
CS T62 - EMBEDDED SYSTEMS 1

[VI SEM – CSE]

CS T62 – EMBEDDED SYSTEMS

UNIT I: Introduction to Embedded Systems - Processor in Embedded System –
Other Hardware Units in the Embedded System - Software Embedded into
a System - ARM Architecture: ARM Design Philosophy - Registers -
Program Status Register - Instruction Pipeline - Interrupts and Vector
Table - Architecture Revision - ARM Processor Families.

UNIT II: ARM Programming - Instruction Set - Data Processing Instructions -
Addressing Modes - Branch, Load, Store Instructions - PSR Instructions -
Conditional Instructions.

UNIT III: Thumb Instruction Set - Register Usage - Other Branch Instructions -
Data Processing Instructions - Single-Register and Multi Register Load-
Store Instructions - Stack - Software Interrupt Instructions

UNIT IV: ARM Programming using C: Simple C Programs using Function Calls –
Pointers – Structures - Integer and Floating Point Arithmetic - Assembly
Code is using Instruction Scheduling – Register Allocation - Conditional
Execution and Loops.

UNIT V: Real Time Operating Systems: Brief History of OS - Defining RTOS - The
Scheduler - Objects – Services - Characteristics of RTOS - Defining a Task
- Tasks States and Scheduling - Task Operations – Structure –
Synchronization - Communication and Concurrency. Defining
Semaphores - Operations and Use - Defining Message Queue - States –
Content – Storage - Operations and Use.

Textbooks:

1. Shibu K.V, Introduction to Embedded Systems, First Edition, McGraw Hill, 2009.
2. Andrew N. Sloss, Dominic Symes, Chris Wright, ARM Systems Developer’s

Guides- Designing & Optimizing System Software, Elsevier, 2008.
3. Qing Li, Real Time Concepts for Embedded Systems, Elsevier, 2011.

References:

1. Santanu Chattopadhyay, “Embedded System Design”, Second Edition, PHI, 2013.
2. Andrew N Sloss, D. Symes and C. Wright, “ARM System Developers Guide”,

Morgan Kaufmann / Elsevier, 2006.
3. Wayne Wolf, “Computer as Components: Principles of Embedded Computer

System Design”, Elsevier, 2006.

TOTAL PERIODS: 60

UNIT – I

SYLLABUS

CS T62 - EMBEDDED SYSTEMS 2

[VI SEM – CSE]

1.1 INTRODUCTION TO EMBEDDED SYSTEMS:

1.2 Challenges in Embedded Computing System Design:

CS T62 - EMBEDDED SYSTEMS 3

[VI SEM – CSE]

External constraints are one important source of difficulty in embedded system design.

 Hardware
 Deadlines
 Minimize power consumption
 Design for upgradability
 Reliability

Hardware:

To select the type of microprocessor used, but also select the amount of memory, the peripheral
devices, and more. Since often must meet both performance deadlines and manufacturing cost
constraints, the choice of hardware is important—too little hardware and the system fails to meet
its deadlines, too much hardware and it becomes too expensive.

Deadlines:

A deadline is to speed up the hardware so that the program runs faster. Of course, that makes the
system more expensive. It is also entirely possible that increasing the CPU clock rate may not
make enough difference to execution time, since the program’s speed may be limited by the
memory system.

Minimize power consumption:

In battery-powered applications, power consumption is extremely important. Even in no battery
applications, excessive power consumption can increase heat dissipation. One way to make a
digital system consume less power is to make it run more slowly, but naively slowing down the
system can obviously lead to missed deadlines.

Upgradability:

The hardware platform may be used over several product generations or for several different
versions of a product in the same generation, with few or no changes.

Reliability:

It is especially important in some applications, such as safety-critical systems. Another set of
challenges comes from the characteristics of the components and systems them- selves. If
workstation programming is like assembling a machine on a bench, then embedded system design
is often more like working on a car—cramped, delicate, and difficult.

1.3 Performance in Embedded Computing:

Embedded system designers, in contrast, have a very clear performance goal in mind—their
program must meet its deadline. At the heart of embedded computing is real-time computing, the
program receives its input data; the deadline is the time at which a computation must be finished.

CPU: The CPU clearly influences the behavior of the program, particularly when the CPU is a
pipelined processor with a cache.

Platform: The platform includes the bus and I/O devices. The platform components that surround
the CPU are responsible for feeding the CPU and can dramatically affect its
performance.

CS T62 - EMBEDDED SYSTEMS 4

[VI SEM – CSE]

Program: Programs are very large and the CPU sees only a small window of the program at a
time.

Task: Generally run several programs simultaneously on a CPU, creating a multitasking system.
The tasks interact with each other in ways that have profound implications for performance.

Multiprocessor: Many embedded systems have more than one processor— they may include
multiple programmable CPUs as well as accelerators. Once again, the
interaction between these processors adds yet more complexity to the analysis
of overall system performance.

1.3.1 EMBEDDED SYSTEM DESIGN PROCESS:

The design processes are only one axis along which we can view embedded system design. We
also need to consider themajor goals of the design:

 Manufacturing cost
 Performance (both overall speed and deadlines); and
 Power Consumption.

1.3.2 REQUIREMENTS OF EMBEDDED SYSTEM DESIGN:

Performance: The speed of the system is often a major consideration both for the usability of the
system and for its ultimate cost. As we have noted, performance may be a
combination of soft performance metrics such as approximate time to perform a
user-level function and hard deadlines by which a particular operation must be
completed.

Cost: The target cost or purchase price for the system is almost always a consideration. Cost
typically has two major components: manufacturing cost includes the cost of components
and assembly; nonrecurring engineering (NRE) costs include the personnel and other
costs of designing the system.

Physical size and weight: The physical aspects of the final system can vary greatly depending
upon the application. An industrial control system for an assembly line
may be designed to fit into a standard-size rack with no strict
limitations on weight. A handheld device typically has tight
requirements on both size and weight that can ripple through the entire
system design.

Power consumption: Power, of course, is important in battery-powered systems and is often
important in other applications as well. Power can be specified in the
requirements stage in terms of battery life the customer is unlikely to be
able to describe the allowable wattage.

1.3.3 CHARACTERISTICS OF EMBEDDED SYSTEMS:

 Speed (bytes/sec)
 Power (watts)
 Size (cm3) and weight (g)
 Accuracy (% error)
 Adaptability.

An embedded system must perform the operations at a high speed so that it can be readily

used for real time applications and its power consumption must be very low and the size of

the system should be as for as possible small and the readings must be accurate with

minimum error.

CS T62 - EMBEDDED SYSTEMS 5

[VI SEM – CSE]

Software Issues: The important software issues related to the embedded system are
mentioned below.

 Software maintenance is extremely important.
 Verification of proper operation,
 Updates for the software in periodic intervals are very important.
 Fixing the bugs in the software improves its efficiency and also a very important

factor.
 Adding features, New features must be added to the software when ever they are

available
 Extending to new applications, the software must be upgraded such that its

applicability increases for new application areas.

 Change user configurations .This is an important factor to improve the popularity of

the software.

1.3.4 APPLICATIONS: Embedded systems find wide variety of applications in various

fields.

 Automobile

 Aeronautics

 Space

 Rail Transport

 Mobile communications

 Industrial processing

 Remote sensing , Radio and Networking

 Robotics

 Consumer electronics, music players, Computer applications

 Security (e-commerce, smart cards)

 Medical electronics (hospital equipment, and mobile monitoring) and

 Defense application

1.3.5 Design Metrics:
 Unit cost: the monetary cost of manufacturing each copy of the system, excluding

 NRE cost.

CS T62 - EMBEDDED SYSTEMS 6

[VI SEM – CSE]

 NRE cost (Non-Recurring Engineering cost): The monetary cost of designing the

system. Once the system is designed, any number of units can be manufactured

without incurring any additional design cost (hence the term “non-recurring”).

 Size: the physical space required by the system, often measured in bytes for

software, and gates or transistors for hardware.

 Performance: the execution time or throughput of the system.

 Power: the amount of power consumed by the system, which determines the

lifetime of a battery, or the cooling requirements of the IC, since more power

means more heat.

 Flexibility: the ability to change the functionality of the system without incurring

heavy NRE cost. Software is typically considered very flexible.

 Time-to-market: The amount of time required to design and manufacture the

system to the point the system can be sold to customers.

 Time-to-prototype: The amount of time to build a working version of the system,

which may be bigger or more expensive than the final system implementation, but

can be used to verify the system’s usefulness and correctness and to refine the

system's functionality.

 Correctness: our confidence that we have implemented the system’s functionality

correctly. We can check the functionality throughout the process of designing the

system, and we can insert test circuitry to check that manufacturing was correct.

 Safety: the probability that the system will not cause harm.

1.4 CLASSIFICATION OF EMBEDDED SYSTEMS:

 Based on generation
 Complexity and performance requirements
 Based on deterministic behavior
 Based on triggering

Based on generation:

CS T62 - EMBEDDED SYSTEMS 7

[VI SEM – CSE]

Complexity and performance requirements:

Embedded processor in a system:

CS T62 - EMBEDDED SYSTEMS 8

[VI SEM – CSE]

Processor technology involves the architecture of the computation engine used to implement
a system’s desired functionality. While the term “processor” is usually associated with
programmable software processors. Each such processor differs in its specialization towards a
particular application (like a digital camera application), thus manifesting different design
metrics.

CS T62 - EMBEDDED SYSTEMS 9

[VI SEM – CSE]

CS T62 - EMBEDDED SYSTEMS 10

[VI SEM – CSE]

Single-purpose processors – hardware:

A single-purpose processor is a digital circuit designed to execute exactly one
program. For example, consider the digital camera example of Figure 1.1. All of the
components other than the microcontroller are single-purpose processors. The JPEG codec,
for example, executes a single program that compresses and decompresses video frames. An

CS T62 - EMBEDDED SYSTEMS 11

[VI SEM – CSE]

embedded system designer creates a single-purpose processor by designing a custom digital
circuit, as discussed in later chapters. Many people refer to this portion of the implementation
simply as the “hardware” portion (although even software requires a hardware processor on
which to run). Other common terms include coprocessor and accelerator.

Using a single-purpose processor in an embedded system results in several design
metric benefits and drawbacks, which are essentially the inverse of those for general-purpose
processors. Performance may be fast, size and power may be small, and unit-cost may be low
for large quantities, while design time and NRE costs may be high, flexibility is low, unit cost
may be high for small quantities, and performance may not match general-purpose processors
for some applications. For example, Figure 1.5(d) illustrates the use of a single-purpose
processor in our embedded system example, representing an exact fit of the desired
functionality, nothing more, nothing less. Figure 1.6(c) illustrates the architecture of such a
single-purpose processor for the example. Since the example counts from one to N, we add
an index register. The index register will be loaded with N, and will then count down to zero,
at which time it will assert a status line read by the controller. Since the example has only one
other value, we add only one register labeled total to the data path. Since the example’s only
arithmetic operation is addition, we add a single adder to the data path. Since the processor
only executes this one program, we hardwire the program directly into the control logic.

Application-specific processors:

CS T62 - EMBEDDED SYSTEMS 12

[VI SEM – CSE]

EMBEDDED HARDWARE UNITS:

Power Source:

Clock Oscillator Circuits:

Real Time Clock (RTC):

CS T62 - EMBEDDED SYSTEMS 13

[VI SEM – CSE]

Reset Circuit:

Memory:

CS T62 - EMBEDDED SYSTEMS 14

[VI SEM – CSE]

Interrupt Handler:

EMBEDDED SOFTWARE UNITS:

CS T62 - EMBEDDED SYSTEMS 15

[VI SEM – CSE]

CS T62 - EMBEDDED SYSTEMS 16

[VI SEM – CSE]

CS T62 - EMBEDDED SYSTEMS 17

[VI SEM – CSE]

CS T62 - EMBEDDED SYSTEMS 18

[VI SEM – CSE]

UNIT II

ARM Programming - Instruction Set - Data Processing Instructions Addressing
Modes - Branch, Load, Store Instructions - PSR Instructions - Conditional Instructions.

Data Processing Instructions:
The data processing instructions manipulate data within registers. They are move instructions,

arithmetic instructions, logical instructions, comparison instructions, and multiply instructions. Most
dataprocessinginstructionscanprocessoneoftheiroperandsusingthe barrel shifter.

Adata processing instruction, then it updates the flags in the cpsr.Move and logical operations update the
carry flag C, negative flag N, and zero flag Z. The carryflag is set from the result of the barrel shift as the last bit
shiftedout.

Move Instructions:

Move is the simplest ARM instruction. It copiesN into a destination registerRd, where N is
a register or immediate value. This instruction is useful for setting initial values and transferring data
between registers.

Syntax: <instruction>{<cond>}{S} Rd, N

MO
V

Move a 32-bit value into a register Rd =N
MV
N

move the NOT of the 32-bit value into a
register

Rd=∼N

Example:

The MOV instruction takes the contents of register r5 and copies them into register r7, in this case,
taking the value 5, andoverwriting thevalue 8 in register r7.

PRE r5 = 5
r7 = 8
MOV r7, r5 ; let r7 = r5

POST r5 = 5
r7 = 5 ■

Barrel Shifter:

Data processing instructions are processedwithin the arithmetic logic unit (ALU).

 A unique and powerful feature of the ARM processor is the ability to shift the 32-bit binary
pattern in one of the source registers left or right by a specific number of positions before it
enters the ALU.

 This shift increases the power and flexibility of many data processing operations.

CS T62 - EMBEDDED SYSTEMS 19

[VI SEM – CSE]

Arithmetic Instructions:

The arithmetic instructions implement addition and subtraction of 32-bit signed and unsigned values.

ADC add two 32-bit values and carry Rd =Rn+N+ carry
ADD add two32-bit values Rd =Rn+N
RSB reverse subtractof two32-bitvalues Rd =N −Rn
RSC reverse subtractwith carryof two32- Rd =N −Rn−!(carry

flag)SBC subtractwith carry of two 32-bit Rd =Rn−N−!(carry
flag)SUB subtract two 32-bit values Rd =Rn−N

Example:
Simple subtract instruction subtracts a value stored in register r2 fromavalue stored in register r1. The
result is stored in register r0.

PRE r0 = 0x00000000
r1 = 0x00000002 r2 =
0x00000001

SUB r0, r1, r2

POST r0 = 0x00000001

Using the Barrel Shifter with Arithmetic Instructions:

The wide range of second operand shifts available on arithmetic and logical instructions isavery
powerful featureof theARMinstruction set.

Example:

Register r1 is first shifted one location to the left to give the value of twice r1. The ADD
instruction then adds the result of the barrel shift operation to register r1. The final result transferred into
register r0 is equal to three times thevalue stored in register r1.

PRE r0 = 0x00000000
r1 = 0x00000005

ADD r0, r1, r1, LSL #1

POST r0 = 0x0000000f

r1 = 0x00000005

CS T62 - EMBEDDED SYSTEMS 20

[VI SEM – CSE]

LogicalInstructions:

Logical instructions performbitwise logical operationson the twosource registers.

Syntax: <instruction>{<cond>}{S} Rd, Rn, N

AND logical bitwise AND of two 32-bit Rd=Rn&N
ORR logical bitwise OR of two 32-bit Rd =Rn |N
EOR logical exclusive OR of two 32-bit Rd=Rn∧N
BIC logical bit clear (AND NOT) Rd=Rn&

∼NExample:
A logicalORoperation between registers r1 and r2. r0 holdsthe result.

PRE r0 = 0x00000000
r1 = 0x02040608
r2 = 0x10305070

ORR r0, r1, r2

POST r0 = 0x12345678

Comparison Instructions:

The comparison instructions are used to compare or test a register with a 32-bit value. To
update the cpsr flag bits according to the result, but do not affect other registers. After the bits have
been set, the information can then be used to change program flow by using conditional execution.

Syntax: <instruction>{<cond>} Rn, N

CMN compare negated flags set as a result of Rn +
NCMP compare flags set as a result of Rn −
NTEQ test for equality of two 32-bit flags set as a result of Rn ∧

TST test bits of a 32-bit value flags set as a result of Rn&
NExample:

A CMPcomparison instruction both registers, r0 and r9, are equal before executing the instruction.
The value of the z flag prior to execution is 0 and is represented by a lowercase z. After execution the z
flag changes to 1or anuppercase Z.

PRE cpsr = nzcvqiFt_USER r0 = 4
r9 = 4

CMPr0, r9

POST cpsr = nZcvqiFt_USER
The CMP is effectively a subtract instruction with the result discarded; similarly the TST

instruction is a logical AND operation, and TEQis a logical exclusive OR operation. It is important
to understand that comparison instructions only modify the condition flags of the cpsr and do not affect
the registers being compared. ■

CS T62 - EMBEDDED SYSTEMS 21

[VI SEM – CSE]

Multiply Instructions:

The multiply instructions multiply the contents of a pair of registers and, depending upon the
instruction, accumulate the results in with another register. The long multiplies accumulate onto a pair
of registers representing a 64-bit value. The final result is placed in a destination register or a pair of
registers.

