CS T62 - EMBEDDED SYSTEMS 1

VENKATESHWARAA

COLLEGE OF ENGINEERING & TECHNOLOGY

(Approved by AICTE, New Delhi & Affliated to Pondicherry University)
13-A Villupuram- Puducherry main road, Ariyur, Puducherry - 605 102
Phone: 0413-2644426, Fax — 2644424/ Website : www.svcetpondy.com

[SYLLABUS]

CS T62 - EMBEDDED SYSTEMS

UNIT I: Introduction to Embedded Systems - Processor in Embedded System -
Other Hardware Units in the Embedded System - Software Embedded into
a System - ARM Architecture: ARM Design Philosophy - Registers -
Program Status Register - Instruction Pipeline - Interrupts and Vector
Table - Architecture Revision - ARM Processor Families.

UNIT II: ARM Programming - Instruction Set - Data Processing Instructions -
Addressing Modes - Branch, Load, Store Instructions - PSR Instructions -
Conditional Instructions.

UNIT III: Thumb Instruction Set - Register Usage - Other Branch Instructions -
Data Processing Instructions - Single-Register and Multi Register Load-
Store Instructions - Stack - Software Interrupt Instructions

UNIT IV: ARM Programming using C: Simple C Programs using Function Calls -
Pointers — Structures - Integer and Floating Point Arithmetic - Assembly
Code is using Instruction Scheduling — Register Allocation - Conditional
Execution and Loops.

UNIT V: Real Time Operating Systems: Brief History of OS - Defining RTOS - The
Scheduler - Objects — Services - Characteristics of RTOS - Defining a Task
- Tasks States and Scheduling - Task Operations - Structure -
Synchronization - Communication and Concurrency. Defining
Semaphores - Operations and Use - Defining Message Queue - States —
Content — Storage - Operations and Use.

Textbooks:

1. Shibu K.V, Introduction to Embedded Systems, First Edition, McGraw Hill, 2009.

2. Andrew N. Sloss, Dominic Symes, Chris Wright, ARM Systems Developer’s
Guides- Designing & Optimizing System Software, Elsevier, 2008.

3. Qing Li, Real Time Concepts for Embedded Systems, Elsevier, 2011.

References:

1. Santanu Chattopadhyay, “Embedded System Design”, Second Edition, PHI, 2013.

2. Andrew N Sloss, D. Symes and C. Wright, “ARM System Developers Guide”,
Morgan Kaufmann / Elsevier, 2006.

3. Wayne Wolf, “Computer as Components: Principles of Embedded Computer
System Design”, Elsevier, 2006.

TOTAL PERIODS: 60

UNIT -1
[VI SEM - CSE]

CS T62 - EMBEDDED SYSTEMS 2

1.1 INTRODUCTION TO EMBEDDED SYSTEMS:

“An embedded system is a system that has embedded software and computer-hardware, which makes it
a system dedicated for an application(s) or specific part of an application or product or a part of a larger
system.”

An embedded system is a system that has three main components embedded into it:

1. Ttembeds hardware similar to a computer. Figure 1.1 shows the units in the hardware of an embedded
system. As its software usually embeds in the ROM or flash memary, it usually do not need a secondary
hard disk and CD memory as in a computer
It embeds main application software. The application software may concurrently perform a series of
tasks or processes or threads
3. It embeds a real-time operating system (RTOS) that supervises the application software running on

hardware and organizes access to a resource according to the priorities of tasks in the system. It
provides a mechanism to let the processor run a process as scheduled and context-switch between the
various processes, (The concept of process, thread and task explained later in Sections 7.1 to 7.3.) It
sets the rules during the execution of the application software, (A small-scale embedded system may
not embed the RTOS.)

!‘J

Input Devices

Interfacing/
Driver Circuits

—rre Ty |

Memory
Processor and Data

Interrupt Parallel |
Controller Ports |

" Outputs Interfacing/ |
‘ Driver Circuits '

&
System Application Specific Circuits

.| Power Supply, Reset and Oscillator Circuits
5
a
g

Fig. 1.1 The components of embedded system hardware

1.2 Challenges in Embedded Computing System Design:
[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 3

External constraints are one important source of difficulty in embedded system design.

» Hardware

» Deadlines

» Minimize power consumption
» Design for upgradability

» Reliability

Hardware:

To select the type of microprocessor used, but also select the amount of memory, the peripheral
devices, and more. Since often must meet both performance deadlines and manufacturing cost
constraints, the choice of hardware is important—too little hardware and the system fails to meet
its deadlines, too much hardware and it becomes too expensive.

Deadlines:

A deadline is to speed up the hardware so that the program runs faster. Of course, that makes the
system more expensive. It is also entirely possible that increasing the CPU clock rate may not
make enough difference to execution time, since the program’s speed may be limited by the
memory system.

Minimize power consumption:

In battery-powered applications, power consumption is extremely important. Even in no battery
applications, excessive power consumption can increase heat dissipation. One way to make a
digital system consume less power is to make it run more slowly, but naively slowing down the
system can obviously lead to missed deadlines.

Upgradability:

The hardware platform may be used over several product generations or for several different
versions of a product in the same generation, with few or no changes.

Reliability:

It is especially important in some applications, such as safety-critical systems. Another set of
challenges comes from the characteristics of the components and systems them- selves. If
workstation programming is like assembling a machine on a bench, then embedded system design
is often more like working on a car—cramped, delicate, and difficult.

1.3 Performance in Embedded Computing:

Embedded system designers, in contrast, have a very clear performance goal in mind—their
program must meet its deadline. At the heart of embedded computing is real-time computing, the
program receives its input data; the deadline is the time at which a computation must be finished.

CPU: The CPU clearly influences the behavior of the program, particularly when the CPU is a
pipelined processor with a cache.
Platform: The platform includes the bus and I/O devices. The platform components that surround
the CPU are responsible for feeding the CPU and can dramatically affect its
performance.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 4

Program: Programs are very large and the CPU sees only a small window of the program at a
time.
Task: Generally run several programs simultaneously on a CPU, creating a multitasking system.
The tasks interact with each other in ways that have profound implications for performance.
Multiprocessor: Many embedded systems have more than one processor— they may include
multiple programmable CPUs as well as accelerators. Once again, the
interaction between these processors adds yet more complexity to the analysis
of overall system performance.

1.3.1 EMBEDDED SYSTEM DESIGN PROCESS:

The design processes are only one axis along which we can view embedded system design. We
also need to consider the major goals of the design:

» Manufacturing cost
» Performance (both overall speed and deadlines); and
» Power Consumption.

1.3.2 REQUIREMENTS OF EMBEDDED SYSTEM DESIGN:

Performance: The speed of the system is often a major consideration both for the usability of the
system and for its ultimate cost. As we have noted, performance may be a
combination of soft performance metrics such as approximate time to perform a
user-level function and hard deadlines by which a particular operation must be
completed.

Cost: The target cost or purchase price for the system is almost always a consideration. Cost
typically has two major components: manufacturing cost includes the cost of components
and assembly; nonrecurring engineering (NRE) costs include the personnel and other
costs of designing the system.

Physical size and weight: The physical aspects of the final system can vary greatly depending
upon the application. An industrial control system for an assembly line
may be designed to fit into a standard-size rack with no strict
limitations on weight. A handheld device typically has tight
requirements on both size and weight that can ripple through the entire
system design.

Power consumption: Power, of course, is important in battery-powered systems and is often
important in other applications as well. Power can be specified in the
requirements stage in terms of battery life the customer is unlikely to be
able to describe the allowable wattage.

1.3.3 CHARACTERISTICS OF EMBEDDED SYSTEMS:

Speed (bytes/sec)

Power (watts)

Size (cm3) and weight (g)
Accuracy (% error)
Adaptability.

YVVVVY

An embedded system must perform the operations at a high speed so that it can be readily
used for real time applications and its power consumption must be very low and the size of
the system should be as for as possible small and the readings must be accurate with

minimum error.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 5

Software Issues: The important software issues related to the embedded system are

YV V. VVVYVY

fields.

mentioned below.

Software maintenance is extremely important.

Verification of proper operation,

Updates for the software in periodic intervals are very important.

Fixing the bugs in the software improves its efficiency and also a very important
factor.

Adding features, New features must be added to the software when ever they are
available

Extending to new applications, the software must be upgraded such that its
applicability increases for new application areas.

Change user configurations .This is an important factor to improve the popularity of

the software.

1.3.4 APPLICATIONS: Embedded systems find wide variety of applications in various

YV V.V V V V V V V V VYV V

Automobile

Aeronautics

Space

Rail Transport

Mobile communications

Industrial processing

Remote sensing , Radio and Networking

Robotics

Consumer electronics, music players, Computer applications
Security (e-commerce, smart cards)

Medical electronics (hospital equipment, and mobile monitoring) and

Defense application

1.3.5 Design Metrics:

>

Unit cost: the monetary cost of manufacturing each copy of the system, excluding

> NRE cost.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 6

» NRE cost (Non-Recurring Engineering cost): The monetary cost of designing the
system. Once the system is designed, any number of units can be manufactured
without incurring any additional design cost (hence the term “non-recurring”).

» Size: the physical space required by the system, often measured in bytes for
software, and gates or transistors for hardware.

» Performance: the execution time or throughput of the system.

» Power: the amount of power consumed by the system, which determines the
lifetime of a battery, or the cooling requirements of the IC, since more power
means more heat.

» Flexibility: the ability to change the functionality of the system without incurring
heavy NRE cost. Software is typically considered very flexible.

» Time-to-market: The amount of time required to design and manufacture the
system to the point the system can be sold to customers.

» Time-to-prototype: The amount of time to build a working version of the system,
which may be bigger or more expensive than the final system implementation, but
can be used to verify the system’s usefulness and correctness and to refine the
system's functionality.

» Correctness: our confidence that we have implemented the system’s functionality
correctly. We can check the functionality throughout the process of designing the
system, and we can insert test circuitry to check that manufacturing was correct.

» Safety: the probability that the system will not cause harm.

1.4 CLASSIFICATION OF EMBEDDED SYSTEMS:

» Based on generation

» Complexity and performance requirements
» Based on deterministic behavior

» Based on triggering

Based on generation:

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 7

1.4.1.]1 First Generation The early embedded systems were built around 8bit microprocessors
like 8085 and Z80, and 4bit microcontrollers. Simple in hardware circuits with firmware developed in
Assembly code. Digital telephone keypads, stepper motor control units etc. are examples of this.

1.4.1.2 Second Generation These are embedded systems built around 16bit microprocessors and
8 or 16 bit microcontrollers, following the first generation embedded systems. The instruction set for
the second generation processors/controllers were much more complex and powerful than the first gen-
eration processors/controllers. Some of the second generation embedded systems contained embedded
operating systems for their operation. Data Acquisition Systems, SCADA systems, etc, are examples of
second generation embedded systems.

