page 18

relative terms provided the relative terms
occur in pairs and the terms in such pair
have opposite signs.

the remaining unpaired relative term must
have a positive sign expression .

None of the relative terms may enter into a
multiplication or division operation

None of the relative terms may enter into a
multiplication or division operation

Eg:

 In this example BUFFEND and BUFFER represent an address within the program.
 Difference b/w two addresses is the length of the buffer area,which is an absolute term.
 To determine the type of expression we must keep track of the types of all symbols.
 For this purpose we need a flag in the symbol to indicate the type of value,in addition to

the value itself.
 Thus have symbol table may contain the following details:

 Using the type field ,the assembler can easily determine the type of each expression used
as an operand and generate the modification record for relative values.

Program blocks:

 In the example seen so far the program being assembled was treated as a unit.
 The source program logically contained subroutines,data ares etc.however the assembler

handled them as one entity resulting in a single block of object code.

Definition:

Program blocks refers to segments that are rearranged within a single object program
unit.

Control Sections:

MAXLEN EQU BUFFEND-
BUFFER

SUBJECT: LANGUAGE TRANSLATORS 19

Page 19

Control section refers to segments that are translated into independent object program unit.

Program block:

The 3 blocks used to write programs using program blocks are:

1. Unnamed default block
Contains executable instruction of the program

2. CDATA block
Contains all the data areas that are a few words or less in length.

3. CBLKS
Contains all the data area that consists of larger blocks of memory.

BLOCK NAME BLOCK NO

DEFAULT 0

CDATA 1

CBLKS 2

Program:

 The assembler directive ‘USE”is used to indicate which portion of the source belongs to
which block.

 If no USE statements are used the program belongs to the unnamed default block
 Line number

 1 indicate the beginning of the default block
 15 indicate the beginning of CDATA block
 18 begin CBLKS block.
 25 resumes default block
 40 resumes CDATA block.
 45 resumes default block
 40 resumes CDATA block.

PASS 1

 Assembler will logically rearrange the segments of program block to gather together the
pieces of each block.

 These blocks will then be assigned address in the object program.
 There is a separate location counter for each block.
 At the beginning of the program the LC=0.

SUBJECT: LANGUAGE TRANSLATORS 20

Page 20

 When switching to another block current value of LC is saved and it is restored when the
block is resumed.

 When labels are entered into the symbol table the block name or number is stored along
with the assigned relative address.

 At the end of pass1 the LC of each block will tell the length of the block.
 The end of pass1 creates the following table:

Note:

Starting address of ‘CDATA’ is 0066,and its length is ‘000B’

 Decimal equivalent of 0066 is

0066

6 * 16 0= 6

6 * 16 1= 96 +

102

 Decimal equivalent of 000B is
000B

11 * 16 0= 11

0* 16 1 = 0 +
11

 102+11=113
 Hexadecimal equivalent of 113 is

16 113 =71(starting location of next block)

7 1

 Thus the starting address of “CBLKS”block is ‘0071’ and its lengt is ‘1000’

SUBJECT: LANGUAGE TRANSLATORS 21

Page 21

 Starting address of next block,if its exists is 0071+1000=1071.but as no other block
follows “CBLKS” the ending address of “CBLK” is “1070”.

PASS 2

The assembler needs the address of each symbol relative to the start of the object
program.so it adds the location of the symbol with the start address of the individual block.

(e.g) if the CDATA starting address is 0066,and the following statement is an instruction
within the block.

0003 LENGTH

The desired target address of LENGTH is

0066+0003=0069

 The loader will simply load the object program at the indicated addresses.
 The following table represents the different blocks used in the program along with

the details of the address locations occupied by them:

Block Name Locations occupied

Default 0000→0065

CDATA 0066→0070

CBLKS 0071→1070

Program blocks traced through the assembly and loading process

SUBJECT: LANGUAGE TRANSLATORS 22

Page 22

Advantage of separating the program into blocks:

 Separation of programs into blocks considerably reduces the addressing problem.as
the large buffer area is moved to the end of the object program,we no longer need to use
extended format instructions.

 The base register is no longer necessary,so LDB and BASE statements are deleted
from the source code.

 The problem of placement of literals in the program is easily solved.we simply
include the LTORG statement in the CDATA block to be sure that the literals are placed
ahead of any large data areas.

 The machine may suggest the object program to appear in the memory in a
particular order,but the programmer may wish the source program to appear in a different
order,both the man and machine wishes are satisfies by the use of program blocks,with
the assembler providing the required reorganization.

Control Sections and Program Linking
A control section is a part of the program that maintains its identity after assembly.

 the programmer can assemble, load, and manipulate each of these control sections
separately

SUBJECT: LANGUAGE TRANSLATORS 23

Page 23

 Different control sections are most often used for subroutines or other logical
subdivisions of a program

 Flexibility is a major benefit of using control sections as the programmer can assemble,
load, and manipulate each of these control sections separately

 The control sections are independently loaded so the assembler does not know where the
other section will be loaded at execution time.

 instruction in one control section may refer to another section instructions or data such
references between control sections are called external references.

 The assembler generates information for each external reference that will allow the loader
to perform the required linking.

In the following program there are 3 control sections:
 Main program
 Subroutine for reading
 Subroutine for writing

Program

SUBJECT: LANGUAGE TRANSLATORS 24

Page 24

Control sections
 can be loaded and relocated independently of the other are most often used for

subroutines or other logical subdivisions of a program the programmer can assemble,
load, and manipulate each of these control sections separately

 Because of this, there should be some means for linking control sections together
assembler directive: CSECT

secname CSECT
 separate location counters for each control section
External Definition and Reference

SUBJECT: LANGUAGE TRANSLATORS 25

Page 25

 Instructions in one control section may need to refer to instructions or data located in
another section

External definition
EXTDEF name [, name]
EXTDEF names symbols that are defined in this control section and may be used by
other sections

Ex: EXTDEF BUFFER, BUFEND, LENGTH
External reference

EXTREF name [,name]
EXTREF names symbols that are used in this control section and are defined

elsewhere
Ex: EXTREF RDREC, WRREC

To reference an external symbol, extended format instruction is needed.

External Reference Handling
Case 1
 5 0003 CLOOP +JSUB RDREC 4B100000
 The operand RDREC is an external reference.
 The assembler
 Has no idea where RDREC is
 Inserts an address of zero
 Can only use extended format to provide enough room (that is, relative addressing for

external reference is invalid)
 The assembler generates information for each external reference that will allow

the loader to perform the required linking.
Case 2
 41 0028 MAXLEN WORD BUFEND-BUFFER 000000
 There are two external references in the expression, BUFEND and BUFFER.
 The assembler

 inserts a value of zero
 passes information to the loader

Add to this data area the address of BUFEND
 Subtract from this data area the address of BUFFER

 Case 3
BUFEND and BUFFER are defined in the same control section and the expression can
be calculated immediately.

 22 1000 MAXLEN EQU BUFEND-BUFFER

Record for object program

 Define record
 Col. 1 D
 Col. 2-7 Name of external symbol defined in this control section

SUBJECT: LANGUAGE TRANSLATORS 26

Page 26

 Col. 8-13 Relative address within this control section (hexadeccimal)
 Col.14-73 Repeat information in Col. 2-13 for other external symbols

 Refer record
 Col. 1 D
 Col. 2-7 Name of external symbol referred to in this control section
 Col. 8-73 Name of other external reference symbols

 Modification Record
 Modification record
 Col. 1 M
 Col. 2-7 Starting address of the field to be modified (hexiadecimal)
 Col. 8-9 Length of the field to be modified, in half-bytes (hexadeccimal)
 Col.11-16 External symbol whose value is to be added to or subtracted from the

indicated field

Object Program

SUBJECT: LANGUAGE TRANSLATORS 27

Page 27

May 2012

Part – B (11 Marks)

1. List out and discuss the machine dependent assembler features.

MACHINE DEPENDENT FEATURES OF ASSEMBLER

Consider the design and implementation of an assembler for the more
complex XE version of SIC.

 Instruction formats
 Addressing modes
 Program relocation

INSTRUCTION FORMAT AND ADDRESSING MODES:

FORMAT 1:

Length = 1 byte

8bits

SUBJECT: LANGUAGE TRANSLATORS 28

Page 28

FORMAT 2:

Length = 2 bytes

It is used for register –to – register instruction

8bits 4 4

OPCODE
r1 r2

FORMAT 3:

Length = 3 bytes

Register –memory instruction.

6 1 1 1 1 1 1 12

OPCOD
E

n i x b p e displacemen
t

Displacement can be calculated in two ways

 PC relative
 Base relative

PC –relative displacement Calculation

Displacement = address of operand – [PC] -2048<=displacement<=2047

BASE – relative displacement Calculation

Displacement = address of operand – [base] displacement<=4095

FORMAT 4: (Extended format) (if disp>4095)

Extended format of the instruction must be indicated by the prefix (+)

6 1 1 1 1 1 1 20

OPCODE

SUBJECT: LANGUAGE TRANSLATORS 29

Page 29

OPCODE n i x b p e Address

If the instruction contains only opcode, assembler takes Format-1. If the
operands are registers then it takes Format-2. Otherwise it takes Format-3 for
translating the instruction.

In Format-3, assembler first attempt to translate the instruction using
program counter relative addressing

If the displacement calculated using PC relative is less than 2047 and greater
than -2048, base relative addressing is used to translate the instruction

If the displacement calculated using base-relative is greater than 4095 then,
it is extended format (if + is appeared as prefix of the instruction) is used to
translate the instruction.

ADDRESSING MODES:

Direct addressing

@ Indirect addressing

Immediate addressing

Direct and indirect addressing can be combined with indexing

 Format of instruction has specified in object code using flag e
e =1 extended format (format 4)
e =0 format 3

 Mode of displacement calculation has specified in object code through the
flags p and b

p=1 PC relative mode
b=1 base relative mode

 Addressing mode has specified in object mode code through the flags
n and i.

n=0&i=0 direct addressing (or) n=1& i=1.
n=0&i=1 immediate addressing
n=1&i=0 indirect addressing

PROGRAM RELOCATION:

SUBJECT: LANGUAGE TRANSLATORS 30

Page 30

It is desirable to have more than one program at a time sharing the
memory and resources of the machine. If we knew in advance exactly which
programs were to be executed concurrently, we could assign addresses when
the programs were assembled. So that they would fit together without overlap
or wasted space. But the assembler does not know the actual location where
the program will be loaded and it cannot make changes in the address used by
the program.

It is desirable to be able to load a program into memory wherever there
is room for it. In such a situation the actual starting address of the program is
not known until load time.

But the assembler can identify for the loader those part of the object
program that needed modification.

An object program that contains the information necessary to perform
this kind of modification is called Relocatable program.

The instructions which are in the relative addressing modes (PC-relative or
Base-relative) does not require any modification, wherever the program is
loaded in the memory.

The only instructions of the program that require modification at load time are
those that specify direct addresses. So only this part of the program, the
assembler inserts the modification record in the object program. So, the loader
can identify the instruction which needs the modification. The loader can easily
load the program into the memory where it finds the free space.

In object program, the text records are exactly same as those that would be
produced by an absolute assembler. The text records are interpreted as relative
locations. There is one Modification record for each address field that needs to
be changed when the program is relocated.

The format of Modification Record is

MODIFICATION RECORD:

Col 1 M

Col 2-7 Starting location of the address field to be modified, relative to the
beginning of the program (hexadecimal)

Col8-9 Length of the address field to be modified in half bytes (hexadecimal)

SUBJECT: LANGUAGE TRANSLATORS 31

Page 31

• One modification record for each address to be modified

• The length is stored in half-bytes (20 bits = 5 half-bytes)

• The starting location is the location of the byte containing the leftmost bits of
the address field to be modified.

If the field contains an odd number of half-bytes, the starting location begins in
the middle of the first byte

Example of program relocation

For example, a program is loaded beginning at address 0000. The JSUB
instruction is loaded at address 0006. The address field of this instruction
contains 01036, which is the address of the instruction labeled RDREC.

Now suppose that we want to load this program beginning at address
5000 (Fig b). The address of the instruction labeled RDREC is then 6036.
Thus the JSUB instruction must be modified as shown to contain this new
address. Likewise, if we loaded the program beginning at address 7420 (Fig.
c), the JSUB instruction would need to be changed to 4B108456 to correspond
to the new address of RDREC.

No matter where the program is loaded, RDREC always 1036 bytes past
the starting address of the program. This means that we can solve the
relocation problem in the following way:

SUBJECT: LANGUAGE TRANSLATORS 32

Page 32

1. When the assembler generated the object code for the JSUB instruction we
are considering, it will insert the address of RDREC relative to the start of the
program.

2. The assembler will also produce a command for the loader, instructing it to
add the beginning address of the program to the address field in the JSUB
instruction at the load time.

The command for the loader is achieved through writing Modification Record
in the Object Program.

RELOCATABLE OBJECT PROGRAM

2. Briefly explain about assembler design options.

 One pass assembler
 Two pass assembler with overlay structure
 Multi pass assembler

Two-Pass Assembler with Overlay Structure:

15 +JSUB RDREC

35 +JSUB

65 +JSUB

5 half-
bytes

SUBJECT: LANGUAGE TRANSLATORS 33

Page 33

 For small memory
 pass 1 and pass 2 are never required at the same time
 three segments

 root: driver program and shared tables and subroutines
 pass 1
 pass 2
 tree structure

 overlay program

One- pass assembler is used when we want to avoid the 2nd pass.

MULTI PASS assembler is used to handle forward reference during
symbol definition

One-pass assemblers

Problem associated with forward reference

Operands are sometime s symbols that have not yet been defined in source
program, when it is first encountered. Thus the assembler does not know what
address to insert in the translated instruction, this is the main problem of using
of forward reference in a program

Rectification for the problem of forward reference

1. Simply define the symbols in the source program before they referenced.

2. Practically avoiding such forward jumps is not very easy. So the assembler
should adapt some other method in order to solve such reference problem.

Two type of one pass assembler

Type1 – Load and go assembler (object code is not written out,
so

loader is not necessary)

Type2 – (object program is written out in a file so loader is
necessary)

Type1 – Load and go assembler

 No object program is written out and so no loader is needed.

 Useful in system that involves program development and testing.

SUBJECT: LANGUAGE TRANSLATORS 34

Page 34

 Assembler simply generates object code as its scan the program,
directly in memory for immediate execution.

 In the instruction operand is a symbol that has not yet been defined
the operand address is omitted when the instruction is assembled.

 This symbol is entered into symbol table, an undefined symbol withg
‘*’.

 When the definition of the symbol is encountered, the proper address
is inserted in a list associated with that symbol.

 When nearly half of the program translation is over some of the
forward reference problems that existed earlier would have been
resolved, while others might have been added.

 Continue this process to the end of the program to fill all the forward
references properly.

 At the end of the program, symbol table entries still marked with ‘*’
are undefined symbol and should indicate error.

 If no errors occur until program termination the assembler searches
the SYMTAB for the value of symbols and begins the execution of
the program.

 For a load and go assembler the actual address must be known at
assembly time.

 However the assembly process would be the same and the location
counter will be assigned to the starting address of the program.

Lin
e

LO
C

Source statement Object
codeLabel Opcod

e
operan
d

1. 100
0

COPY STAR
T

1000

2. 100
0

EOP BYTE C
‘EOF’

454F4
6

3. 100
3

THREE WOR
D

3 00000
6

4. 100
3

RETAD
R

RESW 10

: : : : : :

SUBJECT: LANGUAGE TRANSLATORS 35

Page 35

If the preceding statements in a program are processed by the load and go
assembler the object code generated in the memory would be as follows:

Memory Address contents

1000 454f4600 0003xxxx xxxxxxxx xxxxxxxx
1010 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
:
:

Consider the following set of statements:

1

2
3

4

5
6

1003
:
100
C
2012
:
201E
:
203
D
2062

THREE

LENGT
H
CLOOP

RDREC
WRREC

WOR
D

RESW
JSUB

JSUB

LDX
LDX

3

1
RDREC

WRRE
C

ZERO
ZERO

000003

48203
D

482062

041006
041006

Symbol table used in a load and go assembler when the first four lines are
processed is shown below:

SYMBOL VALUE POINTER
Three 1003
LENGTH 100C φ
: :
RDREC *
: :
WRREC *

: :

Referred in statement
with address 2012

2013 φ

Referred in 201E

2
0

φ

SUBJECT: LANGUAGE TRANSLATORS 36

Page 36

Use:

 Load and go assembler is used when external working storage
devices are not available to store intermediate file.

 It can also be used when the external storage is slow.

ADVANTAGES:

 It avoids the overhead of writing the object program out and
then reading it back in.

 It is accomplished using one pass.

 Because the object program is produced in the memory rather
than write out on secondary storage, handling of forward
reference is less difficult.

Type 2

 Forward references are entered into the list as before however, en the
definition of symbol is encountered instruction that made forward reference
to that label will no longer be available in the memory for modification
instead they would have been written out as part of a text in the memory for
modification instead they would have been written out as part of a text
record in the object program, with all zero in the place of any labels address
location.

 Assembler must generate another text record with correct operand address

 Eg: T^ 0022013 ^ 02 ^ 203D is written to the object program when k=line
number 5 is processed. Where 002013 is the starting address from which the
object code (0000) following “48”

 Is to be modified “02” is the length of the text record (203d which succeds is
2 bytes long as each digit occupies ½ bytes)”203D” is the address to replace
all zeros in the loaded object code “480000” generated earlier. Thus the
object becomes 48203D

SUBJECT: LANGUAGE TRANSLATORS 37

Page 37

 Note: only modification record length ids represented with the number of
half bytes. Text record length is always represented with the value in bytes.

 The loader will insert the actual address in to the instruction from the
information available in this additional text record.

 When the program is loaded the correct address will replace all th e zeros
previously loaded. Thus the final loaded object code is 48203D.

MULTI PASS ASSEMBLER:

IN the case of assembler directives like EQU that define symbols, any symbol
used on right hand side must be defined previously in the program.

Eg. Two passes process the following sequence of code

During 1st pass.

1. ALPHA cannot be assigned as the value of BETA is not yet initialized.

2. BETA cannot be assigned a value, since DELTA is not defined before
BETA.

3. Location of DELTA is entered in the symbol table.

During the next pass.

 Beta can be assigned with value of DELTA but ALPHA cannot be assigned,
as the statement involving BETA comes after ALPHA.

 Multi pass assembler can make as many passes as are needed to process the
definition are symbols.

ALPHA EQU BETA

BETA EQU DELTA

DELTA RESW 1

SUBJECT: LANGUAGE TRANSLATORS 38

Page 38

 It is not necessary for an assembler to make more than two passes over th
entire program instead the portion of the program that has forward reference
is stored using pas

 s 1.

 Additional passes are made only through the stored definitions.

 This process is followed by a normal pass 2.

To solve forward reference problem

1. Store symbols that involve forward reference in the symbol table.

2. This symbol table also indicates which symbols are dependent on the value
of others.

Eg: sequence of statements that involves forward reference.

The following figure show the symbol table entries resulting from pass1
processing of the first statement given below

variable No. of undefined
symbols in the
expression

Value Pointer to the
list of symbols
which
depends on
the variable

HALFSZ &1 MAXLEN/2 Φ

MAXLEN *

1. : HALFSZ EQU MAXLEN/2
2. : MAXLEN EQU BUFFEND-BUFFER

:
:
:

3. 1034 BUFFFER RESB 4096
4. 2034 BUFFEND EQU *

SUBJECT: LANGUAGE TRANSLATORS 39

Page 39

November 2012

PART B 11mark

1. List out and discuss the machine dependent assembler features.
Consider the design and implementation of an assembler for SIC/XE version.

HALFSZ φ

SUBJECT: LANGUAGE TRANSLATORS 40

Page 40

MACHINE DEPENDENT FEATURES OF ASSEMBLER

Consider the design and implementation of an assembler for the more
complex XE version of SIC.

 Instruction formats
 Addressing modes
 Program relocation

INSTRUCTION FORMAT AND ADDRESSING MODES:

FORMAT 1:

Length = 1 byte

8bits

FORMAT 2:

Length = 2 bytes

It is used for register –to – register instruction

8bits 4 4

OPCODE

SUBJECT: LANGUAGE TRANSLATORS 41

Page 41

OPCODE
r1 r2

FORMAT 3:

Length = 3 bytes

Register –memory instruction.

6 1 1 1 1 1 1 12

OPCOD
E

n i x b p e displacemen
t

Displacement can be calculated in two ways

 PC relative
 Base relative

PC –relative displacement Calculation

Displacement = address of operand – [PC] -2048<=displacement<=2047

BASE – relative displacement Calculation

Displacement = address of operand – [base] displacement<=4095

FORMAT 4: (Extended format) (if disp>4095)

Extended format of the instruction must be indicated by the prefix (+)

6 1 1 1 1 1 1 20

OPCODE n i x b p E Address

If the instruction contains only opcode, assembler takes Format-1. If the
operands are registers then it takes Format-2. Otherwise it takes Format-3 for
translating the instruction.

SUBJECT: LANGUAGE TRANSLATORS 42

Page 42

In Format-3, assembler first attempt to translate the instruction using
program counter relative addressing

If the displacement calculated using PC relative is less than 2047 and greater
than -2048, base relative addressing is used to translate the instruction

If the displacement calculated using base-relative is greater than 4095 then,
it is extended format (if + is appeared as prefix of the instruction) is used to
translate the instruction.

ADDRESSING MODES:

Direct addressing

@ Indirect addressing

Immediate addressing

Direct and indirect addressing can be combined with indexing

 Format of instruction has specified in object code using flag e
e =1 extended format (format 4)
e =0 format 3

 Mode of displacement calculation has specified in object code through the
flags p and b

p=1 PC relative mode
b=1 base relative mode

 Addressing mode has specified in object mode code through the flags
n and i.

n=0&i=0 direct addressing (or) n=1& i=1.
n=0&i=1 immediate addressing
n=1&i=0 indirect addressing

PROGRAM RELOCATION:

It is desirable to have more than one program at a time sharing the
memory and resources of the machine. If we knew in advance exactly which
programs were to be executed concurrently, we could assign addresses when
the programs were assembled. So that they would fit together without overlap
or wasted space. But the assembler does not know the actual location where
the program will be loaded and it cannot make changes in the address used by
the program.

SUBJECT: LANGUAGE TRANSLATORS 43

Page 43

It is desirable to be able to load a program into memory wherever there
is room for it. In such a situation the actual starting address of the program is
not known until load time.

But the assembler can identify for the loader those part of the object
program that needed modification.

An object program that contains the information necessary to perform
this kind of modification is called Relocatable program.

The instructions which are in the relative addressing modes (PC-relative or
Base-relative) does not require any modification, wherever the program is
loaded in the memory.

The only instructions of the program that require modification at load time are
those that specify direct addresses. So only this part of the program, the
assembler inserts the modification record in the object program. So, the loader
can identify the instruction which needs the modification. The loader can easily
load the program into the memory where it finds the free space.

In object program, the text records are exactly same as those that would be
produced by an absolute assembler. The text records are interpreted as relative
locations. There is one Modification record for each address field that needs to
be changed when the program is relocated.

The format of Modification Record is

MODIFICATION RECORD:

Col 1 M

Col 2-7 Starting location of the address field to be modified, relative to the
beginning of the program (hexadecimal)

Col8-9 Length of the address field to be modified in half bytes (hexadecimal)

• One modification record for each address to be modified

• The length is stored in half-bytes (20 bits = 5 half-bytes)

• The starting location is the location of the byte containing the leftmost bits of
the address field to be modified.

SUBJECT: LANGUAGE TRANSLATORS 44

Page 44

If the field contains an odd number of half-bytes, the starting location begins in
the middle of the first byte

Example of program relocation

For example, a program is loaded beginning at address 0000. The JSUB
instruction is loaded at address 0006. The address field of this instruction
contains 01036, which is the address of the instruction labeled RDREC.

Now suppose that we want to load this program beginning at address
5000 (Fig b). The address of the instruction labeled RDREC is then 6036.
Thus the JSUB instruction must be modified as shown to contain this new
address. Likewise, if we loaded the program beginning at address 7420 (Fig.
c), the JSUB instruction would need to be changed to 4B108456 to correspond
to the new address of RDREC.

No matter where the program is loaded, RDREC always 1036 bytes past
the starting address of the program. This means that we can solve the
relocation problem in the following way:

SUBJECT: LANGUAGE TRANSLATORS 45

Page 45

3. When the assembler generated the object code for the JSUB instruction we
are considering, it will insert the address of RDREC relative to the start of the
program.

4. The assembler will also produce a command for the loader, instructing it to
add the beginning address of the program to the address field in the JSUB
instruction at the load time.

The command for the loader is achieved through writing Modification Record
in the Object Program.

RELOCATABLE OBJECT PROGRAM

2. Briefly explain about one – pass assembler and multi-pass assembler. **

15 +JSUB RDREC

35 +JSUB

65 +JSUB

5 half-
bytes

SUBJECT: LANGUAGE TRANSLATORS 46

Page 46

April 2013

1. Give two example program SIC operators.

i. PROGRAM TO LOAD AND STORE A NUMBER AND A
CHARACTER INTO TWO VARIABLES FOR SIC

Source statement function

LDA FIVE LOAD
CONSTANT 5 IN
TO A REGISTER

STA A STORE THE
CONTENT OF
THE A
REGISTER IN
THE VARIABLE
A

LDCH CHARZ LOAD
CHARACTER Z
INTO REGISTER
A

STCH C STORE THE
CHARACTER
FROM THE
ACCUMULATER
INTO THE
VARIABLE C

A RESW 1 ONE WORD
VARIABLE A

SUBJECT: LANGUAGE TRANSLATORS 47

Page 47

FIVE WORD 5 ONE WORD
CONSTANT

CHARZ BYTE C ‘Z’ ONE BYTE
CONSTANT

C RESB 1 ONE BYTE
VARIABLE C

ii. Program to compute the value a+b-1 and store the result in c for SIC

LDA A LOAD THE
VALUE OF A
INTO REGISTER
A

ADD B ADD VALUE OF
B WITH
ACCUMULATOR
CONTENT

SUB ONE SUBTRACT ONE
FROM
ACCUMULATOR
CONTENT

STA C STORE THE
VALUE a+b-1 IN
C

:
:

ONE WORD 1 ONE WORD
CONSTANT

A RESW 1 ONE WORD
SPACE IS
RESERVED FOR

SUBJECT: LANGUAGE TRANSLATORS 48

Page 48

VARIABLE A

B RESW 1 ONE WORD
VARIABLE B

C RESW 1 ONE WORD
VARIABLE C

April/May 2014

1. Explain in detail about instruction formats, instruction set and addressing
modes of SIC. (11)

 Instruction formats:
All machine instructions on the standard SIC have the following 24-
bit format

24 bits

Addressing modes:
Two addressing modes:

3. Direct
4. Indexed

To indicate indexed-addressing mode

SUBJECT: LANGUAGE TRANSLATORS 49

Page 49

Target address calculation for direct addressing mode is

Target address calculation for indexed addressing mode is

 Instruction set
SIC provides a basic set of instructions that are sufficient for most simple
tasks

– Load and store registers
• LDA, LDX, STA, STX

– Integer arithmetic operations (involve register A and a word in
memory, save result in A)

• ADD, SUB, MUL, DIV
– Comparison instruction
– Comparison instruction

COMP instruction compares the value in the register A with another value
of a variable and set the condition code CC to indicate the accumulator value is
(<, =, >) the other values of a variable or word in the memory with which it is
compared.

(): Contents of a register
or a memory location

TA= 2001

TA= 2000 + (X)

= 2000+1

= 2001

SUBJECT: LANGUAGE TRANSLATORS 50

Page 50

– Conditional jump instructions (according to CC)
• JLT (Jump Less Than), JEQ(Jump Equal To), JGT(Jump

Greater Than) instruction test the setting of CC and jumps
accordingly.

• Eg.

– Subroutine linkage
• JSUB (jumps and places the return address in register L)
• RSUB (returns to the address in L)

2. Explain briefly about machine independent assembler features? (11)**

:
:
COMP B { compare value of B with the accumulkator
JLT WLOOP {if accumulator content is < B jump to WLOOP}

WLOOP ADD INCR { Add the value of INCR to the accumulator}

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

1

 Page 1

LANGUAGE TRANSLATORS
QUESTION BANK WITH ANSWERS

Note: * - Repeated Questions

UNIT: 2

PART A TWO MARKS

1. What is address sensitive program?

Assembly language program (ALP) is address sensitive program.