Syntax: MLA{<cond>}{S} Rd, Rm, Rs, Rn MUL{<cond>}{S} Rd, Rm,

ML
A

multiply and Rd=(Rm∗Rs)+
MU
L

multiply Rd = Rm∗Rs

Thenumber of cycles taken to execute amultiply instruction depends on the processor implementation.

Example:

A simple multiply instruction that multiplies registers r1 and r2 together and places the result into register r0.
In this example, register r1 is equal to the value 2, and r2 is equal to 2. The result, 4, is then placed into
register r0.

PR
E

r0 =
0x00000000
r1 =
MUL r0, r1, r2 ; r0 =

r1*r2PO
ST

r0 =
0x00000004
r1 =
0x00000002
r2 =
0x00000002

Branch Instructions:

A branch instruction changes the flow of execution or is used to call a routine. The change of
execution flow forces the program counter pc to point to a new address. The ARMv5E instruction set
includes fourdifferentbranch instructions.

Syntax: B{<cond>} label
BL{<cond>} label
BX{<cond>} Rm
BLX{<cond>} label |
Rm

B branch pc = label

BL branchwith link pc = label
lr =address of the next instruction after
theBL

BX branch exchange pc =Rm & 0xfffffffe,T=Rm & 1

BLX
branch exchange
with link

pc =label, T =1
pc =Rm &0xfffffffe, T =Rm & 1
lr =address of the next instruction after
the instructions.
BLX

CS T62 - EMBEDDED SYSTEMS 22

[VI SEM – CSE]

 The address label is stored in the instruction as a signed pc-relative offset and must be within
approximately 32MB of the branch instruction. T refers to the Thumb bit in the cpsr. When
instructions setT, theARMswitches toThumb state.

Example:

A simple fragment of code that branches to a subroutineusing theBLinstruction. To return from a
subroutine, copy the link register to the pc.

BL subroutine ; branch to
CMP r1, #5 ; compare r1 with 5
MO
VEQ

r1, #0 ; if (r1==5) then r1 =
0:

subroutine
<subroutine code>
MOV pc, lr ; return by moving pc = lr

The branch exchange (BX) and branch exchangewith link (BLX) are the third type of branch
instruction. The BXinstruction uses an absolute address stored in register Rm.

Load-Store Instructions:
Load-store instructions transfer data between memory and processor registers. There are three

types of load-store instructions: single-register transfer, multiple-register transfer, and swap.

Single-Register Transfer:

These instructions are used formoving a single data item in and out of a register. The data types
supportedaresignedandunsignedwords(32-bit),half words(16-bit),andbytes.

Syntax: <LDR|STR>{<cond>}{B}
Rd,addressing1
LDR{<cond>}SB|H|SH Rd,
addressing2 STR{<cond>}H Rd,
addressing2

LD
R

loadword into a register Rd<-
ST
R

save byte or word from a Rd ->
LD
RB

load byte into a register Rd <-
ST
RB

savebyte from a register Rd ->
mem8[address]

LDR
H

load halfword into a register Rd<-
STR
H

savehalfword into a register Rd ->
LDR
SB

load signed byte into a
register

Rd <-
SignExtend

LDR
SH

load signed halfword into a
register

Rd <-
SignExtend
(mem16[addre

CS T62 - EMBEDDED SYSTEMS 23

[VI SEM – CSE]

Example:

LDR and STR instructions can load and store data on a boundary alignment that is the same as the
datatype size being loaded or stored. For example, LDR can only load 32-bit words on a memory
address that is a multiple of four bytes—0, 4, 8, and so on. Load from a memory address contained in
register r1, followed by a store back to the same address in memory.

load register r0 with the contents of
the memory address pointed to by register

r1.
LDR r0, [r1] ; = LDR r0, [r1, #0]
store the contents of register r0 to
the memory address pointed to by
register r1.
STR r0, [r1] ; = STR r0, [r1, #0]

 The first instruction loads aword from the address stored in register r1 and places it into register
r0. The second instruction goes the other way by storing the contents of register r0 to the
address contained in register r1. The offset from register r1 is zero. Register r1 is called the base
address register.

Single-Register Load-Store Addressing Modes:

The ARM instruction set provides different modes for addressing memory. These modes incorporate
oneoftheindexingmethods:preindexwithwrite back,preindex,andpost index.

Single-register load-store addressing, word or unsigned byte.

Addressing1 mode and indexmethod Addressing1 syntax

Preindexwith immediate offset [Rn, #+/-offset_12]
Preindexwith registeroffset [Rn, +/-Rm]
Preindexwithscaledregisteroffset [Rn, +/-Rm, shift #shift_imm]
Preindexwritebackwith immediateoffset [Rn, #+/-offset_12]!
Preindexwritebackwith registeroffset [Rn, +/-Rm]!
Preindex writeback with scaled register offset [Rn, +/-Rm, shift #shift_imm]!
Immediate postindexed [Rn], #+/-offset_12
Register postindex [Rn], +/-Rm
Scaled register postindex [Rn], +/-Rm, shift #shift_imm

 A signed offset or register is denoted by “+/−”, identifying that it is either a positive or negative
offset from the base address register Rn. The base address register is a pointer to a byte in
memory, and the offset specifies a number of bytes.

 Immediate means the address is calculated using the base address register and a 12-bit offset
encoded in the instruction. Register means the address is calculated using the base address
register and a specific register’s contents. Scaled means the address is calculated using the base
address register and a barrel shift operation.

CS T62 - EMBEDDED SYSTEMS 24

[VI SEM – CSE]

Multiple-Register Transfer:

 Load-store multiple instructions can transfer multiple registers between memory and the
processor in a single instruction.

 The transfer occurs from a base address registerRn pointing intomemory.
 Multiple-register transfer instructions are more efficient from single-register transfers for

moving blocks of data aroundmemory and saving and restoring context and stacks.
 Load-storemultiple instructionscanincreaseinterrupts latency.
 An ARM7 a load multiple instruction takes 2+Nt cycles, where N is the number of registers to

load and t is the number of cycles required for each sequential access tomemory.
 If an interrupt has been raised, then it has no effect until the load-store multiple instruction is

complete.

Syntax: <LDM|STM>{<cond>}<addressing mode> Rn{!},<registers>{ˆ}

LD
M

load multiple {Rd}∗N <- mem32[start address + 4∗N] optional
ST
M

save multiple
registers

{Rd}∗N -> mem32[start address + 4∗N] optional

Any subset of the current bank of registers can be transferred to memory or fetched from memory.
Thebase registerRndetermines thesourceordestinationaddress fora load- store multiple instruction.

Stack Operations:

 The ARM architecture uses the load-store multiple instructions to carry out stack
operations.

 Thepopoperation(removingdatafromastack)usesaloadmultiple instruction; similarly, thepush
operation(placingdataonto thestack)usesastoremultiple instruction.

 A stack is either ascending (A) or descending (D). Ascending stacks grow towards higher
memory addresses; in contrast, descending stacks grow towards lower memory addresses.

 A full stack (F), the stack pointer sp points to an address that is the last used or full location (i.e.,
sp points to the last item on the stack).

 An empty stack (E) the sp points to an address that is the first unused or empty location (i.e., it
points after the last item on the stack).

A numbersof load-storemultipleaddressingmodealiases available to support stack operations:

ARM has specified an ARM-Thumb Procedure Call Standard (ATPCS) that defines how
routines are called and how registers are allocated. In the ATPCS, stacks are defined as being full
descending stacks. LDMFDand STMFDinstructions provide the pop and push functions, respectively.

CS T62 - EMBEDDED SYSTEMS 25

[VI SEM – CSE]

Addressing methods for stack operations.

Addressingmode Description Pop =
LDM

Push =
STMFA full ascending LDMF LDM STMF STM

FD full descending LDMF
D

LDMI
A

STMF
D

STM
DBEA empty ascending LDM

EA
LDM
DB

STME
A

STM
IAED empty descending LDM

ED
LDMI
B

STME
D

STM
DA

Example:

Apush operation on an empty stack using the STMEDinstruction. The STMEDinstruction pushes the
registers onto the stack but updates register sp to point to the next empty location.

PRE r1 = 0x00000002
r4 = 0x00000003 sp =

0x00080010
STMED sp!, {r1,r4}

POST r1 = 0x00000002
r4 = 0x00000003

sp = 0x00080008

Whenhandlingachecked stack thereare threeattributes thatneed to bepreserved:
 Stackbase
 Stackpointer
 Stack limit.

a) Thestackbaseis thestartingaddressofthe stack inmemory.
b) The stack pointer initiallypoints to the stackbase; asdata is pushedonto the stack
c) The stack pointer descendsmemory and continuously points to the top of stack.

Swap Instruction:

The swap instruction is a special case of a load-store instruction. It swaps the contents of
memory with the contents of a register. This instruction is an atomic operation it reads and writes a
location in the same bus operation, preventing any other instruction from reading or writing to that
location until it completes.

Syntax: SWP{B}{<cond>} Rd,Rm,[Rn]

SWP
swap aword betweenmemory
and a register

tmp =
mem32[Rn]
mem32[Rn]

SWPB
swap a byte betweenmemory and
a register

tmp =
mem8[Rn]
mem8[Rn] =
Rm Rd= tmpTheswap instruction loadsawordfrommemoryintoregisterr0 andoverwrites thememory with register

r1.

CS T62 - EMBEDDED SYSTEMS 26

[VI SEM – CSE]

Example:

Asimpledataguard thatcanbeused toprotectdata frombeingwritten by another task. The SWP
instruction “holds the bus” until the transaction is complete.

spin
MOVr1, =semaphore MOV r2, #1
SWP r3, r2, [r1] ; hold the bus until complete CMP r3, #1
BEQ spin

Software Interrupt Instruction:

A software interrupt instruction (SWI) causes a software interrupt exception, which provides a
mechanismforapplications tocalloperatingsystemroutines.

Syntax: SWI{<cond>} SWI_number

SWI

software
interrupt

lr_svc = address of instruction following
the SWI
spsr_svc = cpsr
pc=vectors+0x8
cpsr mode=SVC
cpsr I = 1 (mask IRQ interrupts)

 When the processor executes an SWI instruction, it sets the program counter pc to the offset
0x8in the vector table.

 The instruction also forces the processor mode to SVC, which allows an operating system
routine to be called in a privilegedmode.

 Each SWI instruction has an associated SWI number, which is used to represent a
particular functioncallor feature.

Example:
A simple example of an SWIcall with SWInumber 0x123456, used byARM toolkits as a
debugging SWI. The SWIinstruction is executed in user mode.
PRE cpsr = nzcVqift_USER pc =

0x00008000
lr = 0x003fffff; lr = r14 r0 = 0x12

0x00008000 SWI 0x123456

POSTcpsr = nzcVqIft_SVC spsr =
nzcVqift_USER pc =
0x00000008
lr = 0x00008004
r0 = 0x12

CS T62 - EMBEDDED SYSTEMS 27

[VI SEM – CSE]

Program Status Register Instructions:

 The ARM instruction set provides two instructions to directly control a program status
register (psr). The MRSinstruction transfers the contents of either the cpsr or spsr into a
register; in the reverse direction, the MSRinstruction transfers the contents of a register into the
cpsr or spsr.

 These instructions are used to read and write the cpsr and spsr.

 In the syntax a label called fields. This can be any combination of control (c), extension (x),
status(s),andflags (f).Thesefieldsrelate toparticularbyteregions in a psr,

Syntax: MRS{<cond>} Rd,<cpsr|spsr>

MSR{<cond>}<cpsr|spsr>_<fields>,Rm
MSR{<cond>}<cpsr|spsr>_<fields>,#immediate

Conditional Execution:

 ARM instructions are conditionally executed and the instruction only executes if the
condition codeflags pass agivencondition or test.

 The condition field is a two-letter mnemonic appended to the instruction mnemonic.

 Thedefaultmnemonic isAL,oralways execute.

 Conditional execution reduces the number of branches, which also reduces the number of
pipeline flushes and thus improves the performance of the executed code.

 Conditional execution depends upon two components: the condition field and condition
flags.

Example::

An ADDinstruction with the EQcondition appended. This instruction will only be executedwhen the
zero flag in the cpsr is set to 1.

; r0 = r1 + r2 if zero flag is set ADDEQ r0, r1, r2

Only comparison instructions and data processing instructions with the Ssuffix appended to the
mnemonic update the condition flags in the cpsr.

CS T62 - EMBEDDED SYSTEMS 28

[VI SEM – CSE]

UNIT – III

Thumb Instruction Set - Register Usage - Other Branch Instructions - Data Processing
Instructions - Single-Register and Multi Register Load-Store Instructions - Stack -
Software Interrupt Instructions

Thumb Instruction Set:

Thumb encodes a subset of the 32-bit ARM instructions into a 16-bit instruction set space. Since
Thumb has higher performance than ARM on a processor with a 16-bit data bus, but lower
performance thanARMon a32-bitdatabus,useThumbformemory-constrainedsystems.

Thumb has higher code density—the space taken up in memory by an executable program
than ARM. The Thumb implementation uses more instructions; the overall memory footprint is reduced.

Mnemonic
s

THUMB
ISA

Description
ADC v1 add two32-bitvalues andcarryADD v1 add two32-bitvalues
AND v1 logical bitwise AND of two 32-bit values
ASR v1 arithmetic shift right
B v1 branch relative
BIC v1 logical bit clear (ANDNOT)of two32-bit values
BKPT v2 breakpoint instructions
BL v1 relativebranchwith link
BLX v2 branchwith linkandexchange
BX v1 branch with exchange
CMN v1 comparenegative two32-bitvalues
CMP v1 compare two32-bit integers
EOR v1 logical exclusive OR of two 32-bit values
LDM v1 load multiple 32-bit words from memory to ARM

registersLDR v1 load a single value from avirtual address inmemory
LSL v1 logical shift left
LSR v1 logical shift right
MOV v1 move a32-bit value into a register
MUL v1 multiply two32-bitvalues
MVN v1 move the logical NOT of 32-bit value into a register
NEG v1 negate a 32-bit value
ORR v1 logical bitwise OR of two 32-bit values
POP v1 popsmultiple registers fromthestack
PUSH v1 pushes multiple registers to the stack
ROR v1 rotate righta32-bitvalue
SBC v1 subtract with carry a 32-bit value
STM v1 storemultiple 32-bit registers tomemory
STR v1 store register to avirtual address inmemory
SUB v1 subtract two 32-bit values
SWI v1 software interrupt
TST v1 test bits of a32-bit value

CS T62 - EMBEDDED SYSTEMS 29

[VI SEM – CSE]

Thumb Register Usage:

 In Thumb state, do not have direct access to all registers. Only the low registers r0 to r7 are
fully accessible, is shown in Table. The higher registers r8 to r12 are only accessible with
MOV, ADD, or CMPinstructions.

 CMP and all the data processing instructions that operate on low registers update the condition
flags in the cpsr.

Thumbregisterusage:

Registers Access

r0–r7 fully accessible
r8–r12 onlyaccessible byMOV,ADD,andCMP
r13sp limited accessibility
r14 lr limited accessibility
r15 pc limited accessibility
cpsr only indirect access
spsr no access

 Thumb instruction set list and from the Thumb register usage table that there is no direct access
to the cpsr or spsr. In other words, there are no MSR- and MRS-equivalent Thumb instructions.

 To alter the cpsr or spsr, youmust switch into ARM state to useMSRandMRS.
 Therearenocoprocessor instructions inThumbstate.
 InARMstate toaccess the coprocessor for configuring cacheandmemorymanagement.

ARM-Thumb Interworking:

 ARM-Thumb interworking is the name given to the method of linking ARM and Thumb
code together forboth assemblyandC/C++.

 It handles the transition between the two states. Extra code, called a veneer, is sometimes
needed to carry out the transition.ATPCS defines theARMandThumbprocedure call standards.

 To call a Thumb routine from an ARM routine, the core has to change state. This state change in
the T bit of the cpsr.

 The BX and BLX branch instructions cause a switch between ARM and Thumb state while
branching to a routine.

 TheBXlr instruction returns fromaroutine, alsowith astate switch if necessary.

There are two versions of the BX or BLX instructions: an ARM instruction and a Thumb

CS T62 - EMBEDDED SYSTEMS 30

[VI SEM – CSE]

equivalent. The ARM BXinstruction enters Thumb state only if bit 0 of the address in Rn is set to
binary 1; otherwise it enters ARM state. The Thumb BXinstruction does the same.

Syntax: BX Rm
BLX Rm | label

BX Thumb version branch
exchange

pc=Rn& 0xfffffffe
T= Rn[0]

BLX

Thumb version of the branch
exchange with link

lr = (instruction address after the
BLX)+1
pc=label, T = 0
pc=Rm& 0xfffffffe, T=
Rm[0]

Example:

Replacing theBXinstructionwith BLXsimplifies the calling of aThumb routine since it sets the return
address in the link register lr:

CODE32
LDR r0, =thumbRoutine+1 ; enter Thumb state BLX

r0 ; jump to Thumb code
; continue here

Other Branch Instructions:

 There are two variations of the standard branch instruction, or B.
 The first is similar to the ARM version and is conditionally executed; the branch range is

limited to a signed 8-bit immediate, or −256 to +254 bytes.
 The second version removes the conditional part of the instruction and expands the effective

branch range toasigned11-bit immediate,or−2048 to+2046bytes.