1.4.1.3 Third Generation With advances in processor technology, embedded system developers
started making use of powerful 32bit processors and 16bit microcentrollers for their design. A new con-
cept of application and domain specific processors/controllers like Digital Signal Processors (DSP) and
Application Specific Integrated Circuits (ASICs) came into the picture. The instruction set of processors
became more complex and powerful and the concept of instruction pipelining also evolved. The proces-
sor market was flooded with different types of processors from different vendors. Processors like Intel
Pentium, Motorola 68K, etc. gained attention in high performance embedded requirements. Dedicated
embedded real time and general purpose operating systems entered into the embedded market. Embed-
ded systems spread its ground to areas like robotics, media, industrial process control, networking, etc.

1.4.1.4 Fourth Generation The advent of System on Chips (SoC), reconfigurable processors and
multicore processors are bringing high performance, tight integration and miniaturisation into the em-
bedded device market. The SoC technique implements a total system on a chip by integrating different
functionalities with a processor core on an integrated circuit. We will discuss about SoCs in a later chap-
ter. The fourth generation embedded systems are making use of high performance real time embedded
operating systems for their functioning. Smart phone devices, mobile internet devices (MIDs), etc. are
examples of fourth generation embedded systems.

Complexity and performance requirements:

1.4.2.1 Small-Scale Embedded Systems Embedded systems which are simple in application
needs and where the performance requirements are not time critical fall under this category. An elec-
tronic toy is a typical example of a small-scale embedded system. Small-scale embedded systems are
usually built around low performance and low cost 8 or 16 bit microprocessors/microcontrollers. A
small-scale embedded system may or may not contain an operating system for its functioning.

1.4.2.2 Medium-Scale Embedded Systems Embedded systems which are slightly complex
in hardware and firmware (software) requirements fall under this category. Medium-scale embedded

. systems are usually built around medium performance, low cost 16 or 32 bit microprocessors/microcon-
trollers or digital signal processors. They usually contain an embedded operating system (either general
purpose or real time operating system) for functioning.

1.4.2.3 Large-Scale Embedded Systems/Complex Systems Embedded systems which
involve highly complex hardware and firmware requirements fall under this category. They are em-
ployed in mission critical applications demanding high performance. Such systems are commonly built
around high performance 32 or 64 bit RISC processors/controllers or Reconfigurable System on Chip
(RSoC) or multi-core processors and programmable logic devices. They may contain multiple proces-
sors/controllers and co-units/hardware accelerators for offloading the processing requirements from the
main processor of the system. Decoding/encoding of media, cryptographic function implementation,
etc. are examples for processing requirements which can be implemented using a co-processor/hard-

ware accelerator. Complex embedded systems usually contain a high performance Real Time Operating
System (RTOS) for task scheduling, prioritization and management.

Embedded processor in a system:

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 8

Processor technology involves the architecture of the computation engine used to implement
a system’s desired functionality. While the term “processor” is usually associated with
programmable software processors. Each such processor differs in its specialization towards a
particular application (like a digital camera application), thus manifesting different design
metrics.

A processor has two essential units: Program Flow Control Unit (CU) and Execution Unit (EU). The CU
includes a fetch unit for fetching instructions from the memory. The EU has circuits that implement the
instructions pertaining to data transfer operations and data conversion from one form to another. The EU
includes the Arithmetic and Logical Unit (ALU) and also the circuits that execute instructions for a program

control task, say, halt, interrupt, or jump to another set of instructions. It can also execute instructions for a call
or branch to another program and for a call to a function.

A processor runs the cycles of fetch-and-execute. The instructions, defined in the processor instruction
set, are executed in the sequence that they are fetched from the memory. A processor is in the form of an
IC chip; alternatively, it could be in core form in an Application Specific Integrated Circuit (ASIC) or
System on Chip (SoC). Core means a part of the functional circuit on the Very Large Scale Integrated (VLSI)
chip.

Embedded systems are domain and application specific and are built around a central core. The core of
the embedded system falls into any one of the following categories:

1. General Purpose and Domain Specific Processors
1.1 Microprocessors

1.2 Microcontrollers

1.3 Digital Signal Processors

Application Specific Integrated Circuits (ASICs)
Programmable Logic Devices (PLDs)

. Commercial off-the-shelf Components (COTS)

Microprocessor

The CPU is a unit that centrally fetches and processes a set of general-purpose instructions. The CPU instruction
set includes instructions for data transfer operations, ALU operations, stack operations, 10 operations and

W

program control, sequencing and supervising operations. The general-purpose instruction set is always specific
to a specific CPU. Any CPU must possess the following basic functional units:
1. A control unit that fetches and controls the sequential processing of a given command or instruction
and communicates with the rest of the system.
2. An ALU that undertakes arithmetic and logical operations on bytes or words. It may be capable of
processing 8, 16, 32 or 64-bit words at an instant.

A microprocessor is a single VLSI chip that has a CPU and may also have some other units (e.g., caches,
floating point processing arithmetic unit, pipelining and superscaling units) that are additionally present and
that result in faster processing of instructions.

The earlier generation microprocessor’s fetch-and-execute cycle was guided by a clock frequency of the
order of ~4 MHz. Processors now operate at a clock frequency of 4 GHz and even have multiple cores. In
early 2002, it became possible to design Gbps (Giga bit per second) transceiver and encryption engines in a
few highly sophisticated embedded systems using processors that operate on GHz frequencies. A transceiver
is a transmitting cum receiving circuit that has appropriate processing and controls units, for example, for
controlling bus-collisions. An encryption engine is a system that encrypts the data to be transmitted on the
network.

Intel B0x86 (also referred as xB6) processors are the 32-bit successors of 8086. [The x here refers to an
8086 extended for 32 bits.] Examples of 32-bit processors in 80x86 series are Intel 80386, 80486 and Pentiums
(a new generation of 32- and 64-bit microprocessors is the classic Pentium series). IBM PCs use 80x86 series
and the embedded systems incorporated inside the PC for specific tasks (like graphic accelerator disk
controllers, network interface card) use these microprocessors.

High performance processors have pipeline and superscalar architecture, fast ALUs and Floating Point
Processing Units (FLPUs). [A pipeline architecture means that the instructions have between 3 and 9 stages.
Different instructions are at different stages of the pipeline at any given instance. A superscalar architecture
refers to two or more sets of instructions executing in parallel pipelines.]

Microcontroller
[VISEM — CSE]

CS T62 - EMBEDDED SYSTEMS

9

A microcontroller is an integrated chip that has processor, memory and several other hardware units in it;
these form the microcomputer part of the embedded system. Figure 1.2 shows the functional circuits present
(in solid boundary boxes) in a microcontroller. It also shows the application-specific units (in dashed boundary
boxes) in a specific version of a given microcontroller family.

A few of the latest microcontrollers also have dual core and high computational and superscalar processing
capabilities. Important microcontroller chips for embedded systems are 8051, 8051MX, 68HC11xx, HC12xx,
HC16xx, PIC 16F84 or 16C76, 16F876 and PIC18, microcontroller enhancements of ARMY/ARM7 from
ARM, Intel, Philips, Samsung and ST microelectronics.

Processor

DMA
Controller

Functional Circuits in a Chip or Core of Microcontroller (Microcomputer)

Internal

IO Ports
Control and
Interfaces/
Drivers

Serial UART
Communication
Port

Serial
Synchronous
Communication
Port

Application Specific Circuits in Specific Versions

PWM

Circuit

for

DIA

Flash/yROM
Internal External Memaries
RAM Interface
Timers and
Watchdog Timer
Interrupt
Controller
N
Converter |
Network " CAN |
Driver :
Stack | c, n'_'"“"‘_ '_
and

Interfaces

Single Purpose Processors

Modem

DTMF
Circuit

Single purpose processors used in embedded systems include:
1. Coprocessor (for example, for floating point processing).

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS

| SmallScaleEnmddodSystem 8!16'bﬂ“ﬂ'omfmﬂ.r

— l... - - E— —'——_.-————-—-—'

r p—

8051 family Jl : PIC16F8X | Hitachi H8

! L BBHC11xx

IS 1 T LT i)

e ——

l_ MadiumScaJeEmbeddodSysiem 16-bit Microcontroller y

e e

| 8051 MX i . PIC 16F876, PIC18 Hﬂachi DB4F2B23FA ‘ | 68HC12xx, 68HC16xx

| Large Scale Embedded System 32-bit Microcontroller |

i 8 e e e M s L | .
ARM family Cor‘tex-MB Atmel AT91 series, | Hitachi SH7045F | .
C16x/ST10 series, Philips LPC 2000 series,
Texas Instrument, TI TMS470R1B1M, SamsungSBCMBOX

s

9.

Graphics processor: An image consists of a number of pixels. For example, Quarter common intermediate
format—Quarter-CIF images have 144 x 176 (horizontal x-axis X vertical y-axis) pixels. Video frames
have 525 x 625 pixels. The video graphic adapter (VGA) format of e-mailing and web pages has
640 x 480 = 307,200 pixels. A separate graphics processor is required for functions such as, for example,
gaming, display from graphics memory buffers and to move (translate on screen) and rotate an image or its
segments.

Pixel coprocessor: High-resolution pictures have formats: 2592 x 1944 pixels = 5,038,848 pixels;
2592 x 1728 = 3.2 M: 2048 x 1536 =3 M and 1280 x 960 = 1 M. A pixel coprocessor is required in
digital cameras for displaying images directly or after operations such as rotate right, rotate-left, rotate-
up, rotate-down, shift to next, shift to previous.

Encryption engine: A suitable algorithm runs in this processor to encrypt data for secure transmission.

. Decryption engine: A suitable algorithm runs in this processor to decrypt the encrypted data at receiver’s

end.
A discrete cosine transformation (DCT) and inverse transformation (DCIT) processor is required in
speech and video processing.

. Protocol stack processor: A protocol stack, which has a number of header words, is prepared before an

application data is sent to a network. At the receiver’s end, the protocol stack is received and application
data is accepted accordingly. A TCP/IP protocol stack processor processes TCP/IP network data.

. Network processor: A network processor’s functions are to establish a connection, finish, send and

receive acknowledgements, send and receive retransmission requests and check and correct received
data frame errors. The network processor’s functions include all protocol stack-processing functions.
Accelerator (for example, Java codes accelerator). The accelerator is a coprocessor that accelerates
compumuons by taking advance actions that are just-in-time compilations of the next object in Java

10. CODEC (Coder and Decoder): A CODEC lsaptocessorcwcmtmalencodcsmputnddecodesﬂw

11.

12.

encoded information or bits or signals into a complete set of bits or original signal. Voice, speech,

JPEG CODEC: This is a processor for jpg compression and decompression. The Joint Photographic
Experts Group (JPEG) i1s an International Telecommunication Union for Telecom (ITU-T) and
International Standards Organisation (ISO) committee.

MPEG CODEC: The Motion Pictures Experts Group (MPEG) recommends CODEC standards for
video. MPEG3 CODEC is a processor for mp3 compression and decompression. MPEG 2 or 3 or 4
compression of audio/video data streams is done before storing or transmitting, and decompression is
done before retrieving or playing files. For MPEG compression and decompression algorithms, if
GPP-embedded software is run, then separate DSPs are required to achieve real-time processing.