2. List out the function performed by relocating loaders?

Loader that allow program location are called relocation loaders

Two methods for specifying relocation loaders

 Relocation by modification record method

 Relocation by bit mask method

3. What is Bootstrap Loader?

This is a special type of absolute loader which loads the first program to be run by the

computer. (Usually an operating system)

4. What is mean by OPTAB, SYMTAB?

Assembler uses two major data structure

1. OPTAB (Operation code table)

Use: Look up mnemonic operation codes and translate them to their machine

language equivalents

 Mnemonic opcode

Fields in OPTAB

 Machine language equivalent

2. SYMTAB (Symbol table)

Use: Store the addresses of labels

 Name of symbol

Fields in SYMTAB Address

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

2

 Page 2

5. List the assembler director.

 EQU

syntax

 It establishes symbolic names that can be used for improving the readability of the

statement.

 ORG

When this statement is encountered the assembler resets its location counter to the

specified value.

6. What is mean by OPTAB, SYMTAB? **

7. What is linking required after a program is translated? Define link editor.

 Linking function is performed at execution time. The operating system is used to

load and link subprograms at the time they are first called.

Linkage editor performs relocation of all controls sections relative to the start of the

linked program and loading is accomplished in one pass with no external table

requirement.

8. What is an absolute loader? State its advantages.

Absolute loader does not need to perform functions as linking and relocation its operation

is very simple.

 For a simple absolute loader, all functions are accomplished in a single pass as follows:

 1) The Header record of object programs is checked to verify that the correct program has

 been presented for loading.

 2) As each Text record is read, the object code it contains is moved to the indicated

address in memory.

3) When the End record is encountered, the loader jumps to the specified address to begin

execution of the loaded program

9. What are the uses of bootstrap loader?

 When a computer is first turned on or restarted, a special type of absolute loader,

 called a bootstrap loader, is executed. This bootstrap loads the first program to be run

 by the computer – usually an operating system.

 In PC It is used to boot he OS of the system. In case

of microcontrollers, a boot loader enriches the capabilities of the microcontroller and

makes them self programmable device.

10. Differentiate near and far jump?

Symbol EQU

value

ORG value

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

3

 Page 3

 Near jump
A near jump is a jump to a target in the same segment and it is assembled by using a

current code segment CS.

 Far jump

A far jump is a jump to a target in a different code segment and it is assembled by using

different segment registers

PART B (11 MARK)

1. Discuss the functions and design of an absolute loader. (11)

 Design of an Absolute Loader

For a simple absolute loader, all functions are accomplished in a single pass as follows:

1) The Header record of object programs is checked to verify that the correct program has

been presented for loading.

2) As each Text record is read, the object code it contains is moved to the indicated address

in memory.

3) When the End record is encountered, the loader jumps to the specified address to begin

execution of the loaded program.

An example object program is shown in Fig (a).

Fig (b) shows a representation of the program from Fig (a) after loading.

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

4

 Page 4

Algorithm for Absolute Loader

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

5

 Page 5

 It is very important to realize that in Fig (a), each printed character represents one byte of

the object program record.

 In Fig (b), on the other hand, each printed character represents one hexadecimal digit in

memory (a half-byte).

 Therefore, to save space and execution time of loaders, most machines store object

programs in a binary form, with each byte of object code stored as a single byte in the

object program.

 In this type of representation a byte may contain any binary value.

2. a. What is dyanamic linking? Explain. (6)*

 Dynamic linking postpones the linking function until execution time.

- A subroutine is loaded and linked to the test of the program when it is first called.

Dynamic Linking Applications

• Dynamic linking is often used to allow several executing programs to share one copy of a

subroutine or library.

• For example, a single copy of the standard C library can be loaded into memory.

• All C programs currently in execution can be linked to this one copy, instead of linking a

separate copy into each object program.

• In an object-oriented system, dynamic linking is often used for references to software

object.

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

6

 Page 6

• This allows the implementation of the object and its method to be determined at the time

the program is run. (e.g., C++)

• The implementation can be changed at any time, without affecting the program that

makes use of the object.

Dynamic Linking Advantage

• The subroutines that diagnose errors may never need to be called at all.

• However, without using dynamic linking, these subroutines must be loaded and linked

every time the program is run.

• Using dynamic linking can save both space for storing the object program on disk and in

memory, and time for loading the bigger object program.

 Linkage editors perform linking operations before the program is loaded for

execution.

 Linking loaders perform these same operations at load time.

 Dynamic linking, dynamic loading, or load on call postpones the linking function

until execution time: a subroutine is loaded and linked to the rest of the program

when it is first called.

 Dynamic linking is often used to allow several executing programs to share one of a

subroutine or library, ex. run-time support routines for a high-level language like C.

 With a program that allows its user to interactively call any of the subroutines of a large

mathematical and statistical library, all of the library subroutines could potentially be needed,

but only a few will actually be used in any one execution.

 Dynamic linking can avoid the necessity of loading the entire library for each

execution except those necessary subroutines.

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

7

 Page 7

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

8

 Page 8

Fig (a): Instead of executing a JSUB instruction referring to an external symbol, the

program makes a load-and-call service request to OS. The parameter of this request is the

symbolic name of the routine to be called.

Fig (b): OS examines its internal tables to determine whether or not the routine is already

loaded. If necessary, the routine is loaded from the specified user or system libraries.

Fig (c): Control is then passed from OS to the routine being called Fig (d): When the called

subroutine completes it processing, it returns to its caller (i.e., OS). OS then returns control

to the program that issued the request.

Fig (e): If a subroutine is still in memory, a second call to it may not require another load

operation. Control may simply be passed from the dynamic loader to the called routine.

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

9

 Page 9

 b. Write about bootstrap loaders. (5)

 Bootstrap Loaders

 With the machine empty and idle there is no need for program relocation.

 We can specify the absolute address for whatever program is first loaded and this will be

the OS, which occupies a predefined location in memory.

 We need some means of accomplishing the functions of an absolute loader.

1. To have the operator enter into memory the object code for an absolute loader, using

switches on the computer console.

2. To have the absolute loader program permanently resident in a ROM.

3. To have a built –in hardware function that reads a fixed –length record from

some device into memory at a fixed location.

 When some hardware signal occurs, the machine begins to execute this ROM

program.

 On some computers, the program is executed directly in the ROM: on others, the

program is copied from ROM to main memory and executed there.

 The particular device to be used can often be selected via console switches.

 After the read operation is complete, control is automatically transferred to the address in

memory where the record was stored, which contains machine where the record was

stored, which contains machine instructions that load the absolute program that follow.

 If the loading process requires more instructions that can be read in a single record, this

first record causes the reading of others, and these in turn can cause the reading of still

more records – boots trap.

The first record is generally referred to as bootstrap loader:

 Such a loader is added to the beginning of all object programs that are to be loaded into

an empty and idle system.

 This includes the OS itself and all stand-alone programs that are to be run

 without an OS.

3. Discuss about basic loader functions.

BASIC LOADER FUNCTIONS

Fundamental functions of a loader:

1. Bringing an object program into memory.

2. Starting its execution.

3.1.1 Design of an Absolute Loader

For a simple absolute loader, all functions are accomplished in a single pass as follows:

1) The Header record of object programs is checked to verify that the correct program has

been presented for loading.

2) As each Text record is read, the object code it contains is moved to the indicated address

in memory.

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

10

 Page 10

3) When the End record is encountered, the loader jumps to the specified address to begin

execution of the loaded program.

An example object program is shown in Fig (a).

Fig (b) shows a representation of the program from Fig (a) after loading.

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

11

 Page 11

Algorithm for Absolute Loader

 It is very important to realize that in Fig (a), each printed character represents one byte of

the object program record.

 In Fig (b), on the other hand, each printed character represents one hexadecimal digit in

memory (a half-byte).

 Therefore, to save space and execution time of loaders, most machines store object

programs in a binary form, with each byte of object code stored as a single byte in the

object program.

 In this type of representation a byte may contain any binary value.

A Simple Bootstrap Loader
When a computer is first turned on or restarted, a special type of absolute loader, called a

bootstrap loader, is executed. This bootstrap loads the first program to be run by the

computer – usually an operating system.

Working of a simple Bootstrap loader

 The bootstrap begins at address 0 in the memory of the machine.

 It loads the operating system at address 80.

 Each byte of object code to be loaded is represented on device F1 as two

hexadecimal digits just as it is in a Text record of a SIC object program.

 The object code from device F1 is always loaded into consecutive bytes of memory,

starting at address 80. The main loop of the bootstrap keeps the address of the next

memory location to be loaded in register X.

 After all of the object code from device F1 has been loaded, the bootstrap jumps to

address 80, which begins the execution of the program that was loaded.

 Much of the work of the bootstrap loader is performed by the subroutine GETC. GETC is

used to read and convert a pair of characters from device F1 representing 1 byte of object

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

12

 Page 12

code to be loaded. For example, two bytes = C “D8” ‘4438’H converting to one byte

‘D8’H.

 The resulting byte is stored at the address currently in register X, using STCH instruction

that refers to location 0 using indexed addressing.

 The TIXR instruction is then used to add 1 to the value in X.

4. Explain the machine independent loader features.

MACHINE-INDEPENDENT LOADER FEATURES

 Loading and linking are often thought of as OS service functions. Therefore, most

loaders include fewer different features than are found in a typical assembler.

 They include the use of an automatic library search process for handling external

 reference and some common options that can be selected at the time of loading and

linking.

Automatic Library Search
 Many linking loaders can automatically incorporate routines from a subprogram

library into the program being loaded.

 Linking loaders that support automatic library search must keep track of external

that are referred to, but not defined, in the primary input to the loader.

 At the end of Pass 1, the symbols in ESTAB that remain undefined represent

 unresolved external references.

 The loader searches the library or libraries specified for routines that contain the

definitions of these symbols, and processes the subroutines found by this search

exactly as if they had been part of the primary input stream.

 The subroutines fetched from a library in this way may themselves contain

external references. It is therefore necessary to repeat the library search process until

all references are resolved.

 If unresolved external references remain after the library search is completed,

these must be treated as errors.

Loader Options
Many loaders allow the user to specify options that modify the standard processing

Typical loader option 1: Allows the selection of alternative sources of input.

Ex : INCLUDE program-name (library-name) might direct the loader to read the designated

object program from a library and treat it as if it were part of the primary loader input.

Loader option 2: Allows the user to delete external symbols or entire control sections.

Ex : DELETE csect-name might instruct the loader to delete the named control section(s)

from the set of programs being loaded.

CHANGE name1, name2 might cause the external symbol name1 to be changed to name2

wherever it appears in the object programs.

Loader option 3: Involves the automatic inclusion of library routines to satisfy external

references.

Ex. : LIBRARY MYLIB

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

13

 Page 13

Such user-specified libraries are normally searched before the standard system libraries.

This allows the user to use special versions of the standard routines.

NOCALL STDDEV, PLOT, CORREL

 To instruct the loader that these external references are to unresolved. This avoids

the overhead of loading and linking the unneeded routines, and saves the memory

space that would otherwise be required.

 LOADER DESIGN OPTIONS
Linking loaders perform all linking and relocation at load time.

There are two alternatives:

1. Linkage editors, which perform linking prior to load time.

2. Dynamic linking, in which the linking function is performed at execution time.

 Precondition: The source program is first assembled or compiled, producing an object

program.

 A linking loader performs all linking and relocation operations, including automatic

library search if specified, and loads the linked program directly into memory for

execution.

 A linkage editor produces a linked version of the program (load module or

executable image), which is written to a file or library for later execution.

5. Discuss about machine independent loader features. *****

6. Explain the different options of loader design.

1. LINKAGE EDITOR

2. DYNAMIC LINKING **********

3. BOOTSTAP LOADER*************

 1. Linkage Editors
 The linkage editor performs relocation of all control sections relative to the start of the

linked program. Thus, all items that need to be modified at load time have values that are

relative to the start of the linked program.

 This means that the loading can be accomplished in one pass with no external symbol

table required.

 If a program is to be executed many times without being reassembled, the use of an

inkage editor substantially reduces the overhead required. Linkage editors can perform

any useful functions besides simply preparing an object program for execution. Ex., a

typical sequence of linkage editor commands used:

INCLUDE PLANNER (PROGLIB)

DELETE PROJECT {delete from existing PLANNER}

INCLUDE PROJECT (NEWLIB) {include new version}

REPLACE PLANNER (PROGLIB)

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

14

 Page 14

 Linkage editors can also be used to build packages of subroutines or other control

sections that are generally used together. This can be useful when dealing with subroutine

libraries that support high-level programming languages.

 Linkage editors often include a variety of other options and commands like those

discussed for linking loaders. Compared to linking loaders, linkage editors in general tend

to offer more flexibility and control.

Fig (7): Processing of an object program using (a) Linking loader and (b)
Linkage

Editor

7. Define the bootstrap loader & state the algoritm for the same. **

8. Explain with neat block diagram the role of loader & linker.**

9. Write briefly about relocation techniques (11)

MACHINE-DEPENDENT LOADER FEATURES

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

15

 Page 15

 The absolute loader has several potential disadvantages. One of the most obvious is the

need for the programmer to specify the actual address at which it will be loaded into

memory.

 On a simple computer with a small memory the actual address at which the program will

be loaded can be specified easily.

 On a larger and more advanced machine, we often like to run several independent

programstogether, sharing memory between them. We do not know in advance where a

program will be loaded. Hence we write relocatable programs instead of absolute ones.

 Writing absolute programs also makes it difficult to use subroutine libraries efficiently.

This could not be done effectively if all of the subroutines had preassigned absolute

addresses.

 The need for program relocation is an indirect consequence of the change to larger and

more powerful computers. The way relocation is implemented in a loader is also

dependent upon machine characteristics.

 Loaders that allow for program relocation are called relocating loaders or relative loaders.

Relocation
Two methods for specifying relocation as part of the object program:

The first method:
 A Modification is used to describe each part of the object code that must be changed

when the program is relocated.
 Most of the instructions in this program use relative or immediate addressing.

 The only portions of the assembled program that contain actual addresses are the xtended

format instructions on lines 15, 35, and 65. Thus these are the only items whose values

are affected by relocation.

Object program

 Each Modification record specifies the starting address and length of the field whose

value is to be altered.

 It then describes the modification to be performed.

 In this example, all modifications add the value of the symbol COPY, which

represents the starting address of the program.

Fig(2) :Consider a Relocatable program for a Standard SIC machine

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

16

 Page 16

 The Modification record is not well suited for use with all machine

architectures.Consider, for example, the program in Fig (2) .This is a relocatable program

written for standard version for SIC.

 The important difference between this example and the one in Fig (1) is that the standard

SIC machine does not use relative addressing.

 In this program the addresses in all the instructions except RSUB must modified when

the program is relocated. This would require 31 Modification records, which results in an

object program more than twice as large as the one in Fig (1).

The second method:

 There are no Modification records.

 The Text records are the same as before except that there is a relocation bit associated

with each word of object code.

 Since all SIC instructions occupy one word, this means that there is one relocation bit

for each possible instruction.

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

17

 Page 17

Fig (3): Object program with relocation by bit mask

 The relocation bits are gathered together into a bit mask following the length

indicator in each Text record. In Fig (3) this mask is represented (in character

form) as three hexadecimal digits.

 If the relocation bit corresponding to a word of object code is set to 1, the program’s

starting address is to be added to this word when the program is relocated. A bit value of

0 indicates that no modification is necessary.

 If a Text record contains fewer than 12 words of object code, the bits corresponding to

unused words are set to 0.For example, the bit mask FFC (representing the bit string

111111111100) in the first Text record specifies that all 10 words of object code are to be

modified during relocation.

Example: Note that the LDX instruction on line 210 (Fig (2)) begins a new Text record. If it

were placed in the preceding Text record, it would not be properly aligned to correspond to

a relocation bit because of the 1-byte data value generated from line 185.

Program 1 (PROGA):

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

18

 Page 18

PROGRAM 2(PROGB)

PROGRAM3 (PROGC)

Consider first the reference marked REF1.
For the first program (PROGA),

 REF1 is simply a reference to a label within the program.

 It is assembled in the usual way as a PC relative instruction.

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

19

 Page 19

 No modification for relocation or linking is necessary.

 In PROGB, the same operand refers to an external symbol.

 The assembler uses an extended-format instruction with address field set to

00000.

 The object program for PROGB contains a Modification record instructing the loader to

add the value of the symbol LISTA to this address field when the program is linked.

For PROGC, REF1 is handled in exactly the same way.

Corresponding object programs

PROGA

PROGB

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

20

 Page 20

PROGC

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

21

 Page 21

 The reference marked REF2 is processed in a similar manner.

 REF3 is an immediate operand whose value is to be the difference between ENDA and

LISTA (that is, the length of the list in bytes).

 In PROGA, the assembler has all of the information necessary to compute this value.

During the assembly of PROGB (and PROGC), the values of the labels are unknown.

In these programs, the expression must be assembled as an external reference

(with two Modification records) even though the final result will be an absolute value

independent of the locations at which the programs are loaded.

Consider REF4.
 The assembler for PROGA can evaluate all of the expression in REF4 except for the

value of LISTC. This results in an initial value of ‘000014’H and one Modification

record.

 The same expression in PROGB contains no terms that can be evaluated by the

 assembler. The object code therefore contains an initial value of 000000 and three

 Modification records.

 For PROGC, the assembler can supply the value of LISTC relative to the beginning of

the program (but not the actual address, which is not known until the program is loaded).

 The initial value of this data word contains the relative address of LISTC (‘000030’H).

Modification records instruct the loader to add the beginning

 address of the program (i.e., the value of PROGC), to add the value of ENDA, and to

 subtract the value of LISTA.

Fig (4): The three programs as they might appear in memory after loading and
linking.

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

22

 Page 22

PROGA has been loaded starting at address 4000, with PROGB and PROGC immediately

following.

For example, the value for reference REF4 in PROGA is located at address 4054 (the

beginning address of PROGA plus 0054).

Fig (5): Relocation and linking operations performed on REF4 in PROGA

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

23

 Page 23

The initial value (from the Text record) is 000014. To this is added the address assigned

to LISTC, which 4112 (the beginning address of PROGC plus 30).

BRANCH: CSE Y3/S5
SUBJECT: LANGUAGE TRANSLATORS

24

 Page 24

10. Explain the operation of dynamic linking (11)

UNIT –III

SOURCE PROGRAM ANALYSIS

P a g e | 1 LANGUAGE TRANSLATORS

2MARKS

1. What is a compiler? (MAY, NOV 2012)

A compiler is a program that reads a program written in one language – the source language and translates
it into an equivalent program in another language – the target language. In translation process, the compiler

reports to its user the presence of errors in the source program.

Source program Target program
Compiler

Error messages

2. What are the classifications of a compiler?

Compilers are sometimes classified as:

Single-pass
 Multi-pass

 Load-and-go

 Debugging or

 Optimizing

3. What are the two parts of a compilation? Explain briefly.

There are two parts to compilation as

1. Analysis part

2. Synthesis part

The analysis part breaks up the source program into constituent pieces and creates an intermediate
representation of the source program.

The synthesis part constructs the desired target program from the intermediate representation.

4. What are the tools available in analysis phase?

Many software tools that manipulate source programs are

Structure editors
 Pretty printers

 Static checkers

 Interpreters

5. What is Query Interpreters?

A Query interpreter translates a predicate containing relational and Boolean operators into commands
to search a database for records satisfying that predicate.

P a g e | 2 LANGUAGE TRANSLATORS

6. List the analysis of the source program?

Analysis consists of three phases:
 Linear Analysis.
 Hierarchical Analysis.
 Semantic Analysis.

7. What is linear analysis?

In a compiler, linear analysis is called lexical analysis or scanning.

Linear analysis in which the stream of characters making up the source program is read from left-to-
right and grouped into tokens that are sequences of characters having a collective meaning.

8. What is hierarchical analysis? (NOV 2011)

Hierarchical analysis is called parsing or syntax analysis.

Hierarchical analysis involves grouping the tokens of the source program into grammatical phases that
are used by the compiler to synthesize output.

9. What is semantic analysis?

The Semantic analysis, it checks the source program for semantic errors and gathers type information
for the subsequent code generation phase.

It uses the hierarchical structure determined by the syntax analysis phase to identify the operators
and operands of expressions and statements.

10. Draw the parse tree for a source program as position: = initial + rate * 60.

P a g e | 3 LANGUAGE TRANSLATORS

11. List the various phases of a compiler.

The following are the various phases of a compiler:
 Lexical Analyzer
 Syntax Analyzer
 Semantic Analyzer
 Intermediate code generator
 Code optimizer
 Code generator

12.What is a symbol table?

A symbol table is a data structure containing a record for each identifier, with fields for the attributes
of the identifier. The data structure allows us to find the record for each identifier quickly and to store

or retrieve data from that record quickly.

Whenever an identifier is detected by a lexical analyzer, it is entered into the symbol table. The
attributes of an identifier cannot be determined by the lexical analyzer.

13.What is Intermediate code generator?

The intermediate representation should have two important properties;

it should be easy to produce, and
 it should be easy to translate into the target program.

14.What is three address code?

An intermediate form called “three-address code, “which is like the assembly language for a machine in
which every memory location can act like a register.

Three-address code consists of a sequence of instructions, each of which has at most three operands.

15.What is code generator?

The final phase of the compiler is the generation of target code, consisting normally of relocatable
machine code or assembly code.

Memory locations are selected for each of the variables used by the program. Then, intermediate
instructions are each translated into a sequence of machine instructions that perform the same task.

16.Mention the cousins of the compiler?

Cousins of the compiler are:

Preprocessor
 Compiler

 Assembler

 Two-Pass Assembly

 Loader and Link-Editor

P a g e | 4 LANGUAGE TRANSLATORS

17. State with example the cousins of compilers. (NOV 2013)

Skeletal source program
↓

Preprocessor
↓

Source program
↓

Compiler
↓

Target assembly program
↓

Assembler
↓

Relocatable machine code
↓

Library, relocatable object filesLoader/ link editor

↓
Absolute machine code

18. What is Preprocessors? List its functions.

Preprocessors produce input to compilers. They may perform the following functions:

Macro Processing
 File inclusion

 Rational Preprocessors

 Language extensions

19. Define Assembly code?

Assembly code is a mnemonic version of machine code, in which names are used instead of binary
codes for operations, and names are also given to memory addresses.

A typical sequence b := a + 2,the assembly instructions might be

MOV a, R1

ADD #2, R1

MOV R1, b

20. What is the use Two-Pass assembly?

The assembler makes two passes over the input, where a pass consists of reading an input file once.

In the first pass, all the identifiers that denote storage locations are found and stored in a symbol table.
 Identifiers are assigned storage locations as they are encountered for the first time.

In the second pass, the assembler scans the input again. This time, it translates each operation code
into the sequence of bits representing that operation in machine language and it translates each
identifier representing a location into address given for that identifier in the symbol table.

The output of the second pass is usually relocatable machine code.

P a g e | 5 LANGUAGE TRANSLATORS

21.What is loader and link-editor?

Usually, a program called a loader performs the two functions of loading and link-editing.

The process of loading consists of taking relocatable machine code, altering the relocatable addresses,
and placing the altered instructions and data in memory at the proper location.

The link-editor allows us to make a single program from several files of relocatable machine code.
These files may be the result of several different compilation and one or more library files of routines

provided by the system.

22. State the function of front end and back end of a compiler phase. (MAY 2013)

The front end consists of those phases that depends primarily on the source language and are largely
independent of the target machine.

These include

Lexical analysis
 Syntactic analysis

 Semantic analysis

 Creation of symbol table

 Generation of intermediate code

 Code optimization

 Error handling

23. State the function back end of a compiler phase. (MAY 2013)

The back end of compiler includes those portions that depend on the target machine and generally those
portions do not depend on the source language, just the intermediate language.

These include

Code optimization
 Code generation

 Error handling and

 Symbol-table operations

24.What is single pass?

Several phase of compilation are usually implemented in a single pass consisting of reading an input file
and writing an output file.

25. Define compiler-compiler.

Systems to help with the compiler-writing process are often been referred to as compiler-compilers,

compiler-generators or translator-writing systems. Largely they are oriented around a particular model of
languages, and they are suitable for generating compilers of languages similar model.

P a g e | 6 LANGUAGE TRANSLATORS

26. List the various compiler construction tools.

The various compiler construction tools are

Parser generators
 Scanner generators

 Syntax-directed translation engines

 Automatic code generators

 Data-flow engines

27.What is the role of lexical analyzer? (NOV 2013)

The lexical analyzer is the first phase of a compiler.

Its main task is to read the input characters and produce as output a sequence of tokens that the
parser uses the syntax analysis.

Upon receiving a “get next token” command from the parser, the lexical analyzer reads input
characters until it can identify the next token.

28.What are the issues in lexical analysis?

The issues in lexical analysis are

Simpler design is the most important consideration.
 Compiler efficiency is improved.

 Compiler portability is enhanced.

29.Why separate lexical analysis phase is required? (MAY 2013)

i. Simpler design is the most important consideration.

Comments and white space have already been removed by lexical analyzer.

ii. Compiler Efficiency is improved.

Specialized buffering techniques for reading input characters and processing tokens can
significantly speed up the performance of a compiler.

iii. Compiler Portability is enhanced.

Input alphabet peculiarities and other device-specific anomalies can be restricted to the lexical
analyzer.

P a g e | 7 LANGUAGE TRANSLATORS

30.What is the major advantage of a lexical analyzer generator? (NOV 2011)

The major advantages of a lexical analyzer generator are

One task is stripping out from the source program comments and white space in the form of blank,
tab and new line characters.

Another is error messages from the compiler in the source program.

31.What are tokens, patterns, and lexeme?

Tokens- Sequence of characters that have a collective meaning.

Patterns- There is a set of strings in the input for which the same token is produced as output. This set
of strings is described by a rule called a pattern associated with the token.

Lexeme- A sequence of characters in the source program that is matched by the pattern for a token.

32. Differentiate between tokens, patterns, and lexeme?

Token lexeme patterns

const const const

if if if

relation <, <=, =, < >, >, >= < or <= or = or < > or >= or >

id pi, count, D2 letter followed by letters and digits

num 3.1416, 0, 6.02E23 any numeric constant

literal “core dumped” any characters between “ and “ except “

33. List the various Panic mode recovery in lexical analyzer?

Possible error recovery actions are:

1. Deleting an extraneous character

2. Inserting a missing character

3. Replacing an incorrect character by a correct character

4. Transposing two adjacent characters

34.What are the approaches to implement lexical analyzer?

The three general approaches to the implementation of a lexical analyzer

1. Use a lexical analyzer generator such as the Lex compiler to produce a regular expression based
specification. In this case, the generator provides for reading and buffering the input.

2. Write the lexical analyzer in a conventional systems programming languages using the I/O
facilities of that language to read the input.

3. Write the lexical analyzer in assembly language and reading of input.

P a g e | 8 LANGUAGE TRANSLATORS

35. What is input buffering?

The input buffer is useful when look-ahead on the input is to identify tokens.

36. Define sentinels.

Sentinel is a special character that cannot be part of the source program.
 The techniques for speeding up the lexical analyzer, use the “sentinels “ to mark the buffer end.

37. List the operations on languages.

The operations that can be applied to languages are

Union - L U M ={s | s is in L or s is in M}
 Concatenation – LM ={st | s is in L and t is in M}

 Kleene Closure – L* (zero or more concatenations of L)

 Positive Closure – L+ (one or more concatenations of L)

38.Write a regular expression for an identifier.

An identifier is defined as a letter followed by zero or more letters or digits. The regular expression for
an identifier is given as

letter (letter | digit)*

39. How the regular expression can be defined in specification of the language. 1.

 is a regular expression that denotes {}, the set containing empty string.

2. If a is a symbol in , then a is a regular expression that denotes {a}, the set containing the string a.
3. Suppose r and s are regular expressions denoting the language L(r) and L(s), then

(r) |(s) is a regular expression denoting L(r)L(s).

 (r)(s) is regular expression denoting L (r) L(s).

 (r) * is a regular expression denoting (L (r))*.

 (r) is a regular expression denoting L (r).

40.Mention the various notational short hands for representing regular expressions.

One or more instances
 Zero or one instance

 Character classes

 Non regular sets

41.What is transition diagram? (NOV 2012)

An intermediate step in the construction of a lexical analyzer, we first produce a stylized flowchart
called a transition diagram.

Transition diagram depicts the actions that take place when a lexical analyzer is called by the parser to
get the next token.

P a g e | 9 LANGUAGE TRANSLATORS

42. Define Lex complier?

A particular tool called Lex, used to specify lexical analyzers for a variety of languages. We refer to the
tool as the Lex compiler and to its input specification as the Lex language.

43. How to create a lexical analyzer with Lex?

44. List out the parts on Lex specifications. (MAY 2012)

A Lex program consists of three
parts: declarations

%%

translation rules

%%

auxiliary procedures

The declarations section includes declarations of variables, manifest constants, and regular definitions.
 The translation rules of a Lex program are statement of the form

p1 { action1}
p2 { action2}

…… …..

pn { actionn}

The auxiliary procedures are needed by the actions. These procedures can be compiled separately and
loaded with the lexical analyzer.