The conditional branch instruction is the only conditionally executed instruction in Thumb state.

Syntax: B<cond>
label B label
BL label

B branch pc = label

BL
branchwith
link

pc = label
lr = (instruction address after the
BL)+1

 TheBLinstruction isnotconditionallyexecutedandhasanapproximaterangeof+/−4MB.

CS T62 - EMBEDDED SYSTEMS 31

[VI SEM – CSE]

 This range is possible because BL (and BLX) instructions are translated into a pair of 16-bit
Thumb instructions.

 The first instruction in the pair holds the high part of the branch offset, and the second the low
part.These instructionsmustbeused as apair.

The various instructions used to return from aBLsubroutine call:

MOV pc, lr

BX lr

POP {pc}

Data Processing Instructions:

 The data processing instructions manipulate data within registers.

 They include move instructions, arithmetic instructions, shifts, logical instructions, comparison
instructions, andmultiply instructions.

 TheThumbdataprocessinginstructionsareasubsetoftheARM data processing instructions.

Syntax:

<ADC|ADD|AND|BIC|EOR|MOV|MUL|MVN|NEG|ORR|SBC|SUB> Rd, Rm

ADC add two 32-bit values and Rd = Rd + Rm+ C flag

ADD

add two32-bit values Rd = Rn +
immediate Rd
= Rd +
immediate
Rd = Rd + Rm
Rd = Rd + Rm
Rd = (pc & 0xfffffffc) +
(immediate«2)
Rd =sp + (immediate«2)
sp = sp + (immediate « 2)AND logical bitwise AND of

two 32-bit values
Rd= Rd & Rm

ASR

arithmetic shift right Rd= Rm »
immediate,
C flag =
Rm[immediate
− 1]
Rd= Rd » Rs,
C flag =
Rd[Rs - 1]

CS T62 - EMBEDDED SYSTEMS 32

[VI SEM – CSE]

BIC
logical bit clear (AND
NOT) of two 32-bit
values

Rd= Rd AND
NOT(Rm)

CMN
compare negative two
32-bit values

Rn + Rm
sets

flags

CMP
compare two 32-bit
integers

Rn −
immediate sets
flags Rn − Rm

EOR logical exclusive OR of
two 32-bit values

Rd= Rd EOR
Rm

LSL

logical shift left Rd= Rm «
immediate,
C flag =
Rm[32 −
immediate]
Rd= Rd « Rs,
C flag =

LSR

logical shift right Rd= Rm »
immediate,
C flag =
Rd[immediate
− 1]
Rd= Rd » Rs,
C flag =

MOV
move a 32-bit value into
a register

Rd =
immediate
Rd= Rn
Rd= Rm

MUL multiply two 32-bit
values

Rd = (Rm ∗

Rd)[31:0]

MVN
move the logical NOT
of a 32-bit value into a
register

Rd =
NOT(Rm)

NEG negate a 32-bit value Rd = 0 − Rm

ORR logical bitwise OR of
two 32-bit values

Rd= Rd OR
Rm

ROR

rotate right a 32-bit
value

Rd=Rd
RIGHT_ROTA
TE Rs,
C flag =
Rd[Rs−1]

CS T62 - EMBEDDED SYSTEMS 33

[VI SEM – CSE]

SBC
subtract with carry a 32-
bit value

Rd= Rd − Rm
− NOT(C flag)

SUB

subtract two 32-bit
values

Rd= Rn −
immediate
Rd= Rd −
immediate
Rd= Rn − Rm
sp= sp −

TST test bits of a 32-bit value Rn AND Rm
sets

Thumb data processing instructions operate on low registers and update the cpsr. The exceptions are

MOV Rd,Rn
ADD Rd,Rm
CMP Rn,Rm
ADD sp, #immediate
SUB sp, #immediate
ADD Rd,sp,#immediate
ADD Rd,pc,#immediate

which can operate on the higher registers r8–r14 and the pc. These instructions, except for CMP, do not
update the condition flags in the cpsr when using the higher registers. The CMP instruction, however,
always updates the cpsr.

Example:

A simple Thumb ADD instruction. It takes two low registers r1 and r2 and adds them together. The
result is then placed into register r0, overwriting the original contents. The cpsr is also updated.

PRE cpsr = nzcvIFT_SVC r1 =
0x80000000
r2 = 0x10000000
ADD r0, r1, r2

POST r0 = 0x90000000
cpsr =NzcvIFT_SVC

Single-Register Load-Store Instructions:

The Thumb instruction set supports load and storing registers, or LDR and STR. These
instructions use two preindexed addressing modes: offset by register and offset by immediate.

Syntax: <LDR|STR>{<B|H>} Rd,
[Rn,#immediate] LDR{<H|SB|SH>}
Rd,[Rn,Rm]

CS T62 - EMBEDDED SYSTEMS 34

[VI SEM – CSE]

STR{<B|H>} Rd,[Rn,Rm]
LDRRd,[pc,#immediate]
<LDR|STR>Rd,[sp,#immediate]

LDR loadword into a register Rd <- mem32[address]
STR saveword from a register Rd -> mem32[address]
LDR
B

load byte into a register Rd <- mem8[address]
STR
B

savebyte from a register Rd -> mem8[address]
LDR
H

load halfword into a register Rd <- mem16[address]
STR
H

savehalfword into a register Rd -> mem16[address]
LDR
SB

load signed byte into a register Rd <-
SignExtend(mem8[address])LDR

SH
load signed halfword into a
register

Rd <-
SignExtend(mem16[address

Different Addressing Modes:

Load/store register [Rn, Rm]
Baseregister+offset
Relative

[Rn, #immediate]
[pc|sp,
#immediate]

 Theoffset by register uses a base register Rn plus the register offset Rm.
 The second uses the same base register Rn plus a 5-bit immediate or a value dependent on the

data size.
 The 5-bit offset encoded in the instruction is multiplied by one for byte accesses, two for 16-bit

accesses, and four for 32-bit accesses.

Multiple-Register Load-Store Instructions:

The Thumb versions of the load-store multiple instructions are reduced forms of the
ARM load-storemultiple instructions. They only support the increment after (IA) addressing mode.

Syntax : <LDM|STM>IA Rn!, {low Register list}

LD
MIA

load multiple
registers

{Rd}*N <- mem32[Rn + 4∗N], Rn
=Rn + 4∗N

STM
IA

save multiple
registers

{Rd}*N ->mem32[Rn + 4∗N], Rn
=Rn + 4∗N

N is the number of registers in the list of registers. These instructions always update the base register Rn
after execution. The base register and list of registers are limited to the low registers r0 to r7.

CS T62 - EMBEDDED SYSTEMS 35

[VI SEM – CSE]

Stack Instructions:

The Thumb stack operations are different from the equivalent ARM instructions because they use the
more traditional POPand PUSHconcept.

Syntax: POP {low_register_list{, pc}}
PUSH {low_register_list{, lr}}

POP
popregisters from the
stacks

Rd∗N <-mem32[sp+4∗N], sp=
sp+4∗N

PUSH pushregisterson to the
stack

Rd∗N ->mem32[sp+4∗N], sp=
sp−4∗N

 The stack pointer is fixed as register r13 in Thumb operations and sp is automatically updated. The
list of registers is limited to the low registers r0 to r7.

 The PUSHregister list also can include the link register lr; similarly the POPregister list can
include the pc.

Example:

The POP and PUSHinstructions. The subroutine Thumb Routineis called using a branchwith link
(BL) instruction.

Call subroutine BL ThumbRo
ThumbRou
tine PUS

H
{r1, lr} ; enter subroutine

MO
V

r0, #2
POP {r1, pc} ; return from

subroutine

 The link register lr is pushed onto the stack with register r1. Register r1 is popped off the stack,
as well as the return address being loaded into the pc. This returns fromthesubroutine.

Software Interrupt Instruction:

 TheThumb software interrupt (SWI) instruction causes a software interrupt exception.
 If any interrupt or exception flag is raised in Thumb state, the processor automatically reverts

back toARMstate to handle the exception.

Syntax: SWI immediate

CS T62 - EMBEDDED SYSTEMS 36

[VI SEM – CSE]

SWI

software
interrupt

lr_svc = address of instruction following
the SWI
spsr_svc= cpsr
pc=vectors+0x8
cpsrmode=SVC
cpsr I=1(maskIRQinterrupts)

The Thumb SWI instruction has the same effect and nearly the same syntax as the ARM
equivalent. It differs in that the SWI number is limited to the range 0 to 255 and it is not conditionally
executed.

Example:

Execution of a Thumb SWI instruction. The processor goes from Thumb state to ARM state after
execution.

PR cpsr =
pc = 0x00008000
lr = 0x003fffff ; lr = r14
r0 = 0x12

0x00008000 SWI 0x45

POST cpsr = nzcVqIft_SVC
spsr =
nzcVqifT_USER pc
= 0x00000008
lr = 0x00008002
r0 = 0x12

UNIT – IV

ARM Programming using C:

The compiler translates C source to ARM assembler. The techniques apply equally to C++, an overview of C
compilers and optimization write source code that will compile more efficiently in terms of increased speed and reduced
codesize.

4.1 Overview of C Compilers and Optimization
The C language and have some knowledge of assembly programming. Optimizing code takes time and reduces

source code readability. C compilers have to translate C function literally into assembler so that it works for all possible

CS T62 - EMBEDDED SYSTEMS 37

[VI SEM – CSE]

inputs. Thememclr function clearsNbytes ofmemory at address data.

void memclr(char *data, int N)
{
for (; N>0; N--)
{
*data=0; data++;
}
}

To write efficient C code, compiler has to be conservative, the limits of the processor architecture the C compiler is
mappingto,andthe limits of a specificCcompiler.
Tokeepourexamplesconcrete,wehave testedthemusing the followingspecificC compilers:

■ armcc fromARMDeveloperSuite version1.1 (ADS1.1).Youcan license this compiler, or a later version, directly
fromARM.

■ arm-elf-gcc version 2.95.2. This is the ARM target for theGNUC compiler, gcc, and is freely available.

4.2 Basic C Data Types
ARMcompilers handle the basic C data types. Itismore efficient to use for local variables than others. There are also

differences between the addressing modes available when loading and storing data of each type. ARMprocessors have 32-
bit registers and 32-bit data processing operations. The ARM architecture is RISC load/store architecture. There is no
arithmeticorlogicalinstructions thatmanipulatevaluesinmemorydirectly.

LoadandstoreinstructionsbyARMarchitecture.

Architecture Instruction Action

Pre-ARMv4 LDRB loadanunsigned8-bitvalue
STRB storeasignedorunsigned8-bitvalue
LDR loadasignedorunsigned32-bitvalue
STR storeasignedorunsigned32-bitvalue

ARMv4 LDRSB loadasigned8-bitvalue
LDRH load an unsigned 16-bit value
LDRSH loadasigned16-bitvalue
STRH storeasignedorunsigned16-bitvalue

ARMv5 LDRD loadasignedorunsigned64-bitvalue
STRD storeasignedorunsigned64-bitvalue

These architectures were used on processors prior to the ARM7TDMI. 8-or16-bitvaluesextendthevalueto32bitsbefore
writing to anARMregister. Unsigned values are zero-extended, and signed values sign-extended. This means that the cast
of a loaded value to an inttype does not cost extra instructions. Similarly, a store of an 8- or 16-bit value selects the lowest 8
or 16 bits of the register. The cast ofan intto smaller typedoesnot cost extra instructionsona store. ARMv5adds instruction
supportfor64-bit loadandstores.

CData Type Implementation

char unsigned 8-bit byte
short signed16-bithalfword
int signed32-bitword
long signed32-bitword
long long signed64-bit doubleword

CS T62 - EMBEDDED SYSTEMS 38

[VI SEM – CSE]

4.3. Local Variable Types:

ARMv4-based processors can efficiently load and store 8-, 16-, and 32-bit data. However, most ARM data
processing operations are 32-bit only. For this reason, you should use a 32-bit data type, intor long, for local variables
wherever possible. Avoid using charand shortaslocalvariabletypes,evenifyouaremanipulatingan8-or16-bitvalue.

Theone exception is when youwant wrap-around to occur. If you requiremodulo arithmetic of the form255+1=0, then
use the char type. A checksum function that sums the values in a data packet. most communication protocols (such as
TCP/IP) havea checksumorcyclic redundancycheck (CRC) routine to checkforerrorsinadatapacket.

The following code checksums a data packet containing 64 words.

int checksum_v1(int *data)
{
char i; int sum=
0;

for (i=0; i<64; i++)
{
sum += data[i];

}
return sum;

}

AllARMregisters are 32-bit andall stackentries are at least 32-bit. Furthermore, to implement the i++exactly, the compiler
must account for the case when i = 255.

Function Argument Types:

Converting localvariables from typescharor shortto type intincreasesperformanceand reducescode size.The
same holds for function arguments. Consider the following simple function, which adds two 16-bit values, halving the
second, and returns a 16-bit sum:

short add_v1(short a, short b)
{
return a + (b>>1);
}

The input values a, b, and the return value will be passed in 32-bit ARM registers. Should the compiler assume that these
32-bit values are in the range of ashorttype, thatis,−32,768to+32,767.

Function arguments are passed wide if they are not reduced to the range ofthetypeandnarrow thecompilerhasmadeby
lookingattheassemblyoutputfor add_v1. If thecompilerpassesargumentswide, then the callee must reduce function
arguments to the correct range.

If the compiler passes arguments narrow, then the caller must reduce the range. If the compiler returns values wide, then
the caller must reduce the return value to the correct range. If the compiler returns values narrow, then the calleemust
reducetherangebeforereturningthevalue.

The armcc output for add_v1shows that the compiler casts the return value to a short type,butdoesnotcasttheinputvalues.It
assumesthatthecallerhasalreadyensuredthat the32-bitvaluesr0andr1areintherangeoftheshorttype.Thisshowsnarrow
passing ofargumentsandreturnvalue.

Signed versus Unsigned Types:

This section compares the efficiencies of signedintand unsignedint. Ifcodeusesaddition,subtraction,andmultiplication,

CS T62 - EMBEDDED SYSTEMS 39

[VI SEM – CSE]

then there is no performance difference between signed and unsigned operations. However, there is a difference when it
comestodivision.Consider thefollowingshortexample thataverages two integers:

int average_v1(int a, int b)
{
return (a+b)/2;

}

This compiles to

average_v1

ADD r0,r0,r1 ; r0 = a + b
ADD r0,r0,r0,LSR #31 ; if (r0<0) r0++
MO
V

r0,r0,ASR #1 ; r0 = r0>>1
MO
V

pc,r14 ; return r0

The compiler adds one to the sumbefore shifting by right if the sum is negative.Inotherwordsitreplacesx/2bythe
statement:

(x<0) ? ((x+1)>>1): (x>>1)

Itmustdo thisbecausex is signed. InConanARMtarget, adivideby two isnota right shiftifx isnegative.Forexample,
−3»1=−2but−3/2=−1.Divisionroundstowards zero,but arithmetic right shift rounds towards−∞.

It ismoreefficient touseunsignedtypes fordivisions.Thecompilerconvertsunsigned poweroftwodivisionsdirectlytoright
shifts.Forgeneraldivisions,thedivideroutineinthe Clibrary isfaster forunsigned types.

FunctionCalls:

The ARM Procedure Call Standard (APCS) defines how to pass function arguments and return values in ARM
registers. The more recent ARM-Thumb Procedure Call Standard (ATPCS) covers ARM and Thumb interworking as
well.

The first four integer arguments are passed in the first four ARM registers: r0, r1, r2, andr3.Subsequentintegerarguments
areplacedonthefulldescendingstack,ascendingin memory.Functionreturnintegervaluesarepassedinr0.

Thisdescriptioncoversonlyintegerorpointerarguments.Two-wordargumentssuchas longlongor doubleare passed in a pair
of consecutive argument registers and returned in r0, r1. The compiler may pass structures in registers or by reference
accordingtocommand line compiler options.

The first point to note about the procedure call standard is the four-register rule. Functions with four or fewer
arguments are far more efficient to call than functions with five or more arguments. For functions with four or fewer
arguments, the compiler can pass all the arguments in registers. For functions with more arguments, both the caller and
calleemustaccess thestackfor somearguments.

C function needs more than four arguments, or your C++ method more than three explicit arguments, then it is
almost always more efficient to use structures. Group related arguments into structures, and pass a structure pointer rather
thanmultiple arguments.

Example: The following code creates aQueuestructure and passes this to the function to reduce the numberoffunction
arguments.

The queue_bytes_v2is one instruction longer than queue_bytes_v1, but it is in fact more efficient overall. The second
version has only three function arguments rather than five.