Single-purpose processors — hardware:

10

A single-purpose processor is a digital circuit designed to execute exactly one
program. For example, consider the digital camera example of Figure 1.1. All of the
components other than the microcontroller are single-purpose processors. The JPEG codec,
for example, executes a single program that compresses and decompresses video frames. An

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 11

embedded system designer creates a single-purpose processor by designing a custom digital
circuit, as discussed in later chapters. Many people refer to this portion of the implementation
simply as the “hardware” portion (although even software requires a hardware processor on
which to run). Other common terms include coprocessor and accelerator.

Using a single-purpose processor in an embedded system results in several design
metric benefits and drawbacks, which are essentially the inverse of those for general-purpose
processors. Performance may be fast, size and power may be small, and unit-cost may be low
for large quantities, while design time and NRE costs may be high, flexibility is low, unit cost
may be high for small quantities, and performance may not match general-purpose processors
for some applications. For example, Figure 1.5(d) illustrates the use of a single-purpose
processor in our embedded system example, representing an exact fit of the desired
functionality, nothing more, nothing less. Figure 1.6(c) illustrates the architecture of such a
single-purpose processor for the example. Since the example counts from one to N, we add
an index register. The index register will be loaded with N, and will then count down to zero,
at which time it will assert a status line read by the controller. Since the example has only one
other value, we add only one register labeled total to the data path. Since the example’s only
arithmetic operation is addition, we add a single adder to the data path. Since the processor
only executes this one program, we hardwire the program directly into the control logic.

Application-specific processors:
Application Specific Integrated Circuit (ASIC) is a microchip designed to perform a specific or unique
application. It is used as replacement to conventional general purpose logic chips. It integrates several
functions into a single chip and there by reduces the system development cost. Most of the ASICs are
proprietary products. As a single chip, ASIC consumes a very small area in the total system and thereby
helps in the design of smaller systems with high capabilities/functionalities.

ASICs can be pre-fabricated for a special application or it can be custom fabricated by using the com-
ponents from a re-usable ‘building block’ library of components for a particular customer application.
ASIC based systems are profitable only for large volume commercial productions. Fabrication of ASICs
requires a non-refundable initial investment for the process technology and configuration expenses. This
investment is known as Non-Recurring Engineering Charge (NRE) and it is a one time investment.

If the Non-Recurring Engineering Charges (NRE) is borne by a third party and the Application
Specific Integrated Circuit (ASIC) is made openly available in the market, the ASIC is referred as
Application Specific Standard Product (ASSP). The ASSP is marketed to multiple customers just as a
general-purpose product is, but to a smaller number of customers since it is for a specific application.
“The ADE7760 Energy Metre ASIC developed by Analog Devices for Energy metreing applications is
a typical example for ASSP".

Advantages of PLD Programmable logic devices offer a number of important advantages over fixed
logic devices, including:

* PLDs offer customers much more flexibility during the design cycle because design iterations are
simply a matter of changing the programming file, and the results of design changes can be seen
immediately in working parts.

¢ PLDs do not require long lead times for prototypes or production parts—the PLDs are already on a
distributor’s shelf and ready for shipment.

¢ PLDs do not require customers to pay for large NRE costs and purchase expensive mask sets-PLD
suppliers incur those costs when they design their programmable devices and are able to amortize
those costs over the multi-year lifespan of a given line of PLDs.

¢ PLDs allow customers to order just the number of parts they need, when they need them, allowing
them to control inventory. Customers who use fixed logic devices often end up with excess inven-
tory which must be scrapped, or if demand for their product surges, they may be caught short of
parts and face production delays.

s PLDs can be reprogrammed even after a piece of equipment is shipped to a customer. In fact,
thanks to programmable logic devices, a number of equipment manufacturers now tout the ability
to add new features or upgrade products that already are in the field. To do this, they simply upload
a new programming file to the PLD, via the Intemnet, creating new hardware logic in the system.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 12

Commercial Off-the-Shelf Components (COTS)

A Commercial Off-the-Shelf (COTS) product is one which is used *as-is’. COTS products are designed
in such a way to provide easy integration and interoperability with existing system components. The
COTS component itself may be developed around a general purpose or domain specific processor or
an Application Specific Integrated circuit or a programmable logic device. Typical examples of COTS
hardware unit are remote controlled toy car control units including the RF circuitry part, high perfor-
mance, high frequency microwave electronics (2-200 GHz), high bandwidth analog-to-digital convert-
ers, devices and components for operation at very high temperatures, electro-optic IR imaging arrays,
UV/IR detectors, etc. The major advantage of using COTS is that they are readily available in the
market, are cheap and a developer can cut down his/her development time to a great extent. This in turn
reduces the time to market your embedded systems.

EMBEDDED HARDWARE UNITS:

Power Source:

Most systems have a power supply of their own. The Network Interface Card (NIC) and Graphic Accelerator are
examples of embedded systems that do not have their own power supply and connect to PC power-
supply lines. The supply has a specific operation range or a range of voltages. Various units in an
embedded system operate in one of the following four power ranges: 5.0 V+025V,33V+ 03V, 20V +02V
and 1.5V £0.2 V. There is generally an inverse relationship between propagation delay in the gates and operational
voltage. Therefore, the 5 V system processor and units are used in most high performance systems.

Certain systems do not have a power source of their own: they connect to external power supply or are
powered by the use of charge pumps (made up of a circuit of diode and capacitor that accumulate charge from
the bus signals through which they connect or network to the host or from wireless radiation). ~

Low voltage operations
1. In portable or hand-held devices such as a cellular phone [when compared to 5 V, a CMOS 2 V circuit
power dissipation reduces by one-sixth, ~ (2 V/5 V)2. This also increases the time intervals needed for
recharging a battery by a factor of six.].
2. In a system with smaller overall geometry, low voltage system processors and 1O circuits generate
lesser heat and thus can be packed into a smaller space.

Clock Oscillator Circuits:

The clock controls the time for executing an instruction. After the power supply, the clock is the basic unit of
a system. A processor needs a clock oscillator circuit. The clock controls the various clocking requirements of

the CPU, of the system timers and the CPU machine cycles. The machine cycles are for fetching codes and
data from memory and then decoding and executing them at the processor and for transferring the results to
memory.

Real Time Clock (RTC):

A timer circuit is suitably configured as the system-clock, which ticks and generates system interrupts
periodically; for example, 60 times in Is. The interrupt service routines then perform the required
operation,

A timer circuit is suitably configured as the real-time clock (RTC) that generates system interrupts periodically
for the schedulers, real-time programs and for periodic saving of time and date in the system.

The RTC or system timer is also used to obtain software-controlled delays and time-outs. An RTC functions
as driver for software timers (SWTs). [Sections 3.6 and 3.8

Microcontrollers also provide internal timer circuits for counting and timing devices.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 13

Reset Circuit:
Reset means that the processor begins the processing of instructions from a starting address. That address

is one that is set by default in the processor PC (or [P and CS in x86 processors) on a power-up. From that
address in memory, program-instructions are fetched following the reset of the processor. A program that is
reset and runs on a power-up can be one of the following: (i) A system program that executes from the
beginning. (ii) A system boot-up program. (iii) A system initialization program.

The reset circuit activates for a fixed period (a few clock cycles) and then deactivates. The processor
circuit keeps the reset pin active and then deactivates to let the program proceed from a default beginning
address. The reset pin or the internal reset signal, if connected to the other units (for example, the 10 interface
or the serial interface) in the system, is activated again by the processor; it becomes an outgoing pin to enforce
a reset state in other sister units of the system. On deactivation of the reset that succeeds the processor activation,

a program executes from a start-up address.

The watchdog timer is a timing device that resets the system after a predefined timeout. It is activated
within the first few clock cycles after power-up. It has a number of applications. In many embedded systems
reset by a watchdog timer is very essential because it helps in rescuing the system if a fault develops and the
program gets stuck. On restart, the system can function normally. Most microcontrollers have on-chip watchdog

Memory:

1. Internal RAM of 256 or 512 bytes in a microcontroller for registers, temporary data and stack.

2. Internal ROM/PROM/ E*PROM for about 4 kB to 64 kB of program (in the case of microcontrollers).

3. External RAM for the temporary data and stack (in most systems) or internal caches (in the case of
certain MiCroprocessors).

Various Forms of System Memory
| T | | | |
Internal RAM at Internal External Flash/ ROM/ Memory
RAM at System- Caches RAM EEPROM PROM Addresses
Micro- on- at Chip(s) at
Controller Chip Microprocessor e T R the System
or [Hold Copies External Ports
External of System and/or
RAM Memory Internal
pages]

4. Internal flash (in many systems the results of processing can be saved in nonvolatile memory: for example,
system status periodically and images, songs, or speeches after suitable format compression).

5. Memory stick (or card): video, images, songs, or speeches and large storage in digital camera and
mobile systems. Sony memory stick Micro (M2) is of size 15x12.5x1.2 mm and has a flash memory
of 2 GB. It has a data transfer rate of 160 Mbps (mega bit per second) and PRO-HG 480 Mbps and
120 Mbps write [since Dec. 2006.]

6. External ROM or PROM for embedding software (in almost all systems other than microcontroller-

based systems).

RAM memory buffers at ports.

Caches (in pipelined and superscalar microprocessors).

o~

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS

Interrupt Handler:

A timing device sends a time-out interrupt when a preset time elapses or sends a compare interrupt when the
present-time equals the preset time. Assume that data have to be transferred from a keyboard to a printer. A
port peripheral generates an interrupt on receiving the input data or when the transmitting buffer becomes
empty. Each action generates an interrupt. A system may possess a number of devices and the system processor
has to control and handle the requirements of each device by running an appropriate ISR (interrupt service
routine) for each. An mterrupis-handling mechanism must exist in each system to handle interrupts from
various processes and for handling multiple interrupts simultaneously pending for service. Chapter 4 describes
in detail the interrupts, ISRs. and their handling mechanisms in a system. Important points regarding the

interrupts and their handling by the program are as follows.
Certain sources are nol maskable and cannot be disabled. Some are assigned the highest priority
during processing.
The processor’s current program has to divert to a service routine to complete that task on the occurrence
of the interrupt. For example, if a key is pressed, then an ISR reads the key and stores the key value in
the processor memory address, If a sequence of keys is pressed, for instance in a mobile phone, then
an ISR reads the keys and also calls a task to dial the mobile number.
There is a programmable unit on-chip for the interrupt handling mechanism in a microcontroller.
The operating system is expected to control the handling of interrupts and running of routines for the
interrupts in a particular application. The system always gives priority to the ISRs over the tasks of an
application.

EMBEDDED SOFTWARE UNITS:

14

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 15

An embedded system processor executes software that is specific to a given application of that system. The
instruction codes and data in the final phase are placed in the ROM or flash memory for all the tasks that are
executed when the system runs. The software is also called ROM image. Why? Just as an image is a unique
sequence and arrangement of pixels, embedded software is also a unique placement and arrangement of bytes
for instructions and data.