P a g e | 10 LANGUAGE TRANSLATORS

11 MARKS

1.Write a short note on compiler design? (6 marks)

A compiler is a program that reads a programwritten in one language – the source language and translates
it into an equivalent program in another language – the target language. As an important part of this

translation process, the compiler reports to its user the presence of errors in the source program.

Source program Target program
Compiler

Error messages

At first, the variety of compilers may appear overwhelming. There are thousands of source languages,
ranging from traditional programming languages such as FORTRAN and Pascal to specialized languages in

every area of computer application.

Target languages are equally as varied; a target language may be another programming language, or the
machine language of any computer between a microprocessor and a supercomputer.

Compilers are sometimes classified as:

Single-pass
 Multi-pass

 Load-and-go

 Debugging or

 Optimizing

Throughout the 1950’s, compilers were considered notoriously difficult programs to write. The first

FORTRAN compiler, for example, took 18 staff-years to implement.

Analysis-Synthesis Model of Compilation:

There are two parts to compilation as

1. Analysis part

2. Synthesis part

The analysis part breaks up the source program into constituent pieces and creates an intermediate
representation of the source program.

The synthesis part constructs the desired target program from the intermediate representation.

P a g e | 11 LANGUAGE TRANSLATORS

During analysis, the operations implied by the source program are determined and recorded in a
hierarchical structure called a tree.

Often, a special kind of tree called a syntax tree is used, in syntax tree each node represents an operation
and the children of the node represent the arguments of the operation.

For example, a syntax tree of an assignment statement is position: = initial + rate * 60.

Many software tools that manipulate source programs first perform some kind of analysis. Some examples of
such tools include:

Structure editors

 Pretty printers

 Static checkers

 Interpreters

Structure editors:

A structure editor takes as input a sequence of commands to build a source program. The

structure editor not only performs the text-creation and modification functions of an ordinary text editor, but

it also analyzes the program text, appropriate hierarchical structure on the source program. It is useful in the

preparation of source program.

Pretty printers:

A pretty printer analyzes a program and prints it in a way that the structure of the program
becomes clearly visible. For example, comments may appear in a special font.

Static checkers:

A static checker reads a program, analyzes it, and attempts to discover potential bugs without
running the source program.

Interpreters:

Interpreters are frequently used to execute command languages, since each operator executed in
command languages is usually a complex routine such as an editor or compiler.

P a g e | 12 LANGUAGE TRANSLATORS

The analysis portion in each of the following examples is similar to that of a conventional compiler.

Text formatters
 Silicon compilers

 Query interpreters

Text formatters:

A text formatter takes input that is a stream of characters, most of which is text to be typeset, and it
includes commands to indicate paragraphs, figures, or mathematical structures like subscripts and the
superscripts.

Silicon compilers:

A silicon compiler has a source language that is similar or identical to a conventional programming
language. However, the variables of the language represent, not locations in memory, but also logical signals
(0 or 1) or groups of signals in a switching circuit. The output is a circuit design in an appropriate language.

Query interpreters:

A Query interpreter translates a predicate containing relational and Boolean operators into commands
to search a database for records satisfying that predicate.

2. Explain the analysis of the source program? (11marks)

In compiling, analysis consists of three phases:

Linear Analysis
 Hierarchical Analysis

 Semantic Analysis

Linear Analysis:

Linear analysis, in which the stream of characters making up the source program is read from left-to-
right and grouped into tokens that are sequences of characters having a collective meaning

In a compiler, linear analysis is called lexical analysis or scanning.

For example, in lexical analysis the characters in the assignment statement position: = initial + rate * 60
would be grouped into the following tokens:

1. The identifier position.

2. The assignment symbol :=

3. The identifier initial.

4. The plus sign.

5. The identifier rate.

6. The multiplication sign.

7. The number 60.

P a g e | 13 LANGUAGE TRANSLATORS

The blanks separating the characters of these tokens would normally be eliminated during the lexical
analysis.

Hierarchical Analysis:

Hierarchical analysis is called parsing or syntax analysis.

Hierarchical analysis involves grouping the tokens of the source program into grammatical phases
that are used by the compiler to synthesize output.

The grammatical phrases of the source program are represented by a parse tree.

Parse tree for position: = initial + rate * 60

In the expression initial + rate * 60, the phrase rate * 60 is a logical unit because the usual
conventions of arithmetic expressions tell us that the multiplication is performed before addition.

Because the expression initial + rate is followed by a *, it is not grouped into a single phrase by itself.

The hierarchical structure of a program is usually expressed by recursive rules. For example, the
following rules, as part of the definition of expression:

1. Any identifier is an expression.

2. Any number is an expression

3. If expression1 and expression2 are expressions, then so are

expression1 + expression2
 expression1 * expression2

 (expression1)

Rules (1) and (2) are non-recursive basic rules, while (3) defines expressions in terms of operators
applied to other expressions.

P a g e | 14 LANGUAGE TRANSLATORS

Similarly, many languages define statements recursively by rules such as:
1. If identifier1 is an identifier and expression2 is an expression, then

identifier1 := expression2
is a statement.

2. If expression1 is an expression and statement2 is a statement, then
while (expression1) do statement2

if (expression1) then statement2
are statements.

A syntax tree is a compressed representation of the parse tree in which the operators appear as the interior
nodes and the operands of an operator are the children of the node for that operator.

Semantic Analysis:

The semantic analysis phase checks the source program for semantic errors and gathers type
information for the subsequent code-generation phase.

It uses the hierarchical structure determined by the syntax-analysis phase to identify the operators
and operand of expressions and statements.

An important component of semantic analysis is type checking.

The compiler checks that each operator has operands that are permitted by the source language
specification.

For example, when a binary arithmetic operator is applied to an integer and real.

In this case, the compiler may need to be converting the integer to a real. As shown in figure given
below.

P a g e | 15 LANGUAGE TRANSLATORS

3. Explain the various phases of a compiler with an example? (11marks) (NOV 2011,
2013) (MAY, NOV 2012)(MAY 2013)

A compiler operates in phases, each of which transforms the source program from one representation
to another. The six phases of a complier are

1. Lexical Analyzer

2. Syntax Analyzer

3. Semantic Analyzer

4. Intermediate code generator

5. Code optimizer

6. Code generator

Two other activities are

Symbol table Manager
 Error handler

A typical decomposition of a compiler is shown in fig given below

Phases of a compiler

P a g e | 16 LANGUAGE TRANSLATORS

The Analysis Phases:

As translation progresses, the compiler’s internal representation of the source program changes. Consider
the translation of the statement,

position: = initial + rate * 10

Lexical analyzer:

The lexical analysis phase reads the characters in the source program and groups them into a stream
of tokens in which each token represents a logically cohesive sequence of characters, such as an

identifier, a keyword (if, while, etc.), a punctuation character or a multi-character operator like :=.

In a compiler, linear analysis is called lexical analysis or scanning.

Linear analysis in which the stream of characters making up the source program is read from left-to-
right and grouped into tokens that are sequences of characters.

The character sequence forming a token is called the lexeme for the token.

Certain tokens will be augmented by a ‘lexical value’. For example, when an identifier like rate is found, the
lexical analyzer not only generates a token id, but also enters the lexeme rate into the symbol table,

if it is not already there.

Consider id1, id2 and id3 for position, initial, and rate respectively, that the internal representation of an
identifier is different from the character sequence forming the identifier.

The representation of the statement given above after the lexical analysis would
be: id1: = id2 + id3 * 10

Syntax analyzer:

Hierarchical analysis involves grouping the tokens of the source program into grammatical phases
that are used by the compiler to synthesize output.

Hierarchical analysis is called parsing or syntax analysis.

 Syntax analysis imposes a hierarchical structure on the token stream, which is shown by syntax trees.

P a g e | 17 LANGUAGE TRANSLATORS

Semantic analyzer:

The Semantic analysis, it checks the source program for semantic errors and gathers type
information for the subsequent code generation phase.

It uses the hierarchical structure determined by the syntax analysis phase to identify the operators
and operands of expressions and statements.

Compiler report an error, if real number is used to index an array.

The bit pattern representing an integer is generally different from the bit pattern for a real, even they
have the same value.

For example, the identifiers position, initial, rate declared to be real and that 60 by itself assumed to
be integer.

The general approach is to convert the integer to a real.

Intermediate code generator:

After Syntax and semantic analysis, some compilers generate an explicit intermediate representation
of the source program. The intermediate representation as a program for an abstract machine.

This intermediate representation should have two important properties;

 it should be easy to produce, and

 it should be easy to translate into the target program.

An intermediate form called “three-address code, “which is like the assembly language for a machine in
which every memory location can act like a register.

Three-address code consists of a sequence of instructions, each of which has at most three operands.

 The source program might appear in three-address code as

temp1: = inttoreal (60)

temp2: = id3 * temp1

temp3: = id2 + temp2

id1: = temp3

P a g e | 18 LANGUAGE TRANSLATORS

This intermediate form has several properties:

1. First, each three address instruction has at most one operator in addition to the assignment. Thus,
when generating these instructions, the compiler has to decide on the order in which operations are to
be done; the multiplication precedes the addition in the source program.

2. Second, the compiler must generate a temporary name to hold the value computed by each
instruction.

3. Third, some “three-address” instructions have fewer than three operands.

Code Optimization:

The code optimization phase attempts to improve the intermediate code, so that faster-running
machine code will result.

For example, a natural algorithm generates the intermediate code, using an instruction for each
operator in the tree representation after semantic analysis, even though there is a better way to
perform the same calculation, using the two instructions.

temp1 := id3 * 60.0
id1 := id2 + temp1

There is nothing wrong with this simple algorithm, since the problem can be fixed during the code-
optimization phase.

That is, the compiler can deduce that the conversion of 60 from integer to real representation can be
done once and for all at compile time, so the inttoreal operation can be eliminated.

There is a great variation in the amount of code optimization different compilers.

 ‘Optimizing compilers’, a significant fraction of the time of the compiler is spent on this phase.

Code Generation:

The final phase of the compiler is the generation of target code, consisting normally of relocatable
machine code or assembly code.

Memory locations are selected for each of the variables used by the program. Then, intermediate
instructions are each translated into a sequence of machine instructions that perform the same task.

The assignment of variables to registers.

For example, using registers 1 and 2, the translation of the code as

MOVF id3, R2

MULF #60.0, R2

MOVF id2, R1

ADDF R2, R1

MOVF R1, id1

P a g e | 19 LANGUAGE TRANSLATORS

The first and second operands of each instruction specify a source and destination, respectively.

 The F in each instruction tells us that instructions deal with floating-point numbers.

This code moves the contents of the address id3 into register 2, and then multiplies it with the real-
constant 60.0.

The # signifies that 60.0 is to be treated as a constant.

The third instruction moves id2 into register 1 and adds to it the value previously computed in
register 2.

Finally, the value in register 1 is moved into the address of id1.

Symbol Table Management:

An essential function of a compiler is to record the identifiers used in the source program and collect
information about various attributes of each identifier.

These attributes may provide information about the storage allocated for an identifier, its type, its
scope and in case of procedure names, such things at the number and types of its arguments and
methods of passing each argument and type returned.

The symbol table is a data structure containing a record for each identifier with fields for the
attributes of the identifier.

The data structure allows us to find the record for each identifier quickly and to store or retrieve data
from that record quickly.

Whenever an identifier is detected by a lexical analyzer, it is entered into the symbol table. The
attributes of an identifier cannot be determined by the lexical analyzer.

However, the attributes of an identifier cannot normally be determined during lexical
analysis. For example, in a Pascal declaration like

var position, initial, rate : real;

The type real is not known when position, initial and rate are seen by the lexical analyzer.

The remaining phases get information about identifiers into the symbol table and then use this
information in various ways.

Error Detection and Reporting:

Each phase can encounter errors. However, after detecting an error, a phase must somehow deal with
that error, so that compilation can proceed, allowing further errors in the source program to be
detected.

A compiler that stops when it finds the first error is not as helpful as it could be.

The syntax and semantic analysis phases usually handle a large fraction of the errors detectable by the
compiler.

P a g e | 20 LANGUAGE TRANSLATORS

The lexical phase can detect errors where the characters remaining in the input do not form any token
of the language.

Errors where the token stream violates the structure rules (syntax) of the language are determined by
the syntax analysis phase.

During semantic analysis the compiler tries to detect the right syntactic structure but no meaning to
the operation involved.

e.g. we try to add two identifiers, one of which is the name of an array and the other the name of the
procedure.

Example:

Consider the translation of the statement, position: = initial + rate * 10

P a g e | 21 LANGUAGE TRANSLATORS

4. Explain the Cousins of the compiler. (11marks) (MAY 2012)

The input to a compiler may be produced by one or more preprocessors, and further processing of
the compiler’s output may be needed before running machine code is obtained.

Skeletal source program
↓

Preprocessor
↓

Source program
↓

Compiler
↓

Target assembly program
↓

Assembler
↓

Relocatable machine code
↓

Library, relocatable object filesLoader/ link editor

↓
Absolute machine code

Preprocessors:

Preprocessors produce input to compilers. They may perform the following functions:

Macro Processing:
 File inclusion:

 “Rational” Preprocessors:

 Language extensions:

Macro Processing:

A preprocessor may allow a user to define macros that are shorthand’s for longer constructs.

File inclusion:

A preprocessor may include header files into the program text.

For example, the C preprocessor causes the contents of the file <global.h> to replace the statement
#include <global.h>when it processes a file containing this statement.

“Rational” Preprocessors:

These processors augment older languages with more modern flow-of-control and data-structuring
facilities.

For example, such a preprocessor might provide the user with built-in macros for constructs like while
statements or if statements.

P a g e | 22 LANGUAGE TRANSLATORS

Language extensions:

These processors attempt to add capabilities to the language by what amounts to built-in macros.

For example, the language Equal is a database query language embedded in C. Statements beginning
with ## are taken by the preprocessor to be database-access statements, unrelated to C, and are
translated into procedure calls on routines that perform the database access.

Macro processors deal with two kinds of statements:

1. Macro definition and

2. Macro use

Definitions are normally indicated by unique character or keyword like define or macro. They consist
of a name for the macro being defined and a body, forming its definition.

The use of macro consists of naming the macro and supply actual parameters, (i.e.) values for its
formal parameters.

Assemblers:

Some compilers produce assembly code that is passed to an assembler for further processing.

Other compilers perform the job of the assembler, producing relocatable machine code that can be
passed directly to the loader/link-editor.

Assembly code is a mnemonic version of machine code, in which names are used instead of binary
codes for operations, and names are also given to memory addresses.

A typical sequence b := a + 2, the assembly instructions might be

MOV a, R1

ADD #2, R1

MOV R1, b

This code moves the contents of the address a into register 1, then adds the constant 2 to it, treating
the contents of register 1 as a fixed-point number, and finally stores the result in the location named
by b. thus, it computes b:=a+2.

Two - Pass Assembly:

The simplest form of assembler makes two passes over the input, where a pass consists of reading an input
file once.

In the first pass, all the identifiers that denote storage locations are found and stored in a symbol table.

Identifiers are assigned storage locations as they are encountered for the first time.

Identifiers Address

a 0

b 4

P a g e | 23 LANGUAGE TRANSLATORS

In the second pass, the assembler scans the input again. This time, it translates each operation code
into the sequence of bits representing that operation in machine language and it translates each
identifier representing a location into address given for that identifier in the symbol table.

The output of the second pass is usually relocatablemachine code, that it can be loaded starting at any
location L in memory.

Loaders and Link-Editors:

Usually, a program called a loader performs the two functions of loading and link-editing.

The process of loading consists of taking relocatable machine code, altering the relocatable addresses,
and placing the altered instructions and data in memory at the proper location.

The link-editor allows us to make a single program from several files of relocatable machine code.

These files may be the result of several different compilation and one or more library files of routines
provided by the system.

If the files are to be used together, there may be external references, in which the code of one file
refers to a location in another file.

5. Write a short note on grouping of phases? (5 marks)

In an implementation, activities frommore than one phase are often grouped together.

Front and Back Ends:

The phases are collected into a front end and a back end.

The front end consists of those phases that depend primarily on the source language and are largely
independent of the target machine.

These normally include

lexical analysis
 syntactic analysis

 semantic analysis

 the creating of the symbol table

 the generation of intermediate code.

 code optimization can be done by the front end as well.

 The front end also includes the error handling that goes along with each of these phases.

The back end of compiler includes those portions that depend on the target machine and generally
those portions do not depend on the source language, just the intermediate language.

P a g e | 24 LANGUAGE TRANSLATORS

These normally include

Code optimization
 Code generation

 Error handling and

 Symbol-table operations

Passes:

Several phase of compilation are usually implemented in a single pass consisting of reading an input
file and writing an output file.

For several phases to be grouped into one pass and for the activity of these phases to be interleaved
during the pass.

For example, lexical analysis, syntax analysis, semantic analysis and intermediate code generation
might be grouped into one pass.

The token stream after lexical analysis may be translated directly into intermediate code.

Reducing the Number of Passes:

It is desirable to have relatively few passes, since it takes time to read and write intermediate files. If
we group several phases into one pass, it may be forced to keep the entire program in memory,
because one phase may need information in a different order then a previous phase produces it.

The grouping into one pass presents few problems.

 The interface between lexical and syntax analyzers can often be limited to a single token.

It is very hard to perform code generation until the intermediate representation has been completely
generated.

6. State the different compiler construction tools and their use. (6 marks) (MAY 2013)

The compiler writer, like any programmer, can profitably use tools such as debuggers, version managers,
profilers and so on.

In addition to these software-development tools, other more specialized tools have been developed for
helping implement various phases of a compiler.

The first compilers were written; systems to help with the compiler-writing process appeared.

 These systems have often been referred to as

 Compiler-compilers,

 Compiler-generators, or

 Translator-writing systems.

The general tools have been created for the automatic design of specific compiler components.

P a g e | 25 LANGUAGE TRANSLATORS

These tools use specialized languages for specifying and implementing the component, and many use
algorithms that are quite sophisticated.

The most successful tools are those that hide the details of the generation algorithm and produce
components that can be easily integrated into the remainder of a compiler.

The various compiler construction tools are

1. Parser generators

2. Scanner generators

3. Syntax-directed translation engines

4. Automatic code generators

5. Data-flow engines

Parser generators:

These produce syntax analyzers, normally from input that is based on a context-free grammar.

In early compilers, syntax analysis consumed not only a large fraction of the running time of a
compiler, but a large fraction of the intellectual effort of writing a compiler.

This phase is considered one of the easiest to implement.

Scanner generators:

These tools automatically generate lexical analyzers, normally from a specification based on regular
expressions.

The basic organization of the resulting lexical analyzer is in effect a finite automaton.

Syntax directed translation engines:

These produce collections of routines that walk the parse tree, generating intermediate code.

The basic idea is that one or more “translations” are associated with each node of the parse tree, and
each translation is defined in terms of translations at its neighbor nodes in the tree.

Automatic code generators:

Such a tool takes a collection of rules that define the translation of each operation of the intermediate
language into the machine language for the target machine.

The rules must handle the different possible access methods for data.

Eg; variables may be in registers, in a fixed location in memory or may be allocated a position on a
stack. The basic technique is “template matching”.

Data-flow engines:

Much of the information needed to perform good code optimization involves “data-flow analysis,” the
gathering of information how values are transmitted from one part of a program to each other part.

P a g e | 26 LANGUAGE TRANSLATORS

7. Discuss the role of the lexical analyzer. (11marks) (NOV 2012)

The lexical analyzer is the first phase of a compiler.

Its main task is to read the input characters and produce as output a sequence of tokens that the
parser uses the syntax analysis.

This is implemented by making the lexical analyzer be a sub-routine or a co-routine of the parser.

Upon receiving a “get next token” command from the parser, the lexical analyzer reads input
characters until it can identify the next token.

Interaction of lexical analyzer with parser

The lexical analyzers is the part of the compiler that reads the source text, it may also perform certain
secondary tasks at the user interface.

One task is stripping out from the source program comments and white space in the form of blank,
tab and new line characters.

Another is error messages from the compiler in the source program.

The lexical analyzers are divided into a cascade two phases are

1. Scanning

is responsible for doing simple tasks.

2. Lexical analysis

more complex operations

For example, a FORTRAN compiler might use a scanner to eliminate blanks from the input.

Issues in Lexical Analysis:

There are several reasons for separating the analysis phase of compiling into lexical analysis and

parsing.

i. Simpler design is the most important consideration.

Comments and white space have already been removed by lexical analyzer.

ii. Compiler Efficiency is improved.

A large amount of time is spent reading the source program and partitioning it into tokens.

Specialized buffering techniques for reading input characters and processing tokens can
significantly speed up the performance of a compiler.

P a g e | 27 LANGUAGE TRANSLATORS

iii. Compiler Portability is enhanced.

Input alphabet peculiarities and other device-specific anomalies can be restricted to the lexical
analyzer.

The representation of a special or non-standard symbol such as ↑ in Pascal can be isolated in the
lexical analyzer.

Tokens, Patterns, and Lexemes:

Tokens- Sequence of characters that have a collective meaning.

Patterns- There is a set of strings in the input for which the same token is produced as output. This set
of strings is described by a rule called a pattern associated with the token.

Lexeme- A sequence of characters in the source program that is matched by the pattern for a token.

Token lexeme patterns

const const const

if if if

relation <, <=, =, < >, >, >= < or <= or = or < > or >= or >

id pi, count, D2 letter followed by letters and digits

num 3.1416, 0, 6.02E23 any numeric constant

literal “core dumped” any characters between “ and “ except “

Attributes for Tokens:

When more than one pattern matches a lexeme, the lexical analyzer must provide information about
the particular lexeme that matched to the phases of a compiler.

For example, the pattern nummatches both the strings 0 and 1.

 The lexical analyzer collects information about tokens into their associated attributes.

 The tokens influence parsing decisions; the attributes influence the translation of tokens.

A token has usually only a single attribute – a pointer to the symbol-table entry in which the
information about the token is kept; the pointer becomes the attribute for the token.

The tokens and associated attribute-values for the FORTRAN statement

E =M * C ** 2

<id, pointer to symbol-table entry for
R> <assign_op, >

<id, pointer to symbol-table entry for M>
<mult_op, >

<id, pointer to symbol-table entry for
C> <exp_op, >

<num, integer value 2>

P a g e | 28 LANGUAGE TRANSLATORS

Lexical Errors:

Possible error recovery actions or Panic mode recovery are

1. Deleting an extraneous character

2. Inserting a missing character

3. Replacing an incorrect character by a correct character

4. Transposing two adjacent characters

8. Explain the input buffering with sentinels. (6 marks) (NOV 2013)

The two- buffer input scheme is useful when look-ahead on the input is necessary to identify tokens.
 The techniques for speeding up the lexical analyzer, use the “sentinels “ to mark the buffer end.

The three general approaches to the implementation of a lexical analyzer

1. Use a lexical analyzer generator such as the Lex compiler to produce a regular expression based
specification. In this case, the generator provides for reading and buffering the input.

2. Write the lexical analyzer in a conventional systems programming languages using the I/O facilities of
that language to read the input.

3. Write the lexical analyzer in assembly language and reading of input.

The lexical analyzer is the only phase of the compiler that reads the source program character-by-character; it
is possible to spend a considerable amount of time in the lexical analysis phase.

Buffer Pairs:

Two pointers to the input buffer are maintained.
 The string of characters between the pointers is the current lexeme.

 Initially, both pointers point to the first character of the next lexeme to be found.

 Forward pointer, scans ahead until a match for a pattern is found.

 Once the next lexeme is determined, the forward pointer is set to the character at its right end.

 After the lexeme is processed, both pointers are set to the character immediately past the lexeme.

 The comments and white space can be treated as patterns that yield no token.

A buffer into two N-character halves, where N is the no.of characters on one disk block, eg. 1024 or
4096.

If the forward pointer is to move past the halfway mark, the right half is filled with N new input
characters.

P a g e | 29 LANGUAGE TRANSLATORS

If the forward pointer is to move past the right end of the buffer, the left half is filled with N new
characters and the forward pointer wraps around to the beginning of the buffer.

Code to advance forward pointer

if forward at the end of first half then begin
reload second half ;

forward : = forward + 1;

end

else if forward at end of second half then begin
reload first half ;

move forward to beginning of first half

end

else forward : = forward + 1;

Sentinels:

The sentinel is a special character that cannot be part of the source program.
 Each buffer half to hold a sentinel character at the end (eof).

Lookahead code with sentinels:

forward : = forward + 1 ;

if forward = eof then begin

if forward at end of first half then begin
reload second half ;

forward : = forward + 1

end

else if forward at end of second half then begin
reload first half ;

move forward to beginning of first half

end

else / * eofwithin buffer signifying end of input * /
terminate lexical analysis

end

P a g e | 30 LANGUAGE TRANSLATORS

9. Explain the specification of tokens? (11marks)

Regular expressions are an important notation for specifying lexeme patterns. Each pattern matches a
set of strings, so regular expressions will serve as names for set of strings.

(i) Strings and Languages:

The term alphabet or character class denotes any finite set of symbols. Typical examples of symbols
are letters and characters.

The set {0, 1} is the binary alphabet.

 ASCII and EBCDIC are two examples of computer alphabet.

 A string over some alphabet is a finite sequence of symbols drawn from that alphabet.

 The length of string s, usually written |s|, is the number of occurrences of symbols in s.

 The empty string denoted Ɛ, is a special string of length zero.

The term language denotes any set of strings over some fixed alphabet. Abstract languages like, the
empty set, or {},the set containing only the empty string, are languages.

If x and y are strings, then the concatenation of x and y is also string, denoted xy, is the string formed
by appending y to x.

For example, if x = ban and y = ana, then xy = banana.

 The empty string Ɛ is the identity element under concatenation; that is, for any string s, SƐ = ƐS= s.

(ii) Operations on Languages:

There are several important operations that can be applied to languages.

In lexical analysis

Union
 Concatenation

 Closure

P a g e | 31 LANGUAGE TRANSLATORS

Example:

Let L be the set of letters {A, B, . . . , Z, a, b, . . . , z } and D be the set of digits {0,1,.. .9}.

 L and D are, respectively, the alphabets of uppercase and lowercase letters and of digits.

1. L U D is the set of letters and digits

2. LD is the set of strings consisting of a letter followed by digit

3. L4 is the set of all 4-letter strings.

4. L* is the set of all strings of letters, including e, the empty string.

5. L (L U D)* is the set of all strings of letters and digits beginning with a letter.

6. D+ is the set of all strings of one or more digits.

(iii) Regular Expressions:

Regular expression is a notation for describing string. In Pascal, an identifier is a letter followed by
zero or more letter or digits.

The Pascal identifier as

letter (letter | digit) *

The rules is the specification of language denoted by

1. is a regular expression that denotes {}, the set containing empty string.

2. If a is a symbol in , then a is a regular expression that denotes {a}, the set containing the string a.

3. Suppose r and s are regular expressions denoting the language L(r) and L(s), then

a) (r) |(s) is a regular expression denoting L(r) L(s).

b) (r)(s) is regular expression denoting L (r) L(s).

c) (r) * is a regular expression denoting (L (r))*.

d) (r) is a regular expression denoting L (r).

A language denoted by a regular expression is said to be a regular set.

Unnecessary parentheses can be avoided in regular expression

1. The unary operator * has the highest precedence and is left associative.

2. Concatenation has the second highest precedence and is left associative.

3. | has the lowest precedence and is left associative.

P a g e | 32 LANGUAGE TRANSLATORS

(iv) Regular Definitions:

For notation, give names to regular expressions and to define regular expressions using these names
as if they were symbols.

If is an alphabet of basic symbols, then a regular definition is a sequence of definitions of the form:

d1r1
d2r2

. . .

dnrn

where each di is a distinct name, and each ri is a regular expression.

Example:

1. The set of Pascal identifier is the set of strings of letters and digits beginning with a letter.
The regular definition is

letter A | B | C | … | Z | a | b | … | z
digit 0 | 1 | 2 | … | 9

id letter (letter | digit)*

2. Unsigned numbers in Pascal are strings such as 5280, 39.37, 6.336E4 or 1.894E-4.

The regular definition is

digit 0 | 1 | 2 | … | 9
digits digit digit*

optional_fraction . digits |
optional_exponent (E (+ | -|) digits) |

num digits optional_fraction optional_exponent

(v) Notational Shorthands:

1. One or more instances

Unary postfix operator + means “one or more instances of”.

2. Zero or one instance

Unary postfix operator ? means “ zero or one instances of ”.The regular definition for num
digit 0 | 1 | 2 | … | 9

digits digit+

optional_fraction (. digits) ?

optional_exponent (E (+ | -) ? digits) ?

num digits optional_fraction optional_exponent

P a g e | 33 LANGUAGE TRANSLATORS

3. Character classes

The notation [abc] where a, b and c are alphabet symbols denotes the regular expression a | b | c.
 The character class such as [a-z] denotes the regular expression a | b | … | z.