Each call to the function requires only three register setups. This compareswith four register setups, a stack push,

CS T62 - EMBEDDED SYSTEMS 40

[VI SEM – CSE]

and a stack pull for the first version. There is a net saving of two instructions in function call overhead. There are likely
further savings in the callee function, as it only needs to assign a single register to the Queuestructure pointer, rather than
three registers in the nonstructured case.

There are other ways of reducing function call overhead if your function is very small andcorrupts fewregisters
(usesfewlocalvariables).Put theCfunctionin thesameCfileas the functions that will call it. TheC compiler then knows the
codegenerated for the callee functionandcanmakeoptimizationsin thecaller function:

■ Thecallerfunctionneednotpreserveregistersthatitcanseethecalleedoesn’tcorrupt. Therefore thecaller
functionneednotsaveall theATPCScorruptible registers.

■ If the callee function is very small, then the compilerscaninline the code in the caller function.This
removesthefunctioncalloverheadcompletely.

Example: The function uint_to_hexconverts a 32-bit unsigned integer into an array of eight hexa- decimal digits. It
uses ahelper functionnybble_to_hex, whichconverts a digit din the range0to15 toahexadecimaldigit.

uint_to_hex
MOV r3,#8 ; i = 8

uint_to_hex_loop

Pointers:

Two pointers are said to alias when they point to the same address. If write to one pointer, it will affect the
value to read from the other pointer. In a function, the compiler often doesn’t know which pointers can alias and which
pointers can’t. The compiler must be very pessimistic and assume that anywrite to a pointer may affect the value read from
anyotherpointer,whichcansignificantlyreducecodeefficiency.

A very simple example. The following function increments two timer valuesbyastepamount:

void timers_v1(int *timer1, int *timer2, int *step)
{
*timer1 += *step;
*timer2 += *step;

}

This compiles to

timers_v1

LDR r3,[r0,#0] ; r3 = *timer1
LDR r12,[r2,#0] ; r12 = *step
ADD r3,r3,r12 ; r3 += r12
STR r3,[r0,#0] ; *timer1 = r3
LDR r0,[r1,#0] ; r0 = *timer2
LDR r2,[r2,#0] ; r2 = *step
ADD r0,r0,r2 ; r0 += r2

MOV r1,r1,ROR #28 ; in = (in <<4)|(in >>28)

AND r2,r1,#0xf ; r2 = in & 15

CMP r2,#0xa ; if (r2>=10)

ADDCS r2,r2,#0x37 ; r2 +=’A’-10

ADDCC r2,r2,#0x30 ; else r2 +=’0’

STRB r2,[r0],#1 ; *(out++) = r2

SUBS r3,r3,#1 ; i-- and set flags

BNE uint_to_hex_loop ; if (i!=0) goto loop

MOV pc,r14 ; return

CS T62 - EMBEDDED SYSTEMS 41

[VI SEM – CSE]

STR r0,[r1,#0] ; *timer2 = t0
MO
V

pc,r14 ; return

Structure:

Afrequentlyusedstructurecanhaveasignificant impactonitsperformanceandcodedensity.Therearetwoissuesconcerning
structuresontheARM:alignment ofthestructureentriesandtheoverallsizeofthestructure.

For architectures up to and including ARMv5TE, load and store instructions are only guaranteed to load and store values
with address aligned to the size of the access width.

ARMcompilerswillautomaticallyalign thestart addressofastructure to a multiple of the largest access width used within
the structure (usually four or eight bytes)andalignentrieswithinstructurestotheiraccesswidthbyinsertingpadding.

For example, consider the structure
struct { char a;
int b; char c;
short d;

}
To improve thememoryusage, you should reorder the elements

struct { char a;
char c; short d;
int b;

}
Thisreduces thestructuresize from12bytes to8bytes,with thefollowingnewlayout:

Theexactlayoutofastructure inmemorymaydependon thecompilervendorand agoodideatoinsertanypaddingthat
youcannotget rid of into the structuremanually. This way the structure layout is not ambiguous. It is easier to link code
between compiler versionsandcompilervendorsifyousticktounambiguousstructures.

Another point of ambiguity is enum. Different compilers use different sizes for an enumerated type, depending on the range
of theenumeration.Forexample,consider the type

typedef enum { FALSE,
TRUE

} Bool;

Thearmcc inADS1.1will treatBoolasaone-byte type as itonly uses thevalues0and1. Boolwillonly takeup8bitsof
spaceinastructure.However,gccwilltreatBoolasaword and takeup32bitsof space in a structure. Toavoid ambiguity it
isbest toavoidusingenum types in structuresused in theAPI toyourcode.

Another consideration is the size of the structure and theoffsets of elementswithin the structure. This problem is most acute
when you are compiling for the Thumb instruction set. Thumb instructions are only 16 bits wide and so only allow for
small element offsets fromastructurebasepointer.

The compiler can only access an 8-bit structure element with a single instruction if it appears within the first 32 bytes of the
structure. Similarly, single instructions can only access 16-bit values in the first 64 bytes and 32-bit values in the first 128
bytes.Once you exceed these limits, structure accesses become inefficient.

The following rules generate a structure with the elements packed for maximum efficiency:

■ Placeall8-bitelementsatthestartofthestructure.

CS T62 - EMBEDDED SYSTEMS 42

[VI SEM – CSE]

■ Placeall16-bitelementsnext,then32-bit,then64-bit.
■ Placeallarraysandlargerelementsattheendofthestructure.
■ If the structure is too big for a single instruction to access all the elements, then group the elements

intosubstructures.Thecompilercanmaintainpointers totheindividual substructures.

Floating Point:

The majority of ARM processor implementations do not provide hardware floating-point support, which saves
on power and area when using ARM in a price-sensitive, embedded application. With the exceptions of the Floating
Point Accelerator (FPA) used on the ARM7500FE and the Vector Floating Point accelerator (VFP) hardware, the C
compiler must provide support forfloating point in software.

TheCcompiler converts every floating-point operation into a subroutine call. The C library contains subroutines to
simulate floating-point behavior using integer arithmetic. This code iswritten in highly optimizedassembly. Evenso,
floating-pointalgorithmswill execute farmoreslowlythancorrespondinginteger algorithms.

Inline Functions and Inline Assembly:

Using inline functions that contain assembly you can get the compiler to support ARM instructions and
optimizationsthataren’tusually available.Fortheexamplesofthissectionwewillusetheinlineassemblerinarmcc.

The inline assembler with the main assembler armasm. The inline assembler is part of the C compiler. The C
compiler still performs register allocation, function entry, and exit. The compiler also attempts to optimize the inline
assembly write, or deoptimize it for debug mode. Although the compiler output will be functionally equivalent to your
inlineassembly, itmaynotbeidentical.

The main benefit of inline functions and inline assembly is to make accessible in C operations that are not usually
available as part of the C language. It is better to use inline functions rather than #definemacros because the latter doesn’t
check the types of the function arguments and return value.
Example: Tocalculateasaturatingcorrelation.Inotherwords, wecalculatea=2x0y0+· · ·2xN−1yN−1withsaturation.

int sat_correlate(short *x, short *y, unsigned int N)
{
int a=0;

do
{
a = qmac(a, *(x++), *(y++));

} while (--N); return a;
}

Portability Issues:

 The char type. On the ARM, charis unsigned rather than signed as for many other processors. A common
problem concerns loops that use a charloop counter i and the continuation condition i > 0, they become
infinite loop.

 The int type. When moving to ARM’s 32-bit inttype although this is rare nowadays. Note that expressions
are promoted to an inttype before evaluation.Therefore if i= -0x1000, theexpression i==0xF000is trueona
16-bitmachinebutfalseona32-bitmachine.

CS T62 - EMBEDDED SYSTEMS 43

[VI SEM – CSE]

 Unaligned data pointers. Processors support the loading of shortand inttyped values from unaligned addresses.
A C programmay manipulate pointers directly so that they become unaligned.

 Endianassumptions.Ccodemaymakeassumptionsabouttheendiannessofamemory system, for example, by
casting a char *to an int *. If you configure the ARM for thesameendianness thecodeisexpecting, thenthereis
noissue.

 Function prototyping. The armcc compiler passes arguments narrow, that is, reduced to the range of the
argument type. If functions are not prototyped correctly, then the functionmay return thewrong answer.Other
compilers that pass arguments wide may give the correct answer even if the function prototype is incorrect.
AlwaysuseANSI prototypes.

 Use of bit-fields. The layout of bits within a bit-field is implementation and endian dependent. If C code
assumes that bits are laid out in a certain order, then the code is notportable.

■ Inline assembly. Using inline assembly in C code reduces portability between architectures.
You should separate any inline assembly into small in lined functions that caneasilybe replaced. It is
also useful to supply reference, plain C implementations of these functions that can be used on other
architectures,wherethisispossible.

Writing and Optimizing ARMAssembly Code:

Byoptimizing these routines can reduce the system power consumption and reduce the clock speed needed for
real-time operation. Optimization can turn an infeasible system into a feasible one, or an uncompetitive system into a
competitiveone.

Writingassemblycodebydirect control of three optimization tools that cannotexplicitlyusebywritingCsource:

■ Instruction scheduling: Reordering the instructions in a code sequence to avoid processor stalls. Since ARM
implementations are pipelined, the timing of an instruction can be affectedbyneighboring instructions.

■ Registerallocation:DecidinghowvariablesshouldbeallocatedtoARMregistersorstack locations for maximum
performance. Tominimize the number ofmemory accesses.

■ Conditionalexecution:AccessingthefullrangeofARMconditioncodesandconditional instructions.

Writing Assembly Code:

This section gives examples showing how towrite basic assembly code and familiar with the ARM instructions
covered. This chapter uses the ARMmacro assembler armasm.

Example:Toconvert aCfunction toanassembly function.

Consider the simpleCprogrammain.cfollowing that prints thesquaresof the integers from0to9:

#include <stdio.h>

int square(int i); int main(void)
{
Int i;
For (i=0; i<10; i++)

CS T62 - EMBEDDED SYSTEMS 44

[VI SEM – CSE]

{
printf("Square of %d is %d\n", i, square(i));
}
}
int square(int i)
{
Return i*i;
}

Instruction Scheduling:

Instructions that are conditional on the value of the ARM condition codes in the cpsr takeonecycleiftheconditionisnot
met.Iftheconditionismet,thenthefollowingrules apply:

■ ALU operations such as addition, subtraction, and logical operations take one cycle. This includes a shift by an
immediate value. If you use a register-specified shift, then addonecycle. If the instructionwrites to thepc, thenadd two
cycles.

■ Load instructions that loadN32-bitwordsofmemory suchasLDRandLDMtakeN cycles toissue,but theresultof the
lastwordloadedisnotavailableonthefollowingcycle. The updated load address is available on the next cycle. This
assumeszero-wait-state memory for an uncached system, or a cache hit for a cached system.AnLDMof a single value
isexceptional,takingtwocycles.Iftheinstructionloadspc,thenaddtwocycles.

■ Load instructions that load 16-bit or 8-bit data such asLDRB, LDRSB, LDRH, and LDRSH take one cycle to
issue. The load result is not available on the following two cycles. The updated load address is available on the next
cycle.This assumeszero-wait-state memoryforanuncachedsystem,oracachehit foracachedsystem.

■ Branch instructions take three cycles.
■ Store instructions that store N values take N cycles. This assumes zero-wait-state memory for an uncached system,

or a cache hit or a write buffer withN free entries for a cached system.An STMof a single value is exceptional, taking
twocycles.

■ Multiply instructions take a varying number of cycles depending on the value of the secondoperand in the product.

HowtoschedulecodeefficientlyontheARM, TheARM9TDMI processor performs five operations in parallel:

■ Fetch: Fetch frommemory the instruction at address pc. The instruction is loaded into the core and
thenprocessesdownthecorepipeline.

■ Decode: Decode the instruction that was fetched in the previous cycle. The processor also reads the
inputoperandsfromtheregisterbank if theyarenotavailableviaoneof the forwarding paths.

ALU: Executes the instruction that was decoded in the previous cycle. Note this instruction was
originally fetched from address pc − 8 (ARM state) or pc − 4 (Thumb state). Normally this
involves calculating the answer for a data processing operation, or the address for a load, store,
or branch operation.

■ LS1: Load or store the data specified by a load or store instruction. If the instruction is not a load or
store, then thisstagehasnoeffect.

■ LS2: Extract and zero- or sign-extend the data loaded by a byte or half word load instruction.
If the instruction isnota loadofan8-bitbyteor16-bithalf word item, thenthisstagehasnoeffect.

Five-stage ARM9TDMI pipeline. After an instruction has completed the five stages of the pipeline, the core
writes the result to the register file. pc points to the address of the instruction being fetched. The ALU is executing the
instructionthatwasoriginallyfetchedfromaddresspc−8in parallel with fetching the instruction at address pc.

If an instruction requires the result of a previous instruction that is not available, then the processor stalls. This is called a
pipelinehazardorpipelineinterlock.

CS T62 - EMBEDDED SYSTEMS 45

[VI SEM – CSE]

Whyabranchinstructiontakesthreecycles.Theprocessormustflush thepipelinewhenjumpingtoanewaddress.

MOV r1, #1
B case1
AND r0, r0, r1 EOR r2, r2, r3
...

SUB r0, r0, r1

The three executed instructions take a total of five cycles. The MOVinstruction executes on the first cycle. On the second
cycle, the branch instruction calculates the destination address.
Thiscausesthecoretoflushthepipelineandrefillitusingthisnewpcvalue.
Therefill takes twocycles.Finally,theSUBinstructionexecutesnormally.Thepipeline drops the two instructions following
thebranchwhen the branch takes place. ■

RegisterAllocation:

We can use 14 of the 16 visibleARMregisters to hold general-purpose data. The other two registers are the stack
pointer r13 and theprogramcounter r15. For a function tobeATPCS compliant itmust preserve the callee values
ofregistersr4 tor11.ATPCSalsospecifies that thestackshouldbeeight-bytealigned;thereforeyoumustpreserve
thisalignmentifcalling subroutines.Use the following template for optimized assembly routines requiringmany
registers:

Allocating Variables to Register Numbers:

An assembly routine, it is best to start by using names for the variables, rather than explicit register numbers.
This allows to change the allocation of variables to register numbers easily. Register names increase the clarity and
readabilityofoptimized code.

Ifswapalloccurrences of two registers Ra and Rb in a routine, the function of the routine does not
change. However,thereareseveralcaseswherethephysicalnumberoftheregisterisimportant:

■ Argument registers. The ATPCS convention defines that the first four arguments to a function are
placed in registers r0 to r3. Further arguments are placed on the stack. The return value must be
placedin r0.

■ Registers used in a load or store multiple. Load and store multiple instructions LDM and STM
operate on a list of registers in order of ascending register number. If r0 and r1 appear in the
register list, then theprocessorwill always load orstore r0usinga lower addressthanr1andsoon.

■ Loadandstoredoubleword.TheLDRDandSTRDinstructions introducedinARMv5E operate
on a pair of registers with sequential register numbers, Rd and Rd + 1. Furthermore,Rdmust
beanevenregisternumber.

For an example of how to allocate registers when writing assembly, suppose we want to shift an array
ofNbitsupwards inmemorybykbits. For simplicity assume thatN is large andamultipleof256.

Assume that 0 ≤ k < 32 and that the input and output pointers are word aligned. This type of operation is
common in dealing with the arithmetic of multiple precision numbers where we want to multiply by 2k. It is
alsouseful toblock copyfromonebitorbytealignmenttoadifferentbitorbytealignment.

The C routine shift bits implements the simple k-bit shift of N bits of data. It returns the k bits remaining
following theshift.

CS T62 - EMBEDDED SYSTEMS 46

[VI SEM – CSE]

unsigned int shift_bits(unsigned int *out, unsigned int *in,
unsigned int N, unsigned int k)

{
unsigned int carry=0, x;

do
{
x = *in++;
*out++ = (x<<k) | carry;
carry = x>>(32-k); N
-= 32;

} while (N);

return carry;
}

Theobviousway to improve efficiency is tounroll the looptoprocesseightwordsof 256 bits at a time so that
can use load and storemultiple operations to load and store eightwordsata timeformaximumefficiency.

There are two remaining variables carry and kr, but only one remaining free register lr. There are several
possibleways proceedingwhenwerunoutof registers:

■ Reduce thenumberof registerswerequirebyperforming feweroperations ineach loop. In this casewe
could loadfourwords ineach loadmultiple rather thaneight.

■ Use the stack to store the least-used values to free up more registers. In this case we could store the loop
counterN on the stack. Alterthecodeimplementationtofreeupmoreregisters.

Making theMost of AvailableRegisters:

On load-store architecture such as the ARM, it is more efficient to access values held in registers than values
held in memory. There are several tricks you can use to fit several sub-32-bit length variables into a single 32-
bit register and thus canreduce codesizeand increase performance.

Single issueMultipleData(SIMD):
Arraysof8-bitor16-bitvalues, it issometimespossible tomanipulate multiplevaluesata timebypackingseveral
valuesintoasingle32-bitregister.Thisiscalled singleissuemultipledata(SIMD)processing.