Each code or datum is available only in the bits and bytes format. The system requires bytes at each
ROM address, according to the tasks being executed. A machine implementable sofiware file is therefore
like a table having in each rows the address and bytes. The bytes are saved at each address of the system
memory. The table has to be readied as a ROM image for the targeted hardware. Figure 1.5 shows the ROM
image in a system memory. The image consists of the boot up program, stacks address pointers, program
counter address pointers, application programs, ISRs, RTOS, input data and vector addresses.

pcaDOR |] [2Bytes for
. | Address from
2 Bytes for S | Where System
Address of R [atens
o """'“—SP-ADDR ;‘ “*-{Execution on
4 —_— Power Up
Reast | (Not Needed in
JADDRA) | 80x86,8051,80196,
oy Romsis)
Interrupt Service | .-~ __.ADDR-2 —
Routine Vector .- | Sl g?l:saf:r
Addresses of =~ ADDR3 PPYM—m—m—/—/ — — — T
28 ! Inputs for each
ytes each | AODRA PR |"19'¥UP‘
Bootup EE - Service Routine
Program } -----=====--==meect e -a =" 4+
Codes ADDR-6
ADDR-6
L S N Machine Specifi
igny ===l Toaw
ADDRS8 PF———3--—"" ‘Prograrn. ISR
e _and Task
Machine Codes ADDR-8
for Real Time
Operating [~ TTTTTTTTTT .
System (RTOS)
’ ADDR:AD ;. B
System ROM
Memory

Coding of Software in Machine Codes

During coding in this format, the programmer defines the addresses and the corresponding bytes or bits at
each address. In configuring some specific physical device or subsystem, machine code-based coding is used.
For example, in a transceiver, placing certain machine code and bits can configure it to transmit at specific
megabytes per second or gigabytes per second, using specific bus and networking protocols. Another example
is using certain codes for configuring a control register with the processor. During a specific code-section
processing, the register can be configured to enable or disable use of its internal cache. However, coding in
machine implementable codes is done only in specific situations because it is time consuming and the
programmer must first have to understand the processor instructions set and then memorize the instructions
and their machine codes. '

Software in Processor Specific Assembly Language

A program or a small specific part can be coded in assembly language using an assembler after understanding
the processor and its instruction set. Assembler is software used for developing codes in assembly.

Assembly language coding is extremely useful for configuring physical devices like ports, a line-display
interface, ADC and DAC and reading into or transmitting from a buffer. These codes are also called low-level
codes for the device driver functions. [Sections 1.4.7 and 4.2.4.] They are useful to run the processor or
device-specific features and provide an optimal coding solution.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 16

To make all the codes in assembly language may, however, be very time consuming. Full coding in assembly
may be done only for a few simple, small-scale systems, such as toys, automatic chocolate vending machines,
robots or data acquisition systems.

Figure 1.6 shows the process of converting an assembly language program into machine implementable
software file and then finally obtaining a ROM image file.

1. An assembler translates the assembly software into the machine codes using a step called assembling.

2. In the next step, called linking, a linker links these codes with the other codes required. Linking is
necessary because of the number of codes to be linked for the final binary file. For example, there are
the standard codes to program a delay task for which there is a reference in the assembly language
program. The codes for the delay must link with the assembled codes. The delay code is sequential
from a certain beginning address. The assembly software code is also sequential from a certain beginning
address. Both the codes have to be linked at the distinct addresses as well as at the available addresses
in the system. The linked file in binary for run on a computer is commonly known as an executable file
or simply an “.exe’ file. After linking, there has to be reallocation of the sequences of placing the codes
before actually placing the codes in memory.

Machine s | 8 Codes |
Specific | Assembler fo the gD ready for |
Assembly ; > Programs Locating
Language 1 at ﬁ ' at l
Program Various g‘ Various |
Addresses = | Addresses |
(] 2 |3 s
b z ;
From | Device
library U""_’_" Bm — (ROM)
| |
|
] |
Data B: -
ytes F :
‘ Embedded System
ROM Memory

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 17

3. In the next step, the loader program performs the task of reallocaring the codes after finding the
physical memory addresses available at a given instant. The loader is a part of the operating system
and places codes into the memory after reading the “.exe’ file. This step is necessary because the
available memory addresses may not start from 0x0000, and binary codes have to be loaded at different
addresses during the run. The loader finds the appropriate start address. In a computer, after the loader
loads into a section of RAM, the program is ready to run.

4. The final step of the system design process is locating these codes as a ROM image. The codes are
permanently placed at the addresses actually available in the ROM. In embedded systems, there is no
separate program to keep track of the available addresses at different times during the run, as in a computer.
In embedded systems, therefore, the next step instead of loader after linking is the use of a lecator,
which locates the IO tasks and hardware device driver codes at fixed addresses. Port and device addresses
are fixed for a given system as per the interfacing circuit between the system buses and ports or devices.
The locator program reallocates the linked file and creates a file for a permanent location of the codes in
a standard format. The file format may be in the Intel Hex file format or Motorola S-record format. The
designer has to define the available addresses to locate and create files to permanently locate the codes.

5. Lastly, either (i) a laboratory system, called device programmer, takes as input the ROM image file
and finally burns the image into the PROM or flash or (ii) at a foundry, a mask is created for the ROM
of the embedded system from the ROM image file. [The process of placing the codes in PROM or
flash is also called bumning.] The mask created from the image gives the ROM in IC chip form.

Software in High Level Language

Since the coding in assembly language is very time consuming in most cases, software is developed in a high-
level language, *C” or ‘C4++" or visual C4++ or ‘Java’ in most cases. ‘C’ is usually the preferred language. The
programmer needs to understand only the hardware organization when coding in high level language. As an
example, consider the following problem.

The coding for square root will need many lines of e
code and can be done only by an expert assembly Preprocessor Commands
language programmer. To write the program in a high

2) i e Main Function
level language is very simple compared to writing it in
assembly language. ‘C’ programs have a feature that Interrupt Service Routines
adds the assembly instructions when using certain Tasks 1. N

processor-specific features and coding for a specific

section, for example, a port device driver. Figure 1.7 Kernel and Scheduler

shows the different programming layers in a typical Standard Library
embedded ‘C" software. These layers are as follows. Functions Inciuding
(i) Processor Commands. (i) Main Function. HaSSK £ rosma
(iii) Interrupt Service Routine. (iv) Multiple tasks, say, Sending Stack and
1 to N. (v) Kernel and Scheduler. (vi) Standard library Receiving Stack

functions, protocol handling and stack functions.

Program Models for Software Designing

The program design task is simplified if a program is modeled.
The different models that are employed during the design processes of the embedded software are as follows:
1. Sequential Program Model
Object Oriented Program Model
Control and Data flow graph or Synchronous Data Flow (SDF) Graph or Multi Thread Graph (MTG) Model
Finite State Machine for data path
Multithreaded Model for concurrent processing of processes or threads or tasks
UML (Unwenal Modeling lanbuagel is a modeling language for object oriented programming.

A de e b

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 18

UNIT I

ARM Programming - Instruction Set - Data Processing Instructions Addressing
Modes - Branch, Load, Store Instructions - PSR Instructions - Conditional Instructions.

Data Processing Instructions:

The data processing instructions manipulate data within registers. They are move instructions,
arithmetic instructions, logical instructions, comparison instructions, and multiply instructions. Most
dataprocessinginstructionscanprocessoneoftheiroperandsusingthe barrel shifter.

Adata processing instruction, then it updates the flags in the cpsr. Move and logical operations update the
carry flag C, negative flag N, and zero flag Z. The carry flag is set from the result of the barrel shift as the last bit
shiftedout.

Move Instructions:

Move is the simplest ARM instruction. It copies N into a destination register Rd, where N is
a register or immediate value. This instruction is useful for setting initial values and transferring data
between registers.

Syntax: <instruction>{<cond>} {S} Rd, N

MO | Movea32-bit value into a register Rd=N
MV | move the NOT of the 32-bit valueintoa | Rd=~N

Example:

The MOV instruction takes the contents of register 5 and copies them into register 7, in this case,
takingthe value 5,and overwriting the value 8 inregisterr7.

PRE r5=5

r7=28

MOV r7,r5 ;letr7=r5
POST 15=5

r7=135

Barrel Shifter:

Data processing instructions are processed within the arithmetic logic unit (ALU).

» A unique and powerful feature of the ARM processor is the ability to shift the 32-bit binary
pattern in one of the source registers left or right by a specific number of positions before it
enters the ALU.

» This shift increases the power and flexibility of many data processing operations.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 19

Arithmetic Instructions:

The arithmetic instructions implement addition and subtraction of 32-bit signed and unsigned values.

ADC]| add two32-bitvalues and carry Rd=Rn+N+ carry
ADD) addtwo 32-bitvalues Rd=Rn+N

RSB reverse subtractoftwo 32-bitvalues | Rd=N—Rn

RSC| reversesubtractwithcarry oftwo32- | Rd =N —Rn—!(carry
SBC| subtract with carry oftwo 32-bit Rd=Rn—N-!(carry
SUB| subtract two 32-bit values Rd=Rn—N

Example:

Simple subtract instruction subtracts a value stored in register 72 from a value stored inregisterr/. The
resultis stored inregister r(.

PRE 10 =0x00000000
rl =0x00000002 r2 =
0x00000001
SUB 10, r1, 12

POST 10 =0x00000001

Using the Barrel Shifter with Arithmetic Instructions:

The wide range of second operand shifts available on arithmetic and logical instructions isavery
powerful feature ofthe ARM instruction set.

Example:

Register 7/ is first shifted one location to the left to give the value of twice r/. The ADD
instruction then adds the result of the barrel shift operation to register 7. The final result transferred into
register 0 is equal to three times the value stored inregister 1.

PRE r0 = 0x00000000
rl =0x00000005

ADD r0, r1, r1, LSL #1

POST r0=0x0000000f
rl =0x00000005

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 20

Logicallnstructions:

Logicalinstructions perform bitwise logical operations on the two source registers.

Syntax: <instruction>{<cond>} {S} Rd, Rn, N

AND | [ogical bitwise AND of two 32-bitf Rd=Rn&N
ORR | Jlogical bitwise OR of two 32-bit | Rd=Rn|N
EOR | Jlogical exclusive OR of two 32-bit| Rd=Rn/\N
BIC | logical bit clear (AND NOT) Rd=Rn&

Example:
A logcadlOR operation between registers 1 and 2. r() holdsthe result.

PRE 10 =0x00000000

rl =0x02040608
r2 =0x10305070
ORR 10, r1, r2

POST r0=0x12345678

Comparison Instructions:

The comparison instructions are used to compare or test a register with a 32-bit value. To
update the cpsr flag bits according to the result, but do not affect other registers. After the bits have
been set, the information can then be used to change program flow by using conditional execution.