Using character classes, we describe identifiers as being strings generated by the regular
expression,

[A – Z a – z] [A – Z a – z 0 – 9] *

10. Illustrate the steps involved in the recognition of tokens? (11 marks) (NOV 2011)(MAY 2013)

We considered the problem of how to specify tokens and recognize them.

Consider the following grammar

stmt if expr then stmt

| if expr then stmt else stmt

|

expr term relop term
| term

term id

| num

where the terminals if, then, else, relop, id, and num generate set of strings given by the following regular
definitions:

if if then

 then else

 else

relop < | <= | > | >= | = | < >
id letter (letter | digit)*

num digit + (. digit +) ? (E(+ | -) ? digit +) ?

The lexical analyzer will recognize the keywords if, then, else, as well as the lexemes denoted by relop, id, and
num.

We assume lexemes are separated bywhite space consisting of blanks, tabs, and newlines. In lexical analyzer
will strip out white space.

delim blank | tab | newline

ws delim +

If a match forws is found, the lexical analyzer does not return a token to the parser.

P a g e | 34 LANGUAGE TRANSLATORS

To construct a lexical analyzer that will isolate the lexeme for the next token in the input buffer and
produce as output a pair consisting of the appropriate token and attribute value, using the translation
table.

 The attribute values for the relational operators are given by the symbolic constants LT, LE, EQ, NE, GT,GE.

Regular expression pattern for tokens

Transition diagram:

An intermediate step in the construction of a lexical analyzer, produce a stylized flowchart called a
transition diagram.

Transition diagram depict the actions that take place when a lexical analyzer is called by the parser to
get the next token.

Transition diagram to keep track of information about characters that are seen as the forward pointer
scans the input.

Moving from position to position in the diagram as characters are read.

 Positions in a transition diagram are drawn as circles and are called states.

 The states are connected by arrow, called edges.

Edges leaving state s have labels indicating the input characters that can next appear after the
transition diagram has reached state s.

The label other refers to any character that is not indicated by any of the other edges leaving s.

Transition diagram are deterministic, ie no symbol can match the labels of two edges leaving one
state.

P a g e | 35 LANGUAGE TRANSLATORS

One state is labeled as the start state; it is the initial state of the transition diagram where control
resides when we begin to recognize a token.

Certain states may have actions that are executed when the flow of control reaches that state.

 On entering a state we read the next input character.

If there is an edge from the current state whose label matches this input character, we then go to the
state pointed to by the edge.

 Otherwise we indicate failure.

Transition diagram for relational operators:

Transition diagram for identifiers and keywords:

P a g e | 36 LANGUAGE TRANSLATORS

Transition diagram for digits:

Transition diagram for delim:

Implementing a Transition diagram:

A sequence of transition diagram can be converted into a program to look for the tokens by the
diagrams.

The systematic approach that works for all transition diagram and constructs programs whose size is
proportional to the number of states and edges in the diagrams.

P a g e | 37 LANGUAGE TRANSLATORS

11. Elaborate on the language for specifying lexical analyzer. (6 marks) (NOV 2013)

Several tools have been built for constructing lexical analyzers from special purpose notations based
on regular expressions.

The use of regular expressions for specifying tokens patterns.

 A particular tool called Lex,which is used to specify lexical analyzer for a variety of languages.

 We refer to the tool as the Lex compiler and to its input specification as the Lex language.

Creating a lexical analyzer with Lex:

1. First, a specification of a lexical analyzer is prepared by creating a program lex.l in the Lex language.

2. Then, lex.l is run through the Lex compiler to produce a C program lex.yy.c.

3. The program lex.yy.c consists of tabular representation of a transition diagram constructed from
regular expression of lex.l, together with a standard routine that uses the table to recognize lexemes.

4. The actions associated with regular expressions in lex.l are pieces of C code and are carried over
directly to lex.yy.c.

5. Finally lex.yy.c is run through the C compiler to produce an object program a.out, which is the lexical
analyzer that transforms an input stream into a sequence of tokens.

Lex Specifications:

A Lex program consists of three
parts: declarations

%%

translation rules

%%

auxiliary procedures

P a g e | 38 LANGUAGE TRANSLATORS

The declarations section includes declarations of variables, manifest constants, and regular definitions.

 The translation rules of a Lex program are statement of the form

p1 { action1}
p2 { action2}

…… …..

pn { actionn}

where each pi is a regular expression and each actioni is a program fragment describing what action
the lexical analyzer should take when pattern matches a lexeme.

The auxiliary procedures are needed by the actions. These procedures can be compiled separately and
loaded with the lexical analyzer.

A lexical analyzer created by Lex behaves with a parser in the following manner.

When activated by the parser, the lexical analyzer begins reading its remaining input, one character at
a time, until it has found the longest prefix of the input that is matched by one of the regular
expressions pi.

Then it executes actioni.

 The lexical analyzer returns a single quantity, the token, to the parser.

To pass an attribute value with the information about the lexeme, we can set a global variable called
yylval.

Lex Program for the tokens:

%{

/* definitions of manifest constants

LT, LE, EQ, NE, GT, GE,

IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions */

delim [\t\n]

ws {delim}+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?(E[+\-]?{digit}+)?

P a g e | 39 LANGUAGE TRANSLATORS

%%

{ws} {/* no action and no return */}

if {return(IF);}

then {return(THEN);}

else {return(ELSE);}

{id} {yylval = install_id(); return(ID); }

{number} {yylval = install_num(); return(NUMBER);}

“<“ {yylval = LT; return(RELOP); }

“<=“ {yylval = LE; return(RELOP); }

“=“ {yylval = EQ; return(RELOP); }

“<>“ {yylval = NE; return(RELOP); }

“>“ {yylval = GT; return(RELOP); }

“>=“ {yylval = GE; return(RELOP); }

%%

install_id()

{

/* procedure to install the lexeme, whose first character is pointed to by yytext,

and whose length is yyleng, into the symbol table and return a pointer */

}

install_num()

{

/* similar procedure to install a lexeme that is a number */

}

P a g e | 40 LANGUAGE TRANSLATORS

IMPORTANT QUESTIONS

2MARKS

1. What is hierarchical analysis? (NOV 2011) (Ref.Qn.No.8, Pg.no.3)

2. What is the major advantage of a lexical analyzer generator? (NOV 2011) (Ref.Qn.No.30, Pg.no.8)

3. List out the parts on Lex specifications. (MAY 2012) (Ref.Qn.No.44, Pg.no.10)

4. What is Compiler? (MAY 2012) (NOV 2012) (Ref.Qn.No.1, Pg.no.2)

5. What is transition diagram? (NOV 2012) (Ref.Qn.No.41, Pg.no.9)

6. Why separate lexical analysis phase is required? (MAY 2013) (Ref.Qn.No.29, Pg.no.7)

7. State the function of front end and back end of a compiler phase. (MAY 2013) (Ref.Qn.No.22,23, Pg.no.6)

8. State with example the cousins of compilers. (NOV 2013) (Ref.Qn.No.17, Pg.no.5)

9. List the role of lexical analyzer? (NOV 2013) (Ref.Qn.No.27, Pg.no.7)

11 MARKS

NOV 2011(REGULAR)

1. Draw the different phases of a compiler and explain. (Ref.Qn.No.3, Pg.no.16)

(OR)

2. How to recognize the tokens? (Ref.Qn.No.10, Pg.no.34)

MAY 2012(ARREAR)

1. Explain the Cousins of the compiler. (Ref.Qn.No.4, Pg.no.22)

(OR)

2. Discuss the Phases of a compiler. (Ref.Qn.No.3, Pg.no.16)

NOV 2012(REGULAR)

1. Explain the phases of a compiler. (Ref.Qn.No.3, Pg.no.16)

(OR)

2. Discuss the role of the lexical analyzer. (Ref.Qn.No.7, Pg.no.27)

MAY 2013(ARREAR)

1. a) State the different compiler construction tools and their use. (6) (Ref.Qn.No.5, Pg.no.25)
b) Illustrate the steps involved in the recognition of tokens. (5) (Ref.Qn.No.10, Pg.no.34)

(OR)

2. With a neat sketch discuss the functionalities of various phases of a compiler. (Ref.Qn.No.3, Pg.no.16)

NOV 2013 (REGULAR)

1. Describe the different stage of a compiler with an example. Consider an example for a simple arithmetic
expression statement. (Ref.Qn.No.3, Pg.no.16)

(OR)

2. Explain the buffered I/O with sentinels. Elaborate on the language for specifying lexical analyzer.

(Ref.Qn.No.8, Pg.no.29) (Ref.Qn.No.11, Pg.no.38)

P a g e | 41 LANGUAGE TRANSLATORS

UNIT IV

PARSING

Parsing: Role of Parser – Context free Grammars – Writing a

Grammar – Predictive Parser – LR Parser. Intermediate Code

Generation: Intermediate Languages – Declarations – Assignment

Statements – Boolean Expressions – Case Statements – Back Patching

– Procedure Calls.

P a g e | 1 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

2 MARKS

1. What is the role of parser?

In compiler model, parser obtains a string of tokens from the lexical analyzer and verifies that the
string can be generated by the grammar for the source program.

The parser should report any syntax errors in an intelligible fashion.

2. What is meant by parser?

A parser for grammar G is a program that takes as input a string ‘w’ and produces as output either a

parse tree for ’w’, if ‘w’ is a sentence of G, or an error message indicating that w is not a sentence of G. It

obtains a string of tokens from the lexical analyzer, verifies that the string generated by the grammar for the

source language.

3. What are the types of Parser?

There are three general types of parsers for grammars.

1. Universal parsing methods

Cocke-Younger –Kasami algorithm and
 Earley’s algorithm

2. Top down parser

3. Bottom up parser

4. What are the different levels of syntax error handler?

Lexical, such as misspelling an identifier, keyword, or operator
 Syntactic, such as an arithmetic expression with unbalanced parentheses

 Semantic, such as an operator applied to an incompatible operand

 Logical, such as an infinitely recursive call

P a g e | 2 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

5. What are the goals of error handler in a parser?

It should report the presence of errors clearly and accurately.
 It should recover from each error quickly enough to be able to detect subsequent errors.

 It should not significantly slow down the processing of correct programs.

6. What are error recovery strategies in parser?

Panic mode
 Phrase level

 Error productions

 Global correction

7. Define context free grammar? (NOV 2011)

A Context Free Grammar (CFG) consists of terminals, non-terminals, a start symbol and productions.
The Grammar G can be represented as G = (V, T, S, P)

V is a set of non-terminals

 T is a set of terminals

 S is a start symbol

P is a set of production rules

Production rules are given in the following form

Non terminal

(V U T)*

8. Define derivation.

Derivation is the top-down construction of parse tree. The production treated as a rewriting rule in
which the non-terminal on the left is replaced by the string on the right side of the production.

9. What is left-most and right-most derivation?

The left-most non-terminal in each derivation step, this derivation is called as left-most derivation.

The right-most non-terminal in each derivation step, this derivation is called as right-most derivation
(Canonical derivation).

10.What is Parsing Tree? (MAY 2012)

A parse tree can be viewed as a graphical representation for a derivation.
 The leaves of a parse tree are terminal symbols.

 Inner nodes of a parse tree are non-terminal symbols.

11. Define yield of the string?

The leaves of the parse tree are labeled by non-terminals or terminals and read from left to right; they
constitute a sentential form called the yield or frontier of the tree.

P a g e | 3 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

12. Define ambiguous. (MAY 2012)

A grammar that produces more than one parse tree for a sentence is said to be ambiguous.

13. Define ambiguous grammar.

An ambiguous grammar is one that produces more than one left most or more than one right most
derivation for the same sentence.

14.What is left recursion?
+

A grammar is left recursive if it has a non-terminal A such that there is a derivation A A.

Top-down parsing techniques cannot handle left-recursive grammars, so a transformation that
eliminates left recursion is needed.

Example: The left recursive pair of productions A

A | β could be replaced by non- left- recursive

productions

A

βA’ A’

 A’ | ε

15. Define left factoring?

Left factoring is a grammar transformation that is useful for producing a grammar suitable for
predictive parser.

16.What are the problems with top down parsing?

The following are the problems associated with top down parsing:

Backtracking
 Left recursion

 Left factoring

 Ambiguity

17. Define top down parsing?

Top-down parser viewed as an attempt to find the left most derivation for an input string. It can be
viewed as attempting to construct a parse tree for the input starting from the root and creating the
nodes of the parse tree in preorder.

Top down parsing called recursive descent that may involve backtracking ie. making repeated
scanning of the input.

18.What is meant by recursive-descent parser?

A parser that uses a set of recursive procedures to recognize its input with no backtracking is called a
recursive-descent parser.

This recursive-descent parser called predictive parsing.

P a g e | 4 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

19. Briefly describe the LL (k) items. . (NOV 2013)

In LL (k) the first “L “ scanning the input from left to right and

second “L” producing a leftmost derivation and

the “1” one input symbol of lookahead at each step

20.What are the possibilities of non-recursive predictive parsing?

a) If X = a = $, the parser halts and announces successful completion of parsing.

b) If X = a = $, the parser pops X off the stack and advances the input pointer to the next symbol.

c) If X is a nonterminal, the program consults entry M[X, a] of the parsing table M. This entry will be
either an X-production of the grammar or an error entry.

21.Write the algorithm for FIRST and FOLLOW.

FIRST

1. If X is terminal, and then FIRST(X) is {X}.

2. If X

ε is a production, then add ε to FIRST(X).

3. If X is non-terminal and X

Y1,Y2….Yk is a production, then place a in FIRST(X) if for some i , a is in
FIRST(Yi) , and ε is in all of FIRST(Y1),…FIRST(Yi-1);

FOLLOW

1. Place $ in FOLLOW(S), where S is the start symbol and $ is the input right end marker.

2. If there is a production A

αBβ, then everything in FIRST (β) except for ε is placed in FOLLOW (B).

3. If there is a production A

αB, or a production A

αBβ where FIRST (β) contains ε, then

everything in FOLLOW (A) is in FOLLOW (B).

22.What is bottom up parser?

Bottom-up parsing is also known as shift-reduce parsing.

Shift-reduce parsing attempts to construct a parse tree for an input string beginning at the leaves (the
bottom) and working up towards the root (the top).

23. Define handle?

A handle of a string is a substring that matches the right side of a production, and whose reduction to
the non-terminal on the left side of the production represents one step along the reverse of a right
most derivation.

P a g e | 5 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

24.What is meant by handle pruning?

A rightmost derivation in reverse can be obtained by handle pruning.

If w is a sentence of the grammar at hand, then w = γn, where γn is the nth right-sentential form of
some as yet unknown rightmost derivation

S = γ0 => γ1…=> γn-1 => γn = w

25.What is meant by viable prefixes?

The set of prefixes of right sentential forms that can appear on the stack of a shift-reduce parser are
called viable prefixes.

An equivalent definition of a viable prefix is that it is a prefix of a right sentential form that does not
continue past the right end of the rightmost handle of that sentential

26. Define LR (k) parser?

LR parsers can be used to parse a large class of context free grammars. The technique is called LR (K) parsing.

“L” is for left-to-right scanning of the input
 “R” for constructing a right most derivation in reverse

 “k” for the number of input symbols of lookahead that are used in making parsing decisions.

27.Mention the types of LR parser?

The three methods in LR parser

Simple LR (SLR) parser
 Canonical LR (CLR) parser

 Lookahead LR (LALR) parser

28.What are the techniques for producing LR parsing Table?

1. Shift s, where s is a state

2. Reduce by a grammar production A

3. Accept and

4. Error

29.What are the two functions of LR parsing algorithm?

The two functions in LR parsing algorithm are

Action function

GOTO function

P a g e | 6 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

30. Define LALR grammar?

The Lookahead (LALR) parser method is often used in practice because the tables obtained by it are

considerably smaller than the canonical LR tables, yet most common syntactic constructs of programming

language can be expressed conveniently by an LALR grammar. If there are no parsing action conflicts, then the

given grammar is said to be an LALR (1) grammar. The collection of sets of items constructed is called LALR

(1) collections.

31. Define SLR parser?

The parsing table consisting of the parsing action and goto function determined by constructing an
SLR parsing table algorithm is called SLR(1) table. An LR parser using the SLR (1) table is called SLR (1)
parser. A grammar having an SLR (1) parsing table is called SLR (1) grammar.

32. Differentiate phase and pass. . (NOV 2012)

Phase Pass

Phase is often used to call such a single

Number of passes of a compiler is the number of times

independent part of a compiler. it goes over the source.

It is used in complier.

It also used in compiler.

It has lexical, syntax, semantic analyzer,

Compilers are indentified as one-pass or multi-pass

intermediate code generator, code optimizer, compilers.

and code generator.
 I t is easier to write a one-pass compiler and also they
perform faster than multi-pass compilers.

33. State the function of an intermediate code generator. (MAY 2013)

A source program can be translated directly into target language, some benefits of using machine-
independent intermediate form:

1. Retargeting is facilitated; a compiler for different machine can be created by attaching a back end for
the newmachine to an existing front end.

2. Amachine-independent code optimizer can be applied to the intermediate representation.

34.What are the syntax-directedmethods?

The syntax-directed methods can be used to translate into intermediate form programming language
constructs such as

Declaration

 Assignment statements

 Boolean Expression

 Flow of control statements

P a g e | 7 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

35.What are the different forms of Intermediate representations? (NOV 2013)

The three kinds of intermediate representations are

i. Syntax trees

ii. Postfix notation

iii. Three - address code

36. How can you generate three-address code?

The semantic rules for generating three-address code from common programming language constructs are
similar to those for constructing syntax trees for generating postfix notation.

37.What is a syntax tree? Draw the syntax tree for the assignment statement.

A syntax tree depicts the natural hierarchical structure of a source program.
 The syntax tree for the assignment statement a: = b * -c + b * -c.

assign

a +

* *

b uminus b uminus

c c

38. Draw the dag for the assignment statement: a: = b * -c + b * -c. (NOV 2011)

Directed Acyclic Graph (DAG) gives more compact way for common sub-expressions are identified.
 The DAG for the assignment statement a: = b * -c + b * -c.

assign

a +

*

b uminus

c

P a g e | 8 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

39. Define postfix notation?

Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of the tree in
which a node appears immediately after its children.

The postfix notation for the syntax tree is

a b c uminus * b c uminus * + assign

40.What are the functions used to create the nodes of syntax trees?

mkunode(op, child)
 mknode(op, left, right)

 mkleaf(id, entry)

41. Define three-address code. (NOV 2012)

Three-address code is a sequence of statements of the general form

x := y op z

where x, y and z are names, constants, or compiler-generated temporaries;

op stands for any operator, such as fixed or floating-point arithmetic operator, or a logical operator on
boolean-valued data.

42. Construct three address codes for the following a: = b * -c + b * -c.

The three address code

as t1 := - c

t2 := b * t1

t3 := - c

t4 := b * t3

t5 := t2 +
t4 a := t5

43. List the types of three address statements.

The types of three address statements are

1. Assignment statements

2. Assignment Instructions

3. Copy statements

4. Unconditional Jumps

5. Conditional jumps

6. Procedure calls and return

7. Indexed assignments

8. Address and pointer assignments

P a g e | 9 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

44.What are the various implementing three-address statements?

The three implementation of three address statements are

i. Quadruples

ii. Triples

iii. Indirect triples

45.What is a quadruple?

A quadruple is a record structure with four fields, such as

op, argl, arg2, and result

The op field contains an internal code for the operator.

The three-address statement x := y op z is represented by placing y in arg 1, z in arg 2, and x in result.

46.What are triples?

The Three-address statements can be represented by records with only three fields:

op, arg1 and arg2

The fields arg l and arg2, for the arguments of op, are either pointers to the symbol table or pointers
into the triple structure. Since three fields are used, this intermediate code format is known as triples.

This method is used to avoid temporary names into the symbol table.

47. Define indirect triples. Give the advantage?

Listing pointers to triples rather than listing the triples themselves. This implementation is called
indirect triples.

Advantages:

 It can save some space compared with quadruples, if the same temporary value is used more than
once.

48.Write a short note on declarations?

Declarations in a procedure, for each local name, we create a symbol table entry with information like
the type and the relative address of the storage for the name.

The relative address consists of an offset from the base of the static data area or the field for local data
in an activation record.

The procedure enter (name, type, offset) create a symbol table entry for name, its type and relative
address offset in its data area.

P a g e | 10 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

49. What are the semantic rules are defined in the declarations operations?

The semantic rules are defined by the following ways

1. mktable(previous)

2. enter(table, name, type, offset)

3. addwidth(table, width)

4. enterproc(table, name, newtable)

50.What are the two primary purposes of Boolean Expressions?

In Boolean expressions have two primary purposes

1. They are used to compute logical values

2. They are used as conditional expressions in statements that alter the flow of control, such as if-
then, if-then-else, or while-do statements.

51. Define Boolean Expression.

Boolean expressions which are composed of the boolean operators (and, or, and not) applied to
elements that are boolean variables or relational expressions.

Relational expression of the form E1 relop E2,where E1 and E2 arithmetic expressions.

 Consider Boolean Expressions with the following grammar:

E

E or E | E and E | not E | (E) | id relop id | true | false

52. What are themethods of translating Boolean expressions?

There are two principal methods of representing the value of a Boolean expression.

1. The first method is to encode true and false numerically and to evaluate a boolean expression
analogously to an arithmetic expression.

2. The second principal method of implementing boolean expression is by flow of control that is
representing the value of a Boolean expression by a position reached in a program.

53.What are the three address code for a or b and not c ?

The three address sequence for a or b and not c
t1 := not c

t2 := b and t1
t3 := a or t2

54. What is meant by Shot-Circuit or jumping code?

Translate a Boolean expression into three-address code without generating code for any of the

boolean operators and without having the code necessarily evaluate the entire expression. This style of
evaluation is sometimes called “short-circuit” or “jumping” code.

P a g e | 11 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

55. Write a three address code for the expression a<b or c<d and e<f?

The three address code as

100: if a< b goto 103

101: t1 := 0

102: goto 104

103: t1 := 1

104: if c< d goto 107

105: t2 := 0

106: goto 108

107: t2 := 1

108: if e< f goto 111

109: t3 := 0

110: goto 112

111: t3 := 1

112: t4 := t2 and t3

113: t5 := t1 or t4

56. Define back patching.

Backpatching can be used to generate code for Boolean expressions and flow-of-control statements in
a single pass is that during one single pass we may not know the labels that control must go to at the
time the jump statements are generated.

Each such statement will be put on a list of goto statements whose labels will be filled in when the proper
label can be determined. This subsequent filling of addresses for the determined labels is called

Backpatching.

57.What are the three functions of backpatching?

The three functions in backpatching are

1. makelist(i) – create a new list.

2. merge(p1,p2) – concatenates the lists pointed to by p1 and p2.

3. backpatch(p,i) – insert i as the target label for the statements pointed to by p.

P a g e | 12 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

58. Derive the first and follow for the follow for the following grammar. (MAY 2013)

S

0|1|AS0|BS0 A

ε B

ε

Computation for FIRST:

FIRST(S) = {0, 1} U FIRST (A) U FIRST (B) = {0, 1} U {ε} U {ε} = {0, 1, ε}

FIRST (A) = {ε}

FIRST (B) = {ε}

Computation for FOLLOW:

FOLLOW (S) = {$} U {0} U {0} = {$, 0}

FOLLOW (A) = FOLLOW(S) = {$, 0}

FOLLOW (B) = FOLLOW(S) = {$, 0}

P a g e | 13 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

11 MARKS

1. Explain the role of the parser? (11marks) (MAY 2012)

In compiler model, parser obtains a string of tokens from the lexical analyzer and verifies that the
string can be generated by the grammar for the source program.

The parser should report any syntax errors in an intelligible fashion.

It should also recover from commonly occurring errors so it can continue processing the remainder if
it’s input.

Position of parser in compiler model

There are three general types of parsers for grammars.

1. Universal parsing methods

too inefficient to use in production compilers.
 Cocke-Younger –Kasami algorithm and

 Earley’s algorithm

2. Top down parser

it builds parse trees from the top (root) to the bottom (leaves).

3. Bottom up parser

it start from the leaves and work up to the root.

In both cases, the input to the parser is scanned from left to right, one symbol at a time.

The most efficient top-down and bottom-up parsers can be implemented only for sub-classes of
context-free grammars.

 LL for top-down parsing

 LR for bottom-up parsing

P a g e | 14 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Syntax error handling:

If a compiler to process only correct programs, its design and implementation would be greatly
simplified.

The program can contain errors at many different levels of syntax error handler

Lexical, such as misspelling an identifier, keyword, or operator
 Syntactic, such as an arithmetic expression with unbalanced parentheses

 Semantic, such as an operator applied to an incompatible operand

 Logical, such as an infinitely recursive call

The error handler in a parser has simple to state goals:

It should report the presence of errors clearly and accurately.
 It should recover from each error quickly enough to be able to detect subsequent errors.

 It should not significantly slow down the processing of correct programs.

Several parsing methods such as LL and LR methods, detect an error as soon as possible.

Error - Recovery Strategies:

There are many different strategies that a parser can recover from a syntactic error.

Panic mode
 Phrase level

 Error productions

 Global correction

Panic mode recovery:

This is the simplest method to implement and can be used by most parsing methods.

On discovering an error, parser discards input symbols one at a time until one of the designated set of
synchronizing tokens is found.

The synchronizing tokens are usually delimiters such as semicolon or end.

 It skips many inputs without checking additional errors, so it has an advantage of simplicity.

 It guaranteed not to go in to an infinite loop.

Phrase - level recovery

On discovering an error, parser perform local correction on the remaining input;
 It may replace a prefix of the remaining input by some string that allows the parser to continue.

Local correction would be to replace a comma by a semicolon, delete an extra semicolon, or insert a
missing semicolon.

P a g e | 15 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Error productions

Augment the grammar with productions that generate the erroneous constructs.
 The grammar augmented by these error productions to construct a parser.

If an error production is used by the parser, generate error diagnostics to indicate the erroneous
construct recognized the input

Global correction

Algorithms are used for choosing a minimal sequence of changes to obtain a globally least cost
correction.

Given an incorrect input string x and grammar G, these algorithms will find a parse tree for a related
string y; such that the number of insertions, deletions and changes of tokens required to transform x

into y is as small as possible.

This technique is most costly in terms of time and space

2. Explain the Context Free Grammar (CFG)? (6 marks)

A Context Free Grammar (CFG) consists of terminals, non-terminals, a start symbol and productions.

The (CFG) Grammar G can be represented as G = (V, T, S, P)

A finite set of terminals (The set of tokens)
 A finite set of non-terminals (syntactic-variables)

 A start symbol (one of the non-terminal symbol)

 A finite set of productions rules in the following form

 A , where A is a non-terminal and is a string of terminals and non-terminals
including the empty string).

 Each production consists of a non-terminal, followed by an arrow, followed by a string
of non-terminals and terminals.

Example:

The grammar with the following productions defines simple arithmetic

expressions. expr

expr op expr

expr

(expr)

expr

- expr

expr

id

op

+

op

-

op

*

op

/

op

↑
P a g e | 16 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

In this grammar, the terminals symbols are

id + - * / ↑ ()

The non-terminal symbols are expr and op
 expr is the start symbol.

Notational Conventions:

1. These symbols are terminals:

i) Lower case letters in the alphabet such as a, b, c.

ii) Operator symbols such as +,-, etc.

iii) Punctuation symbols such as parenthesis, comma, etc.

iv) The digits 0, 1,…….., 9.

v) Boldface strings such as id or if.

2. These symbols are non-terminals

i) Upper case letters in the alphabet such as A, B, C.

ii) The letter S, when it appears, is usually the start symbol.

iii) Lower-case italic names such as expr or stmt.

3. Upper-case letters late in the alphabet, such as X, Y, Z, represent grammar symbols, that is, either non-
terminals or terminals.

4. Lower-case letters late in the alphabet u, v, ..., z, represent strings of terminals.

5. Lower-case Greek letters ,β, γ represent strings of grammar symbols.

6. If A

1, A

2, A

3, ……, A

k are all productions with, A on the left (A-productions), write as
A

1|2|3|…|k the alternatives for A.
7. The left side of the first production is the start symbol.

Derivations:

Derivational view gives a precise description of the top-down construction of a parse tree.

The central idea is that a production is treated as a rewriting rule in which the non-terminals on the
left is replaced by the string on the right side of the production.

For example, consider the following grammar for arithmetic expressions, with the non-terminals E
representing an expression.

E E + E | E – E | E * E | (E) | - E | id

The production E - E signifies that an expression preceded by a minus sign is also an expression.
This production can be used to generate more complex expressions from simpler expressions by
allowing us to replace any instance of an E by - E.

E -E

P a g e | 17 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Given a grammar G with starts symbol, use the

+ relation to define L (G), the language generated by
G.

Strings in L (G) may contain only terminal symbols of G.

A string of terminals w is in L (G) if and only if S

+w. The string w is called a sentence of G.
 A language that can be, generated by a grammar is said to be a context-free language.