Conditional Execution:

The processor core can conditionally execute most ARM instructions. This conditional assembler defaults to
the execute always condition (AL). The other 14 conditions split into seven pairs of complements. The conditions depend
on the four condition codeflagsN,Z, C,V storedinthecpsr register.

By default, ARM instructions do not update theN, Z,C,V flags in the ARM cpsr. For most instructions, toupdatethese
flagsyouappendanSsuffixtotheinstructionmnemonic.

CS T62 - EMBEDDED SYSTEMS 47

[VI SEM – CSE]

Exceptions to this are comparison instructions that do not write to a destination register. Their sole purpose is to update the
flagsandso theydon’t require theSsuffix.

By combining conditional execution and conditional setting of the flags, you can imple- ment simple ifstatements without
anyneed forbranches. This improves efficiency since branches can take many cycles and also reduces code size.

Example: ThefollowingCcodeconvertsanunsignedinteger0 ≤ i ≤ 15toahexadecimalcharacterc:

if (i<10)
{
c = i + ‘0’;

}
else
{
c = i +‘A’-10;
}

Writeinassemblyusingconditionalexecutionrather thanconditional branches:

CMP i, #10
ADDLO c,i,#‘0’
ADDHS c,i, #‘A’-10

ThesequenceworkssincethefirstADDdoesnotchangetheconditioncodes.Thesecond ADDisstillconditionalontheresult
ofthecompare.Conditional execution is evenmorepowerful forcascadingconditions.

Example: Consider the following code that detects if cis a letter:

if((c>=‘A’&&c<=‘Z’)||(c>=‘a’&&c<=‘z’))
{
letter++;
}

To implement this efficiently, we can use an addition or subtraction to move each range to the form 0 ≤ c≤ limit. Then
we use unsigned comparisons to detect this range and conditional comparisons to chain together ranges.The following
assemblyimplementsthis efficiently:

SUB temp, c, #‘A’
CMP temp, #‘Z’-‘A’
SUBHI temp, c, #‘a’
CMPHI temp, #‘z’-‘a’
ADDLS letter, letter,
#1

UNIT - V
Real Time Operating Systems: Brief History of OS - Defining RTOS – The
Scheduler - Objects – Services - Characteristics of RTOS - Defining a Task -
Tasks States and Scheduling - Task Operations – Structure –
Synchronization - Communication and Concurrency. Defining Semaphores -
Operations and Use - Defining Message Queue - States – Content – Storage -
Operations and Use.

CS T62 - EMBEDDED SYSTEMS 48

[VI SEM – CSE]

Introduction To Real-Time Operating Systems

Introduction

A real-time operating system (RTOS) is key to many embedded systems today and,

provides a software platform upon which to build applications. Not all embedded systems,

however, are designed with an RTOS. Some embedded systems with relatively simple

hardware or a small amount of software application code might not require an RTOS. Many

embedded systems, however, with moderate-to-large software applications require some form

of scheduling, and these systems require an RTOS.

This chapter sets the stage for all subsequent chapters in this section. It describes the key

concepts upon which most real-time operating systems are based. Specifically, this chapter

provides

 A brief history of operating systems,

 A definition of an RTOS,

 A description of the scheduler,

 A discussion of objects,

 A discussion of services, and

 The key characteristics of an RTOS.

 A Brief History of Operating Systems

 In the early days of computing, developers created software applications that included

low-level machine code to initialize and interact with the system's hardware directly.

This tight integration between the software and hardware resulted in non-portable

applications. A small change in the hardware might result in rewriting much of the

application itself. Obviously, these systems were difficult and costly to maintain.

 As the software industry progressed, operating systems that provided the basic

software foundation for computing systems evolved and facilitated the abstraction of

the underlying hardware from the application code. In addition, the evolution of

operating systems helped shift the design of software applications from large,

monolithic applications to more modular, interconnected applications that could run

on top of the operating system environment.

Later in the decade, momentum started building for the next generation of computing:

the post-PC, embedded-computing era. To meet the needs of embedded computing,

CS T62 - EMBEDDED SYSTEMS 49

[VI SEM – CSE]

commercial RTOSes, such as VxWorks, were developed. Although some functional

similarities exist between RTOSes and GPOSes, many important differences occur as well.

These differences help explain why RTOSes are better suited for real-time embedded systems.

Some core functional similarities between a typical RTOS and GPOS include:

 Some level of multitasking,

 Software and hardware resource management,

 Provision of underlying OS services to applications, and

 Abstracting the hardware from the software application.

On the other hand, some key functional differences that set RTOSes apart from GPOSes

include:

 Better reliability in embedded application contexts,

 The ability to scale up or down to meet application needs,

 Faster performance,

 Reduced memory requirements,

 Scheduling policies tailored for real-time embedded systems,

 Support for diskless embedded systems by allowing executables to boot and run from

ROM or RAM, and

 Better portability to different hardware platforms.

RTOSes, on the other hand, can meet these requirements. They are reliable, compact, and

scalable, and they perform well in real-time embedded systems. In addition, RTOSs can be

easily tailored to use only those components required for a particular application.

Defining an RTOS

A real-time operating system (RTOS) is a program that schedules execution in a

timely manner, manages system resources, and provides a consistent foundation for

developing application code. Application code designed on an RTOS can be quite diverse,

ranging from a simple application for a digital stopwatch to a much more complex

application for aircraft navigation. Good RTOSes, therefore, are scalable in order to meet

different sets of requirements for different applications.

For example, in some applications, an RTOS comprises only a kernel, which is the

core supervisory software that provides minimal logic, scheduling, and resource-management

algorithms. Every RTOS has a kernel. On the other hand, an RTOS can be a combination of

CS T62 - EMBEDDED SYSTEMS 50

[VI SEM – CSE]

various modules, including the kernel, a file system, networking protocol stacks, and other

components required for a particular application, as illustrated at a high level in Figure 1.

Figure 1: High-level view of an RTOS, its kernel, and other components found in embedded

systems.

RTOSes can scale up or down to meet application requirements, this book focuses on the

common element at the heart of all RTOSes-the kernel. Most RTOS kernels contain the

following components:

 Scheduler - is contained within each kernel and follows a set of algorithms that

determines which task executes when. Some common examples of scheduling algorithms

include round-robin and preemptive scheduling.

 Objects - are special kernel constructs that help developers create applications for

real-time embedded systems. Common kernel objects include tasks, semaphores, and

message queues.

 Services - are operations that the kernel performs on an object or, generally

operations such as timing, interrupt handling, and resource management.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0023.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0401_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0025.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0026.html

CS T62 - EMBEDDED SYSTEMS 51

[VI SEM – CSE]

Figure 2: Common components in an RTOS kernel that including objects, the scheduler, and

some services.

This diagram is highly simplified; remember that not all RTOS kernels conform to

this exact set of objects, scheduling algorithms, and services.

The Scheduler

The scheduler is at the heart of every kernel. A scheduler provides the algorithms needed

to determine which task executes when. To understand how scheduling works, this section

describes the following topics:

 Schedulable entities,

 Multitasking,

 Context switching,

 Dispatcher, and

 Scheduling algorithms.

1. Schedulable Entities

A schedulable entity is a kernel object that can compete for execution time on a

system, based on a predefined scheduling algorithm. Tasks and processes are all examples of

schedulable entities found in most kernels.

A task is an independent thread of execution that contains a sequence of

independently schedulable instructions. Some kernels provide another type of a schedulable

object called a process. Processes are similar to tasks in that they can independently compete

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0402_0.jpg

CS T62 - EMBEDDED SYSTEMS 52

[VI SEM – CSE]

for CPU execution time. Processes differ from tasks in that they provide better memory

protection features, at the expense of performance and memory overhead. Despite these

differences, for the sake of simplicity, this book uses task to mean either a task or a process.

Note that message queues and semaphores are not schedulable entities. These items are inter-

task communication objects used for synchronization and communication.

2. Multitasking

Multitasking is the ability of the operating system to handle multiple activities within

set deadlines. A real-time kernel might have multiple tasks that it has to schedule to run. One

such multitasking scenario is illustrated in Figure 3.

Figure 3:Multitasking using a context switch.

In this scenario, the kernel multitasks in such a way that many threads of execution

appear to be running concurrently; however, the kernel is actually interleaving executions

sequentially, based on a preset scheduling algorithm The scheduler must ensure that the

appropriate task runs at the right time.

An important point to note here is that the tasks follow the kernel’s scheduling

algorithm, while interrupt service routines (ISR) are triggered to run because of hardware

interrupts and their established priorities.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0024.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/other-0404_0.jpg

CS T62 - EMBEDDED SYSTEMS 53

[VI SEM – CSE]

As the number of tasks to schedule increases, so do CPU performance requirements.

This fact is due to increased switching between the contexts of the different threads of

execution.

3. The Context Switch

Each task has its own context, which is the state of the CPU registers required each

time it is scheduled to run. A context switch occurs when the scheduler switches from one

task to another. To better understand what happens during a context switch, let’s examine

further what a typical kernel does in this scenario.

Every time a new task is created, the kernel also creates and maintains an associated

task control block (TCB). TCBs are system data structures that the kernel uses to maintain

task-specific information. TCBs contain everything a kernel needs to know about a particular

task. When a task is running, its context is highly dynamic. This dynamic context is

maintained in the TCB. When the task is not running, its context is frozen within the TCB, to

be restored the next time the task runs. A typical context switch scenario is illustrated

in Figure 3.

As shown in Figure 3, when the kernel’s scheduler determines that it needs to stop running

task 1 and start running task 2, it takes the following steps:

1. The kernel saves task 1’s context information in its TCB.

2. It loads task 2’s context information from its TCB, which becomes the current thread

of execution.

3. The context of task 1 is frozen while task 2 executes, but if the scheduler needs to run

task 1 again, task 1 continues from where it left off just before the context switch.

1. The Dispatcher

The dispatcher is the part of the scheduler that performs context switching and

changes the flow of execution. At any time an RTOS is running, the flow of execution, also

known as flow of control, is passing through one of three areas: through an application task,

through an ISR, or through the kernel. When a task or ISR makes a system call, the flow of

control passes to the kernel to execute one of the system routines provided by the kernel.

When it is time to leave the kernel, the dispatcher is responsible for passing control to one of

the tasks in the user’s application. It will not necessarily be the same task that made the

system call. It is the scheduling algorithms (to be discussed shortly) of the scheduler that

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0024.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0024.html

CS T62 - EMBEDDED SYSTEMS 54

[VI SEM – CSE]

determines which task executes next. It is the dispatcher that does the actual work of context

switching and passing execution control.

Depending on how the kernel is first entered, dispatching can happen differently.

When a task makes system calls, the dispatcher is used to exit the kernel after every system

call completes. In this case, the dispatcher is used on a call-by-call basis so that it can

coordinate task-state transitions that any of the system calls might have caused. (One or more

tasks may have become ready to run, for example.)

4. Scheduling Algorithms

As mentioned earlier, the scheduler determines which task runs by following a

scheduling algorithm (also known as scheduling policy). Most kernels today support two

common scheduling algorithms:

 Preemptive priority-based scheduling, and

 Round-Robin scheduling.

The RTOS manufacturer typically predefines these algorithms; however, in some cases,

developers can create and define their own scheduling algorithms. Each algorithm is

described next.

Preemptive Priority-Based Scheduling

Of the two scheduling algorithms introduced here, most real-time kernels use

preemptive priority-based scheduling by default. As shown in Figure 4 with this type of

scheduling, the task that gets to run at any point is the task with the highest priority among all

other tasks ready to run in the system.

Figure 4: Preemptive priority-based scheduling.

Real-time kernels generally support 256 priority levels, in which 0 is the highest and

255 the lowest. Some kernels appoint the priorities in reverse order, where 255 is the highest

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0024.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/other-0405_0.jpg

CS T62 - EMBEDDED SYSTEMS 55

[VI SEM – CSE]

and 0 the lowest. Regardless, the concepts are basically the same. With a preemptive priority-

based scheduler, each task has a priority, and the highest-priority task runs first. If a task with

a priority higher than the current task becomes ready to run, the kernel immediately saves the

current task’s context in its TCB and switches to the higher-priority task. As shown in Figure

4 task 1 is preempted by higher-priority task 2, which is then preempted by task 3. When task

3 completes, task 2 resumes; likewise, when task 2 completes, task 1 resumes.

Although tasks are assigned a priority when they are created, a task’s priority can be

changed dynamically using kernel-provided calls. The ability to change task priorities

dynamically allows an embedded application the flexibility to adjust to external events as

they occur, creating a true real-time, responsive system. Note, however, that misuse of this

capability can lead to priority inversions, deadlock, and eventual system failure.

Round-Robin Scheduling

Round-robin scheduling provides each task an equal share of the CPU execution time.

Pure round-robin scheduling cannot satisfy real-time system requirements because in real-

time systems, tasks perform work of varying degrees of importance. Instead, preemptive,

priority-based scheduling can be augmented with round-robin scheduling which uses time

slicing to achieve equal allocation of the CPU for tasks of the same priority as shown

in Figure 5.

Figure 5: Round-robin and preemptive scheduling.

With time slicing, each task executes for a defined interval, or time slice, in an

ongoing cycle, which is the round robin. A run-time counter tracks the time slice for each

task, incrementing on every clock tick. When one task’s time slice completes, the counter is

cleared, and the task is placed at the end of the cycle. Newly added tasks of the same priority

are placed at the end of the cycle, with their run-time counters initialized to 0.

If a task in a round-robin cycle is preempted by a higher-priority task, its run-time

count is saved and then restored when the interrupted task is again eligible for execution. This

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0024.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0024.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0024.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/other-0406_0.jpg

CS T62 - EMBEDDED SYSTEMS 56

[VI SEM – CSE]

idea is illustrated in Figure 5, in which task 1 is preempted by a higher-priority task 4 but

resumes where it left off when task 4 completes.

Objects

Kernel objects are special constructs that are the building blocks for application

development for real-time embedded systems. The most common RTOS kernel objects are

 Tasks—are concurrent and independent threads of execution that can compete for

CPU execution time.

 Semaphores—are token-like objects that can be incremented or decremented by tasks

for synchronization or mutual exclusion.

 Message Queues—are buffer-like data structures that can be used for synchronization,

mutual exclusion, and data exchange by passing messages between tasks. Developers

creating real-time embedded applications can combine these basic kernel objects (as well

as others not mentioned here) to solve common real-time design problems, such as

concurrency, activity synchronization, and data communication. These design problems

and the kernel objects used to solve them.

Services

Along with objects, most kernels provide services that help developers create

applications for real-time embedded systems. These services comprise sets of API calls that

can be used to perform operations on kernel objects or can be used in general to facilitate

timer management, interrupt handling, device I/O, and memory management. Again, other

services might be provided; these services are those most commonly found in RTOS kernels.

Key Characteristics of an RTOS

`An application's requirements define the requirements of its underlying RTOS. Some of

the more common attributes are

 Reliability,

 Predictability,

 Performance,

 Compactness, and

 Scalability.

1. Reliability

Embedded systems must be reliable. Depending on the application, the system might

need to operate for long periods without human intervention.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0024.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0029.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0036.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0041.html

CS T62 - EMBEDDED SYSTEMS 57

[VI SEM – CSE]

Different degrees of reliability may be required. For example, a digital solar-powered

calculator might reset itself if it does not get enough light, yet the calculator might still be

considered acceptable. On the other hand, a telecom switch cannot reset during operation

without incurring high associated costs for down time. The RTOSes in these applications

require different degrees of reliability.

Although different degrees of reliability might be acceptable, in general, a reliable

system is one that is available (continues to provide service) and does not fail. While RTOSes

must be reliable, note that the RTOS by itself is not what is measured to determine system

reliability. It is the combination of all system elements-including the hardware, BSP, RTOS,

and application-that determines the reliability of a system.

2. Predictability

Because many embedded systems are also real-time systems, meeting time

requirements is key to ensuring proper operation. The RTOS used in this case needs to be

predictable to a certain degree. The term deterministic describes RTOSes with predictable

behavior, in which the completion of operating system calls occurs within known timeframes.

Developers can write simple benchmark programs to validate the determinism of an

RTOS. The result is based on timed responses to specific RTOS calls. In a good deterministic

RTOS, the variance of the response times for each type of system call is very small.

3. Performance

This requirement dictates that an embedded system must perform fast enough to fulfill

its timing requirements. Typically, the more deadlines to be met-and the shorter the time

between them-the faster the system's CPU must be. Although underlying hardware can

dictate a system's processing power, its software can also contribute to system performance.

Typically, the processor's performance is expressed in million instructions per second (MIPS).

Throughput also measures the overall performance of a system, with hardware and

software combined. One definition of throughput is the rate at which a system can generate

output based on the inputs coming in. Throughput also means the amount of data transferred

divided by the time taken to transfer it. Data transfer throughput is typically measured in

multiples of bits per second (bps).

CS T62 - EMBEDDED SYSTEMS 58

[VI SEM – CSE]

Sometimes developers measure RTOS performance on a call-by-call basis.

Benchmarks are written by producing timestamps when a system call starts and when it

completes. Although this step can be helpful in the analysis stages of design, true

performance testing is achieved only when the system performance is measured as a whole.