Syntax: <instruction>{<cond>} Rn, N

CMN| compare negated flags setasaresultof Rn+
CMP| compare flagssetasaresult of Rn —
TEQ| testforequality oftwo32-bit | flagssetasaresultof Rn A
TST | testbitsofa32-bitvalue flags setasaresultof Rn &

Example:
A CMP comparison instruction both registers, 70 and r9, are equal before executing the instruction.
The value of the z flag prior to execution is 0 and is represented by a lowercase z. After execution the z
flag changesto 1 oranuppercase Z.

PRE cgsr =nzcvqiFt USER r0 = 4
=4

CMPr0, 19

POST cpsr=nZcvqiFt USER

The CMP is effectively a subtract instruction with the result discarded; similarly the TST
instruction is a logical AND operation, and TEQ1s a logical exclusive OR operation. Itis important
to understand that comparison instructions only modify the condition flags of the cpsr and do not affect
the registers being compared.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 21

Multiplv Instructions:

The multiply instructions multiply the contents of a pair of registers and, depending upon the
instruction, accumulate the results in with another register. The long multiplies accumulate onto a pair
of registers representing a 64-bit value. The final result is placed in a destination register or a pair of
registers.

Syntax: MLA {<cond>} {S} Rd, Rm, Rs, Rn MUL {<cond>} {S} Rd, Rm,

ML | multiply and Rd=(Rm*Rs)+
MU| multiply Rd =Rm*Rs

Thenumber of cycles taken to execute a multiply instruction depends on the processor implementation.

Example:

A simple multiply instruction that multiplies registers r/ and r2 together and places the result into register 0.
In this example, register r/ is equal to the value 2, and r2 is equal to 2. The result, 4, is then placed into
register r().
PR 10 =
E 0x00000000
rl =
MUL1O, r1, 12 ;r0=
po 10 =

ST ?1);00000004

0x00000002
2 =
0x00000002

Branch Instructions:

A branch instruction changes the flow of execution or is used to call a routine. The change of
execution flow forces the program counter pc to point to a new address. The ARMvSE instruction set
includes four different branch instructions.

Syntax: B {<cond>} label
BL{<cond>} label

BX{<cond>} Rm
BLX{<cond>} label |
Rm
B | branch pc =label
R c =label
BL branchwith link 71” =address of the next instruction after
the BL

BX | branch exchange pc=Rm & Oxfffffffe, 7=Rm & 1

pc=label, T=1
BLX \Elrie‘lﬁcllilnimhange pc=Rm & Oxfffffffe, T=Rm & 1

[r =address of the next instruction after
the mstructions.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 22

» The address label is stored in the instruction as a signed pc-relative offset and must be within
approximately 32 MB of the branch instruction. T'refers to the Thumb bit in the cpsr. When
instructions set 7, the ARM switches to Thumb state.

Example:

A simple fragment of code that branches to a subroutine using the BLinstruction. Toreturn froma
subroutine, copy the link register to the pc.

BL subroutine : branch to

CMP rl,#)5 ; compare rl with 5

MO, rl,#U S1f (r1==5) thenrl =
subroutine '

<subroutine code> _

MOV pc, Ir ; return by moving pc = Ir

The branch exchange (BX) and branch exchange with link (BLX) are the third type of branch
instruction. The BXinstruction uses an absolute address stored in register Rm.

IL.oad-Store Instructions:

Load-store instructions transfer data between memory and processor registers. There are three
types of load-store instructions: single-register transfer, multiple-register transfer, and swap.

Single-Register Transfer:

These instructions are used for moving a single data item in and out of a register. The data types
supportedaresigned andunsigned words (32-bit), half words (16-bit),and bytes.

Syntax: <LDR|STR> {<cond>} {B}
Rd,addressing
LDR{<corbd>} SB|H|SH Rd,
addressing« STR {<cond>}H Rd,
addressing2

LD | loadwordinto aregister | Rd<-
ST | savebyteorword froma | Rd->
LD | load byte into aregister Rd <-
ST | savebyte from aregister Rd ->

LDR | [oad halfword into aregister | Rd<-
STR | savehalfwordintoaregister | Rd->

LDR | loadsigned byte intoa Rd <-

SB | resister CionEvtond
LDR | loadsigned halfwordintoa | Rd <-

SH | register SignExtend

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 23

Example:

LDR and STR instructions can load and store data on a boundary alignment that is the same as the
datatype size being loaded or stored. For example, LDR can only load 32-bit words on a memory
address that is a multiple of four bytes—0, 4, 8, and so on. Load from a memory address contained in
registerr/, followed by astore back to the same address in memory.

load register rO with the contents of
the memory address pointed to by register

rl.
LDR 10, [r1] ;=LDR 0, [rl, #0]
store the contents of register r0 to
the memory address pointed to by

register rl.
STR 10, [r1] ;=STR 10, [rl, #0]

» Thefirstinstruction loads a word from the address stored in register #/ and places it into register
r(). The second instruction goes the other way by storing the contents of register 0 to the
address contained in register 1. The offset from register 7/ is zero. Register 1 is called the base
address register.

Single-Register L.oad-Store Addressing Modes:

The ARM instruction set provides different modes for addressing memory. These modes incorporate
oneoftheindexingmethods: preindex withwrite back, preindex,andpost index.

Single-register load-store addressing, word or unsigned byte.

Addressing1 mode and index method Addressing1 syntax

Preindex with immediate offset [Rn, #+/-offset 12]

Preindex withregister offset [Rn, +/-Rm]

Preindex withscaled register offset [Rn, +/-Rm, shift #shift imm]
Preindex writeback withimmediate offset [Rn, #+/-offset 12]!

Preindex writeback withregisteroffset [Rn, +/-Rm]!

Preindex writeback with scaled register offset ~ [Rn, +/-Rm, shift #shift imm]!
Immediate postindexed [Rn], #+/-offset 12

Register postindex [Rn], +/-Rm

Scaled register postindex [Rn], +/-Rm, shift #shift imm

» Asigned offset or register is denoted by “+/-", identifying that it is either a positive or negative
offset from the base address register Rn. The base address register is a pointer to a byte in
memory, and the offset specifies anumber of bytes.

» Immediate means the address is calculated using the base address register and a 12-bit offset
encoded in the instruction. Register means the address is calculated using the base address
register and a specific register’s contents. Scaled means the address is calculated using the base

address register and a barrel shift operation.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 24

Multiple-Register Transfer:

» Load-store multiple instructions can transfer multiple registers between memory and the
processor in a single instruction.

\%4

The transfer occurs from a base address register Rn pointing into memory.

A\

Multiple-register transfer instructions are more efficient from single-register transfers for
moving blocks of data around memory and saving and restoring context and stacks.

» Load-storemultipleinstructions canincrease interrupts latency.

» An ARM7 aload multiple instruction takes 2 + Nt cycles, where N is the number of registers to
load and ¢is the number of cycles required for each sequential access to memory.

» Ifan interrupt has been raised, then it has no effect until the load-store multiple instruction is
complete.

Syntax: <LDM|STM>{<cond>}<addressing mode> Rn{!} ,<registers>{"}

LD load multiple RAV*N <. mem32[start address + 4*N] optional
ST| save multiple (RAVN > mem32[start address +4*N] optional

Any subset of the current bank of registers can be transferred to memory or fetched from memory.
Thebaseregister Rn determines the source or destination address foraload- store multiple instruction.

Stack Operations:

» The ARM architecture uses the load-store multiple instructions to carry out stack
operations.

» Thepop operation (removing datafromastack) uses aload multiple instruction; similarly, the push
operation (placing dataontothe stack)usesastore multiple instruction.

» Astackiseither ascending (A) or descending (D). Ascending stacks grow towards higher
memory addresses; in contrast, descending stacks grow towards lower memory addresses.

» Afull stack (F), the stack pointer sp points to an address that is the last used or full location (i.e.,
sp points to the last item on the stack).

» An empty stack (E) the sp points to an address that is the first unused or empty location (i.e., it
points after the lastitem on the stack).

A numbers ofload-store multipleaddressing mode aliases available to support stack operations:

ARM has specified an ARM-Thumb Procedure Call Standard (ATPCS) that defines how
routines are called and how registers are allocated. In the ATPCS, stacks are defined as being full
descending stacks. LDMFDand STMFD instructions provide the pop and push functions, respectively.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 25

Addressing methods for stack operations.

Addressingmode Description Pop = Push =

FA full ascending LDMF LDM STMF STM
FD full descending LDMF LDMI SIMF SIM
EA empty ascendmg DM LDM ~ STME STM
ED empty descending EQM EBMI STME 1S\l/;M

Example:

Apush operation on an empty stack using the STMED instruction. The STMED instruction pushes the
registers onto the stack but updates register sp to point to the next empty location.

PRE rl = 0x00000002
r4 = 0x00000003 sp =
0x00080010
STMED sp!, {rl,r4}

POST rl =0x00000002
r4 = 0x00000003
sp = 0x00080008

Whenhandlingachecked stack there are three attributes thatneed to be preserved:
» Stackbase
» Stackpointer
» Sacklimit.

a) Thestackbaseisthestartingaddressofthe stackinmemory.
b) Thestack pointerinitially points to the stack base; as data is pushed onto the stack
c) Thestack pointer descends memory and continuously points to the top of stack.

Swap Instruction:

The swap instruction is a special case of a load-store instruction. It swaps the contents of
memory with the contents of a register. This instruction is an atomic operation it reads and writes a
location in the same bus operation, preventing any other instruction from reading or writing to that
location until it completes.

Syntax: SWP{B} {<cond>} Rd,Rm,[Rn]

swap aword between memory tmp =
SWP | andaregister mem32[Rn]
mem32[Rn]
swap abyte betweenmemory and | tmp =
SWPB | aregister mem8[Rn]
mem8[Rn] =

Theswapinstructionloadsaword frommemory intoregister 70 and overwrites thememory with register
rl.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 26

Example:

A simple data guard that can be used to protect data from being written by another task. The SWP
instruction “holds the bus” until the transaction is complete.

spin

MOV 1, =semaphore MOV 2, #1

SWP 13,12, [r1] ; hold the bus until complete CMP 13, #1
BEQ spin

Software Interrupt Instruction:

A software interrupt instruction (SWI) causes a software interrupt exception, which provides a
mechanism forapplicationstocall operating system routines.

Syntax: SWI{<cond>} SWI number

software Ir_sve=address of instruction following
: the SWI
SWI nterrupt SPSF_Sve = cps¥

pc=vectors+0x8
cpsr mode=SVC

» When the processor executes an SWlinstruction, it sets the program counter pc to the offset
0x8in the vector table.

» The instruction also forces the processor mode to SVC, which allows an operating system
routine to be called in a privileged mode.

» Each SWI instruction has an associated SWI number, which is used to represent a
particular function call or feature.

Example:
A simple example of an SWlcall with SWInumber 0x123456, used by ARM toolkits as a
debugging SWI. The SWlinstruction is executed in user mode.