 If two grammars generate, the same language, the grammars are said to be equivalent.

The string – (id+id) is a sentence of the grammar, and then the derivation is

E -E - (E) - (E+E) - (id+E) - (id+id)

At each derivation step, we can choose any of the non-terminals in the sentential form of G for the
replacement.

If we always choose the left-most non-terminal in each derivation step, this derivation is called as left-
most derivation.

If we always choose the right-most non-terminal in each derivation step, this derivation is called as
right-most derivation (Canonical derivation).

Parse Trees and Derivations:

A parse tree may be viewed as a graphical representation for a derivation that filters out the choice
regarding replacement order.

Each interior node of a parse tree is labeled by some non-terminals A, and that the children of the
node are labeled, from left to right, by the symbols in the right side of the production by which this A
was replaced in the derivation.

The leaves of the parse tree are labeled by non-terminals or terminals and read from left to right; they
constitute a sentential form, called the yield or frontier of the tree.

P a g e | 18 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Ambiguity

A grammar produces more than one parse tree for a sentence is called as an ambiguous.

An ambiguous grammar is one that produces more than one left most or more than one right most
derivation for the same sentence.

For the most parsers, the grammar must be unambiguous.

 The unambiguous grammar unique selection of the parse tree for a sentence.

The sentence id+id*id has the two distinct leftmost derivations:

E E + E

 id + E

 id + E * E

 id + id * E

 id + id * id

E E * E

 E + E * E

 id + E * E

 id + id * E

 id + id * id

with the two corresponding parse trees are

3. Write the steps in writing a grammar for a programming language. (5 marks)(NOV 2013)

Grammars are capable of describing the syntax of the programming languages.

Regular Expressions vs. Context-Free Grammars:

Every constructs that can be described by a regular expression can also be described by a grammar.

 For example the regular expression (a | b)* abb, the grammar is:

A0→ aA0 | bA0 | aA1

A1→ bA2

A2→ bA3

A3→ ε

which describe the same language, the set of strings of a’s and b’s ending in abb.

Mathematically, the NFA is converted into a grammar that generates the same language as recognized by
the NFA.

P a g e | 19 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

There are several reasons the regular expressions differ from CFG.

1. The lexical rules of a language are frequently quite simple. No need of any notation as powerful as
grammars.

2. Regular expressions generally provide a more concise and easier to understand notation for tokens
than grammars.

3. More efficient lexical analyzers can be constructed automatically from regular expressions than from
arbitrary grammars.

4. Separating the syntactic structure of a language into lexical and non-lexical parts provides a
convenient way of modularizing the front end of a compiler into two manageable-sized components.

Regular expressions are most useful for describing the structure of lexical constructs such as
identifiers, constants, keywords etc…

Grammars are most useful in describing nested structures such as balanced parenthesis, matching
begin - end’s, corresponding if-then-else’s and so on.

Eliminating Ambiguity:

An ambiguous grammar can be rewritten to eliminate the ambiguity.

Example for eliminate the ambiguity from the following “dangling-else”

grammar: stmt

if expr then stmt
| if expr then stmt else stmt

| other

Here “other” stands for any other statements. According to this grammar, the compound conditional
statement

if E1 then S1 else if E2 then S2 else S3

has the parse tree as

P a g e | 20 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Grammar is ambiguous since the string

if E1 then if E2 then S1 else S2 has the
two parse trees

In all programming languages with conditional statements of this form, the first parse tree is
preferred.

The general rule is, “Match each elsewith the closest previous unmatched then” this disambiguating

rule can be incorporated directly into the
grammar. The unambiguous grammar will be:

stmtmatched_stmt

| unmatched_stmt

matched_stmt if expr thenmatched_stmt elsematchedstmt |
other

unmatched_stmt if expr then stmt

| if expr thenmatched_stmt else unmatched_stmt

P a g e | 21 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Elimination of Left Recursion:

A grammar is left recursive if it has a non-terminal A such that there is a derivation A A.

Top-down parsing techniques cannot handle left-recursive grammars, so a transformation that
eliminates left recursion is needed.

The left recursive pair of productions A

A | β could be replaced by non- left- recursive productions

A

βA’ A’

 A’ | ε

Algorithm to eliminating left recursion from a grammar:

Input: Grammar G with no cycles or ε-productions.

Output: An equivalent grammar with no left recursion.

Method: Note that the resulting non-left-recursive grammar may have ε-productions.

1. Arrange the non-terminals in some order A1, A2, …. An

2. for i := 1 to n do begin

for j := 1 to i-1 do begin

replace each production of the form Ai → Ajγ
by the productions Ai → δ1γ | δ2γ | … | δkγ

where Aj → δ1 | δ2 | … | δk are all the current Aj-productions;

end

eliminate the immediate left recursion among the Ai-productions

end

Left Factoring:

Left factoring is a grammar transformation that is useful for producing a grammar suitable for
predictive parsing.

The basic idea is that when it is not clear which of two alternative productions to use to expand a non-
terminal A, then rewrite the A-productions to defer the decision until the input to make the right

choice.

In general, productions are of the form A→ αβ1 | αβ2 then it is left factored as:

A→ αA’

A’→ β1 | β2

P a g e | 22 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Algorithm for Left factoring a grammar

Input: Grammar G.

Output: An equivalent left-factored grammar.

Method: For each non-terminal A, find the longest prefix α common to two or more of its alternatives. If α ≠ ε,

i.e., there is a nontrivial common prefix, replace all the A productions A → αβ1 | αβ2 | … | αβn | γ where γ
represents all alternatives that do not begin with α by,

A→ αA’| γ

A’→ β1 | β2 | … | βn

4. Briefly write on Parsing techniques. Explain with illustration the designing of a Predictive Parser.
(11marks) (NOV 2013)

The top-down parsing and show how to construct an efficient non-backtracking form of top-down
parser called predictive parser.

Define the class LL (1) grammars fromwhich predictive parsers can be constructed automatically.

Recursive-Descent Parsing:

Top-down parsing can be viewed as an attempt to find a leftmost derivation for an input string.

It is to construct a parse tree for the input starting from the root and creating the nodes of the parse
tree in preorder.

The special case of recursive-descent parsing called predictive parsing, where no backtracking is
required.

The general form of top-down parsing, called recursive-descent, that may involve backtracking, ie,
making repeated scans of input.

However, backtracking parsers are not seen frequently.

 One reason is that backtracking is rarely needed to parse programming language constructs.

In natural language parsing, backtracking is still not very efficient and tabular methods such as the
dynamic programming algorithm.

Consider the grammar

S

cAd

A

ab | a

An input stringw=cad, steps in top-down parse are as:

P a g e | 23 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

A left-recursive grammar can cause a recursive-descent parser, even one with backtracking, to go into
an infinite loop.

Predictive Parsers:

For writing a grammar, eliminating left recursion from it and left factoring the resulting grammar, we
can obtain a grammar that can be parsed by a recursive-descent parsing that needs no backtracking

i.e., a predictive parser.

Flow-of-control constructs in most programming languages, with their distinguishing keywords, are
usually detectable in this way.

For example, if we have the productions
stmt

if expr then stmt else stmt
| while expr do stmt
| begin stmt_list end

then the keywords if, while, and begin that could possibly succeed to find a statement.

Transition Diagrams for Predictive Parsers:

Several differences between the transition diagrams for a lexical analyzer and a predictive parser.

In case of parser, there is one diagram for each non-terminal.
 The labels of edges are tokens and non-terminals.

 A transition on a token means that transition if that token is the next input symbol.

 A transition on a non-terminal A is a call of the procedure for A.

To construct the transition diagram of a predictive parser from a grammar, first eliminate left recursion from
the grammar, and then left factor the grammar.

Then for each non-terminal A do the following:

1. Create an initial and final (return) state.

2. For each production A

X1, X2 ... Xn, create a path from the initial to the final state, with edges
labeled X1, X2,….,Xn.

Predictive Parser working:

It begins in the start state for the start symbol.

If after some actions it is in state s with an edge labeled by terminal a to state t, and if the next input
symbol is a, then the parser moves the input cursor one position right and goes to state t.

If, on the other hand, the edge is labeled by a non-terminal A, the parser instead goes to the start state
for A, without moving the input cursor.

If it ever reaches the final state for A, it immediately goes to state t, in effect having read A from the
input during the time it moved from state s to t.

P a g e | 24 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Finally, if there is an edge from s to t labeled ε, then from state s the parser immediately goes to state t,
without advancing the input.

A predictive parsing program based on a transition diagrams attempts to match terminal symbols
against the input and makes a potentially recursive procedure call whenever it has to follow an edge

labeled by a non-terminal.

A non-recursive implementation can be obtained by stacking the states s when there is a transition on
non-terminal out of s and popping the stack when the final state for a non-terminal is reached.

Transition diagrams can be simplified by substituting diagrams in one another; these substitutions are
similar to the transformations on grammars.

A

βA’

A’

αA’ | ε

Consider the following grammar for arithmetic expressions,

E

T

E’

+TE’ | ε

T

FT ’

T’

*FT’ | ε

F

(E) | id

Transition diagrams for grammar:

P a g e | 25 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Simplified transition diagram:

Simplified transition diagrams for arithmetic expressions:

P a g e | 26 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

5. Explain the Non-recursive predictive parsing? (11 marks)

A non recursive predictive parser by maintaining a stack explicitly, rather than implicitly through
recursive calls. The key problem during predictive parser is that of determining the production to be applied
for a non-terminal.

Model of a non-recursive predictive parser

A table-driven predictive parser has

an input buffer,
 a stack,

 a parsing table; and

 an output stream.

The input buffer contains the string to be parsed, followed by $, a symbol used as a right end marker to
indicate the end of the input string.

The stack contains a sequence of grammar symbols with $ on the bottom, indicating the bottom of the
stack. Initially, the stack contains the start symbol of the grammar on top of $.

The parsing table is a two dimensional array M [A, a], where A is a non-terminal, and a is a terminal or
the symbol $.

The program considers X, the symbol on top of the stack, and a, the current input symbol. These two symbols
determine the action of the parser. There are three possibilities.

1. If X = a = $, the parser halts and announces successful completion of parsing.

2. If X = a ≠ $, the parser pops X off the stack and advances the input pointer to the next input symbol.

3. If X is a non-terminal, the program consults entry M [X, a] of the parsing table M. This entry will be

either an X-production of the grammar or an error entry. For example M [X, a] = {X

UVW}, the
parser replaces X on top of the stack by WVU (U on top).

4. If M[X, a] = error, the parser calls an error recovery routine.

P a g e | 27 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Algorithm Non recursive predictive parsing:

Input: A string w and a parsing table M for grammar G.

Output: If w is in L (G), a leftmost derivation of w; otherwise an error indication.

Method: Initially, the parser is in a configuration in which it has $S on the stack with S, the start symbol of G
on top; and w$ in the input buffer. The program that utilizes the predictive parsing table M to produce a parse
for the input.

set ip to point to the first symbol of
w$; repeat

let X be the top of the stack and a the symbol pointed by
ip if X is a terminal or $ then

if X=a then

pop X from the stack and advance
ip else error()

else /* X is a non-terminal */

ifM [X ,a] = X

Y1 Y2…YK then

begin pop X from the stack;

push YK ……Y2 Y1 on to the stack ,with Y1 on

top; output the production X

Y1 Y2…YK

end

else error()

until X= $ /* stack is empty */

ALGORITHM FOR FIRST:

1. If X is terminal, and then FIRST(X) is {X}.

2. If X

ε is a production, then add ε to FIRST(X).

3. If X is non-terminal and X

Y1,Y2….Yk is a production, then place a in FIRST(X) if for some i , a is
in FIRST(Yi) , and ε is in all of FIRST(Y1),…FIRST(Yi-1);

ALGORITHM FOR FOLLOW:

1. Place $ in FOLLOW(S), where S is the start symbol and $ is the input right end marker.

2. If there is a production A

αBβ, then everything in FIRST (β) except for ε is placed in FOLLOW (B).

3. If there is a production A

αB, or a production A

αBβ where FIRST (β) contains ε, then

everything in FOLLOW (A) is in FOLLOW (B).

P a g e | 28 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

6. Construct the predictive parser for the following
grammar E→ E + T | T

T→ T * F | F

F→ (E) | id

Compute FIRST and FOLLOW and also find the parsing table. The input string is id+id * id.

Solution:

The given grammar is

E E + T | T

T T * F | F

F (E) | id

1. ELIMINATING LEFT RECURSION FROM THE GRAMMAR:

E TE’

E’ +TE’ |

T FT’

T’ *FT’ | F
 (E) | id

2. COMPUTATION OF FIRST:

FIRST (E) = FIRST (T) = FIRST (F) = { (, id }

FIRST (E`) = { +, ε }

FIRST (T) = FIRST (F) = { (, id }
FIRST (T`) = { *, ε }

FIRST (F) = { (, id }

3. COMPUTATION OF FOLLOW:

FOLLOW (E) = {$} U FOLLOW (E) = {), $ }
FOLLOW (E’) = FOLLOW (E) = {), $ }

FOLLOW (T) = FOLLOW (E’) U FIRST (E’) = {), $} U {+} = { +,), $ }
FOLLOW (T’) = FOLLOW (T) = { +,), $ }

FOLLOW (F) = FOLLOW (T’) U FIRST (T’) = {+,), $} U {*} = { +,*,), $ }

P a g e | 29 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

5. CONSTRUCTION OF PARSING TABLE:

6. The Predictive parser on input string is id+id * id.

P a g e | 30 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

7. Consider the following LL (1)
grammar S→ i E t S | i E t S e S | a

E→ b Find the parsing table for the above grammar.

Solution:

The given LL (1) grammar is

S→ i E t S | i E t S e S | a

E→ b

1. ELIMINATION OF LEFT FACTORING:

S i E t S S’ | a

S’ e S |

E b

2. COMPUTATION OF FIRST: FIRST(S)
= { i , a }

FIRST(S’) = { e , }

FIRST (E) = { b }

3. COMPUTATION OF FOLLOW:

FOLLOW(S) = {$} U FIRST(S’) = {$} U {e} = { $, e }
FOLLOW (S’) = FOLLOW(S) = { $, e }

FOLLOW (E) = { t }

4. CONSTRUCTION OF PARSING TABLE:

P a g e | 31 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

8. Explain the LR parsing algorithm in detail. (11marks)(NOV 2011, 2012)(MAY 2012)

Bottom-up syntax analysis technique can be used to parse a large class of context-free grammars. The
technique is called LR (k) parsing.

the "L" is for left-to-right scanning of the input,

 the "R" for constructing a rightmost derivation in reverse, and

 the k for the number of input symbols of look ahead that are used in making parsing decisions.

 When (k) is omitted, k is assumed to be 1.

LR parsing is attractive for a variety of reasons.

1. LR parsers can be constructed to recognize virtually all programming language constructs for which
context-free grammars can be written.

2. The LR parsing method is the most general non backtracking shift-reduce parsing method known, yet
it can be implemented as efficiently as other shift-reduce methods.

3. The class of grammars that can be parsed using LR methods is a proper superset of the class of
grammars that can be parsed with predictive parsers.

4. An LR parser can detect a syntactic error as soon as it is possible to do a left-to-right scan of the input.

The principal drawback of the method is that it is too much work to construct an LR parser by hand for a
typical programming-language grammar. A special tool – an LR parser generator.

Three techniques are used for constructing an LR parsing table for a grammar.

1. The first method, called simple LR (SLR), is the easiest to implement, but the least powerful of the
three. It may fail to produce a parsing table for certain grammars on which the other methods succeed.

2. The second method, called canonical LR (CLR), is the most powerful, and the most expensive.

3. The third method, called look ahead LR (LALR), is intermediate in power and cost between the other

two. The LALR method will work on most programming language grammars and, with some effort, can
be implemented efficiently.

P a g e | 32 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

The LR Parsing Algorithm:

LR parsing consists of

an input,
 an output,

 a stack,

 a driver program, and

 a parsing table that has two parts (action and goto).

Model of an LR Parser

The driver program is the same for all LR parsers; only the parsing table changes from one parser to
another.

The parsing program reads characters from an input buffer one at a time.

 The program uses a stack to store a string of the form s0X1s1X2s2 ... Xmsm, where, sm is on top.

 Each Xi is a grammar symbol and each si is a symbol called a state.

Each state symbol summarizes the information contained in, the stack below it, and the combination
of the state symbol on top of the' stack and' the current input symbol are used to index the parsing
table and determine the shift reduce parsing decision.

The parsing table consists of two parts,

 a parsing action function action and

 a goto function goto.

The program driving the LR parser behaves as follows.
 It determines sm, the state currently on top of the stack, and ai, the current, input symbol.

It then consults action[sm, ai], the parsing action table entry for state sm and input ai, which can have
one of four values:

1. shift s, where s is a state,

2. reduce by a grammar production A

β

3. accept, and

4. error

P a g e | 33 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

LR PARSING ALGORITHM:

Input: An input stringw and an LR parsing table with functions action and goto for a grammar G.
Output: If w is in L (G), a bottom-up parse for w; otherwise, an error indication.

Method: Initially, the parser has s0 on its stack, where s0 is the initial state, andw$ in the input buffer. The
parser then executes the program until an accept or error action is encountered.

set ip to point to the first symbol of
w$; repeat forever begin

let s bet the state on the top of the stack
and a the symbol pointed to by ip;

if action[s,a]=shift s’ then begin push a

then s’ on top of the stack; advance

ip to the next input symbol

end

else if action[s,a]=reduce A

β then

begin pop 2*| β| symbols off the stack;

let s’ be the state now on top of the stack;
push A the goto[s’,A] on top of the stack;

output the production A

β

end

else if action[s,a]=accept then
return

else error()

end

P a g e | 34 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

9. Consider the following grammar to construct the SLR parsing table (11marks) (NOV 2012)

E

E+T | T

T

T*F | F

F

(E) | id

Construct an LR parsing table for the above grammar. Give themoves of the LR parser on id * id + id.

Solution:

The given SLR grammar is

E -> E + T / T

T -> T * F / F

F -> (E) / id

Let the grammar G be

E -> E + T

E -> T

T -> T * F

T -> F

F -> (E)

F -> id

1. The augmented Grammar G’:

E’ -> E

E -> E + T

E -> T

T -> T * F

T -> F

F -> (E)

F -> id

2. COMPUTATION OF CLOSURE
FUNCTION: I0 :

E’ -> .E

E -> .E + T

E -> .T

T -> . T * F

T -> .F

F -> .(E)

F -> . id

P a g e | 35 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

3. COMPUTATION OF GOTO FUNCTION:

goto (I, X) {where I -> set of states and X -> E, T, F, +, *, (,), id }

goto(I0, E)

I1: E’ -> E.

E -> E. + T

goto(I0, T)

I2: E -> T.

T -> T. * F

goto(I0, F)

I3: T -> F.

goto(I0, +) -> NULL

goto(I0, +) -> NULL

goto(I0, ()

I4 : F -> (.E)

E -> .E + T

E -> .T

T -> .T * F

T -> .F

F -> .(E)

F -> .id

goto(I0,)) -> NULL

goto(I0, id)

I5: F -> id.

Repeat in the new set for the closure function

goto(I1, +)

I6: E -> E + .T T -
> .T * F T

-> .F

F -> .(E)

F -> .id

P a g e | 36 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

goto(I2, *)

I7: T -> T * .F F -
> .(E) F -
> .id

goto(I3, X) -> NULL

goto(I4, E)

I8: F -> (E .)

E -> E . + T

goto(I4, T)

I2: E -> T.

T - > T.* E

goto(I4, F)

I3: T -> F.

goto(I4, ()

I4: F -> (.E)

E -> .E + T

E -> .T

T -> .T * F

T -> .F

F -> .(E)

F -> .id

goto(I4, id)

I5: F -> id.

goto(I6, T)

I9: E -> E + T.

T -> T. * F

goto(I6, F)

I3: T -> F.

P a g e | 37 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

goto(I6, ()

I4: F -> (.E)

E -> .E + T

E -> .T

T -> . T * F

T -> .F

F -> .(E)

F -> . id

goto(I6, id)

I5: F -> id.

goto(I7, F)

I10: T -> T * F.

goto(I7, ()

I4: F -> (.E)

E -> .E + T

E -> .T

T -> .T * F

T -> .F

F -> .(E)

F -> .id

goto(I7, id)

I5: F -> id.

goto(I8,))

I11: F -> (E).

goto(I8, +)

I6: E -> E + .T T -
> .T * F T

-> .F

F -> .(E)

F -> .id

P a g e | 38 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

goto(I9, *)

I7: T -> T *.F F -
> .(E)

F -> .id

4. CONSTRUCTION OF PARSING TABLE:

1. Shifting Process

I0 : goto(I0, E) = I1

goto(I0, T) = I2

goto(I0, F) = I3

goto(I0, () = I4

goto(I0, id) = I5

I1: goto(I1, +) = I6

I2: goto(I2, *) = I7

I4: goto(I4, E) = I8

goto(I4, T) = I2

goto(I4, F) = I3

goto(I4, () = I4

goto(I4, id) = I5

I6: goto(I6, T) = I9

goto(I6, F) = I3

goto(I6, () = I4

goto(I6, id) = I5

I7: goto(I7, F) = I10
goto(I7, () = I4

goto(I7, id) = I5

I8: goto(I8,)) = I11
goto(I8, +) = I6

I9: goto(I9, *) = I7

P a g e | 39 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

2. i) ELIMINATION OF LEFT RECURSION ELIMINATION

E -> TE’

E’ -> +TE’ / ε

T -> FT’

T’ -> * FT’ / ε

F -> (E) / id

ii) COMPUTATION OF FIRST

FIRST (E) = FIRST (T) = FIRST (F) = { (, id }

FIRST (E`) = { +, ε }

FIRST (T) = FIRST (F) = { (, id }
FIRST (T`) = { *, ε }

FIRST (F) = { (, id }

iii) COMPUTATION OF FOLLOW

FOLLOW (E) = {$} U FOLLOW (E) = {), $ }
FOLLOW (E’) = FOLLOW (E) = {), $ }

FOLLOW (T) = FOLLOW (E’) U FIRST (E’) = {), $} U {+} = { +,), $ }
FOLLOW (T’) = FOLLOW (T) = { +,), $ }

FOLLOW (F) = FOLLOW (T’) U FIRST (T’) = {+,), $} U {*} = { +,*,), $ }

3. Reducing Process

I2: E -> T. FOLLOW (T) = { + ,) , $ }

I3: T -> F. FOLLOW (F) = { + , * ,) , $ }

I5: F -> id. FOLLOW (F) = { + , * ,) , $ }

I9: E -> E + T. FOLLOW (T) = { + ,) , $ }

I10: T -> T * F. FOLLOW (F) = { + , * ,) , $ }

I11: F -> (E). FOLLOW (F) = {+ , * ,) , $ }

P a g e | 40 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

5. SLR Parsing Tables of Expression Grammar:

6. The SLR parser and given input string is id+id.

S.No STACK I/P STRING PARSING ROUTINE

(1) 0 id + id $ action[0, id] = s5 then shift ‘s5’

push id and 5 into the stack

(2) 0 id 5 + id $ action [5, +] = r6 then reduce r6:

F -> id

1) POP 2 symbols from the stack

2) goto [0, F] = 3

3) Push ‘F3’ into the stack

(3) OF3 +id$ action[3,+] = r4 then reduce r4:

T->F

1) POP 2 symbols from the stack

2) goto [0, T] = 2

3) Push ‘T2’ into the stack

(4) 0T2 +id$ action[2,+] = r2 then reduce r4:

E->T

1) POP 2 symbols from the stack

2) goto [0, E] = 1

3) Push ‘E1’ into the stack

P a g e | 41 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(5) 0E1 +id$ action[1, +] = s6 then shift ‘s6’

push + and 6 into the stack

(6) 0E1+6 id$ action[6, id] = s5 then shift ‘s5’

push id and 5 into the stack

(7) 0E1+6id5 $ action[5,$] = r6 then reduce r6:

F->id

1) POP 2 symbols from the stack

2) goto [6, F] = 3

3) Push ‘F3’ into the stack

(8) 0E1+6idF3 $ action[3,$] = r4 then reduce r4:

T->F

1) POP 2 symbols from the stack

2) goto [6, T] = 4

3) Push ‘T4’ into the stack

(9) 0E1+6T4 $ action[4,$] = r1 then reduce r1:

E->E+T

1) POP 6 symbols from the stack

2) goto [0, E] = 1

3) Push ‘E1’ into the stack

(10) 0E1 $ action[1,$] = acc

The given input string is accepted.

P a g e | 42 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

10. List out and discuss the different type of intermediate code? (11marks) (NOV 2012)

In the analysis-synthesis model of a compiler, the front end translates a source program into an
intermediate representation fromwhich the back end generates target code.

A source program can be translated directly into target language, some benefits of using machine-
independent intermediate form:

1. Retargeting is facilitated; a compiler for different machine can be created by attaching a back end
for the new machine to an existing front end.

2. Amachine-independent code optimizer can be applied to the intermediate representation.

It is used to translates into an intermediate form programming language constructs such as

Declaration
 Assignment statements

 Boolean Expression

 Flow of control statements

The three kinds of intermediate representations are

i. Syntax trees

ii. Postfix notation

iii. Three - address code

The semantic rules for generating three - address code from common programming language constructs are
similar to those for constructing syntax trees or for generating postfix notation.

Graphical representations:

A syntax tree depicts the natural hierarchical structure of a source program.

A DAG (Directed Acyclic Graph) gives the same information but in a more compact way because
common sub-expressions are identified.

P a g e | 43 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

A syntax tree and DAG for the assignment statement a := b * - c + b * - c

(a) Syntax tree (b) DAG

Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of the in which a
node appears immediately after its children.

The postfix notation for the syntax tree is

a b c uminus * b c uminus * + assign

The edges in a syntax tree do not appear explicitly in postfix notation. They can be recovered in the
order in which the nodes appear and the number of operands that the operator at a node expects. The
recovery of edges is similar to the evaluation, using a stack, of an expression in postfix notation.

Syntax tree directed-translation:

Syntax trees for assignment statements are produced by the syntax-directed definition.

 Non-terminal S generates an assignment statement.

The syntax-directed definition will produce the dag if the functions

mkunode(op, child)
 mknode(op, left, right)

 mkleaf(id,id.place)

 return a pointer to an existing node whenever possible, instead of constructing new nodes.

 The token id has an attribute place that points to the symbol-table entry for the identifier.

The symbol table entry can be found from an attribute id.name, representing the lexeme
associated with that occurrence of id.

P a g e | 44 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

PRODUCTION SEMANTIC RULES

S id: = E S.nptr := mknode (‘assign’, mkleaf (id, id.entry), E.nptr)

E E1 + E2 E.nptr := mknode(‘+’, E1.nptr,E2.nptr)

E E1 * E2 E.nptr := mknode(‘*’, E1.nptr,E2.nptr)

E - E1 E.nptr := mknode(‘uminus’,E1.nptr)

E (E1) E.nptr := E1.nptr

E id E.nptr := mkleaf(id, id.entry)

Syntax-directed definition to produce syntax tress for assignment statements

Twoway representation of syntax trees:

Each node is represented as a record with a field for its operator and additional fields for pointers to
its children.

Nodes are allocated from an array of records and the index or position of the node serves as the
pointer to the node.

All the nodes in the syntax tree can be visited by following pointers, starting from the root at position
10.

Twoway representation of syntax trees

P a g e | 45 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

11. Explain the types of Three-address statements? (6 marks)

Three-address code:

Three-address code is a sequence of statements of the general form

x := y op z

where x, y and z are names, constants, or compiler-generated temporaries;

op stands for any operator, such as fixed or floating-point arithmetic operator, or a logical operator on
boolean-valued data.

Thus a source language expression like x + y * zmight be translated into a sequence
t1 := y * z

t2 := x + t1

where t1 and t2 are compiler-generated temporary names.

Three-address code is linearized representation of a syntax tree or a DAG in which explicit names
correspond to the interior nodes of the graph.

The syntax tree and DAG are represented by the three-address code sequences

The three address codes for the following a: = b * -c + b * -c

t1 := - c t1 := - c

t2 := b * t1 t2 := b * t1

t3 := - c t5 := t2 + t2

t4 := b * t3 a := t5

t5 := t2 +
t4 a := t5

(a) Code for syntax tree (b) Code for DAG

“Three-address code” is that each statement usually contains three addresses, two for the operands and one
for the result.

P a g e | 46 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Types of Three-Address Statements:

Three-address statements are akin to assembly code. Statements can have symbolic labels and there

are statements for flow of control. A symbolic label represents the index of a three-address statement in the

array holding inter- mediate code. Actual indices can be substituted for the labels either by making a separate

pass, or by using ”back patching”.

The common three-address statements are

1. Assignment statements of the form x: = y op z, where op is a binary arithmetic or logical operation.

2. Assignment instructions of the form x: = op y,where op is a unary operation.

The unary operations include unary minus, logical negation, shift operators, and conversion
operators that, for example, convert a fixed-point number to a floating-point number.