Tasks
Introduction

Simple software applications are typically designed to run sequentially , one

instruction at a time, in a pre-determined chain of instructions. However, this scheme is

inappropriate for real-time embedded applications, which generally handle multiple inputs

and outputs within tight time constraints. Real-time embedded software applications must be

designed for concurrency.

Concurrent design requires developers to decompose an application into small,

schedulable, and sequential program units. When done correctly, concurrent design allows

system multitasking to meet performance and timing requirements for a real-time system.

Most RTOS kernels provide task objects and task management services to facilitate designing

concurrency within an application.

This chapter discusses the following topics:

 Task definition,

 Task states and scheduling,

 Typical task operations,

 Typical task structure, and

 Task coordination and concurrency.

Defining a Task

A task is an independent thread of execution that can compete with other concurrent

tasks for processor execution time. As mentioned earlier, developers decompose applications

into multiple concurrent tasks to optimize the handling of inputs and outputs within set time

constraints.

A task is schedulable; the task is able to compete for execution time on a system,

based on a predefined scheduling algorithm. A task is defined by its distinct set of parameters

and supporting data structures. Specifically, upon creation, each task has an associated name,

a unique ID, a priority (if part of a preemptive scheduling plan), a task control block (TCB), a

CS T62 - EMBEDDED SYSTEMS 59

[VI SEM – CSE]

stack, and a task routine, as shown in Figure 1). Together, these components make up what is

known as the task object.

Figure 1: A task, its associated parameters, and supporting data structures.

When the kernel first starts, it creates its own set of system tasks and allocates the

appropriate priority for each from a set of reserved priority levels. The reserved priority

levels refer to the priorities used internally by the RTOS for its system tasks. An application

should avoid using these priority levels for its tasks because running application tasks at such

level may affect the overall system performance or behavior. For most RTOSes, these

reserved priorities are not enforced. The kernel needs its system tasks and their reserved

priority levels to operate. These priorities should not be modified. Examples of system tasks

include:

 Initialization or startup task—initializes the system and creates and starts system

tasks,

 Idle task—uses up processor idle cycles when no other activity is present,

 Logging task—logs system messages,

 Exception-handling task—handles exceptions, and

 Debug agent task—allows debugging with a host debugger. Note that other system

tasks might be created during initialization, depending on what other components are

included with the kernel.

The idle task, which is created at kernel startup, is one system task that bears mention

and should not be ignored. The idle task is set to the lowest priority, typically executes in an

endless loop, and runs when either no other task can run or when no other tasks exist, for the

sole purpose of using idle processor cycles. The idle task is necessary because the processor

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0501_0.jpg

CS T62 - EMBEDDED SYSTEMS 60

[VI SEM – CSE]

executes the instruction to which the program counter register points while it is running.

Unless the processor can be suspended, the program counter must still point to valid

instructions even when no tasks exist in the system or when no tasks can run. Therefore, the

idle task ensures the processor program counter is always valid when no other tasks are

running.

In some cases, however, the kernel might allow a user-configured routine to run instead

of the idle task in order to implement special requirements for a particular application. One

example of a special requirement is power conservation. When no other tasks can run, the

kernel can switch control to the user-supplied routine instead of to the idle task. In this case,

the user-supplied routine acts like the idle task but instead initiates power conservation code,

such as system suspension, after a period of idle time.

After the kernel has initialized and created all of the required tasks, the kernel jumps to a

predefined entry point (such as a predefined function) that serves, in effect, as the beginning

of the application. From the entry point, the developer can initialize and create other

application tasks , as well as other kernel objects, which the application design might require.

As the developer creates new tasks, the developer must assign each a task name, priority,

stack size, and a task routine. The kernel does the rest by assigning each task a unique ID and

creating an associated TCB and stack space in memory for it.

Task States and Scheduling

Whether it's a system task or an application task, at any time each task exists in one of

a small number of states, including ready, running, or blocked. As the real-time embedded

system runs, each task moves from one state to another, according to the logic of a simple

finite state machine (FSM). Figure 2 illustrates a typical FSM for task execution states, with

brief descriptions of state transitions.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0031.html

CS T62 - EMBEDDED SYSTEMS 61

[VI SEM – CSE]

Figure 2: A typical finite state machine for task execution states.

Although kernels can define task-state groupings differently, generally three main states are

used in most typical preemptive-scheduling kernels, including:

 Ready state-the task is ready to run but cannot because a higher priority task is

executing.

 Blocked state-the task has requested a resource that is not available, has requested to

wait until some event occurs, or has delayed itself for some duration.

 Running state-the task is the highest priority task and is running.

Note some commercial kernels, such as the VxWorks kernel, define other, more granular

states, such as suspended, pended, and delayed. In this case, pended and delayed are actually

sub-states of the blocked state. A pended task is waiting for a resource that it needs to be

freed; a delayed task is waiting for a timing delay to end. The suspended state exists for

debugging purposes. For more detailed information on the way a particular RTOS kernel

implements its FSM for each task, refer to the kernel's user manual.

Regardless of how a kernel implements a task's FSM, it must maintain the current state of

all tasks in a running system. As calls are made into the kernel by executing tasks, the

kernel's scheduler first determines which tasks need to change states and then makes those

changes.

In some cases, the kernel changes the states of some tasks, but no context switching

occurs because the state of the highest priority task is unaffected. In other cases, however,

these state changes result in a context switch because the former highest priority task either

gets blocked or is no longer the highest priority task. When this process happens, the former

running task is put into the blocked or ready state, and the new highest priority task starts to

execute.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0502_0.jpg

CS T62 - EMBEDDED SYSTEMS 62

[VI SEM – CSE]

1. Ready State

When a task is first created and made ready to run, the kernel puts it into the ready

state. In this state, the task actively competes with all other ready tasks for the processor's

execution time. As Figure 2 shows, tasks in the ready state cannot move directly to the

blocked state. A task first needs to run so it can make a blocking call , which is a call to a

function that cannot immediately run to completion, thus putting the task in the blocked state.

Ready tasks, therefore, can only move to the running state. Because many tasks might be in

the ready state, the kernel's scheduler uses the priority of each task to determine which task to

move to the running state.

Figure 3 illustrates, in a five-step scenario, how a kernel scheduler might use a task-

ready list to move tasks from the ready state to the running state. This example assumes a

single-processor system and a priority-based preemptive scheduling algorithm in which 255

is the lowest priority and 0 is the highest. Note that for simplicity this example does not show

system tasks, such as the idle task.

Figure 3: Five steps showing the way a task-ready list works.

In this example, tasks 1, 2, 3, 4, and 5 are ready to run, and the kernel queues them by priority

in a task-ready list. Task 1 is the highest priority task (70); tasks 2, 3, and 4 are at the next-

highest priority level (80); and task 5 is the lowest priority (90). The following steps explains

how a kernel might use the task-ready list to move tasks to and from the ready state:

1. Tasks 1, 2, 3, 4, and 5 are ready to run and are waiting in the task-ready list.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0031.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0031.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0503_0.jpg

CS T62 - EMBEDDED SYSTEMS 63

[VI SEM – CSE]

2. Because task 1 has the highest priority (70), it is the first task ready to run. If nothing

higher is running, the kernel removes task 1 from the ready list and moves it to the

running state.

3. During execution, task 1 makes a blocking call. As a result, the kernel moves task 1 to

the blocked state; takes task 2, which is first in the list of the next-highest priority tasks

(80), off the ready list; and moves task 2 to the running state.

4. Next, task 2 makes a blocking call. The kernel moves task 2 to the blocked state; takes

task 3, which is next in line of the priority 80 tasks, off the ready list; and moves task 3

to the running state.

5. As task 3 runs, frees the resource that task 2 requested. The kernel returns task 2 to

the ready state and inserts it at the end of the list of tasks ready to run at priority level

80. Task 3 continues as the currently running task.

2. Running State

On a single-processor system, only one task can run at a time. In this case, when a

task is moved to the running state, the processor loads its registers with this task's context.

The processor can then execute the task's instructions and manipulate the associated stack.

A task can move back to the ready state while it is running. When a task moves from

the running state to the ready state, it is preempted by a higher priority task. In this case, the

preempted task is put in the appropriate, priority-based location in the task-ready list, and the

higher priority task is moved from the ready state to the running state.

Unlike a ready task, a running task can move to the blocked state in any of the following

ways:

 by making a call that requests an unavailable resource,

 by making a call that requests to wait for an event to occur, and

 by making a call to delay the task for some duration.

3. Blocked State

The possibility of blocked states is extremely important in real-time systems because

without blocked states, lower priority tasks could not run. If higher priority tasks are not

designed to block, CPU starvation can result.

CPU starvation occurs when higher priority tasks use all of the CPU execution time

and lower priority tasks do not get to run.

CS T62 - EMBEDDED SYSTEMS 64

[VI SEM – CSE]

A task can only move to the blocked state by making a blocking call, requesting that some

blocking condition be met. A blocked task remains blocked until the blocking condition is

met. (It probably ought to be called the un blocking condition, but blocking is the

terminology in common use among real-time programmers.) Examples of how blocking

conditions are met include the following:

 a semaphore token for which a task is waiting is released,

 a message, on which the task is waiting, arrives in a message queue, or a time delay

imposed on the task expires.

Typical Task Operations

In addition to providing a task object, kernels also provide task-management services .

Task-management services include the actions that a kernel performs behind the scenes to

support tasks, for example, creating and maintaining the TCB and task stacks.

A kernel, however, also provides an API that allows developers to manipulate tasks.

Some of the more common operations that developers can perform with a task object from

within the application include:

 Creating and Deleting tasks,

 Controlling task scheduling, and

 Obtaining task information.

Developers should learn how to perform each of these operations for the kernel selected for

the project. Each operation is briefly discussed next.

1. Task Creation and Deletion

The most fundamental operations that developers must learn are creating and deleting

tasks, as shown in Table 1.

Table 1: Operations for task creation and deletion.

Operation Description

Create Creates a task

Delete Deletes a task

Developers typically create a task using one or two operations, depending on the

kernel’s API. Some kernels allow developers first to create a task and then start it. In this case,

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0032.html

CS T62 - EMBEDDED SYSTEMS 65

[VI SEM – CSE]

the task is first created and put into a suspended state; then, the task is moved to the ready

state when it is started (made ready to run).

Creating tasks in this manner might be useful for debugging or when special

initialization needs to occur between the times that a task is created and started. However, in

most cases, it is sufficient to create and start a task using one kernel call.

Many kernels also provide user-configurable hooks , which are mechanisms that execute

programmer-supplied functions, at the time of specific kernel events. The

programmer registers the function with the kernel by passing a function pointer to a kernel-

provided API . The kernel executes this function when the event of interest occurs. Such

events can include:

 When a task is first created,

 When a task is suspended for any reason and a context switch occurs, and

 When a task is deleted.

2. Task Scheduling

From the time a task is created to the time it is deleted, the task can move through

various states resulting from program execution and kernel scheduling. Although much of

this state changing is automatic, many kernels provide a set of API calls that allow developers

to control when a task moves to a different state, as shown in Table 2. This capability is

called manual scheduling .

Table 2: Operations for task scheduling.

Operation Description

Suspend Suspends a task

Resume Resumes a task

Delay Delays a task

Restart Restarts a task

Get Priority Gets the current task’s priority

Set Priority Dynamically sets a task’s priority

Preemption lock Locks out higher priority tasks from preempting the current

task

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0032.html

CS T62 - EMBEDDED SYSTEMS 66

[VI SEM – CSE]

Table 2: Operations for task scheduling.

Operation Description

Preemption unlock Unlocks a preemption lock

Using manual scheduling, developers can suspend and resume tasks from within an

application. Doing so might be important for debugging purposes or, as discussed earlier, for

suspending a high-priority task so that lower priority tasks can execute.

A developer might want to delay (block) a task, for example, to allow manual

scheduling or to wait for an external condition that does not have an associated interrupt.

Delaying a task causes it to relinquish the CPU and allow another task to execute. After the

delay expires, the task is returned to the task-ready list after all other ready tasks at its priority

level. A delayed task waiting for an external condition can wake up after a set time to check

whether a specified condition or event has occurred, which is called polling.

Typical Task Structure

When writing code for tasks, tasks are structured in one of two ways:

 Run to completion, or

 Endless loop.

Both task structures are relatively simple. Run-to-completion tasks are most useful for

initialization and startup. They typically run once, when the system first powers on. Endless-

loop tasks do the majority of the work in the application by handling inputs and outputs.

Typically, they run many times while the system is powered on.

1 Run-to-Completion Tasks

An example of a run-to-completion task is the application-level initialization task,

shown in Listing 1. The initialization task initializes the application and creates additional

services, tasks, and needed kernel objects.

Listing 1: Pseudo code for a run-to-completion task.

RunToCompletionTask ()

{

Initialize application

Create ‘endless loop tasks'

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0033.html

CS T62 - EMBEDDED SYSTEMS 67

[VI SEM – CSE]

Create kernel objects

Delete or suspend this task

}

2. Endless-Loop Tasks

As with the structure of the application initialization task, the structure of an endless

loop task can also contain initialization code. The endless loop's initialization code, however,

only needs to be executed when the task first runs, after which the task executes in an endless

loop, as shown in Listing 2.

The critical part of the design of an endless-loop task is the one or more blocking calls

within the body of the loop. These blocking calls can result in the blocking of this endless-

loop task, allowing lower priority tasks to run.

Listing 5.2: Pseudo code for an endless-loop task.

EndlessLoopTask ()

{

Initialization code

Loop Forever

{

Body of loop

Make one or more blocking calls

}

}

Synchronization, Communication, and Concurrency

Tasks synchronize and communicate amongst themselves by using intertask

primitives , which are kernel objects that facilitate synchronization and communication

between two or more threads of execution. Examples of such objects include semaphores,

message queues, signals, and pipes, as well as other types of objects.

The concept of concurrency and how an application is optimally decomposed into

concurrent tasks. For now, remember that the task object is the fundamental construct of most

kernels. Tasks, along with task-management services, allow developers to design applications

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0033.html

CS T62 - EMBEDDED SYSTEMS 68

[VI SEM – CSE]

for concurrency to meet multiple time constraints and to address various design problems

inherent to real-time embedded applications.

Modularizing An Application For Concurrency

Introduction

Many activities need to be completed when designing applications for real-time

systems. One group of activities requires identifying certain elements. Some of the more

important elements to identify include:

1. system requirements,

2. inputs and outputs,

3. real-time deadlines,

4. events and event response times,

5. event arrival patterns and frequencies,

6. required objects and other components,

7. tasks that need to be concurrent,

8. system schedulability, and

9. useful or needed synchronization protocols for inter-task communications.

Synchronization And Communication

Introduction

Software applications for real-time embedded systems use concurrency to maximize

efficiency. As a result, an application's design typically involves multiple concurrent threads,

tasks, or processes. Coordinating these activities requires inter-task synchronization and

communication.

This chapter focuses on:

 resource synchronization,

 activity synchronization,

 inter-task communication, and

 ready-to-use embedded design patterns.

CS T62 - EMBEDDED SYSTEMS 69

[VI SEM – CSE]

Synchronization

Synchronization is classified into two categories: resource

synchronization and activity synchronization . Resource synchronization determines whether

access to a shared resource is safe, and, if not, when it will be safe. Activity synchronization

determines whether the execution of a multithreaded program has reached a certain state and,

if it hasn't, how to wait for and be notified when this state is reached.

Resource Synchronization

Access by multiple tasks must be synchronized to maintain the integrity of a shared

resource. This process is called resource synchronization , a term closely associated with

critical sections and mutual exclusions.

Mutual exclusion is a provision by which only one task at a time can access a shared

resource. A critical section is the section of code from which the shared resource is accessed.

As an example, consider two tasks trying to access shared memory. One task (the

sensor task) periodically receives data from a sensor and writes the data to shared memory.

Meanwhile, a second task (the display task) periodically reads from shared memory and

sends the data to a display. The common design pattern of using shared memory is illustrated

in Figure 1.

Figure 1:Multiple tasks accessing shared memory.

Problems arise if access to the shared memory is not exclusive, and multiple tasks can

simultaneously access it. For example, if the sensor task has not completed writing data to the

shared memory area before the display task tries to display the data, the display would

contain a mixture of data extracted at different times, leading to erroneous data interpretation.

The section of code in the sensor task that writes input data to the shared memory is a

critical section of the sensor task. The section of code in the display task that reads data from

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0091.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/1501_0.jpg

CS T62 - EMBEDDED SYSTEMS 70

[VI SEM – CSE]

the shared memory is a critical section of the display task. These two critical sections are

called competing critical sections because they access the same shared resource.

A mutual exclusion algorithm ensures that one task's execution of a critical section is

not interrupted by the competing critical sections of other concurrently executing tasks.

One way to synchronize access to shared resources is to use a client-server model, in

which a central entity called a resource server is responsible for synchronization. Access

requests are made to the resource server, which must grant permission to the requestor before

the requestor can access the shared resource. The resource server determines the eligibility of

the requestor based on pre-assigned rules or run-time heuristics.