PRE cpsr=nzcVqift USER pc =
0x00008000
Ir = 0x003ffttt; Ir =r14 r0 = 0x12

0x00008000 SWI 0x123456

POSTcpsr = nzeVqlft SVC spsr =
nzcVqift USER pc =
0x00000008
Ir = 0x00008004
r0 = 0x12

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 27

Program Status Register Instructions:

» The ARM instruction set provides two instructions to directly control a program status
register (psr). The MRS instruction transfers the contents of either the cpsr or spsr into a
register; in the reverse direction, the MSRinstruction transfers the contents of a register into the
CPST OT SpST.

» These instructions are used to read and write the cpsr and spsr.

> In the syntax a label called fields. This can be any combination of control (c), extension (x),
status(s),andflags (f). These fieldsrelate to particular byteregionsin a psr,

Syntax: MRS {<cond>} Rd,<cpsrt|spsr>

MSR {<cond>} <cpsr|spsr>_<fields>Rm
MSR {<cond>} <cpsr|spsr>_<fields> #immediate

Conditional Execution:

» ARM instructions are conditionally executed and the instruction only executes if the
condition code flags pass a given condition or test.

» The condition field is a two-letter mnemonic appended to the instruction mnemonic.
Thedefaultmnemonicis AL, oralways execute.

Conditional execution reduces the number of branches, which also reduces the number of
pipeline flushes and thus improves the performance of the executed code.

» Conditional execution depends upon two components: the condition field and condition
flags.

Example::

An ADDinstruction with the EQcondition appended. This instruction will only be executed when the
zeroflaginthe cpsrissetto 1.

; 10 =11 + 12 if zero flag is set ADDEQ 10, r1, 12

Only comparison instructions and data processing instructions with the Ssuffix appended to the
mnemonic update the condition flags in the cpsr.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 28

UNIT — 1T

Thumb Instruction Set - Register Usage - Other Branch Instructions - Data Processing
Instructions - Single-Register and Multi Register Load-Store Instructions - Stack -
Software Interrupt Instructions

Thumb Instruction

Thumb encodes a subset of the 32-bit ARM instructions into a 16-bit instruction set space. Since
Thumb has higher performance than ARM on a processor with a 16-bit data bus, but lower
performance than ARM on a32-bitdatabus,use Thumb for memory-constrained systems.

Thumb has higher code density—the space taken up in memory by an executable program
than ARM. The Thumb implementation uses more instructions; the overall memory footprint is reduced.

Mnemonic THUMB Description

ADC v] aggtwo §2 bltvalues and carrv

ADD vl two 32-bitvalues

AND vl logical bitwise AND of two 32-bit values

ASR vl arithmetic shift right

B vl branch relative

BIC vl logical bitclear (AND NOT) of two 32-bit values
BKPT v2 breakpoint instructions

BL vl relativebranchwithlink

BLX v2 branchwithlinkand exchange

BX vl branch with exchange

CMN vl comparenegative two 32-bit values

CMP vl compare two 32-bitintegers

EOR vl logical exclusive OR of two 32-bit values

LDM vl load multiple 32-bit words from memory to ARM
LDR vl load a single value from a virtual address in memory
LSL vl logical shiftleft

LSR vl logical shiftright

MOV vl move a32-bitvalue into aregister

MUL vl multiply two 32-bitvalues

MVN vl move the logical NOT of 32-bit value into a register
NEG vl negate a 32-bit value

ORR vl logical bitwise OR of two 32-bit values

POP vl popsmultipleregisters from the stack

PUSH vl pushes multiple registers to the stack

ROR vl rotaterighta 32-bitvalue

SBC vl subtract with carry a 32-bit value

STM vl store multiple 32-bitregisters tomemory

STR vl store register to a virtual address in memory

SUB vl subtract two 32-bit values

SWI vl software interrupt

ST vl testbitsofa32-bitvalue

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS

Thumb Register Usage:

29

» InThumb state, do not have direct access to all registers. Only the low registers 0 to r7 are

fully accessible, is shown in Table. The higher registers 8 to 712 are only accessible with
MOV, ADD, or CMPinstructions.

» CMPand all the data processing instructions that operate on low registers update the condition

flagsinthe cpsr.

Thumbregisterusage:
Registers Access
r0-r7 fully accessible
r8-rl2 onlyaccessiblebyMOV,ADD,and CMP
ri3sp limited accessibility
rl4lr limited accessibility
rl5pe limited accessibility
cpsr only indirect access
Spsr no access

» Thumb instruction set list and from the Thumb register usage table that there is no direct access
to the cpsr or spsr. In other words, there are no MSR- and MRS-equivalent Thumb instructions.

» Toalter the cpsr or spsr, you must switch into ARM state to use MSRand MRS.

» Therearenocoprocessor instructions in Thumb state.

» hARMstatetoaccess the coprocessor for configuring cache and memory management.

ARM-Thumb Interworking:

» ARM-Thumb interworking is the name given to the method of linking ARM and Thumb
code together for both assembly and C/C++.

» It handles the transition between the two states. Extra code, called a veneer, is sometimes
needed to carry out the transition. ATPCS defines the ARM and Thumb procedure call standards.

» To call a Thumb routine from an ARM routine, the core has to change state. This state change in

the T'bitof the cpsr.

» The BX and BLX branch instructions cause a switch between ARM and Thumb state while

branching to aroutine.

» The BXIrinstructionreturns fromaroutine, also with astate switchifnecessary.

There are two versions of the BX or BLX instructions: an ARM instruction and a Thumb

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 30

equivalent. The ARM BXinstruction enters Thumb state only if bit 0 of the address in Rn is set to
binary 1; otherwise it enters ARM state. The Thumb BXinstruction does the same.

Syntax: BX Rm

BLX Rm | label
BX Thumb version branch pc =Rn & Oxftfftffe
exchange T'=Rn[0]
Thumb version of the branch Ir = (instruction address after the
1 BLX)+1
BLx | ¢xchange withlink pc=label, T=0
pc =Rm & Oxfffftffe, 7=
Rm[0]

Example:

Replacing the BXinstruction with BLXsimplifies the calling of a Thumb routine since it sets the return
addressinthe link register /r:

CODE32
LDR r0,=thumbRoutine+1 ; enter Thumb state BLX
10 ; jump to Thumb code

; continue here

Other Branch Instructions:

» There are two variations of the standard branch instruction, or B.

» The first is similar to the ARM version and is conditionally executed; the branch range is
limited to a signed 8-bit immediate, or—256 to +254 bytes.

» The second version removes the conditional part of the instruction and expands the effective
branchrangetoasigned 11-bitimmediate, or—2048 to+2046bytes.

The conditional branch instruction is the only conditionally executed instruction in Thumb state.

Syntax: B<cond>
label B label
BL label

B | branch pc = label

1 | pe = label
BL Eﬁlc}l with Ir = (instruction address after the

BL)+1

» TheBLinstructionisnotconditionally executed and has anapproximaterange of+/—4 MB.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 31

» This range is possible because BL (and BLX) instructions are translated into a pair of 16-bit
Thumb instructions.

» The firstinstruction in the pair holds the high part of the branch offset, and the second the low
part. These instructions mustbe used as a pair.

The various instructions used to return from a BLsubroutine call:

MOV pc, Ir

BX Ir

POP {pc}

Data Processing Instructions:

» The data processing instructions manipulate data within registers.

» They include move instructions, arithmetic instructions, shifts, logical instructions, comparison
instructions, and multiply instructions.

» TheThumbdataprocessinginstructionsareasubsetofthe ARM data processing instructions.

Syntax:

<ADCJADD|AND|BIC|JEORMOV|MUL|MVN|NEG|ORR|SBC|SUB> Rd, Rm

ADC| addtwo32-bitvaluesand | Rd = Rd + Rm + C flag
add two 32-bitvalues Rd = Rn +
immediate Rd

= Rd +

ADD immediate
Rd=Rd+Rm

Rd=Rd + Rm
Rd = (pc & Oxfffffffc) +
(immediate «2)

logical bitwise AND of | Rd= Rd & Rm
two 32-bit values
arithmetic shift right Rd= Rm »
immediate,

C flag =
ASR Rm[immediate
— 1]

Rd= Rd » Rs,
C flag =

AND

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS

32

logical bit clear (AND | Rd&= Rd AND
BIC | NOT) of two 32-bit | NOT(Rm)
values
compare negativetwo | Rn + Rm
CMN 32-bit values sets
compare two 32-bit Rn -
CMP | integers immediate sets
flags Rn — Rm
EOR logical e).(cluswe OR of | Rd= Rd EOR
two 32-bit values Rm
logical shift left Rd= Rm «
immediate,
C flag =
LSL Rm[32 _
immediate]
Rd= Rd « Rs,
/Al Ao —
logical shift right Rd= Rm »
immediate,
C flag =
LSR Rd[immediate
—]]
Rd= Rd » Rs,
/Al Ao —
move a 32-bit value into | Rd =
MOV | A register immediate
Rd= Rn
MUL multiply two 32-bit Rd = (Rm *
values Rd)[31:0]
move the logical NOT | Rd =
MVN of a32-bit value intoa | NOT(Rm)
NEG | negate a 32-bit value Rd=0—-Rm
ORR logical b1_tw1se ORof | Rd= Rd OR
two 32-bit values Rm
rotate right a 32-bit Rd=Rd
value RIGHT ROTA
ROR TE Rs,
C flag =
Rd[Rs—1]

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 33

SBC subtract with carry a 32-| Rd= Rd — Rm
bit value — NOT(C flag)
subtract two 32-bit Rd= Rn -
values immediate

Rd= Rd -
SUB . .
immediate
Rd= Rn — Rm
sp= sp -

TST test bits of a 32-bit value| Rn ANlt) Rm

sets

Thumb data processing instructions operate on low registers and update the cpsr. The exceptions are

MOV Rd,Rn

ADD Rd,Rm

CMP Rn,Rm

ADD sp, #immediate
SUB sp, #immediate
ADD Rd,sp,#immediate
ADD Rd,pc,#immediate

which can operate on the higher registers r8—r14 and the pc. These instructions, except for CMP, do not
update the condition flags in the cpsr when using the higher registers. The CMP instruction, however,
always updates the cpsr.

Example:

A simple Thumb ADD instruction. It takes two low registers r/ and r2 and adds them together. The
result is then placed into register r(), overwriting the original contents. The cpsr is also updated.

PRE cpsr=nzcvIFT SVCrl =
0x80000000
r2 = 0x10000000

ADD 10, rl, 12

POST r0=0x90000000
cpsr=NzcvIFT SVC

Single-Register L.oad-Store Instructions:

The Thumb instruction set supports load and storing registers, or LDR and STR. These
instructions use two preindexed addressing modes: offset by register and offset by immediate.