3. Copy statements of the form x: = ywhere the value of y is assigned to x.

4. The unconditional jump goto L. The three-address statement with label L is the next to be executed.

5. Conditional jumps such as if x relop y goto L.

This instruction applies a relational operator (<, =, >=, etc.) to x and y, and executes the
statement with label L next if x stands in relation relop to y. If not, the three-address statement

following if x relop y goto L is executed next.

6. param x and call p, n for procedure calls and return y, where y representing a returned value is
optional. Their typical use is as the sequence of three-address statements

param x1

param x2

param xn

call p, n

generated as part of a call of the procedure p(x1,, x2,..., xn). The integer n indicating the number of
actual parameters in ”call p, n” is not redundant because calls can be nested.

7. Indexed assignments of the form x: = y[i] and x [i]: = y.

The first of these sets x to the value in the location i memory units beyond location y. The
statement x[i]:=y sets the contents of the location i units beyond x to the value of y. In both
these instructions, x, y, and i refer to data objects.

8. Address and pointer assignments of the form x: = &y, x: = *y and *x: = y.

The first of these sets the value of x to be the location of y. Presumably y is a name, perhaps a

temporary, that denotes an expression with an I-value such as A[i, j], and x is a pointer name or

temporary. That is, the r-value of x is the l-value (location) of some object. In the statement x: = *y,

presumably y is a pointer or a temporary whose r- value is a location. The r-value of x is made equal to

the contents of that location. Finally, *x: = y sets the r-value of the object pointed to by x to the r-value

of y.

P a g e | 47 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

12. Explain the syntax directed translation into three- address code? (5marks)

When three-address code is generated, temporary names are made up for the interior nodes of a
syntax tree. The value of non-terminal E on the left side of E

E1 + E will be computed into a new

temporary t.

In general, the three- address code for id: = E consists of code to evaluate E into some temporary t,
followed by the assignment id.place: = t.

If an expression is a single identifier, say y, then y itself holds the value of the expression.

We create a new name every time a temporary is needed; techniques for reusing temporaries are
given.

The S-attributed definition generates three-address code for assignment statements.

 Given input a: = b* – c + b* – c, it produces the code.

 The synthesized attribute S.code represents the three- address code for the assignment S.

 The non-terminal E has two attributes:

1. E.place, the name that will hold the value of E, and

2. E.code, the sequence of three-address statements evaluating E.

The function newtemp returns a sequence of distinct names t1, t2,... in response to successive calls.

 Use the notation gen(x ’: =’ y ’+’ z) to represent the three-address statement x: = y + z.

Expressions appearing instead of variables like x, y, and z are evaluated when passed to gen, and
quoted operators or operands, like ’+’, are taken literally. Three- address statements might be sent to

an output file, rather than built up into the code attributes.

Flow-of-control statements can be added to the language of assignments by productions and semantic
rules like the ones for while statements.

The code for S

while E do S1, is generated using new attributes S.begin and S.after to mark the first

statement in the code for E and the statement following the code for S, respectively.

These attributes represent labels created by a function newlabel that returns a new label every time it
is called.

S.after becomes the label of the statement that comes after the code for the while statement.

We assume that a non-zero expression represents true; that is, when the value of F becomes zero,
control leaves the while statement.

P a g e | 48 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Syntax directed definition to produce three- address code for assignments:

PRODUCTION SEMANTIC RULES

S id := E S.code := E.code || gen(id.place ‘:=’ E.place)

E E1 + E2 E.place := newtemp ;

E.code := E1.code || E2.code ||

gen(E.place ‘:=’ E1.place ‘+’ E2.place)

E E1 * E2 E.place := newtemp ;

E.code := E1.code || E2.code ||

gen(E.place ‘:=’ E1.place ‘*’ E2.place)

E - E1 E.place:= newtemp ;

E.code := E1.code || gen(E.place ‘:=’ ‘uminus’ E1.place)

E (E1) E.place:= E1.place ;

E.code := E1.code

E id E.place := id.place ;

E.code := ‘’

Expressions that govern the flow of control may in general be Boolean expressions containing
relational and logical operators.

The semantic rules for while statements to allow for flow of contro1 within Boolean expressions

Semantic rules generating code for a while statement

P a g e | 49 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

13. Explain the three implementation of three-address statements? (11 marks)

Implementations of three-Address Statements

A three-address statement is an abstract form of intermediate code.

In a compiler, these statements can be implemented as records with fields for the operator and the
operands. Three such representations are

1. quadruples,

2. triples, and

3. Indirect triples.

(i) Quadruples:

A quadruple is a record structure with four fields, are op, arg l, arg 2, and result.
 The op field contains an internal code for the operator.

The three-address statement x: = y op z is represented by placing y in arg 1, z in arg 2, and x in result.
Statements with unary operators like x: = – y or x: = y do not use arg 2.

Operators like param use neither arg2 nor result.

 Conditional and unconditional jumps put the target label in result.

 The quadruples for the assignment a: = b * -c + b * -c

Quadruples of three address statements

The contents of field’s arg 1, arg 2, and result are normally pointers to the symbol-table entries for
the names represented by these fields.

If so, temporary names must be entered into the symbol table as they are created.

P a g e | 50 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(ii) Triples:

To avoid entering temporary names into the symbol table, we might refer to a temporary value by the
position of the statement that computes it.

Three-address statements can be represented by records with only three fields: op, arg 1 and arg2.

The field’s arg l and arg2, for the arguments of op, are either pointers to the symbol table or pointers
into the triple structure (for temporary values).

Since three fields are used, this intermediate code format is known as triples.

 Triples correspond to the representation of a syntax tree or dag by an array of nodes.

Triple representation of three – address statements

Parenthesized numbers represent pointers into the triple structure, while symbol-table pointers are
represented by the names themselves.

The information needed to interpret the different kinds of entries in the arg 1 and arg2 fields can be
encoded into the op field or some additional fields.

The copy statement a: = t5 is encoded in the triple representation by placing a in the arg 1 field and
using the operator assign.

A ternary operation like x[i]: = y and x: = y[i] requires two entries in the triple structure

P a g e | 51 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(iii) Indirect Triples:

Another implementation of three-address code that has been considered is that of listing pointers to
triples, rather than listing the triples themselves. This implementation is naturally called indirect
triples.

For example, let us use an array statement to list pointers to triples in the desired order.

Indirect triples representation of three-address statements

14. Write the quadruple representation for the assignment statement a : = - b * (c + d)

(5marks)(MAY 2012)

A quadruple is a record structure with four fields, are op, arg l, arg 2, and result.
 The op field contains an internal code for the operator.

The three-address statement x: = y op z is represented by placing y in arg 1, z in arg 2, and x in result.
Statements with unary operators like x: = – y or x: = y do not use arg 2.

The quadruples representation for the assignment statement a : = - b * (c + d)

P a g e | 52 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

15. Describe in detail the declarations in a procedure and themethods to keep track of
scope information. (11marks) (NOV 2013)

The sequence of declarations in a procedure or block is examined; we can lay out storage for names
local to the procedure.

For each local name, we create a symbol-table entry with information like the type and the relative
address of the storage for the name.

The relative address consists of an offset from the base of the static data area or the field for local data
in an activation record.

When the front end generates addresses, it may have a target machine.

 Suppose that addresses of consecutive integers differ by 4 on a byte- addressable machine.

 The address calculations generated by the front end may therefore include multiplications by 4.

The instruction set of the target machine may also favor certain layouts of data objects, and hence
their addresses.

Declarations in a Procedure:

The syntax of languages such as C, Pascal, and FORTRAN, allows all the declarations in a single
procedure to be processed as a group.

In this case, a global variable, say offset, can keep track of the next available relative address.

 Non-terminal P generates a sequence of declarations of the form id: T.

 Before the first declaration is considered, offset is set to 0.

As each new name is seen, that name is entered in the symbol table with offset equal to the current
value of offset, and offset is incremented by the width of the data object denoted by that name.

The procedure enter (name, type, offset) creates a symbol-table entry for name, gives it type and
relative address offset in its data area.

We use synthesized attributes type and width for non-terminal T to indicate the type and width, or
number of memory units taken by objects of that type.

Attribute type represents a type expression constructed from the basic type’s integer and real by
applying the type constructors’ pointer and array.

If type expressions are represented by graphs, then attribute type might be a pointer to the node
representing a type expression.

Integers havewidth 4 and real havewidth 8.

The width of an array is obtained by multiplying the width of each element by the number of
elements in the array. The width of each pointer is assumed to be 4.

P a g e | 53 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Computing the types and relative addresses of declared names

In Pascal and C, a pointer the type of the object pointed. Storage allocation for such types is simpler if
all pointers have the same width.

The initialization of offset in the translation scheme is the first production appears on one line as:

P { offset: = 0 } D

Non-terminals generating ε, called marker non-terminals can be used to rewrite productions so that
all actions appear at the ends of right sides. Using a marker non-terminal M, can be

PMD

Mε { offset: = 0 }

Keeping Track of Scope Information:

In a language with nested procedures, names local to each procedure can be assigned relative
addresses. When a nested procedure is seen, processing of declarations in the enclosing procedure is

temporarily suspended.

The semantic rules to the following language

P D

D D; D | id: T proc id; D; S

The production for non-terminals S for statements and T for types. The non-terminal T has
synthesized attributes type and width. For simplicity, suppose that there is a separate symbol table for
each procedure in the language.

P a g e | 54 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

A new symbol table is created when a procedure declarations D proc id D1; S and entries for the
declarations in D1 in a new symbol table. The new table points back to the symbol table of the
enclosing procedure; the name represented by id itself is local to the enclosing procedure.

For example, the symbol tables for five procedures.

The symbol tables for procedures readarray, exchange and quick sort point back and containing
procedure sort, consisting of the entire program.

The partition is declared with quick sort, its table point to that of quick sort.

Symbol tables for nested procedures:

P a g e | 55 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

The Semantic rules for operations:

1. mktable (previous)

It creates a new symbol table and returns a pointer to the new table.

The argument previous points to a previously created symbol table, presumably that for the
enclosing procedure.

The pointer previous is placed in a header for the new symbol table, along with additional
information such as the nesting depth of a procedure.

We can also number the procedures in the order they are declared and keep this number in the
header.

2. enter (table, name, type, offset)

It creates a new entry for name name in the symbol table pointed to by table.
 Again, enter places type type and relative address offset in fields within the entry.

3. addwidth (table, width) - records the cumulative width of all the entries table in the header
associated with this symbol table.

4. enterproc (table, name, newtable)

It creates a new entry for procedure name in the symbol table pointed to by table.
 The argument newtable points to the symbol table for this procedure name.

The translation scheme shows how data can be in one pass, using a stack tblptr to hold pointers to
symbol tables of the enclosing procedures.

With the symbol tables to tblptr will contain pointers to the tables for sort, quicksort, and partition
when the declarations in partition are considered.

The pointer to the current symbol table is on top.

 The other stack offset is the natural generalization to nested procedures of attribute offset.

 The top element of offset is the next available relative address for a local of the current procedure.

The action for non-terminal M initializes stack tblptr with a symbol table for the outermost scope,
created by operationmktable(nil). The action also pushes relative address 0 onto stack offset.

The non-terminal N plays a similar role when a procedure declaration appears.

 Its action uses the operationmktable(top(tblptr)) to create a new symbol table.

 The argument top(tblptr) gives the enclosing scope of the new table.

 A pointer to the new table is pushed above that for the enclosing scope. Again, 0 is pushed onto offset.

P a g e | 56 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Processing declarations in nested procedures

PMD { addwidth (top(tblptr), top(offset));

pop(tblptr); pop(offset) }

M ε { t := mktable(nil);

push(t, tblptr); push(0, offset) }

D D1 ;D2

D proc id ; N D1 ;S { t := top(tblptr);

addwidth(t. top(offset));

pop(tblptr); pop(offset);

enterproc(top(tblptr), id.name, t) }

D id : T { enter(top(tblptr), id.name, T.type, top(offset));

top(offset) := top(offset) + T.width }

N ε { t := mktable(top(tblptr));

push(t, tblptr); push(0, offset) }

Field Names in Records:

The following production allows non-terminal T to generate records in addition to basic types,
pointers, and arrays:

Trecord D end

T record L D end { T.type := record(top(tblptr));

T.width := top(offset);

pop(tblptr); pop(offset) }

L ε { t:= mktable(nil);

push(t, tblptr); push (0, offset) }

P a g e | 57 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

16. Explain in detail about assignment statements? (11marks)

Expressions can be of type integer, real, array and record fields.

The translation of assignment into three- address code that names can be looked up in the symbol
table and how elements of array and records can be accessed.

Names in the Symbol Table:

Three address statements using names for pointers to their symbol table entries.
 The lexeme for the name represented by id, the attribute as id.name

The operation lookup (id.name), check if there is an entry for the occurrence of the name in the
symbol table.

If so, a pointer of the entry is returned.

 Otherwise returns nil to indicate that no entry is found.

The semantic action use procedure emit to 3 address statements to an output file, code attributes for non-
terminals.

S

id: = E

The non-terminal S represents the name modified lookup operation first checks if name appears in
the current symbol table, accessible through table pointer.

If not, lookup uses the pointer in the header of a table to find the symbol table.

 If the name cannot be found, then lookup returns nil.

Translation scheme to produce three-address code for assignments

S→ id: = E { p := lookup(id.name);

if p != nil then

emit(p ′ :=′ E.place)

else error }

E→ E1 + E2 { E. place := newtemp;

emit(E.place ′ :=′ E1.place ′ +′ E2.place) }

E→ E1 ∗ E2 { E. placer:= newtemp;

emit(E.place ′ :=′ E1.place ′ *′ E2.place) }

E→ −E1 { E. place := newtemp;

emit(E.place ′ :=′ ′uminus′ E1.place) }

P a g e | 58 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

E→ (E1) { E.place := E1.place }

E→ id { p := lookup(id.name);

if p != nil then

E.place := p

else error }

Reusing Temporary Names:

The newtemp generates a new temporary name each time temporary is needed.

The temporaries used to hold intermediate values in expression calculations for the symbol table and
space has to be allocated to hold their values.

Temporaries can be reused by changing newtemp.

The temporary data are generated during the syntax directed translation of expression.

The code generated by the rules is E

E1+E2 of the form

 evaluate E1 into t1

 evaluate E2 into t2

 t := t1 + t2

Consider the assignment statements x: = a*b + c*d – e*f

STATEMENTS VALUE OF C

0

$0 := a * b ; 1 c incremented by 1

$1 := c * d ; 2 c incremented by 1

$0 := $0 + $1 ; 1 c decremented twice, incremented once

$1 := e * f ; 2 c incremented by 1

$0 := $0 - $1 ; 1 c decremented twice, incremented once

x := $0 ; 0 c decremented once

A count c, initialized to zero.

 Whenever a temporary name is used as an operand, decrement c by 1.

 Whenever a new temporary name is created, use $c and increment c by 1.

P a g e | 59 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Type Conversion with Assignments:

There are different types of variables and constants, so the compiler must either reject certain mixed-
type operations or generate the type conversion instructions.

Consider the grammar for assignment statements, there are two types –real and integer, with
integers converted to reals when necessary.

An attribute E.type holds the type of an expression which is either real or integer.

The semantic rule for the E.type production E

E+E is:

E

E+E { E.type :=

if E1.type = integer and

E2.type = integer then integer

else real }

For example, for the input

x := y + i * j

Assuming x and y have type real and i and j have type integer, the output
as t1 := i int* j

t2 := inttoreal t1
t3:= y real+ t2

x := t3

Semantic action for E

E+E

E.place := newtemp;

if E1.type = integer and E2.type = integer then begin
emit(E.place ':=' E1.place 'int+' E2.place);

E.type := integer

end

else if E1.type = real and E2.type = real then begin

emit(E.place ':=' E1.place ‘real+' E2.place);

E.type := real

end

else if E1.type = integer and E2.type = real then
begin u := newtemp;

emit(u ':=' 'inttoreal' E1.place);

emit(E.place ':=' u 'real+' E2.place);

E.type := real

end

P a g e | 60 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

else if E1.type = real and E2.type = integer then
begin u := newtemp;

emit(u ':=' 'inttoreal' E2.place);

emit(E.place ':=E1.place 'real+' u);

E.type := real

end

else

E.type := type_error;

Accessing Fields in Records:

The compiler must keep track of both the types and relative addresses of the fields of a record.
 The information in the symbol table entries for the field names that looking up names tin the symbol

table can be used as field names.

pointer (record (t)) or p ↑ .info + 1

The type of p is the record (t), fromwhich t can be extracted.
 The name info field lookup in the symbol table pointed to by t.

17. State and write the semantic rules for Boolean expressions. (11marks)(MAY 2013)

In programming languages, Boolean expressions have two primary purposes

1. They are used to compute logical values.

2. They are used as conditional expressions in statements that alter the flow of control, such as if-
then, if-then-else, or while-do statements.

Boolean expressions are composed of the boolean operators (and, or, and not) applied to elements
that are boolean variables or relational expressions.

Relational expression of the form E1 relop E2,where E1 and E2 arithmetic expressions.

 Consider boolean expressions with the following grammar:

E

E or E | E and E | not E | (E) | id relop id | true | false

We use the attribute op to determine which of the comparison operators <, <=, =, !=, >, or >= is
represented by relop.

Assume that ‘or’ and ‘and’ are left-associative, and that or has lowest precedence, then and, then not.

P a g e | 61 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Methods of Translating Boolean Expression:

There are two principal methods of representing the value of a Boolean expression.

1. The first method is to encode true and false numerically and to evaluate a boolean expression
analogously to an arithmetic expression.

2. The second principal method of implementing boolean expression is by flow of control that is

representing the value of a Boolean expression by a position reached in a program. This method is

implementing the Boolean expressions in flow of control statements, such as the if-then and while-

do statements.

(i) Numerical Representation:

Consider the implementation of boolean expression using 1 to denote true and 0 to denote false.

For example, expressions as a or b and not c

The translation for 3 address sequence is

t1 := not c

t2 := b and t1
t3 := a or t2

A relational expression such as a<b is equivalent to the conditional statement if a<b then 1 else 0, which can
be translated into the three - address code sequence.

100 : if a < b goto 103

101 : t := 0

102 : goto 104

103 : t := 1

104 :

P a g e | 62 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

A translation scheme for producing three-address code for boolean expression

We assume that emit places three -address statements into output file in the right format.

The nextstat that gives the index of the next three-address statement in the output sequence and emit
increments nextstat after producing each three-address statement.

We use the attribute op to determine which of the comparison operators is represented by relop.

(ii) Shot-Circuit or jumping code:

Translate a Boolean expression into three-address code without generating code for any of the
boolean operators and without having the code necessarily evaluate the entire expression. This style
of evaluation is sometimes called “short-circuit” or “jumping” code.

It is possible to evaluate boolean expressions without generating code for the boolean operators and,
or and not, the value of an expression by a position in the code sequence.

P a g e | 63 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Translation of a<b or c<d and e<f

The three address code as

100: if a< b goto 103

101: t1 := 0

102: goto 104

103: t1 := 1

104: if c< d goto 107

105: t2 := 0

106: goto 108

107: t2 := 1

108: if e< f goto 111

109: t3 := 0

110: goto 112

111: t3 := 1

112: t4 := t2 and t3

113: t5 := t1 or t4

(iii) Flow-of-Control Statements:

Consider the translation of boolean expressions into three-address code as if-then, if-then-else, and
while –do statements such those generated by the following grammar

S→ if E then S1

| if E then S1 else S2
| while E do S1

In the translation, we assume that a three-address code statement can have a symbolic label, and that the
function newlabel generates such labels.

With a boolean expression E, we associate two labels:

E.true, the label to which control flows if E is true.
 E.false, the label to which control flows if E is false.

We associate to S the inherited attribute S.next that represents the label attached to the first statement after
the code for S.

P a g e | 64 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Code for if-then, if-then-else, and while-do statements:

Syntax-directed definition for flow-of control statements:

PRODUCTION SEMANTIC RULES

E.true := newlabel;

S→ if E then S1
E.false := S.next;

S1.next := S.next;

S.code := E.code || gen(E.true ‘ :’) || S1.code

E.true := newlabel;

E.false := newlabel;

S1.next := S.next;

S→ if E then S1 else S2 S2.next := S.next;
S.code := E.code || gen(E.true ‘:’) || S1.code ||

gen(‘goto’ S.next) ||

gen(E.false ‘ :’) || S2.code

S.begin := newlabel;

E.true := newlabel;

E.false := S.next;

S→while E do S1 S1.next := S.begin;

S.code := gen(S.begin ′ :′) || E.code ||

gen(E.true ′ :′) || S1.code ||

gen(′goto′ S.begin)

P a g e | 65 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(iv) Control Flow Translation of Boolean Expression:

Boolean Expressions are translated in a sequence of conditional and unconditional jumps to either E.true
or E.false.

E.true, the place control is to reach if E is true and

 E.false, the place control is to reach if E is false.

The expression E is of the form a < b. The generated code is of the form
if a < b then goto E.true

goto E.false

Suppose E is of the form E

E1 or E2.
 If E1 is true, then E is true, so E1.true = E.true.

If E1 is false, then E2 must be evaluated, so E1.false is set to the label of the first statement in the code
for E2.

Syntax-directed definition to produce three-address code for booleans:

PRODUCTION SEMANTIC RULES

E1.true := E.true;

E1.false := newlabel;

E→ E1 or E2 E2.true := E.true;

E2.false := E.false;

E.code := E1.code || gen(E1.false ′ :′) || E2.code

E1.true := newlabel;

E1.false := E.false;

E→ E1 and E2 E2.true := E.true;

E2.false := E.false;

E.code := E1.code || gen(E1.true ′ :′) || E2.code

E1.true := E.false;

E→ not E1 E1.false := E.true;

E.code := E1.code

E1.true := E.true;

E → (E1) E1.false := E.false;

E.code := E1.code

E→ id1 relop id2
E.code := gen(′if′ id1.place relop.op id2.place ′goto′ E.true)

|| gen(′goto′ E.false)

E → true E.code := gen(′goto′ E.true)

E→ false E.code := gen(′goto′ E.false)

P a g e | 66 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(v)Mixed mode Boolean expression:

Boolean Expressions often contain arithmetic sub-expressions as in (a + b) <c.

In languages where false has the numerical value 0 and true the value 1, then (a<b) + (b<a) can be
an arithmetic expression with value 0 if a and b have the same value and 1 otherwise.

Consider the following Grammar:

E→ E+E | E and E | E relop E | id

E + E, produces an arithmetic result, and the arguments can be mixed; while expressions E and E, and
E relop E, produces boolean values represented by flow of control.

Expression E and E requires both arguments to be boolean, but the operations + and relop take either
type of argument, including mixed ones.

E→id is assumed of type arithmetic.

 To generate code we use a synthesized attribute E.type that will be either arith or bool.

E will have inherited attributes E.true and E.false for boolean expressions and synthesized attribute
E.place for arithmetic Expressions. useful for the jumping code.

The semantic rule for E→ E1+E2

E.type := arith;

if E1.type := arith and E2.type := arith then begin
E.place := newtemp;

E.code := E1.code || E2.code ||

gen(E.place′ :=′ E1.place ′ +′ E2.place)

end

esle if E1.type := arith and E2.type := bool then begin
E.place:= newtemp;

E2.true := newlabel;
E2.false := newlabel;

E.code := E1.code || E2.code ||

gen(E2.true′ :′ E.place ′ :=′ E1.place + 1)
|| gen(′goto′ nextstat + 1) ||

gen(E2.false′ :′ E.place ′ :=′ E1.place)

P a g e | 67 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

18. Explain the case statements? (5 marks)

The “switch” or “case” statement is available in various languages; the FORTRAN computed and assigns
goto’s for switch statements.

The switch-statement syntax
is switch expression

begin

case value: statement
case value: statement

...

case value: statement
default: statement

end

There is a selector expression, which is to be evaluated, followed by n constant values that the expression,
including a default “value”,which always the expression if no other values does.

The translation of a switch code is

1. Evaluate the expression.

2. Find which value in the list of cases is same as the value of expression. The default value matches the
expression if none of the values explicitly.

3. Execute the statement associated with the value found.

To implement a sequence of conditional goto’s is to create a table of pair, each pair consisting of a
value and a label for the code of the corresponding statement.

A compiler to compare the value of expression with each value in the table.

 If no other match is found, the last (default) entry is sure to match.

Syntax directed translation of case statements:

Consider the following switch statement
switch E

begin

case V1 : S1

case V2 : S2

...

case Vn-1: Sn-1

default : Sn

end

P a g e | 68 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

To translate in the form the keyword switch generate 2 labels

Test and next
 A new temporary variable t.

 Then parse the expression E, generate code to evaluate E into t.

 After processing E, generate the jump goto test.

To translate in the form the keyword case

Create a new label Li and enter into the symbol table.

We place on a stack, used only to store cases, a pointer to symbol table entry and value Vi of the
case constant.

Each statement case Vi : Si, creates label Li, followed by code for Si, followed by jump goto next.

 When the keyword end terminate the body of switch statement.

Translation of case statement:

code to evaluate E into t

goto test

L1: code for S1

goto next

L2: code for S2

goto next

...........

L n-1: code for Sn-1

goto next

Ln: code for Sn

goto next

test: if t = V1 goto L1

if t = V2 goto L2

……….

if t = Vn-1 goto Ln-1

goto Ln

next:

P a g e | 69 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Another Translation of case statement

Code to evaluate E into t

if t ≠ V1 goto L1

code for S1

goto next

L1: if t ≠ V2 goto L2

code for S2

goto next

L2: ...

Ln-2: if t ≠ Vn-1 goto Ln-1

code for Sn-1

goto next

Ln: code for Sn

next:

19. How the code is generated for procedure calls? (5 marks) (NOV 2011)

The procedure is such an important and frequently used programming construct that is imperative for a
compiler to generate good code for procedure calls and returns.

The run-time routines that handle procedure argument passing, calls, and returns are part of the run-
time support package.

Consider a grammar for a simple procedure call statement

1) S

call id (Elist)

2) Elist

Elist, E

3) Elist

E

Calling sequences:

When a procedure call occurs, space must be allocated for the activation record of the called
procedure.

The arguments of the called procedure must be evaluated and available to the called procedure in
known place.

Environment pointers must be established to enable the called procedure to access data in enclosing
blocks.

P a g e | 70 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

The state of the calling procedure must be saved so it can resume execution after the call.

Also saved in a known place is the return address, location to which the called routine must transfer
after it is finished.

The return address is usually the location of the instruction that follows that call for the calling
procedure.

Finally, a jump to the beginning of the code for the called procedure must be generated.

Return Statements:

When a procedure returns, several actions also must take place.
 If the called procedure is a function, the result must be stored in a known place.

 The activation record of the calling procedure must be restored.

 A jump to the calling procedure's return address must be generated.

 No exact division of run-time tasks between the calling and called procedure.

Translation includes

Calling sequence

actions taken on entry to and exit from each procedure.

Arguments are evaluated and put in a known places(return address) location to which the called
routine must transfer after it is finished.

Static allocation

return address is placed after code sequence itself.

 Parameters passed by reference.

3 address code

generates statements needed to evaluate those arguments that are simple names

then the list.

For separate evaluation:

Save E.place for each expression E in id (E, E, E, E,..)
 Data structure used is queue.

Semantics:

1) S

call id (Elist)
{ for each item p on queue do

emit (param p);

emit (‘call’ id.place); }

2) Elist

Elist, E
{ append E.place to end of queue }

3) Elist

E
{ initialize queue to contain only E.place }

Queue is emptied & single pointer is given to symbol table denoting value of E.

P a g e | 71 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

21. How back patching can be used to generate code for Boolean expressions? (11marks) (NOV 2011)

To implementing syntax-directed definitions, to use two passes.

The main problem with generating codes for Boolean expressions and flow of control statements in a
single pass is that during one single pass we may not know the labels that control must go to at the
time jump statements are generated.

By generating a series of branching statement with the targets of the jumps left unspecified.

Each such statement will be put on a list of goto statements whose labels will be filled in when the proper
label can be determined. This subsequent filling of addresses for the determined labels is called

Back patching.

Back patching can be used to generate code for Boolean expression and flow of control statements in
one pass.

To generate quadruples into a quadruple array and labels are indices to this array. To manipulate list if
labels, we use three functions:

1. makelist(i) -- creates a new list containing only i, an index into the array of quadruples; makelist
returns a pointer to the list it has made.

2. merge(p1,p2) – concatenates the lists pointed to by p1 and p2 ,and returns a pointer to the
concatenated list.

3. backpatch(p,i) – inserts i as the target label for each of the statements on the list pointed to by p.

(i) Boolean Expressions:

Construct a translation scheme for producing quadruples for Boolean expressions during bottom-up parsing.
We insert a marker non-terminal M into the grammar, the index of the next quadruple to be generated.