Barrier synchronization comprises three actions:

 a task posts its arrival at the barrier,

 the task waits for other participating tasks to reach the barrier, and

 the task receives notification to proceed beyond the barrier.

 Another representative of activity synchronization mechanisms is rendezvous

synchronization , which, as its name implies, is an execution point where two tasks

meet. The main difference between the barrier and the rendezvous is that the barrier

allows activity synchronization among two or more tasks, while rendezvous

synchronization is between two tasks.

 In rendezvous synchronization, a synchronization and communication point called

an entry is constructed as a function call. One task defines its entry and makes it

public. Any task with knowledge of this entry can call it as an ordinary function call.

The task that defines the entry accepts the call, executes it, and returns the results to

the caller. The issuer of the entry call establishes a rendezvous with the task that

defined the entry.

Communication

Tasks communicate with one another so that they can pass information to each other

and coordinate their activities in a multithreaded embedded application. Communication can

be signal-centric, data-centric, or both. In signal-centric communication , all necessary

information is conveyed within the event signal itself. In data-centric communication ,

information is carried within the transferred data. When the two are combined, data transfer

accompanies event notification.

CS T62 - EMBEDDED SYSTEMS 71

[VI SEM – CSE]

When communication involves data flow and is unidirectional, this communication

model is called loosely coupled communication. In this model, the data producer does not

require a response from the consumer. Figure 4 illustrates an example of loosely coupled

communication.

Figure 4: Loosely coupled ISR-to-task communication using message queues.

For example, an ISR for an I/O device retrieves data from a device and routes the data

to a dedicated processing task. The ISR neither solicits nor requires feedback from the

processing task. By contrast, in tightly coupled communication , the data movement is

bidirectional. The data producer synchronously waits for a response to its data transfer before

resuming execution, or the response is returned asynchronously while the data producer

continues its function.

Figure 5: Tightly coupled task-to-task communication using message queues.

In tightly coupled communication, as shown in Figure 5, task #1 sends data to task #2 using

message queue #2 and waits for confirmation to arrive at message queue #1. The data

communication is bidirectional. It is necessary to use a message queue for confirmations

because the confirmation should contain enough information in case task #1 needs to re-send

the data. Task #1 can send multiple messages to task #2, i.e., task #1 can continue sending

messages while waiting for confirmation to arrive on message queue #2.

Communication has several purposes, including the following:

 transferring data from one task to another,

 signaling the occurrences of events between tasks,

 allowing one task to control the execution of other tasks,

 synchronizing activities, and

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0092.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/1504_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/1505_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0092.html

CS T62 - EMBEDDED SYSTEMS 72

[VI SEM – CSE]

 implementing custom synchronization protocols for resource sharing.

 The first purpose of communication is for one task to transfer data to another task.

Between the tasks, there can exist data dependency, in which one task is the data

producer and another task is the data consumer. For example, consider a specialized

processing task that is waiting for data to arrive from message queues or pipes or from

shared memory. In this case, the data producer can be either an ISR or another task.

The consumer is the processing task. The data source can be an I/O device or another

task.

 The second purpose of communication is for one task to signal the occurrences of

events to another task. Either physical devices or other tasks can generate events. A

task or an ISR that is responsible for an event, such as an I/O event, or a set of events

can signal the occurrences of these events to other tasks. Data might or might not

accompany event signals. Consider, for example, a timer chip ISR that notifies

another task of the passing of a time tick.

 The third purpose of communication is for one task to control the execution of other

tasks. Tasks can have a master/slave relationship, known as process control . For

example, in a control system, a master task that has the full knowledge of the entire

running system controls individual subordinate tasks. Each subtask is responsible for

a component, such as various sensors of the control system. The master task sends

commands to the subordinate tasks to enable or disable sensors. In this scenario, data

flow can be either unidirectional or bidirectional if feedback is returned from the

subordinate tasks.

 The fourth purpose of communication is to synchronize activities. The computation

example given in 'Activity Synchronization' on page 233, section 15.2.2, shows that

when multiple tasks are waiting at the execution barrier, each task waits for a signal

from the last task that enters the barrier, so that each task can continue its own

execution. In this example, it is insufficient to notify the tasks that the final

computation has completed; additional information, such as the actual computation

results, must also be conveyed.

 The fifth purpose of communication is to implement additional synchronization

protocols for resource sharing. The tasks of a multithreaded program can implement

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0091.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0091.html

CS T62 - EMBEDDED SYSTEMS 73

[VI SEM – CSE]

custom, more-complex resource synchronization protocols on top of the system-

supplied synchronization primitives.

Semaphores

Introduction

Multiple concurrent threads of execution within an application must be able to

synchronize their execution and coordinate mutually exclusive access to shared resources. To

address these requirements, RTOS kernels provide a semaphore object and associated

semaphore management services.

This chapter discusses the following:

 Defining a semaphore,

 Typical semaphore operations, and

 Common semaphore use.

Defining Semaphores

A semaphore (sometimes called a semaphore token) is a kernel object that one or

more threads of execution can acquire or release for the purposes of synchronization or

mutual exclusion.

When a semaphore is first created, the kernel assigns to it an associated semaphore

control block (SCB), a unique ID, a value (binary or a count), and a task-waiting list, as

shown in Figure 1.

Figure 1: A semaphore, its associated parameters, and supporting data structures.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0037.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0601_0.jpg

CS T62 - EMBEDDED SYSTEMS 74

[VI SEM – CSE]

A semaphore is like a key that allows a task to carry out some operation or to access a

resource. If the task can acquire the semaphore, it can carry out the intended operation or

access the resource. A single semaphore can be acquired a finite number of times. In this

sense, acquiring a semaphore is like acquiring the duplicate of a key from an apartment

manager—when the apartment manager runs out of duplicates, the manager can give out no

more keys. Likewise, when a semaphore’s limit is reached, it can no longer be acquired until

someone gives a key back or releases the semaphore.

The kernel tracks the number of times a semaphore has been acquired or released by

maintaining a token count, which is initialized to a value when the semaphore is created. As a

task acquires the semaphore, the token count is decremented; as a task releases the semaphore,

the count is incremented.

If the token count reaches 0, the semaphore has no tokens left. A requesting task,

therefore, cannot acquire the semaphore, and the task blocks if it chooses to wait for the

semaphore to become available.

The task-waiting list tracks all tasks blocked while waiting on an unavailable

semaphore. These blocked tasks are kept in the task-waiting list in either first in/first out

(FIFO) order or highest priority first order.

When an unavailable semaphore becomes available, the kernel allows the first task in

the task-waiting list to acquire it. The kernel moves this unblocked task either to the running

state, if it is the highest priority task, or to the ready state, until it becomes the highest priority

task and is able to run. Note that the exact implementation of a task-waiting list can vary from

one kernel to another.

1. Binary Semaphores

A binary semaphore can have a value of either 0 or 1. When a binary semaphore’s

value is 0, the semaphore is considered unavailable (or empty); when the value is 1, the

binary semaphore is considered available (or full). Note that when a binary semaphore is

first created, it can be initialized to either available or unavailable (1 or 0, respectively). The

state diagram of a binary semaphore is shown in Figure 2.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0037.html

CS T62 - EMBEDDED SYSTEMS 75

[VI SEM – CSE]

Figure 2: The state diagram of a binary semaphore.

Binary semaphores are treated as global resources, which means they are shared

among all tasks that need them. Making the semaphore a global resource allows any task to

release it, even if the task did not initially acquire it.

2. Counting Semaphores

A counting semaphore uses a count to allow it to be acquired or released multiple

times. When creating a counting semaphore, assign the semaphore a count that denotes the

number of semaphore tokens it has initially. If the initial count is 0, the counting semaphore

is created in the unavailable state. If the count is greater than 0, the semaphore is created in

the available state, and the number of tokens it has equals its count, as shown in Figure 3.

Figure 3: The state diagram of a counting semaphore.

One or more tasks can continue to acquire a token from the counting semaphore until

no tokens are left. When all the tokens are gone, the count equals 0, and the counting

semaphore moves from the available state to the unavailable state. To move from the

unavailable state back to the available state, a semaphore token must be released by any task.

3. Mutual Exclusion (Mutex) Semaphores

A mutual exclusion (mutex) semaphore is a special binary semaphore that supports

ownership, recursive access, task deletion safety, and one or more protocols for avoiding

problems inherent to mutual exclusion. Figure 4 illustrates the state diagram of a mutex.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0602_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0037.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0603_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0037.html

CS T62 - EMBEDDED SYSTEMS 76

[VI SEM – CSE]

Figure 4: The state diagram of a mutual exclusion (mutex) semaphore.

A mutex is initially created in the unlocked state, in which it can be acquired by a task.

After being acquired, the mutex moves to the locked state. Conversely, when the task releases

the mutex, the mutex returns to the unlocked state. Note that some kernels might use the

terms lock and unlock for a mutex instead of acquire and release.

Depending on the implementation, a mutex can support additional features not found

in binary or counting semaphores. These key differentiating features include ownership,

recursive locking, task deletion safety, and priority inversion avoidance protocols.

Typical Semaphore Operations

Typical operations that developers might want to perform with the semaphores in an

application include:

 creating and deleting semaphores,

 acquiring and releasing semaphores,

 clearing a semaphore’s task-waiting list, and

 getting semaphore information.

1. Creating and Deleting Semaphores

Table 1 identifies the operations used to create and delete semaphores.

Table 1: Semaphore creation and deletion operations.

Operation Description

Create Creates a semaphore

Delete Deletes a semaphore

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0604_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0038.html

CS T62 - EMBEDDED SYSTEMS 77

[VI SEM – CSE]

Several things must be considered, however, when creating and deleting semaphores. If a

kernel supports different types of semaphores, different calls might be used for creating

binary, counting, and mutex semaphores, as follows:

 Binary—specify the initial semaphore state and the task-waiting order.

 Counting—specify the initial semaphore count and the task-waiting order.

 Mutex—specify the task-waiting order and enable task deletion safety, recursion, and

priority-inversion avoidance protocols, if supported.

Semaphores can be deleted from within any task by specifying their IDs and making

semaphore-deletion calls. Deleting a semaphore is not the same as releasing it. When a

semaphore is deleted, blocked tasks in its task-waiting list are unblocked and moved either to

the ready state or to the running state (if the unblocked task has the highest priority). Any

tasks, however, that try to acquire the deleted semaphore return with an error because the

semaphore no longer exists.

2. Acquiring and Releasing Semaphores

Table 2 identifies the operations used to acquire or release semaphores.

Table 2: Semaphore acquire and release operations.

Operation Description

Acquire Acquire a semaphore token

Release Release a semaphore token

The operations for acquiring and releasing a semaphore might have different names,

depending on the kernel: for example, take and give , sm_p and sm_v , pend and post ,

and lock and unlock . Regardless of the name, they all effectively acquire and release

semaphores.

Tasks typically make a request to acquire a semaphore in one of the following ways:

 Wait forever—task remains blocked until it is able to acquire a semaphore.

 Wait with a timeout—task remains blocked until it is able to acquire a semaphore or

until a set interval of time, called the timeout interval , passes. At this point, the task is

removed from the semaphore’s task-waiting list and put in either the ready state or the

running state.

 Do not wait—task makes a request to acquire a semaphore token, but, if one is not

available, the task does not block.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0038.html

CS T62 - EMBEDDED SYSTEMS 78

[VI SEM – CSE]

Typical Semaphore Use

Semaphores are useful either for synchronizing execution of multiple tasks or for

coordinating access to a shared resource. The following examples and general discussions

illustrate using different types of semaphores to address common synchronization design

requirements effectively, as listed:

 Wait-and-signal synchronization,

 Multiple-task wait-and-signal synchronization,

 Credit-tracking synchronization,

 Single shared-resource-access synchronization,

 Recursive shared-resource-access synchronization, and

 Multiple shared-resource-access synchronization.

Note that, for the sake of simplicity, not all uses of semaphores are listed here. Also, later

chapters of this book contain more advanced discussions on the different ways that mutex

semaphores can handle priority inversion.

1 Wait-and-Signal Synchronization

Two tasks can communicate for the purpose of synchronization without exchanging

data. For example, a binary semaphore can be used between two tasks to coordinate the

transfer of execution control, as shown in Figure 5.

Figure 5:Wait-and-signal synchronization between two tasks.

In this situation, the binary semaphore is initially unavailable (value

of 0). tWaitTask has higher priority and runs first. The task makes a request to acquire the

semaphore but is blocked because the semaphore is unavailable. This step gives the lower

priority tSignalTask a chance to run; at some point, tSignalTask releases the binary

semaphore and unblocks tWaitTask. The pseudo code for this scenario is shown in Listing 1.

2. Multiple-Task Wait-and-Signal Synchronization

When coordinating the synchronization of more than two tasks, use the flush

operation on the task-waiting list of a binary semaphore, as shown in Figure 6.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0605_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html

CS T62 - EMBEDDED SYSTEMS 79

[VI SEM – CSE]

Figure 6:Wait-and-signal synchronization between multiple tasks.

As in the previous case, the binary semaphore is initially unavailable (value of 0). The higher
priority tWaitTasks 1, 2, and 3 all do some processing; when they are done, they try to
acquire the unavailable semaphore and, as a result, block. This action gives tSignalTask a
chance to complete its processing and execute a flush command on the semaphore,
effectively unblocking the three tWaitTasks, as shown in Listing 2.

3. Credit-Tracking Synchronization

Sometimes the rate at which the signaling task executes is higher than that of the

signaled task. In this case, a mechanism is needed to count each signaling occurrence. The

counting semaphore provides just this facility. With a counting semaphore, the signaling task

can continue to execute and increment a count at its own pace, while the wait task, when

unblocked, executes at its own pace, as shown in Figure 7.

Figure 7: Credit-tracking synchronization between two tasks.

Again, the counting semaphore's count is initially 0, making it unavailable. The lower

priority tWaitTask tries to acquire this semaphore but blocks until tSignalTask makes the

semaphore available by performing a release on it. Even then, tWaitTask will waits in the

ready state until the higher priority tSignalTask eventually relinquishes the CPU by making a

blocking call or delaying itself, as shown in Listing 3.

4. Single Shared-Resource-Access Synchronization

One of the more common uses of semaphores is to provide for mutually exclusive

access to a shared resource. A shared resource might be a memory location, a data structure,

or an I/O device-essentially anything that might have to be shared between two or more

concurrent threads of execution. A semaphore can be used to serialize access to a shared

resource, as shown in Figure 8.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0606_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0607_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html

CS T62 - EMBEDDED SYSTEMS 80

[VI SEM – CSE]

Figure 8: Single shared-resource-access synchronization.

In this scenario, a binary semaphore is initially created in the available state (value = 1) and is
used to protect the shared resource.

5. Recursive Shared-Resource-Access Synchronization

Sometimes a developer might want a task to access a shared resource recursively.

This situation might exist if tAccessTask calls Routine A that calls Routine B, and all three

need access to the same shared resource, as shown in Figure 9.

Figure 9: Recursive shared- resource-access synchronization.

If a semaphore were used in this scenario, the task would end up blocking, causing a

deadlock. When a routine is called from a task, the routine effectively becomes a part of the

task. When Routine A runs, therefore, it is running as a part of tAccessTask. Routine A trying

to acquire the semaphore is effectively the same as tAccessTask trying to acquire the same

semaphore. In this case, tAccessTask would end up blocking while waiting for the

unavailable semaphore that it already has.

One solution to this situation is to use a recursive mutex. After tAccessTask locks the mutex,
the task owns it. Additional attempts from the task itself or from routines that it calls to lock
the mutex succeed. As a result, when Routines A and B attempt to lock the mutex, they
succeed without blocking.

6. Multiple Shared-Resource-Access Synchronization

For cases in which multiple equivalent shared resources are used, a counting

semaphore comes in handy, as shown in Figure 10.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0608_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0609_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html

CS T62 - EMBEDDED SYSTEMS 81

[VI SEM – CSE]

Figure 10: Single shared-resource-access synchronization.

Note that this scenario does not work if the shared resources are not equivalent. The counting
semaphore's count is initially set to the number of equivalent shared resources: in this
example, 2. As a result, the first two tasks requesting a semaphore token are successful.
However, the third task ends up blocking until one of the previous two tasks releases a
semaphore token, as shown in Listing 6. Note that similar code is used for tAccessTask
1, 2, and 3.

Message Queues

Introduction

Activity synchronization of two or more threads of execution. Such synchronization

helps tasks cooperate in order to produce an efficient real-time system. In many cases,

however, task activity synchronization alone does not yield a sufficiently responsive

application. Tasks must also be able to exchange messages. To facilitate inter-task data

communication, kernels provide a message queue object and message queue management

services.

This chapter discusses the following:

 Defining message queues,

 Message queue states,

 Message queue content,

 Typical message queue operations, and

 Typical message queue use.