Syntax: <LDR|STR>{<B|H>} Rd,
[Rn,#immediate] LDR {<H|SB|SH>}
Rd,[Rn,Rm]

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 34

STR{<B|H>} Rd,[Rn,Rm]
LDR Rd,[pc,#immediate]
<LDR|STR>Rd,[sp,#immediate]

LDR| load word into a register Rd <- mem32[address]
STR | save word from a register Rd -> mem32[address]
LDR| Joadbyte into aregister Rd <- mem8[address]
STR| savebyte from aregister Rd -> mem8[address]

LDR| Joadhalfwordinto aregister | Rd <- memli6[address]
STR| savehalfwordintoaregister | Rd -> mem16[address]
LDR| |oadsignedbyteinto aregister | Rd <-
LDR| Joad signed halfword intoa Rd <-

Different Addressing Modes:

Load/store register [Rn, Rm]
Baseregister+offset |Rn, #immediate|

Relative [pclsp,
#immediate|]

» Theoffsetbyregisteruses a base register Rn plus the register offset Rm.

» The second uses the same base register Rn plus a 5-bit immediate or a value dependent on the
data size.

» The 5-bit offset encoded in the instruction is multiplied by one for byte accesses, two for 16-bit
accesses, and four for 32-bit accesses.

Multiple-Register L.oad-Store Instructions:

The Thumb versions of the load-store multiple instructions are reduced forms of the
ARM load-store multiple instructions. They only support the increment after (IA) addressing mode.

Syntax : <LDM|STM>IA Rn!, {low Register list}

LD | load multiple iRd} $N*<' mem32[Rn+4*N], Rn
MIA| registers =Rn+4"N
¥ %
STM| save multiple {Rd}™™ ->mem32[Rn +4*N], Rn
‘ “Rn +4*N
IA | registers

N is the number of registers in the list of registers. These instructions always update the base register Rn
after execution. The base register and list of registers are limited to the low registers () to r7.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 35

Stack Instructions:

The Thumb stack operations are different from the equivalent ARM instructions because they use the
more traditional POPand PUSH concept.

Syntax: POP {low register list{, pc}}
PUSH {low register list{, Ir}}

popregisters from the Rd*N <-mem32[sp+4*N], sp=
POP | stacks sp+4*N

pushregisters onto the Rd*N ->mem32[sp+4*N], sp=

PUSH stack sp—4*N

» The stack pointer is fixed as register #/3 in Thumb operations and sp is automatically updated. The
listof registers is limited to the low registers r0) to r7.

» The PUSHregister list also can include the link register /r; similarly the POPregister list can
include the pc.

Example:

The POP and PUSHinstructions. The subroutine Thumb Routineis called using a branch with link
(BL) instruction.

Call subroutine BL ThumbRo

ThumbRou
PUS |rl, Ir§ ; enter subroutine
MO 10, #2
or {rl,pc; ; return from

subroutine

» The link register /r is pushed onto the stack with register 7. Register 7/ is popped off the stack,
as well as the return address being loaded into the pc. This returns fromthe subroutine.

Software Interrupt Instruction:

» The Thumb software interrupt (SWI) instruction causes a software interrupt exception.

» If any interrupt or exception flag is raised in Thumb state, the processor automatically reverts
back to ARM state to handle the exception.

Syntax: SWI immediate

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 36

software Ir_svc = address of instruction following
interrupt the SWI
SWI SPST_SVC = cpsr

pc =vectors+0x8
cpsrmode =SVC

The Thumb SWI instruction has the same effect and nearly the same syntax as the ARM
equivalent. It differs in that the SWInumber is limited to the range 0 to 255 and it is not conditionally
executed.

Example:

Execution of a Thumb SWI instruction. The processor goes from Thumb state to ARM state after
execution.

PR cpsr=
pc = 0x00008000

Ir = 0x003 1ttt ;lr=rl4
r0=0x12

0x00008000 SWI 0x45

POST cpsr =nzcVqlft SVC

Spsr =
nzcVqifT_USER pc
= 0x00000008
Ir = 0x00008002
r0 =0x12
NIT -1V
ARM Programming using C:

The compiler translates C source to ARM assembler. The techniques apply equally to C++, an overview of C
compilers and optimization write source code that will compile more efficiently in terms of increased speed and reduced
codesize.

4.1 Overview of C Compilers and Optimization

The C language and have some knowledge of assembly programming. Optimizing code takes time and reduces
source code readability. C compilers have to translate C function literally into assembler so that it works for all possible

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 37
inputs. The memclr function clears Nbytes of memory at address data.

void memclr(char *data, int N)

{
for (; N>0; N--)

{

*data=0; data++;
}
J

To write efficient C code, compiler has to be conservative, the limits of the processor architecture the C compiler is
mappingto,andthe limits ofa specific C compiler.

Tokeep ourexamples concrete, we have tested them using the following specific C compilers:

" armcc from ARM Developer Suite version 1.1 (ADS1.1). You can license this compiler, or a later version, directly
from ARM.

" arm-elf-gcc version 2.95.2. This is the ARM target for the GNU C compiler, gcc, and is freely available.

4.2 Basic C Data Types

ARM compilers handle the basic C data types. ltismore efficient to use for local variables than others. There are also
differences between the addressing modes available when loading and storing data of each type. ARM processors have 32-
bit registers and 32-bit data processing operations. The ARM architecture is RISC load/store architecture. There is no
arithmeticorlogicalinstructions thatmanipulatevaluesinmemorydirectly.

Loadandstoreinstructionsby ARMarchitecture.

Architecture Instruction Action

Pre-ARMv4 LDRB loadanunsigned8-bitvalue
STRB storeasigned orunsigned 8-bitvalue
LDR loadasignedorunsigned 32-bitvalue
STR storeasignedorunsigned32-bitvalue
ARMv4 LDRSB loadasigned 8-bitvalue
LDRH load an unsigned 16-bit value
LDRSH loadasigned16-bitvalue
STRH storeasignedorunsigned 1 6-bitvalue
ARMVS LDRD loadasignedorunsigned 64-bitvalue
STRD storeasignedorunsigned 64-bitvalue

These architectures were used on processors prior to the ARM7TDMI. 8-or16-bitvalues extend the valueto 32 bits before
writing to an ARM register. Unsigned values are zero-extended, and signed values sign-extended. This means that the cast
of aloaded value to an inttype does not cost extra instructions. Similarly, a store of an 8- or 16-bit value selects the lowest §
or 16 bits of the register. The cast ofan intto smaller type does not cost extra instructions on a store. ARMvS adds instruction
support for 64-bit load and stores.

CData Type Implementation

char unsigned 8-bit byte

short signed 16-bithalfword
int signed 32-bitword

long signed 32-bitword

long long signed 64-bit double word

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 38
4.3. Local Variable Types:

ARMv4-based processors can efficiently load and store 8-, 16-, and 32-bit data. However, most ARM data
processing operations are 32-bit only. For thisreason, you should use a 32-bit data type, intor long, for local variables
wherever possible. Avoid using charand shortaslocalvariabletypes,evenifyouaremanipulatingan§-or16-bitvalue.

Theone exception is when you want wrap-around to occur. If you require modulo arithmetic of the form 255+ 1=0, then
use the chartype. A checksum function that sums the values in a data packet. most communication protocols (such as
TCP/IP) have a checksum or cyclic redundancy check (CRC) routine to check forerrorsinadatapacket.

The following code checksums a data packet containing 64 words.

int checksum_v1(int *data)

{

char 1; int sum=
0;

for (i=0; i<64; i++)
{

sum += data[i];

}

return sum;

}

All ARM registers are 32-bitand all stack entries are at least 32-bit. Furthermore, to implement the i++exactly, the compiler
mustaccount for the case when 1= 255.

Function Argument Types:

Converting local variables from types charor shortto type intincreases performance and reduces code size. The
same holds for function arguments. Consider the following simple function, which adds two 16-bit values, halving the
second, and returns a 16-bit sum:

short add_vl1(short a, short b)
{

return a + (b>>1);

}

The input values a, b, and the return value will be passed in 32-bit ARM registers. Should the compiler assume that these
32-bit values are in the range of ashorttype, thatis,—32,768to+32,767.

Function arguments are passed wide if they are not reduced to the range ofthe typeand narrow the compilerhasmadeby

looking atthe assembly outputforadd v1.Ifthe compilerpassesarguments wide, then the callee must reduce function
arguments to the correct range.

If the compiler passes arguments narrow, then the caller must reduce the range. If the compiler returns values wide, then

the caller must reduce the return value to the correct range. If the compiler returns values narrow, then the callee must
reducetherangebeforereturningthevalue.

The armcc output foradd_v1shows that the compiler casts the return value to a short type, butdoesnotcasttheinput values. It
assumesthatthecallerhasalready ensuredthat the32-bitvaluesrOandrlareintherange oftheshorttype. Thisshowsnarrow
passing ofargumentsandreturnvalue.

Signed versus Unsigned Types:

This section compares the efficiencies of signedintand unsignedint. Ifcodeusesaddition,subtraction,andmultiplication,

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 39

then there is no performance difference between signed and unsigned operations. However, there is a difference when it
comestodivision. Consider the following shortexample thataverages two integers:

int average vl(inta, int b)

{
return (a+b)/2;
}
This compiles to

average vl
ADD 10,r0,r1 ;t0=a+b
ADD 1r0,r0,r0,LSR #31 ; if (r0<0) r0++
MO r0,r0,ASR #1 ;10 =10>>1
%;IO pc,rl4 ; return 10

The compiler adds one to the sum before shifting by right if the sum is negative. Inotherwordsitreplacesx/2 bythe
statement:

(x<0) ? (x+1)>>1): (x>>1)

Itmustdo this becausex issigned. In Conan ARM target, adivide by two isnotaright shiftifxisnegative. Forexample,
—3»1=-2but—3/2=-1.Divisionroundstowards zero, but arithmetic right shift rounds towards —cc.

Itismore efficient to use unsigned types for divisions. The compiler convertsunsigned poweroftwodivisionsdirectly toright
shifts. Forgeneral divisions, thedivideroutineinthe Clibrary is faster forunsigned types.

FunctionCalls:

The ARM Procedure Call Standard (APCS) defines how to pass function arguments and return values in ARM
registers. The more recent ARM-Thumb Procedure Call Standard (ATPCS) covers ARM and Thumb interworking as
well.

The first four integer arguments are passed in the first four ARM registers: r0, r1, r2, andr3.Subsequentintegerarguments
areplacedonthefull descendingstack,ascendingin memory. Functionreturnintegervaluesarepassedinr0.

Thisdescriptioncoversonlyintegerorpointerarguments. Two-wordargumentssuchas longlongor doubleare passed in a pair
of consecutive argument registers and returned in r0, r1. The compiler may pass structures in registers or by reference
accordingtocommand line compiler options.

The first point to note about the procedure call standard is the four-register rule. Functions with four or fewer
arguments are far more efficient to call than functions with five or more arguments. For functions with four or fewer
arguments, the compiler can pass all the arguments in registers. For functions with more arguments, both the caller and
calleemustaccess the stack for some arguments.

C function needs more than four arguments, or your C++ method more than three explicit arguments, then it is
almost always more efficient to use structures. Group related arguments into structures, and pass a structure pointer rather
than multiple arguments.