The grammar is:

E→ E1 orM E2

E→ E1 andM E2

E→ not E1

E→ (E1)

E→ id1 relop id2

E→ false

E→ true

M→ ε

P a g e | 72 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Synthesized attributes truelist and falselist of non-terminal E are used to generate jumping code for
Boolean expressions.

E.truelist : Contains the list of all the jump statements left incomplete to be filled by the label for the
start of the code for E:=true.

E.falselist : Contains the list of all the jump statements left incomplete to be filled by the label for the
start of the code for E:=false.

The variable nextquad holds the index of the next quadruple to follow.

M.quad represents records the number of first statement
(index). Consider the production E→ E1 andM E2 .

The semantic actions as

PRODUCTION SEMANTIC RULES

{ backpatch(E1.falselist, M.quad)

E→ E1 or M E2 E.truelist = merge(E1.truelist, E2.truelist)

E.falselist = E2.falselist }

{ backpatch(E1.truelist, M.quad)

E→ E1 and M E2 E.truelist = E2.truelist

E.falselist = merge(E1.falselist, E2.falselist) }

E→ not E1
E.truelist = E1.falselist

E.falselist = E1.truelist

E→ (E1)
E.truelist = E1.truelist

E.falselist = E1.falselist

E.truelist = makelist(nextquad)E.falselist =

E→ id1 relop id2
makelist(nextquad +1)

emit(if id1.place relop.op id2.place goto __)

emit(goto ___)

E→ true
E.truelist = makelist(nextquad)

emit(goto ___)

E→ false
E.falselist = makelist(nextquad)

emit(goto ___)

M→ ε M.Quad = nextquad

P a g e | 73 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(ii) Flow-of –Control Statements:

Backpatching can be used to translate flow-of-control statements in one pass. Translation scheme for
statements generated by the following grammar:

S→ if E then S

| if E then S else S
| while E do S

| begin L
end | A

L→ L;S

| S

Here S denotes a statement, L a statement list, A an assignment statement, and E a boolean expression.

Scheme to implement the Translation:

(1) S

if E then M S1
{ backpatch (E.truelist , M.quad);

S.nextlist := mergelist (E.falselist , S1.nextlist) }

(2) S

if E then M1 S1 N else M2 S2
{ backpatch (E.truelist , M1.quad);

backpatch (E.falselist , M2.quad);

S.nextlist := mergelist (S1..nextlist, mergelist (N.nextlist , S2.nextlist)) }

We backpatch the jumps when E is true to the quadruple M1.quad, which is the beginning of the code for S1.

Similarly, we backpatch when E is false to go to the beginning of the code for S2.The list S.nextlist includes all

jumps out of S1 and S2, as well as the jump generated by N.

(3) S

while M1 E doM2 S1
{ backpatch (S1.nextlist , M1.quad);

backpatch (E.truelist , M2.quad);

S.nextlist := E.falselist

emit('goto' M1.quad) }

(4) S

begin L end

{ S.nextlist := L.nextlist }

P a g e | 74 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(5) S

A
{ S.nextlist := nil }

(6) L

L1M S

{ backpatch(L1.nextlist , M.quad);

L.nextlist := S.nextlist }

(7) N

ε

{ N.nextlist := makelist (nextquad);
emit(‘goto_’) }

(8) M

ε

{ M.quad := nextquad }

P a g e | 75 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

UNIVERSITY QUESTIONS

2MARKS

1. What is the use of context free grammar? (NOV 2011) (Ref.Qn.No.7, Pg.no.3)

2. Draw the dag for the assignment statement: a: = b * -c + b * -c (NOV 2011) (Ref.Qn.No.38, Pg.no.8)

3. Define Ambiguous.(MAY 2012) (Ref.Qn.No.12, Pg.no.4)

4. What is Parsing Tree?(MAY 2012) (Ref.Qn.No.10, Pg.no.3)

5. Define Three-Address Code.(NOV 2012) (Ref.Qn.No.41, Pg.no.9)

6. Differentiate phase and pass.(NOV 2012) (Ref.Qn.No.32, Pg.no.7)

7. Derive the first and follow for the follow for the following grammar.

S

0|1|AS0|BS0 A

ɛ B

ɛ (MAY 2013) (Ref.Qn.No.58, Pg.no.13)

8. State the function of an intermediate code generator.(MAY 2013) (Ref.Qn.No.33, Pg.no.7)

9. Briefly describe the LL (k) items.(NOV 2013) (Ref.Qn.No.19, Pg.no.5)

10.What are the different forms of Intermediate representations?(NOV 2013) (Ref.Qn.No.35, Pg.no.8)

11 MARKS

NOV 2011(REGULAR)

1. Explain the LR parsing algorithm in detail. (Ref.Qn.No.8, Pg.no.32)

(OR)

2. a) How back patching can be used to generate code for Boolean expressions? (6)

(Ref.Qn.No.21, Pg.no.72

b) How the code is generated for procedure calls? (5) (Ref.Qn.No.19, Pg.no.70)

MAY 2012(ARREAR)

1. a) Write an algorithm for constructing LR parser table. (Ref.Qn.No.8, Pg.no.32)

b)Write the quadruple representation for the assignment statement a: =-b*(c+d) (Ref.Qn.No.14, Pg.no.52)

(OR)

2. Discuss the Role of the parser. (Ref.Qn.No.1, Pg.no.14)

NOV 2012(REGULAR)

1. a) Write an algorithm for constructing LR parser table. (Ref.Qn.No.8, Pg.no.32)

b) Consider the following grammar to construct the LR parsing table (Ref.Qn.No.9, Pg.no.35)

E

E+T | T

T

T*F | F

F

(E) | id

P a g e | 76 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(OR)

2. List out and discuss the different type of intermediate code. (Ref.Qn.No.10, Pg.no.43)

MAY 2013(ARREAR)

1. Give the following CFG grammar G=({S,A,B},S,(a,b,x),P) with P:

S

A

S

xb

A

aAb

A

B

B

x

For this grammar answer the following questions:

Compete the set of LR (1) items for this grammar. Augment the grammar with the default initial

production S’

S$ as the production (0) and Construct the corresponding LR parsing table.
(OR)

2. State and write the semantic rules for Boolean expressions. (Ref.Qn.No.17, Pg.no.61)

NOV 2013 (REGULAR)

1. (a) Write the steps in writing a grammar for a programming language. (5) (Ref.Qn.No.3, Pg.no.19)

(b) Briefly write on Parsing techniques. Explain with illustration the designing of a Predictive Parser. (6)

(Ref.Qn.No.4, Pg.no.23)

(OR)

2. Describe in detail the declarations in a procedure and the methods to keep track of scope information.

(Ref.Qn.No.15, Pg.no.53)

P a g e | 77 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

UNIT V

Basic Optimization

Basic Optimization: Constant-Expression Evaluation – Algebraic
Simplifications and Re association– Copy Propagation – Common Sub-
expression Elimination – Loop-Invariant Code Motion – Induction Variable
Optimization.

Code Generation: Issues in the Design of Code Generator – The Target
Machine – Runtime Storage management – Next-use Information – A simple
Code Generator – DAG Representation of Basic Blocks – Peephole
Optimization – Generating Code from DAGs

P a g e | 1 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

2 MARKS

1. What is code optimization?

Code optimization techniques are generally applied after syntax analysis, usually both before and during

code generation. The techniques consist of detecting patterns in the program and replacing these patterns by

equivalent and more efficient constructs. This improvements is achieved by program transformation are

called optimization.

2. What is optimizing compilers?

Compilers that apply code-improving transformations are called optimizing compilers.

3. Give the block diagram of organization of code optimizer.

Front end Code Code
optimizer generator

Control Data Flow Transform
flow analysis ations

analysis

4. What are the properties of optimizing compilers?

Transformation must preserve the meaning of programs.
 Transformation must, on the average, speed up the programs by a measurable amount.

 A Transformation must be worth the effort.

5. What are the advantages of the organization of code optimizer?

The operations needed to implement high level constructs are made explicit in the
intermediate code, so it is possible to optimize them.

The intermediate code can be independent of the target machine, so the optimizer does not
have to change much if the code generator is replaced by one for a different machine

6. What are the 3 areas of code optimization?

Local optimization
 Loop optimization

 Data flow analysis

P a g e | 2 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

7. Define local optimization.

The optimization performed within a block of code is called a local optimization.

8. Define constant folding.

Deducing at compile time that the value of an expression is a constant and using the constant
instead is known as constant folding.

Constant folding is nothing but replacing the run-time compilation by the compile time
compilation. This is done generally for the constants.

Example: a:=(22/7) * (r*r)

9. What is propagation?

Propagation means propagating an entity from one statement to another statement. This is done
for constants.

Evaluation or replace a variable with constant which has been assigned to it earlier.

10. Define Local transformation & Global Transformation.

A transformation of a program is called Local, if it can be performed by looking only at the
statements in a basic block.

Otherwise it is called global.

 Many transformations can be performed at both local and global levels.

 Local transformations are usually performed first.

11. Give the criteria for code-improving transformations. (NOV 2011)

Common sub expression elimination
 Copy propagation

 Dead – code elimination

 Constant folding

12. What is meant by Common Sub expressions?

An occurrence of an expression E is called a common sub expression, if E was previously computed,
and the values of variables in E have not changed since the previous computation.

13. What is copy propagation?

The assignment of the form f := g called copy statements or copies.

14. What is meant by Dead Code?

A variable is live at a point in a program if its value can be used subsequently; otherwise, it is dead at that
point. The statement that computes values that never get used is known Dead code or useless code.

P a g e | 3 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

15. What are the techniques used for loop optimization?

Three techniques are important for loop optimizations are

i) Code motion

ii) Induction variable elimination

iii) Reduction in strength

16. What is code motion?

Code motion, which moves code outside a loop.
 Code motion is an important modification that decreases the amount of code in a loop.

This transformation takes an expression that yields the same result independent of the number of
times a loop is executed (a loop-invariant computation) and places the expression before the loop.

17. Define Induction variable? (MAY 2013)

The values of j and t4 remain in lock-step; every time the value of j decreases by 1, that of t4 decreases by 4
because 4*j is assigned to t4. Such identifiers are called induction variables.

18. What is meant by Reduction in strength? (MAY 2012)

Reduction in strength, which replaces an expensive operation by a cheaper one, such as a multiplication by
an addition.

19. What is meant by loop invariant computation?

The transformation takes an expression that yields the same result independent of the number of times
the loop is executed is known as loop invariant computation.

20. What is code generation?

The final phase in our compiler model is the code generator.

It takes as input an intermediate representation of the source program and produces as output an
equivalent target program.

21. What are the issues in the design of a code generator?

The various issues in design of code generator are

1. Input to the Code Generator

2. Target Programs

3. Memory Management

4. Instruction Selection

5. Register Allocation and

6. Choice of Evaluation Order

P a g e | 4 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

22. What are the outputs of code generator?

The output of the code generator is the target program. The output may take on a variety of forms:

1. absolute machine language,

2. relocatable machine language, or

3. assembly language.

23. What is register allocation?

Instructions involving register operands are usually shorter and faster than those involving
operands in memory. Efficient utilization of register is particularly important in generating good
code.

The use of registers are

1. Register allocation

2. Register assignment

24. What are the types of address mode?

The types of address modes in assembly-language

Absolute
 Register

 Indexed

 Indirect register

 Indirect indexed

25. What is meant by activation record?

Information needed during an execution of a procedure is kept in a block of storage called activation
record; storage for names local to the procedure also appears in the activation record.

26. What are the two standard storage allocation strategies?

The two standard allocation strategies are

1. Static allocation

2. Stack allocation

27. Define static and stack allocation.

In static allocation, the position of an activation record in memory is fixed at compile time.

In stack allocation, a new activation record is pushed onto the stack for each execution of a procedure.
The record is popped when the activation ends.

P a g e | 5 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

28. What are the fields in activation records?

The activation record for a procedure has fields as

to hold parameters,
 results

 machine status information,

 local data,

 temporary variables

29.What are the limitations of using static allocation?

The size of a data object and constraints on its position in memory must be known at compile time.

Recursive procedure are restricted, because all activations of a procedure use the same bindings
for local name

Data structures cannot be created dynamically since there is no mechanism for storage allocation
at run time

30.When static allocation can become stack allocation? (NOV 2011)

Static allocation can become stack allocation by using relative addresses for storage in activation
records.

The position of the activation record for the procedure is not known until run time.

In stack allocation, this position is usually stored in a register, so words in the activation record can be
accessed as offsets from the value in this register.

31.What is a basic block? What are the entry points and how do you call the entry instructions?

(MAY 2013)

A basic block is a sequence of consecutive statements in which flow of control enters at the beginning
and leaves at the end without halt or possibility of branching except at the end.

32.What are descriptors in code generation algorithm?

The code-generation algorithm uses descriptors to keep track of register contents and addresses for
names.

1. Register descriptors

2. Address descriptors

33.What is Register Descriptors?

A register descriptor keeps track of what is currently in each register.
 Initially all the registers are empty.

 Each register will hold the value of zero or more names at any given time.

P a g e | 6 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

34.What is Address Descriptors?

Address descriptors keeps track of location where current value of the name can be found at runtime.
 The location might be a register, a stack location or a memory address.

This information can be stored in the symbol table and is used to determine the accessing method for
a name.

35.What is DAG? (NOV 2012, 2013)

Directed acyclic graphs (DAG) are useful data structure for implementing transformations on basic
blocks.

A dag gives a picture of how the value computed by each statement in a basic block is used in
subsequent statements of the block.

36. How DAG is constructing?

DAG is constructing from three-address statements is a good way of

Determining the common sub-expressions
 Determining which names are used inside the block but evaluated outside the block and

 Determining which statements of the block could have their computed value outside the block.

37.Mention the applications of DAG?

To automatically detect a common sub expressions.
 To determine which identifiers have their values used in the block.

 To determine which statements compute values that could be used outside the block.

38. Define peephole optimization.

The technique for locally improving the target code is peephole optimization, a method for trying to

improve the performance of the target program by examining the short sequence of target

instructions and replacing these instructions by shorter or faster sequence whenever possible.

39. List the characteristics of peephole optimization.

The characteristics of peephole optimization are

Redundant instruction elimination
 Unreachable Code

 Flow of control optimizations

 Algebraic simplification

 Reduction in Strength

 Use of machine idioms

P a g e | 7 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

40. Construct a 3-address code for (B+A) * (Y-(B+A)). (NOV 2013)

The 3-address code for (B+A) * (Y-
(B+A)) t1 := B + A;
t2 := Y - t1;
t3 := t1 * t2;

41. Define Flooding? (MAY 2012)

A flooding algorithm is an algorithm for distributing material to every part of a graph. The name
derives from the concept of inundation by a flood.

Flooding algorithms are used in computer networking and graphics. Flooding algorithms are also
useful for solving many mathematical problems, including maze problems and many problems in
graph theory.

42.What is translation of symbol? (NOV 2012)

A translation of symbols mainly a constant folding and constant propagation.
 A context-free grammar with semantic actions embedded within the right sides of the

productions.

P a g e | 8 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Flood
http://en.wikipedia.org/wiki/Flooding_%28computer_networking%29
http://en.wikipedia.org/wiki/Flood_fill
http://en.wikipedia.org/wiki/Maze
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Graph_theory

11 MARKS

1. Write a short note on Constant, Expression Evaluation? (6 marks)

Constant:

The code improving transformation as

Constant folding
 Constant propagation

(i) Constant Folding:

 Constant - expressions evaluation or constant folding refers to the evaluation at compile time of
expressions whose operands are known to be constant.

Evaluation of an expression with constant operands to replace the expression with single value.

 This is actually compile - time evaluation.

It makes the possible for the computations performed during the compile time itself, and thus
avoids the computation during the execution time.

Deducing at compile time that the value of an expression is a constant and using the constant
instead is known as constant folding.

Constant folding is nothing but replacing the run-time compilation by the compile time
compilation. This is done generally for the constants.

Example: a :=(22/7) * (r * r)

a := 3.14286 * (r * r)

The value (22/7) can be computed during the compilation itself than computing it in each
execution.

Example: i = 320 * 200 * 32
 Most compilers will substitute the computed value at compile time.

(ii) Constant Propagation:

Constant propagation means propagating an entity from one statement to another statement.
This is done for constants.

Evaluation or replace a variable with constant which has been assigned to it earlier.

 Constant propagation is particularly important when procedures or macros are passed constant
parameters.

Constant propagation is nothing but replacement of a variable by a constant that appears on the

right hand side of an assignment for that variable.

Example: a: =2;

P a g e | 9 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Consider the three-address
statements temp1:=4;

………

temp2:=temp1*2;

Here, the variable temp1 is propagated. This can be optimized during the compile time
itself. temp1:=4;

………

temp2:=4*2;

This is actually constant propagation.

The variable should not be redefined along the path of its use.

Example:

pi: =3.14286

Area: = pi * r ** 2;

area: = 3.14286 * r** 2;
This process is done during the compile time.

(iii) Expression Evaluation:

 Expressions evaluation or constant folding refers to the evaluation at compile time of expressions
whose operands are known to be constant.

 Determine that all operands in an expression are constant value.
 Perform the evaluation of the expression at compile time.
 Replace the expression by its value.

 Identify common sub-expression present in different expression, compute once, and use the result in
all the places.

 The definition of the variables involved should not change.

Example:

a := b * c;

…….

…

….

x := b * c + 5;

To generate three-address code for the above statements

temp1 := b *
c; a := temp1;

……….

x := temp1 + 5;

P a g e | 10 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

2. Write a short note on algebraic Simplifications and Re-association? (6marks)

(i) Algebraic Simplifications:

 Algebraic simplification uses algebraic properties of operators or particular operand combinations to
simplify expressions.

Expressions simplification:

i +0 = 0 + i = i - 0 = i
 i ^ 2 = i * i (also strength reduction)

 i*5 can be done by t := i shl 3; t=t-i

Associativity and distributive can be applied to improve parallelism (reduce the height of expression
trees).

Algebraic simplifications for floating point operations are seldom applied.

 The reason is that floating point numbers do not have the same algebraic properties as real numbers.

Examples:

1. Algebraic simplification using the rules

A*1 := A

A*0 := 0

A-0 := A

A/1 := A single instruction with a constant operand A*2 := A+A

A^2 := A*A

A**2 := A*A

2. Initial code Algebraic simplification

A := X**2; A := X*X;

B := 3; B := 3;

C := X; C := X;

D := C*C; D := C*C;
E := B*2; E := B+B;

F := A+D; F := A+D;

G := E*F; G := E*F;

P a g e | 11 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

3. Algebraic transformation can be used to change the set of expressions computed by a basic block into an
algebraically equivalent set.

b && true := b

b && false :=
false b || true :=

true b || false := b

X * 4 := X<<2

16* X := X<<4

4. The goal is to reduce height of expression tree to reduce execution time in a parallel environment.

5. Common sub-expression elimination

Transform the program so that the value of a (usually scalar) expression is saved to avoid having to compute
the same expression later in the program.

For example:

x = e^3+1

…

y= e^3

is replaced (assuming that e is not reassigned in …)
with t=e^3

x = t+1

…

y=t

P a g e | 12 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

6. Copy propagation

Eliminates unnecessary copy operations.

For example:

x = y

<other instructions>

t = x + 1

Is replaced (assuming that neither x nor y are reassigned in …) with

<other instructions>

t = y + 1

Copy propagation is useful after common sub-expression elimination.

For example:

x = a+b

…

y = a+b

Is replaced by common sub-expression elimination into the following
code t = a+b

x = t

…

z = x

y = a+b

Here x=t can be eliminated by copy propagation.

(ii) Algebraic Re-association:

Re-association refers to using associativity, commutativity, and distributivity to divide an expression
into parts that are constant, loop invariant and variable.

The optimization that can remove useless instructions entirely via algebraic identities.

Example:

Consider the assignment statement b=5+a+10

The three address code for the above sequence

temp1=5; temp1=5; temp1=15+a;

temp2=temp1+a; temp2=temp1+a; b=temp1;

temp3=temp2+10; b=temp1;

b=temp3;

P a g e | 13 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

3. Explain principal sources of optimization or Local optimization techniques. (11 marks) (NOV 2012
MAY 2013)

A transformation of a program is called Local, if it can be performed by looking only at the statements
in a basic block.

Otherwise it is called global.

 Many transformations can be performed at both local and global levels.

 Local transformations are usually performed first.

Function Preserving Transformations:

There are a number of ways in which a compiler can improve a program without changing the
function it computes.

The examples of function preserving transformations are

1. Common sub-expression elimination

2. Copy propagation

3. Dead code elimination

4. Constant folding

The DAG representation of basic blocks showed how local common sub-expressions could be removed as the
DAG for the basic block is constructed.

Quick sort for c program:

P a g e | 14 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Three-address code:

Flow graph:

P a g e | 15 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(i) Common Sub-expression Elimination:

An occurrence of an expression E is called a common sub expression, if E was previously computed,
and the values of variables in E have not changed since the previous computation.

DAG representations of basic blocks show how local common sub-expressions could be removed as
the DAG for basic block.

A program can be calculated the same value such as an offset in an array.

 Ex: recalculates 4*i and 4*j.

For example, the assignments to t7 and t10 have the common sub-expressions 4*i and 4*j, respectively.
They have been eliminated by using t6 instead of t7 and t8 instead of t10.

Local common sub-expression elimination

Elimination of global and local common Sub-expression:

The result of eliminating both global and local common sub-expressions from blocks B5 and B6 in the
flow graph.

After local common sub-expressions are eliminated B5 still evaluates 4*i and 4*j.

 Both are common sub-expressions; in particular, the three statements

t8:= 4*j; t9:= a [t8]; a [t8]:= x in B5 can be
replaced by

t9:= a [t4]; a [t4]:= x using t4 computed in block B3.

The control passes from the evaluation of 4*j in B3 to B5, there is no change in j, so t4 can be used if 4*j
is needed.

Another common sub-expression comes to light in B5 after t4 replaces t8.

 The new expression a[t4] corresponds to the value of a[j] at the source level.

P a g e | 16 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

The statement

t9:= a [t4]; a [t6]:= t9 in B5 can
therefore be replaced by

a [t6]:= t5

Elimination of global and local common Subexpression

(ii) Copy Propagation:

Block B5 can be further improved by eliminating x using two new transformations.
 The assignments of the form f := g called copy statements, or copies

When the common sub-expression in c: = d+e is eliminated the algorithm uses a new variable t to hold
the value of d+e.

Since control may reach c: = d+e either after the assignment to a or after the assignment to b, it would
be incorrect to replace c: = d+e by either c: = a or by c: =b.

The idea behind the copy-propagation transformation is to use g for f, wherever possible after the
copy statement f: =g.

For example, the assignment x: = t3 in block B5 is a copy. Copy propagation applied to B5 yields:

x := t3

a [t2]:=t5

a [t4]:=t3

goto B2

P a g e | 17 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Copies introduces during common sub-expression elimination

(iii) Dead-Code Elimination:

A variable is live at a point in a program if its value is used subsequently;
 Otherwise it is dead at that point.

 Dead or useless code statements that compute values that never get used.

Dead Code are portion of the program which will not be executed in any path of the program can be
removed.

For example, the use of debug that is set to true or false at various points in the program, and used in

statements like

if (debug) print …

By a data-flow analysis, it may be possible to deduce that each time the program reaches this
statement, the value of debug is false.

Usually, it is because there is one particular statement

debug :=false

If copy propagation replaces debug by false, then the print statement is dead because it cannot be
reached. We can eliminate both the test and printing from the object code.

(iv) Constant folding:

More generally, deducing at compile time that the value of an expression is a constant and using the
constant instead is known as constant folding.

One advantage of copy propagation is that it often turns the copy statement into dead code.

For example, copy propagation followed by dead-code elimination removes the assignment to x and
transforms into

a [t2] := t5
a [t4] := t3

goto B2

P a g e | 18 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

4. Explain Loop optimization techniques. (11marks) (NOV 2011, 2013) (MAY 2012)

The optimizations, namely loops, especially the inner loops where programs tend to spend the bulk of
their time.

The running time of a programmay be improved if we decrease the number of instructions in an inner
loop, even if we increase the amount of code outside that loop.

Three techniques are important for loop optimization

1. Code motion

which moves code outside a loop;

2. Induction-variable elimination

which we apply to eliminate i and j from the inner loops B2 and B3.

3. Reduction in strength

which replaces and expensive operation by a cheaper one, such as a
multiplication by an addition.

(i) CodeMotion:

An important modification that decreases the amount of code in a loop is code motion.

This transformation takes an expression that yields the same result independent of the number of
times a loop is executed (a loop-invariant computation) and places the expression before the loop.

The notion “before the loop” assumes the existence of an entry for the loop.

For example, evaluation of limit-2 is a loop-invariant computation in the following while-statement:
while (i<= limit-2) /* statement does not change limit */

Code motion will result in the equivalent
of t= limit-2;

while (i<=t) /* statement does not change limit or t */

P a g e | 19 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(ii) Induction Variables:

The values of j and t4 remain in lock-step; every time the value of j decreases by 1, that of t4 decreases
by 4 because 4*j is assigned to t4.Such identifiers are called induction variables.

When there are two or more induction variables in a loop, by the process of induction-variable
elimination.

For the inner loop around B3, t4 is used in B3 and j in B4.

Strength reduction applied to 4*j in block B3

In block B3, t4 := 4 * j holds assignment to t4 and t4 is not changed elsewhere in the inner loop around
B3.

It follows that the statement j := j - 1 the relationship t4 := 4 *j - 4 must hold.

The replace the assignment t4 := 4 * j by t4 := t4 - 4.

The replacement of a multiplication by a subtraction will speed up the object code if multiplication
takes more time than addition or subtraction.

P a g e | 20 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(iii) Reduction in Strength:

Reduction in strength, which replaces and expensive operation by a cheaper one, such as
a multiplication by an addition.

After reduction in strength is applied to the inner loop around B2 and B3, the only use in i and j to
determine the outcome of test in block B4.

The value of i and t2 = 4 * i and j for t4 = 4 * j , so the test t2 >= t4 is equivalent to i >= j.

Replacement i in block B2 and j in Block B3 become dead variables and assignment to the blocks, a
dead code that can be eliminated.

Flow graph for induction variable elimination:

P a g e | 21 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

5. Explain the issues in design of a code generator? (11marks) (NOV 2013)

The final phase in our compiler model is the code generator.

It takes as input an intermediate representation of the source program and produces as output an
equivalent target program.

Issues in the design of a code generator:

While the details are dependent on the target language and the operating system, issues such as

1. Input to the code generator

2. Target Programs

3. memory management

4. instruction selection

5. register allocation and

6. evaluation order

(i)Input to the Code Generator:

The input to the code generator consists of the intermediate representation of the source program
produced by the front end, together with information in the symbol table that is used to determine the

run-time addresses of the data objects denoted by the names in the intermediate representation.

The intermediate language, including:
 linear representations such as postfix notation,

 three address representations such as quadruples,

 virtual representations such as stack machine code.

 graphical representations such as syntax trees and dags.

The code generation the front end has scanned, parsed, and translated the source program into a
intermediate representation, the values of names appearing in the intermediate language can be
represented by quantities that the target machine can directly manipulate (bits, integers, reals,
pointers, etc.).

P a g e | 22 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(ii) Target Programs:

The output of the code generator is the target program.
 The intermediate code, this output may take on a variety of forms:

1. absolute machine language,

2. relocatable machine language, or

3. assembly language

Absolute machine language

Producing an absolute machine language program as output that it can be placed in a location in
memory and immediately executed.

A small program can be compiled and executed quickly.

 A number of “student-job” compilers, such as WATFIV and PL/C, produce absolute code.

Relocatable machine language

Producing a relocatable machine language program as output allows subprograms to be compiled
separately.

A set of relocatable object modules can be linked together and loaded for execution by a linking loader.

Assembly language

Producing an assembly language program as output makes the process of code generation somewhat
easier.

We can generate symbolic instructions and use the macro facilities of the assembler to help generate
code

(iii) Memory Management:

Mapping names in the source program to addresses of data objects in run time memory is done
cooperatively by the front end and the code generator.

We assume that a name in a three-address statement refers to a symbol table entry for the name.

 Symbol-table entries are created as the declarations in a procedure.

 The type of declaration determines the width, the amount of storage, needed for the declared name.

The symbol-table information, needed for the determined for the name in a data area for the
procedure.

The static and stack allocation of data areas , and show how names in the intermediate representation
can be converted into addresses in the target code.

P a g e | 23 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(iv) Instruction Selection:

The instruction set of the target machine determines the difficulty of instruction selection.

 The instructions set are important factors

1. uniformity

2. completeness

3. Instruction speeds

4. and machine idioms

If the target machine does not support each data type in a uniform manner, then each exception to the
general rule requires special handling.

The efficiency of the target program, instruction selection is straightforward.

 Three- address statement can design a code skeleton that the target code to be generated.