Defining Message Queues

 A message queue is a buffer-like object through which tasks and ISRs send and

receive messages to communicate and synchornize with data. A message queue is like

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/06010_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html

CS T62 - EMBEDDED SYSTEMS 82

[VI SEM – CSE]

a pipeline. It temporarily holds messages from a sender until the intended receiver is

ready to read them. This temporary buffering decouples a sending and receiving task;

that is, it frees the tasks from having to send and receive messages simultaneously.

 A message queue has several associated components that the kernel uses to manage

the queue. When a message queue is first created, it is assigned an associated queue

control block (QCB), a message queue name, a unique ID, memory buffers, a queue

length, a maximum message length, and one or more task-waiting lists, as illustrated

in Figure 1.

Figure 1: A message queue, its associated parameters, and supporting data structures.

 It is the kernel’s job to assign a unique ID to a message queue and to create its QCB

and task-waiting list. The kernel also takes developer-supplied parameters—such as

the length of the queue and the maximum message length—to determine how much

memory is required for the message queue. After the kernel has this information, it

allocates memory for the message queue from either a pool of system memory or

some private memory space.

 The message queue itself consists of a number of elements, each of which can hold a

single message. The elements holding the first and last messages are called

the head and tail respectively. Some elements of the queue may be empty (not

containing a message). The total number of elements (empty or not) in the queue is

the total length of the queue . The developer specified the queue length when the

queue was created.

 As Figure 1 shows, a message queue has two associated task-waiting lists. The

receiving task-waiting list consists of tasks that wait on the queue when it is empty.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0042.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0701_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0042.html

CS T62 - EMBEDDED SYSTEMS 83

[VI SEM – CSE]

The sending list consists of tasks that wait on the queue when it is full. Empty and full

message-queue states, as well as other key concepts, are discussed in more detail next.

Message Queue States

 As with other kernel objects, message queues follow the logic of a simple FSM, as

shown in Figure 2 When a message queue is first created, the FSM is in the empty

state. If a task attempts to receive messages from this message queue while the queue

is empty, the task blocks and, if it chooses to, is held on the message queue's task-

waiting list, in either a FIFO or priority-based order.

Figure 2: The state diagram for a message queue.

 In this scenario, if another task sends a message to the message queue, the message is

delivered directly to the blocked task. The blocked task is then removed from the

task-waiting list and moved to either the ready or the running state. The message

queue in this case remains empty because it has successfully delivered the message.

 If another message is sent to the same message queue and no tasks are waiting in the

message queue's task-waiting list, the message queue's state becomes not empty.

 As additional messages arrive at the queue, the queue eventually fills up until it has

exhausted its free space. At this point, the number of messages in the queue is equal to

the queue's length, and the message queue's state becomes full. While a message

queue is in this state, any task sending messages to it will not be successful unless

some other task first requests a message from that queue, thus freeing a queue element.

 In some kernel implementations when a task attempts to send a message to a full

message queue, the sending function returns an error code to that task. Other kernel

implementations allow such a task to block, moving the blocked task into the sending

task-waiting list, which is separate from the receiving task-waiting list.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0043.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0702_0.jpg

CS T62 - EMBEDDED SYSTEMS 84

[VI SEM – CSE]

Figure 3:Message copying and memory use for sending and receiving messages.

Message Queue Content

Message queues can be used to send and receive a variety of data. Some examples include:

 a temperature value from a sensor,

 a bitmap to draw on a display,

 a text message to print to an LCD,

 a keyboard event, and

 a data packet to send over the network.

Some of these messages can be quite long and may exceed the maximum message length,

which is determined when the queue is created. (Maximum message length should not be

confused with total queue length, which is the total number of messages the queue can hold.)

One way to overcome the limit on message length is to send a pointer to the data, rather than

the data itself. Even if a long message might fit into the queue, it is sometimes better to send

a pointer instead in order to improve both performance and memory utilization.

When a task sends a message to another task, the message normally is copied twice, as

shown in Figure 3 The first time, the message is copied when the message is sent from the

sending task’s memory area to the message queue’s memory area. The second copy occurs

when the message is copied from the message queue’s memory area to the receiving task’s

memory area.

An exception to this situation is if the receiving task is already blocked waiting at the

message queue. Depending on a kernel’s implementation, the message might be copied just

once in this case—from the sending task’s memory area to the receiving task’s memory area,

bypassing the copy to the message queue’s memory area.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0703_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0043.html

CS T62 - EMBEDDED SYSTEMS 85

[VI SEM – CSE]

Because copying data can be expensive in terms of performance and memory

requirements, keep copying to a minimum in a real-time embedded system by keeping

messages small or, if that is not feasible, by using a pointer instead.

Message Queue Storage

Different kernels store message queues in different locations in memory. One kernel might
use a system pool, in which the messages of all queues are stored in one large shared area of
memory. Another kernel might use separate memory areas, called private buffers, for each
message queue.
Typical Message Queue Operations

Typical message queue operations include the following:

 creating and deleting message queues,

 sending and receiving messages, and

 obtaining message queue information.

1 Creating and Deleting Message Queues

Message queues can be created and deleted by using two simple calls, as shown in Table 1.

Table 1: Message queue creation and deletion operations.

Operation Description

Create Creates a message queue

Delete Deletes a message queue

When created, message queues are treated as global objects and are not owned by any

particular task. Typically, the queue to be used by each group of tasks or ISRs is assigned in

the design.

When creating a message queue, a developer needs to make some initial decisions

about the length of the message queue, the maximum size of the messages it can handle, and

the waiting order for tasks when they block on a message queue.

Deleting a message queue automatically unblocks waiting tasks. The blocking call in

each of these tasks returns with an error. Messages that were queued are lost when the queue

is deleted.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0046.html

CS T62 - EMBEDDED SYSTEMS 86

[VI SEM – CSE]

2 Sending and Receiving Messages

The most common uses for a message queue are sending and receiving messages.

These operations are performed in different ways, some of which are listed in Table 2 .

Table 2: Sending and receiving messages.

Operation Description

Send Sends a message to a message queue

Receive Receives a message from a message queue

Broadcast Broadcasts messages

Sending Messages

When sending messages, a kernel typically fills a message queue from head to tail in FIFO

order, as shown in Figure 4. Each new message is placed at the end of the queue.

Figure 4: Sending messages in FIFO or LIFO order.

Many message-queue implementations allow urgent messages to go straight to the head

of the queue. If all arriving messages are urgent, they all go to the head of the queue, and the

queuing order effectively becomes last-in/first-out (LIFO). Many message-queue

implementations also allow ISRs to send messages to a message queue. In any case, messages

are sent to a message queue in the following ways:

 not block (ISRs and tasks),

 block with a timeout (tasks only), and

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0046.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0046.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0704_0.jpg

CS T62 - EMBEDDED SYSTEMS 87

[VI SEM – CSE]

 block forever (tasks only).

At times, messages must be sent without blocking the sender. If a message queue is

already full, the send call returns with an error, and the task or ISR making the call continues

executing. This type of approach to sending messages is the only way to send messages from

ISRs, because ISRs cannot block.

Most times, however, the system should be designed so that a task will block if it

attempts to send a message to a queue that is full. Setting the task to block either forever or

for a specified timeout accomplishes this step. (Figure 5). The blocked task is placed in the

message queue’s task-waiting list, which is set up in either FIFO or priority-based order.

Figure 7.5: FIFO and priority-based task-waiting lists.

In the case of a task set to block forever when sending a message, the task blocks until

a message queue element becomes free (e.g., a receiving task takes a message out of the

queue). In the case of a task set to block for a specified time, the task is unblocked if either a

queue element becomes free or the timeout expires, in which case an error is returned.

Receiving Messages

As with sending messages, tasks can receive messages with different blocking

policies—the same way as they send them—with a policy of not blocking, blocking with a

timeout, or blocking forever. Note, however, that in this case, the blocking occurs due to the

message queue being empty, and the receiving tasks wait in either a FIFO or prioritybased

order. The diagram for the receiving tasks is similar to Figure 5, except that the blocked

receiving tasks are what fills the task list.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0046.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0705_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0046.html

CS T62 - EMBEDDED SYSTEMS 88

[VI SEM – CSE]

For the message queue to become full, either the receiving task list must be empty or

the rate at which messages are posted in the message queue must be greater than the rate at

which messages are removed. Only when the message queue is full does the task-waiting list

for sending tasks start to fill. Conversely, for the task-waiting list for receiving tasks to start

to fill, the message queue must be empty.

Messages can be read from the head of a message queue in two different ways:

 destructive read, and

 non-destructive read.

In a destructive read, when a task successfully receives a message from a queue, the task

permanently removes the message from the message queue’s storage buffer. In a non-

destructive read, a receiving task peeks at the message at the head of the queue without

removing it. Both ways of reading a message can be useful; however, not all kernel

implementations support the non-destructive read.

Some kernels support additional ways of sending and receiving messages. One way is the

example of peeking at a message. Other kernels allow broadcast messaging, explained later in

this chapter.

3 Obtaining Message Queue Information

Obtaining message queue information can be done from an application by using the

operations listed in Table 3.

Table 3: Obtaining message queue information operations.

Operation Description

Show queue info Gets information on a message queue

Show queue’s task-waiting list Gets a list of tasks in the queue’s task-waiting list

Different kernels allow developers to obtain different types of information about a

message queue, including the message queue ID, the queuing order used for blocked tasks

(FIFO or priority-based), and the number of messages queued. Some calls might even allow

developers to get a full list of messages that have been queued up.

As with other calls that get information about a particular kernel object, be careful

when using these calls. The information is dynamic and might have changed by the time it’s

viewed. These types of calls should only be used for debugging purposes.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0046.html

CS T62 - EMBEDDED SYSTEMS 89

[VI SEM – CSE]

Typical Message Queue Use

The following are typical ways to use message queues within an application:

 non-interlocked, one-way data communication,

 interlocked, one-way data communication,

 interlocked, two-way data communication, and

 broadcast communication.

Note that this is not an exhaustive list of the data communication patterns involving message

queues. The following sections discuss each of these simple cases.

1 Non-Interlocked, One-Way Data Communication

One of the simplest scenarios for message-based communications requires a sending

task (also called the message source), a message queue, and a receiving task (also called a

message sink), as illustrated in Figure 6.

Figure 6: Non-interlocked, one-way data communication.

This type of communication is also called non-interlocked (or loosely coupled), one-

way data communication. The activities of tSourceTask and tSinkTask are not

synchronized. TSourceTask simply sends a message; it does not require acknowledgement

from tSinkTask.

2. Interlocked, One-Way Data Communication

In some designs, a sending task might require a handshake (acknowledgement) that

the receiving task has been successful in receiving the message. This process is called

interlocked communication, in which the sending task sends a message and waits to see if the

message is received.

This requirement can be useful for reliable communications or task synchronization.

For example, if the message for some reason is not received correctly, the sending task can

resend it. Using interlocked communication can close a synchronization loop. To do so, you

can construct a continuous loop in which sending and receiving tasks operate in lockstep with

each other. An example of one-way, interlocked data communication is illustrated in Figure 7.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0047.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0706_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0047.html

CS T62 - EMBEDDED SYSTEMS 90

[VI SEM – CSE]

Figure 7: Interlocked, one-way data communication.

In this case, tSourceTask and tSinkTask use a binary semaphore initially set to 0 and a

message queue with a length of 1 (also called a mailbox). tSourceTask sends the message to

the message queue and blocks on the binary semaphore. tSinkTask receives the message and

increments the binary semaphore. The semaphore that has just been made available wakes

up tSourceTask. tSourceTask, which executes and posts another message into the message

queue, blocking again afterward on the binary semaphore.

3. Interlocked, Two-Way Data Communication

Sometimes data must flow bidirectionally between tasks, which is called interlocked,

two-way data communication (also called full-duplex or tightly coupled communication).

This form of communication can be useful when designing a client/server-based system. A

diagram is provided in Figure 8.

Figure 8: Interlocked, two-way data communication.

Two separate message queues are required for full-duplex communication. If any kind of data

needs to be exchanged, message queues are required; otherwise, a simple semaphore can be

used to synchronize acknowledgement.

4. Broadcast Communication

Some message-queue implementations allow developers to broadcast a copy of the

same message to multiple tasks, as shown in Figure 9.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0707_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0047.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0708_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0047.html

CS T62 - EMBEDDED SYSTEMS 91

[VI SEM – CSE]

Figure 9: Broadcasting messages.

Message broadcasting is a one-to-many-task relationship. tBroadcastTask sends the

message on which multiple tSink-Task are waiting.

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0709_0.jpg

	Barrel Shifter:
	Arithmetic Instructions:
	Using the Barrel Shifter with Arithmetic Instructi
	Logical Instructions:
	Comparison Instructions:
	The comparison instructions are used to compare o
	Multiply Instructions:
	Syntax: MLA{<cond>}{S} Rd, Rm, Rs, Rn MUL{<cond>}{
	The number of cycles taken to execute a multiply i
	A simple multiply instruction that multiplies regi
	Branch Instructions:
	A simple fragment of code that branches to a subro
	The branch exchange (BX) and branch exchange with

	Load-Store Instructions:
	Single-Register Transfer:
	These instructions are used for moving a single da
	r1.
	The ﬁrst instruction loads a word from the address
	Single-Register Load-Store Addressing Modes:
	The ARM instruction set provides different modes f
	Multiple-Register Transfer:
	Load-store multiple instructions can transfer mult
	The transfer occurs from a base address register R
	Multiple-register transfer instructions are more e
	Stack Operations:

	When handling a checked stack there are three attr
	Stack base
	Stack pointer
	Stack limit.
	a)The stack base is the starting address of the stac
	b)The stack pointer initially points to the stack ba
	c)The stack pointer descends memory and continuously
	Swap Instruction:

	Software Interrupt Instruction:
	Program Status Register Instructions:
	Conditional Execution:
	Thumb has higher code density—the space taken up

	ARM-Thumb Interworking:
	Other Branch Instructions:
	Data Processing Instructions:
	Single-Register Load-Store Instructions:
	Multiple-Register Load-Store Instructions:
	Stack Instructions:
	Software Interrupt Instruction:
	4.2Basic C Data Types
	4.3.Local Variable Types:
	Function Argument Types:
	Signed versus Unsigned Types:

	Function Calls:
	Pointers:
	Floating Point:
	Inline Functions and Inline Assembly:
	Instruction Scheduling:
	Register Allocation:
	Allocating Variables to Register Numbers:
	Making the Most of Available Registers:

	Conditional Execution:
	Introduction To Real-Time Operating Systems
	 Introduction
	A Brief History of Operating Systems
	In the early days of computing, developers created
	As the software industry progressed, operating sys
	Later in the decade, momentum started building for
	Some core functional similarities between a typica
	Some level of multitasking,
	Software and hardware resource management,
	Provision of underlying OS services to application
	Abstracting the hardware from the software applica
	On the other hand, some key functional differences
	Better reliability in embedded application context
	The ability to scale up or down to meet applicatio
	Faster performance,
	Reduced memory requirements,
	Scheduling policies tailored for real-time embedde
	Support for diskless embedded systems by allowing
	Better portability to different hardware platforms
	RTOSes, on the other hand, can meet these requirem
	Defining an RTOS
	The Scheduler
	1. Schedulable Entities
	2. Multitasking
	3. The Context Switch
	1.The Dispatcher
	4.Scheduling Algorithms
	Preemptive Priority-Based Scheduling
	Round-Robin Scheduling

	 Objects
	Services
	Key Characteristics of an RTOS
	1.Reliability
	2. Predictability
	3. Performance

	Tasks
	Introduction
	Defining a Task
	Task States and Scheduling
	1. Ready State
	2. Running State
	3. Blocked State

	Typical Task Operations
	1. Task Creation and Deletion
	2. Task Scheduling

	Typical Task Structure
	1 Run-to-Completion Tasks
	2. Endless-Loop Tasks

	Synchronization, Communication, and Concurrency

	Modularizing An Application For Concurrency
	Introduction

	Synchronization And Communication
	Introduction
	Synchronization
	Resource Synchronization

	Communication

	Semaphores
	 Introduction
	 Defining Semaphores
	1. Binary Semaphores
	2. Counting Semaphores
	3. Mutual Exclusion (Mutex) Semaphores

	Typical Semaphore Operations
	1. Creating and Deleting Semaphores
	2. Acquiring and Releasing Semaphores

	Typical Semaphore Use
	1 Wait-and-Signal Synchronization
	2. Multiple-Task Wait-and-Signal Synchronization
	3. Credit-Tracking Synchronization
	4. Single Shared-Resource-Access Synchronization
	5. Recursive Shared-Resource-Access Synchronizatio
	6. Multiple Shared-Resource-Access Synchronization

	Message Queues
	Introduction
	Message Queue States
	Message Queue Content
	Message Queue Storage
	Typical Message Queue Operations
	1 Creating and Deleting Message Queues
	2 Sending and Receiving Messages
	Sending Messages
	Receiving Messages

	3 Obtaining Message Queue Information

	Typical Message Queue Use
	1 Non-Interlocked, One-Way Data Communication
	2. Interlocked, One-Way Data Communication
	3. Interlocked, Two-Way Data Communication
	4. Broadcast Communication