For example, three address statement of the form x := y + z, where x, y, and z are statically allocated,
can be translated into the code sequence

MOV y, R0 /* load y into register R0 */

ADD z, R0 /* add z to R0 */

MOV R0, x /* store R0 into x */

Unfortunately, this kind of statement – by - statement code generation often produces poor code.
For example, the sequence of statements

a := b + c

d := a + e

would be translated into

MOV b, R0

ADD c, R0

MOV R0, a

MOV a, R0

ADD e, R0

MOV R0, d

Here the fourth statement is redundant, and so is the third if ‘a’ is not subsequently used.

P a g e | 24 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

The quality of the generated code is determined by its speed and size.

 Instruction speeds are needed to design good code sequence but unfortunately, accurate timing
information is often difficult to obtain.

For example if the target machine has an “increment” instruction (INC), then the three address

statement a := a+1may be implemented more efficiently by the single instruction INC a, sequence that loads a
into a register, add one to the register, and then stores the result back into a.

MOV a, R0

ADD #1, R0

MOV R0, a

(v) Register Allocation:

Instructions involving register operands are usually shorter and faster than those involving operands
in memory.

Efficient utilization of register is particularly important in generating good code.

The use of registers is often subdivided into two sub-problems:

1. During register allocation, we select the set of variables that will reside in registers at a point
in the program.

2. During a register assignment phase, we pick the specific register that a variable will reside in.

Finding an optimal assignment of registers to variables is difficult, even with single register values.

 Mathematically, the problem is NP-complete.

The problem is further complicated because the hardware or the operating system of the target
machine may require that certain register usage.

Certain machines require register pairs (an even and next odd numbered register) for some
operands and results.

For example, in the IBM System/370 machines integer multiplication and integer division involve
register pairs.

Themultiplication instruction is of the form

M x, y

where x, is the multiplicand, is the even register of an even/odd register pair.

The multiplicand value is taken from the odd register pair. The multiplier y is a single register. The
product occupies the entire even/odd register pair.

P a g e | 25 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

The division instruction is of the form

D x, y

where the 64-bit dividend occupies an even/odd register pair whose even register is x; y represents
the divisor.

After division, the even register holds the remainder and the odd register the quotient.

Consider the two three address code sequences (a) and (b) in which the only difference is the operator in the
second statement. The shortest assembly sequence for (a) and (b) are given in(c).
 Ri stands for register i.
 L, ST and A stand for load, store and add respectively.

The optimal choice for the register into which ‘a’ is to be loaded depends on what will ultimately happen to e.

t := a + b t := a + b

t := t * c t := t + c

t := t / d t := t / d

(a) (b)

Two three address code sequences

L R1, a L R0, a

A R1, b A R0, b

M R0, c A R0, c

D R0, d SRDA R0, 32

ST R1, t D R0, d

ST R1, t

(a) (b)

Optimal machine code sequence

(vi) Choice of Evaluation Order:

The order in which computations are performed can affect the efficiency of the target code.

 Some computation orders require fewer registers to hold intermediate results than others.

 Picking a best order is another difficult, NP-complete problem.

Initially, to avoid the problem by generating code for the three -address statements in the order in
which they have been produced by the intermediate code generator.

P a g e | 26 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

6. Explain the Target machine in code generator? (6 marks)

Familiarity with the target machine and its instruction set is for designing a good code generator.

Our target computer is a byte addressable machine with four bytes to a word and n general purpose
registers, R0,R1,…., Rn-1.

The has two address instruction is of the form

op source, destination

in which op is an op-code and source and destination are data fields.

The op-codes are

MOV (move source to destination)

ADD (add source to destination)

SUB (subtract source from destination)

The source and destination fields are not long enough to hold the memory addresses, so certain bit
patterns in these fields specify that words following an instruction contain operands or addresses.

The source and destination of an instruction are specified by combining register and memory
locations with addressing modes.

The description, contents (a) denotes the contents of the register or memory address represented by
a.

Addressingmodes together with their assembly-language forms and associated costs are as follows:

MODE FORM ADDRESS ADDED COST

Absolute M M 1

Register R R 0

Indexed c(R) c + contents(R) 1

Indirect indexed *R contents(R) 0

Indirect indexed *c(R) contents(c + contents(R)) 1

Literal #c c 1

P a g e | 27 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

The following instructions are

1. A memory location M or a register R represents itself when used as a source or
destination. For example, the instruction

MOV R0, M

stores the contents of register R0 into memory location M.

2. An address offset c from the value in register R is written as c(R).Thus,

MOV 4(R0), M

stores the value contents (4 + contents (R0)) into memory location
M. 3. Indirect versions of the last two modes are indicated by prefix *. Thus,

1. MOV *4(R0), M

stores the value contents(contents(4 + contents(R0)) into memory location
M. 4. A final address mode allows the source to be a constant:

1. MOV #1, R0

loads the constant 1 into register R0.

Instruction Costs:

The cost of an instruction is one plus cost associated with the source and destination modes.
 The cost corresponds to the length of the instruction.

Address mode involving registers have cost zero, while those with a memory location or literal in
them have cost one, because such operands have to be stored with the instruction.

The most instructions, the time taken to fetch an instruction from memory exceeds the time spent
executing the instruction.

By minimizing the instruction length is to minimize the time taken to perform the instruction.

1. The instruction MOV R0, R1 copies the contents of register R0 into register R1.This instruction has
cost one.

2. The instruction MOV R5, M copies the contents of register R5 into memory location M. This
instruction has cost two.

3. The instruction ADD #1, R3 adds the constant 1 to the contents of register 3, and cost has two.

4. The instruction SUB 4(R0), *12(r1) stores the value

contents (contents (12 + (contents (R1)) – contents (contents
(4+R0)) into the destination *12(r1). The cost of the instruction is three.

P a g e | 28 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

 MOV R0, R1 cost = 1

 MOV *R0,*R1 cost = 1

 MOV R0, a cost = 2

 MOV a, R0 cost = 2

 MOV #1, R0 cost = 2

 MOV a, b cost = 3

The three- address statement of the form a: = b + c,where b and c are simple variables in distinct memory
location denoted by these names.

1. MOV b, R0

ADD c, R0 cost = 6

MOV R0, a

2. MOV b, a cost = 6

ADD c, a

Assume R0 = a, R1 = b, R2 = c, respectively

3. MOV *R1,*R0 cost = 2

ADD *R2,*R0

Assume R1 = b, R2 = c

4. ADD R1, R2 cost = 3

MOV R1, a

P a g e | 29 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

7. Explain the run-time storagemanagement? (11marks)

The semantic of procedures in a language determines how names are bound to storage during
execution.

Information needed during an execution of a procedure is kept in a block of storage called activation
record; storage for names local to the procedure also appears in the activation record.

The two standard allocation strategies are

1. Static allocation

2. Stack allocation

In static allocation, the position of an activation record in memory is fixed at compile time.

In stack allocation, a new activation record is pushed onto the stack for each execution of a
procedure. The record is popped when the activation ends.

The activation record for a procedure has fields as

to hold parameters,
 results

 machine status information,

 local data,

 temporary variables.

The run time allocation and de-allocation of activation record occurs as part of the

procedure calls and
 return sequences

The three- address statement as

1. call

2. return

3. halt and

4. action

P a g e | 30 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(i) Static Allocation:

Consider the code needed to implement static allocation.

A call statement in the intermediate code is implemented by the sequence of two target-machine
instructions.

AMOV instruction to save the return address and a GOTO transfers control to the target code for the

called procedure:

MOV #here+20, callee.static_area
GOTO callee.code_area

Where

The callee.static_area and callee.code_area are constants referring to the address of the activation
record and the first instruction for the called procedure respectively.

The source #here+20 in theMOV instruction is the literal return address.

The code for a procedure ends with a return to the calling procedure, except that the first procedure
has no caller, so its final instruction is HALT.

Return from procedure callee is implemented by

GOTO *callee.code_area

which transfers control to the address saved at the beginning of the activation record.

Input to code generator:

P a g e | 31 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Target code for the input:

(ii) Stack Allocation:

Static allocation can become stack allocation by using relative addresses for storage in activation
records.

The position of the record for an activation of a procedure is not known until run time.

In stack allocation, this position is usually stored in a register, so words in the activation record can
be accessed as offsets from the value in this register.

Relative addresses in an activation record can be taken as offsets from any known position in the
activation record.

A register SP a pointer to the beginning of the activation record on the top of the stack.

When a procedure call occurs, the calling procedure increments SP and transfers control to the called
procedure.

After control returns to the caller, it decrements SP, thereby de-allocating the activation record of the
called procedure.

P a g e | 32 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

The code for the first procedure initializes the stack by setting SP to the start of the stack area in memory:

MOV #stackstart, SP /* initialize the stack */

code for the first procedure

HALT /* terminate execution */

A procedure call sequence increments SP, saves the return address, and transfers control to the called
procedure:

ADD #caller.recordsize, SP

MOV #here+16, SP /* save return address */

GOTO callee.code_area

The attribute caller.recordsize represents the size of an activation record, so the ADD instruction
leaves SP pointing to the beginning of the next activation record.

The source #here+16 in theMOV instruction is the address of the instruction following the GOTO; it is
saved in the address pointed to by SP.

The return sequence consists of two parts. The called procedure transfers control to the return address using

GOTO *0(SP) /*return to caller*/

The reason for using *0(SP) in the GOTO instruction is that we need two levels of indirection:

0(SP) is the address of the first word in the activation record and
 *0(SP) is the return address saved there.

The second part of the return sequence is in the caller, which decrements SP, thereby restoring SP to
its previous value.

That is, after the subtraction SP points to the beginning of the activation record of the caller:

SUB #caller.recordsize, SP

P a g e | 33 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Target code for stack allocation:

Three-address code

Three address code for stack allocation:

P a g e | 34 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Run time addresses for names:

The storage allocation strategy and the layout of local data in an activation record for a procedure
determine how the storage for names is accessed.

Assume that a name in a three-address statement is really a pointer to a symbol-table entry for the
name; it makes the compiler more portable, since the front end need not be changed even if the
compiler is moved to a different machine where a different run-time organization is needed.

Names must be replaced by code to access storage locations. Consider the simple three-address
statement x: = 0.

After the declarations in a procedure are processed, suppose the symbol-table entry for x contains a
relative address 12 for x.

First consider the case in which x is in a statically allocated area beginning at address static. Then the
actual run-time address for x is static+12.

The assignment x := 0 then translates into

static [12] := 0

If the static area starts at address 100, the target code for this statement is

MOV #0, 112

Suppose x is local to an active procedure whose display pointer is in register R3. Then we may
translate the copy x := 0 into the three-address statements

t1 := 12+R3

*t1 := 0

in which t1 contains the address of x. This sequence can be implemented by the single machine instruction

MOV #0, 12 (R3)

The value in R3 cannot be determined at compile time.

P a g e | 35 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

8. What is Next use information? Discuss (5 marks) (MAY 2013)

Next use information about names in basic block.

If the name in a register is no longer needed, then the register can be assigned for the some other
name.

The keeping a name in storage only it will be used subsequently can be applied in a number of
contexts.

Computing Next Uses:

The use of a name in a three-address statement as follows:
 Suppose three-address statements i assigns a value to x.

If statement j has x as an operand and control can flow from statement i to j along a path that has no
assignments to x, then the statement j uses the value of x computed at i.

The three address statement X = Y op Z the next uses of X, Y and Z.

 The algorithm to determine next uses makes a backward pass over each basic block.

 Assume all temporaries are dead on exit and all user variables are live on exit.

Algorithm to compute next use information:

Suppose three address statement i : X := Y op Z in backward scan, the following

1. Attach to statement i, information currently found in the symbol table regarding the next use and live-
ness of X, Y and Z.

2. In symbol table, set X to “not live” and “no next use “.

3. In symbol table, set Y and Z to be “live” and next use of Y and Z to i.

Storage for Temporary Names:

The two temporaries into the same location if they are not live simultaneously.

All temporaries are defined and used within basic blocks; next-use information can be applied to pack
temporaries.

In the basic block can be packed into two locations. These locations correspond to t1 and t2:

Example: X = a * a + 2(a * b) + (b * b)

1. t1 = a * a

2. t2 = a * b

3. t3 = 2 * t2

4. t4 = t1 + t3

5. t5 = b * b

6. t6 = t4 + t5

7. X = t6

P a g e | 36 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

9. Explain the four issues in the design of a simple code generator. Generate the code for a simple
statement. (NOV 2013) (11marks)

The code-generation generates target code for a sequence of three address statements.

 Each three-address statement operands are currently stored in register.

 Assume that computed results can be left in registers as long as possible, storing them only

(i) If their register is needed for another computation

(ii) Just before a procedure call, Jump or labeled statement.

Register and Address Descriptors:

The code-generation algorithm uses descriptors to keep track of register contents and addresses for names.

1. Register descriptors

2. Address descriptors

Register Descriptors:

A register descriptor keeps track of what is currently in each register.
 Initially all the registers are empty.

 We assume that initially the register descriptor shows that all register are empty.

The code generator for the block progresses, each register will hold the value of zero or more
names at any given time.

P a g e | 37 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Address Descriptors:

Address descriptors keeps track of location where current value of the name can be found at runtime.
 The location might be a register, a stack location or a memory address.

This information can be stored in the symbol table and is used to determine the accessing method for
a name.

Code- Generation Algorithm:

The code generation algorithm takes as input a sequence of three address statement constituting a basic
block.

The three address statement of the form X = Y op Z

STEP 1:

Invoke a function getreg () to determine the location L, where the result of computation Y op Z
should be stored.

L will usually be a register or memory location.

STEP 2:

The address descriptor for Y to determine Y’, the current location of Y.
 Prefer the register for Y’, if the value Y is currently both in register and memory location.

 Generate the instruction MOV Y’ in L.

STEP 3:

Generate the instruction op Z’, L where Z’ is a current location of Z.
 The value Z is currently both in register and memory location.

 Update address descriptor of X to indicate that X is in location L.

STEP 4:

If the current values of Y and Z have no next use, are not live on exit from the block.
 Register descriptor to indicate after execution of X=Y op Z.

Consider the assignment statement of the form d: = (a - b) + (a - c) + (a - c) might be translated into three
address code sequence

t := a - b

u := a - c

v := t + u

d := v + u

P a g e | 38 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

The getreg () function:

The function getreg returns the location L to hold the value of x for the assignment x: =y op z.

The algorithm for getreg:

1) If the name y is in a register, that holds the value of no other names and y is not live and has no next
use after the execution of y = x op z, then a. return L. Update the address descriptor of y , so that y is no

longer in L.

2) Failing (1), return an empty register for L if there is one.

3) Failing (2), if x has a next use in the block, or if op requires a register then a. find an occupied register

R. MOV(R,M) if value of R is not in proper M. If R holds value of many variables, generate a MOV for
each of the variables.

4) Failing (3), select the memory location of x as L.

Code Sequence:

P a g e | 39 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

S

Conditional Statements:

Machines implement conditional jumps in one of two ways.

One way is to branch if the value of a designated register have six conditions: negative, zero, positive,
non-negative, non-zero and non-positive.

The machine three address statement such as if X < Y goto Z can be implemented by

Subtracting Y from X in register R and

Then jumping to Z, if the value in register R is negative.

A second approach, common to many machines, uses a set of condition code to indicate whether last
quantity computed or loaded into a location is negative, zero, or positive.

Compare instruction (CMP) sets the codes without actually computing the value.

 CMP X, Y sets condition codes to positive if X > Y and so on.

 A conditional-jumpmachine instruction makes the jump if a designated condition <, +,>, <, ≤, ≠ or ≥.

 The instruction CJ<=Z to mean “jump to Z if the condition code is negative or zero”.

For example, if X < Y goto Z could be implemented by

Cmp X, Y

CJ < Z

The condition code descriptor

X := Y + Z

if X < 0 goto L

by

MOV Y, R0

ADD Z, R0

MOV R0, X
CJ < L

The condition code is determined by x after ADD Z, R0...

P a g e | 40 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

10. Explain the DAG representation of basic block? (11marks) (MAY 2013)

Directed acyclic graphs (DAG) are useful data structure for implementing transformations on basic
blocks.

A dag gives a picture of how the value computed by each statement in a basic block is used in
subsequent statements of the block.

Constructing a dag from three-address statements is a good way of

Determining the common sub-expressions (expressions computed more than once) within a block.
 Determining which names are used inside the block but evaluated outside the block and

 Determining which statements of the block could have their computed value outside the block.

A dag for a basic block is a directed acyclic graph has following labels on the nodes:

1) Leaves are labeled by unique identifiers, either variable names or constants. From the operator

applied to name we determine whether the L-value or R-value name is created; most leaves represent

R-values. The leaves represent initial values of names and we subscript them with 0 to avoid

confusion.

2) Interior nodes are labeled by an operator symbol.

3) Nodes are also optionally given a sequence of identifiers for labels. The interior nodes represent
computed values and the identifiers labeling a node.

Each node of a flow graph can be represented by a dag, since each node of the flow graph stands for a
basic block.

The source program

begin

prod :=
0; i :=1;

do begin

prod := prod + a[i] *
b[i]; i := i + 1;

end

while i <= 20

end

P a g e | 41 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Three address code as

1. t1 := 4 * i

2. t2 := a[t1]

3. t3 := 4 * i

4. t4 := b[t3]

5. t5 := t2 * t4

6. t6 := prod + t5

7. prod := t6

8. t7 := i + 1

9. i := t7

10. if i <= 20 goto (1)

DAG Representation:

Dag Construction:

Input: a basic block.

Output: a dag for the basic block containing the following information:

1. A label for each node. For leaves the label is an identifier (constants permitted) and for interior nodes
an operator symbol.

2. For each node a (possibly empty) list of attached identifiers (constants not permitted).

P a g e | 42 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

Method: Initially assume there are no nodes, and
three address statements in either (i) x:= y op z
goto case (i), with X undefined.

node is undefined for all arguments. Suppose the current
(ii) x:= op y (iii) x:= y. A relational operator like if i<=20

(1) If node(y) is undefined, created a leaf labeled y, let node(y) be this node. In case (i) if node (z) is
undefined, create a leaf labeled z and that leaf be node (z).

(2) In case (i) determine if there is a node labeled op, whose left child is node(y) and right child is
node(z). If not create such a node, let be n. case (ii), (iii) similar.

(3) Delete x from the list attached identifiers for node(x). Append x to the list of identify for node n and
set node(x) to n.

Application of Dags:

The applications of DAGs are

To automatically detect a common sub expressions.
 To determine which identifiers have their values used in the block.

 To determine which statements compute values that could be used outside the block.

11. Explain the peephole optimization. (11marks) (NOV 2011, 2012)

The technique for locally improving the target code is peephole optimization, a method for trying to
improve the performance of the target program by examining the short sequence of target
instructions and replacing these instructions by shorter or faster sequence whenever possible.

Peephole optimization as a technique for improving the quality of the target code, the technique can
also be applied directly after intermediate code generation to improve the intermediate
representation.

 Peephole is a small, moving window on the target program.

The characteristics of peephole optimization are

Redundant instruction elimination

 Unreachable Code

 Flow of control optimizations

 Algebraic simplification

 Reduction in Strength

 Use of machine idioms

P a g e | 43 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(i) Redundant loads and stores:

Consider the instruction sequence

1) MOV R0, a

2) MOV a, R0

We can delete instruction (2) because whenever (2) is executed.

 Instruction (1) the value of a is already in register R0.

(ii) Unreachable code:

Peephole optimization is the removal of unreachable instructions.
 An unlabeled instructions immediately following unconditional jump may be removed.

 This operation can be repeated to eliminate a sequence of instructions.

Consider following code segments that are executed only if a variable debug is 1. In C , the source code as

define debug 0

………

if (debug) {

print debugging information

}

In the intermediate representation the if statement may be translated
as if debug = 1 goto L1

goto L2

L1: print debugging
information L2:

Peephole optimization is to eliminate jump over
jumps if debug ≠ 1 goto L2

print debugging information

L2:

Since debug is set to 0 at the beginning of the program, constant propagation should
replace if 0 ≠ 1 goto L2

print debugging information

L2:

The argument of the first statement evaluates to a constant true, it can be replaced by goto L2. Then all the
statements that print debugging are unreachable and can be eliminated one at a time.

P a g e | 44 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(iii) Flow of control optimizations:

The intermediate code generation algorithms are frequently produces

 Jumps to jumps

 Jumps to conditional jumps or

 Conditional jumps to jumps

The unnecessary jumps can be eliminated either in intermediate code or target code in peephole
optimization.

Replace the jump sequence

goto L1

…..

L1: goto L2 by
the sequence

goto L2

…..

L1: goto L2

If there are no jumps to L1, then it may be possible to eliminate the statement L1: goto L2 provided it is
preceded by an unconditional jump.

Similarly, the sequence

if a < b goto L1 if a < b goto L2

……… can be replaced by ……….

L1 : goto L2 L1 : goto L2

Finally, there is only one jump to L1 and L1 is preceded by an unconditional goto. Then the
sequence goto L1

………

L1: if a < b goto L1 L3:

may be replaced by

if a < b goto L2
goto L3

…….

L3:

P a g e | 45 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(iv) Algebraic Simplification:

The amount of algebraic simplification that can be attempt through peephole optimization.

 For example, statements such as

x := x + 0

or

x := x * 1

are produced by straightforward intermediate code generation algorithms and they can be eliminated easily
through peephole optimization.

(v) Strength reduction:

Reduction in strength replaces expensive operations by equivalent cheaper ones on the target
machine.

Certain machine instructions are cheaper than others and can be used as special cases of more
expensive operators.

For example

 Replace X^2 by X * X

 Fixed point multiplication or division by a power of two is cheaper to implement as a shift.

Fixed point division by a constant can be implemented as multiplication by a constant, which
may be cheaper.

(vi) Use of Machine idioms:

The target machines have hardware instructions to implement specific operations efficiently.

 The use of instruction can reduce execution time significantly.

 For example, machines have auto-increment and auto –decrement addressing modes.

 These add or subtract one from an operand before or after using its value.

The use of these modes greatly improves the quality of code when pushing or popping a stack, as in
parameter passing.

These modes can also be used in code for statements i: = i+1.

P a g e | 46 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

12.Write note on Generating code from DAGs. (11marks) (MAY 2012)

To generate code for a basic block from its DAG representation.

Dag shows how to rearrange the order of final computation sequence from linear representation of
three - address statements or quadruples.

We can improve the program length or few no.of temporaries used.

This algorithm for optimal code generation from a tree is also useful when the intermediate code is a
parse tree.

(i) Rearranging the Order:

Consider how the order in which computations are done can affect the cost of resulting object code.
 Consider the following basic block whose dag representation

t1 := a + b

t2 := c + d

t3 := e – t2

X := t1 – t3

Dag for basic block

The syntax directed translation of the expression X: = (a + b) - (e - (c + d)) by the algorithm.
 Generate code for the three address statement using the algorithm

MOV a, R0

ADD b, R0

MOV c, R1

ADD d, R1

MOV R0, t1

MOV e, R0

SUB R1, R0

MOV t1, R1

SUB R0, R1

MOV R1, X

P a g e | 47 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

We rearranged the order of the statements so that the computation of t1 occurs immediatedly before that of t4
as:

t2 := c + d

t3 := e –t2

t1 := a + b

X := t1 – t3

Using the code generation algorithm, the code sequence as

MOV c, R0

ADD d, R0

MOV e, R1

SUB R0, R1

MOV a, R0

ADD b, R0

SUB R1, R0

MOV R1, X

(ii) A Heuristic Ordering for Dags:

The heuristic ordering algorithm which attempts as far as possible to make the evaluation of a node
immediately follows the evaluation of its leftmost argument.

The order of node can be edge relationship of the DAG.

 The edges are procedure calls, array or pointer assignments.

Node listing Algorithm:

P a g e | 48 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

The ordering corresponds to the sequence of three-address statements:

t8 : = d +e

t6 : = a + b

t5 : = t6 - c

t4 : = t5 * t8

t3 : = t4 - e

t2 : = t6 + t4

t1 : = t2 * t3

A DAG:

(iii) Optimal Ordering for Trees:

A simple algorithm to determine the optimal order in which to evaluate a sequence of quadruples is tree.

Optimal ordering means the order that yields the shortest instruction sequence, over all instructions
sequences that evaluate the tree.

The algorithm has two parts.

1. The first part labels each node of the tree, bottom-up, with an integer that denotes the fewest number
of registers required to evaluate the tree with no stores of intermediate results.

2. The second part of the algorithm is a tree traversal whose order is governed by the computed node
labels. The output code is generated during the tree traversal.

P a g e | 49 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

The Labeling Algorithm:

The term “Left leaf “to mean node that is a leaf and left descendent of the parent.
 All other leaves are referred to as “right leaves”.

The labeling can be done by visiting nodes in a bottom-up order so that a node is not visited until all its
children are labeled.

The order in which parse tree nodes are created is suitable if the parse tree is used as intermediate code.

 In this case, the labels can be computed as a syntax-directed translation.

The important n is a binary node and its children have labels l1 and l2,

label(n) = max(l1, l2) if l1 ≠l2

l1+1 if l1=l2

Label computations:

A post-order traversal of the nodes visits the nodes in the order a b t1 e c d t2 t3 t4.

 Node a is labeled 1 left leaf.
 Node b is labeled 0 right leaf.

Node t1 is labeled 1 because the labels of its children are unequal and the maximum label of a child is
1.

P a g e | 50 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

(iv)Multi-register Operations:

The labeling algorithm to handle operations like multiplication, division or a function call, which
normally require more than one register to perform.

The labeling algorithm label (n) is always at least the number of registers required by the operation.

 If multiplication requires two registers, in the binary case use

label (n) = max(2, l1, l2) if l1 ≠l2

l1+1 if l1=l2

where l1 and l2 are the labels of the children of n.

(v) Algebraic Properties:

The algebraic laws for various operators, the opportunity to replace a given tree T by one with smaller
labels and fewer left leaves.

(vi) Common Sub-expressions:

When there are common sub-expressions in a basic block, the corresponding dag will no longer be a
tree.

The common sub-expressions will corresponds to nodes with more than one parent called shared
nodes.

P a g e | 51 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

UNIVERSITY QUESTIONS

2MARKS

1. When static allocation can become stack allocation?(NOV 2011) (Ref.Qn.No.30, Pg.no.6)

2. Give the criteria for code-improving transformations. (NOV 2011) (Ref.Qn.No.11, Pg.no.3)

3. Define Flooding.(MAY 2012) (Ref.Qn.No.41, Pg.no.8)

4. What is mean by Reduction in Strength? (MAY 2012) (Ref.Qn.No.18, Pg.no.4)

5. Define DAG. (NOV 2012) (NOV 2013) (Ref.Qn.No.35, Pg.no.7)

6. What is translation of symbol? (NOV 2012) (Ref.Qn.No.42, Pg.no.8)

7. What is a basic block? What are the entry points and how do you call the entry instructions? (MAY 2013)

(Ref.Qn.No.31, Pg.no.6)

8. Define Induction variables? (MAY 2013) (Ref.Qn.No.17, Pg.no.4)

9. Construct a 3-address code for (B+A) * (Y-(B+A)). (NOV 2013) (Ref.Qn.No.40, Pg.no.8)

11 MARKS

NOV 2011(REGULAR)

1. Describe the procedure for elimination of induction variables. (Ref.Qn.No.4, Pg.no.19)

(OR)

2. Explain the peephole optimization. (Ref.Qn.No.11, Pg.no.43)

MAY 2012(ARREAR)

1. Write note on Generating code from DAGs. (Ref.Qn.No.12, Pg.no.47)

(OR)

2. Explain Loop optimization techniques. (Ref.Qn.No.4, Pg.no.19)

NOV 2012(REGULAR)

1. Write note on peephole optimization. (Ref.Qn.No.11, Pg.no.43)

(OR)

2. Explain Local optimization techniques. (Ref.Qn.No.3, Pg.no.14)

P a g e | 52 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

MAY 2013(ARREAR)

1. a) Explain Elimination of common sub expression during code optimization. Define for the expression

(a+b)-(a+b)/4 (6) (Ref.Qn.No.3, Pg.no.14)

b) What is Next use information? Discuss (5) (Ref.Qn.No.8, Pg.no.36)

(OR)

2. Define Directed Acyclic Graph. How is it related to Basic blocks? Construct a DAG representation for
the following Basic block stating their steps. (Ref.Qn.No.10, Pg.no.41)

D: =B*C

E: =A+B

B: =B*C

A: =E-D.

NOV 2013 (REGULAR)

1. Explain briefly any three of the commonly used code optimization techniques. (Ref.Qn.No.4, Pg.no.19)

(OR)

2. Explain the four issues in the design of a simple code generator. Generate the code for a simple statement.

(Ref.Qn.No.5, Pg.no.22)

P a g e | 53 LANGUAGE TRANSLATORS DEPARTMENT OF CSE