Example: The following code creates a Queuestructure and passes this to the function to reduce the numberoffunction
arguments.

The queue bytes v2is one instruction longer than queue_bytes v1, but it is in fact more efficient overall. The second
version has only three function arguments rather than five.

Each call to the function requires only three register setups. This compares with four register setups, a stack push,

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 40

and a stack pull for the first version. There is a net saving of two instructions in function call overhead. There are likely
further savings in the callee function, as it only needs to assign a single register to the Queuestructure pointer, rather than
three registers in the nonstructured case.

There are other ways of reducing function call overhead if your function is very small and corrupts few registers
(uses few local variables). Putthe C functionin the same Cfileas the functions that will call it. The C compiler then knows the
code generated for the callee functionand can make optimizations in the caller function:

n Thecallerfunctionneednotpreserveregistersthatitcanseethe calleedoesn’tcorrupt. Therefore the caller
functionneed notsave allthe ATPCS corruptibleregisters.

n Ifthe callee function is very small, then the compilers caninline the code in the caller function. This
removes the function call overhead completely.

Example: The function uint_to_hexconverts a 32-bit unsigned integer into an array of eight hexa- decimal digits. It
uses ahelper functionnybble to hex, which converts adigitdin the range 0to 15 to ahexadecimal digit.

uint_to_hex
MOV r3#8 ;1=8
uint_to_hex loop
MOV rl, r1, ROR #28 ; in = (in<<4) | (in>>28)
AND r2, rl, #0xf cr2 = 1in & 15
CMP r2, #0xa s if (r2>=10)
ADDCS r2, r2, #0x37 ; r2 +=" A" -10
ADDCC 2, r2, #0x30 celser2+=" 0’
STRB r2, [r0], #1 :k(out+t) = 12
SUBS r3, r3, #1 ; 1—— and set flags
BNE uint to hex loop ; if (i!=0) goto loop
MOV pc, rl4 ; return

Pointers:

Two pointers are said to alias when they point to the same address. If write to one pointer, it will affect the
value toread from the other pointer. In a function, the compiler often doesn’t know which pointers can alias and which
pointers can’t. The compiler must be very pessimistic and assume that any write to a pointer may affect the value read from
anyotherpointer, whichcansignificantlyreducecodeefficiency.

A very simple example. The following function increments two timer valuesbyastepamount:

void timers_v1(int *timer1, int *timer2, int *step)
{

*timer1 += *step;

*timer2 += *step;

H

This compiles to

timers_vl
LDR 13,[r0,#0] ; 13 = *timerl
LDR rl2,[r2,#0] ; 112 = *step
ADD r3,1r3,r12 ;13 4+=rl2
STR 13,[r0,#0] ; *timerl =13
LDR r0,[r1,#0] ; 10 = *timer2
LDR r2,[r2,#0] ; 12 = *step
ADD r0,r0,r2 ;10 +=12

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 41

STR 10,[r1,#0] ; *timer2 = t0
MO pc,rl4 ; return
AV

Structure:

A frequently used structure can have asignificant impact on its performanceand codedensity. Therearetwoissuesconcerning
structuresonthe ARM:alignment ofthestructureentriesandthe overallsize ofthe structure.

For architectures up to and including ARMv5TE, load and store instructions are only guaranteed to load and store values
with address aligned to the size of the access width.

ARM compilers will automatically align the start address of a structure to a multiple of the largest access width used within
the structure (usually four or eight bytes)andalignentrieswithinstructurestotheiraccess widthbyinsertingpadding.
For example, consider the structure

struct { char a;
int b; char c;
short d;

}

To improve the memory usage, you should reorder the elements

struct { char a;
char c; short d;
int b;

§

Thisreduces the structure size from 12 bytes to 8 bytes, with the following new layout:

Theexactlayout ofastructure inmemory may depend on the compilervendor and agoodideatoinsertany paddingthat
you cannot getrid of into the structure manually. This way the structure layout is not ambiguous. It is easier to link code
between compiler versionsandcompilervendorsifyousticktounambiguousstructures.

Another point of ambiguity is enum. Different compilers use different sizes for an enumerated type, depending on the range
ofthe enumeration. Forexample, considerthe type

typedef enum { FALSE,
TRUE
} Bool;

The armcc in ADS1.1willtreat Boolas aone-byte type asitonly uses the values 0 and 1. Boolwill only take up 8 bits of
spaceinastructure. However, gcc willtreatBoolasaword and take up 32 bits of space in a structure. To avoid ambiguity it
isbesttoavoidusing enum types instructures used in the APIto your code.

Another consideration is the size of the structure and the offsets of elements within the structure. This problem is most acute
when you are compiling for the Thumb instruction set. Thumb instructions are only 16 bits wide and so only allow for
small element offsets fromastructure base pointer.

The compiler can only access an 8-bit structure element with a single instruction if it appears within the first 32 bytes of the
structure. Similarly, single instructions can only access 16-bit values in the first 64 bytes and 32-bit values in the first 128
bytes. Once you exceed these limits, structure accesses become inefficient.

The following rules generate a structure with the elements packed for maximum efficiency:

n Placeall8-bitelementsatthestartofthestructure.
[VI SEM - CSE |

CS T62 - EMBEDDED SYSTEMS 42

» Placeall 16-bitelementsnext, then32-bit, then 64-bit.
n Placeallarraysandlargerelementsattheendofthe structure.

n Ifthe structure is too big for a single instruction to access all the elements, then group the elements
intosubstructures. The compiler can maintain pointers to the individual substructures.

Floating Point:

The majority of ARM processor implementations do not provide hardware floating-point support, which saves
on power and area when using ARM in a price-sensitive, embedded application. With the exceptions of the Floating
Point Accelerator (FPA) used on the ARM7500FE and the Vector Floating Point accelerator (VFP) hardware, the C
compiler must provide support for floating point in software.

The C compiler converts every floating-point operation into a subroutine call. The C library contains subroutines to
simulate floating-point behavior using integer arithmetic. This code is written in highly optimized assembly. Evenso,
floating-pointalgorithms will execute far more slowly than corresponding integer algorithms.

Inline Functions and Inline Assembly:

Using inline functions that contain assembly you can get the compiler to support ARM instructions and
optimizationsthataren’tusually available. Fortheexamples ofthis section we willusethe inlineassemblerinarmecc.

The inline assembler with the main assembler armasm. The inline assembler is part of the C compiler. The C
compiler still performs register allocation, function entry, and exit. The compiler also attempts to optimize the inline
assembly write, or deoptimize it for debug mode. Although the compiler output will be functionally equivalent to your
inlineassembly, itmaynotbeidentical.

The main benefit of inline functions and inline assembly is to make accessible in C operations that are not usually
available as part of the C language. It is better to use inline functions rather than #define macros because the latter doesn’t
check the types of the function arguments and return value.

Example: Tocalculateasaturating correlation. Inotherwords, wecalculatea=2x0y0+- - -2xN—1yN—1 withsaturation.

int sat_correlate(short *x, short *y, unsigned int N)

{

int a=0;

do
{

a=qmac(a, *(x++), *(y++));
} while (--N); return a;

}

Portability Issues:

» The chartype. On the ARM, charis unsigned rather than signed as for many other processors. A common
problem concerns loops that use a charloop counter i and the continuation condition i > 0, they become
infinite loop.

» The inttype. When moving to ARM’s 32-bit inttype although this is rare nowadays. Note that expressions
are promoted to aninttype before evaluation. Therefore ifi=-0x1000, theexpressioni==0xF000istrueona
16-bitmachinebutfalseona32-bitmachine.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 43

» Unaligned data pointers. Processors support the loading of shortand inttyped values from unaligned addresses.
A C program may manipulate pointers directly so that they become unaligned.

» Endianassumptions. C code may make assumptions aboutthe endianness ofamemory system, for example, by
casting a char *to an int *. If you configure the ARM for thesame endianness the code is expecting, thenthereis
noissue.

» Function prototyping. The armcc compiler passes arguments narrow, that is, reduced to the range of the
argument type. If functions are not prototyped correctly, then the function may return the wrong answer. Other
compilers that pass arguments wide may give the correct answer even if the function prototype is incorrect.
Alwaysuse ANSI prototypes.

» Use of bit-fields. The layout of bits within a bit-field is implementation and endian dependent. If C code
assumes that bits are laid out in a certain order, then the code is notportable.

» Inline assembly. Using inline assembly in C code reduces portability between architectures.
You should separate any inline assembly into small in lined functions thatcaneasily be replaced. It is
also useful to supply reference, plain C implementations of these functions that can be used on other
architectures, wherethisispossible.

Writing and Optimizing ARM Assembly Code:

By optimizing these routines can reduce the system power consumption and reduce the clock speed needed for
real-time operation. Optimization can turn an infeasible system into a feasible one, or an uncompetitive system into a
competitive one.

Writing assembly codeby direct control of three optimization tools that cannot explicitly use by writing C source:

n Instruction scheduling: Reordering the instructions in a code sequence to avoid processor stalls. Since ARM
implementations are pipelined, the timing of an instruction can be affected by neighboring instructions.

8 Registerallocation: Decidinghow variablesshouldbeallocatedto ARMregisters orstack locations for maximum
performance. To minimize the number of memory accesses.

n Conditionalexecution: Accessingthe fullrange of ARM conditioncodesand conditional instructions.

Writing Assembly Code:

This section gives examples showing how to write basic assembly code and familiar with the ARM instructions
covered. This chapter uses the ARM macro assembler armasm.

Example: ToconvertaC functiontoanassembly function.

Consider the simple C program main.cfollowing that prints the squares of the integers from 0t0 9:

#include <stdio.h>

int square(int 1); int main(void)

{
Int i;
For (i=0; i<10; i++)

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 44

printf("Square of %d is %d\n", i, square(i));
§

}

int square(int 1)

{

Return 1*1;

}

Instruction Scheduling:

Instructions that are conditional on the value of the ARM condition codes in the ¢psr take onecycleiftheconditionisnot
met. [ftheconditionismet, thenthe followingrules apply:

ALU operations such as addition, subtraction, and logical operations take one cycle. This includes a shift by an
immediate value. [f you use a register-specified shift, then add one cycle. Ifthe instruction writes to the pc, then add two
cycles.

Load instructions thatload N 32-bit words of memory such as LDRand LDMtake N cycles toissue, buttheresultofthe
lastword loadedisnotavailable onthe following cycle. The updated load address is available on the next cycle. This
assumes zero-wait-state memory for an uncached system, or a cache hit for a cached system. An LDMof a single value
isexceptional, takingtwo cycles. Ifthe instructionloads pc, thenaddtwo cycles.

Load instructions that load 16-bit or 8-bit data suchas LDRB, LDRSB, LDRH, and LDRSH take one cycle to
issue. The load resultis not available on the following two cycles. The updated load address is available on the next
cycle. This assumes zero-wait-state memory foranuncachedsystem, oracache hit foracachedsystem.

Branch instructions take three cycles.

Store instructions that store N values take N cycles. This assumes zero-wait-state memory for an uncached system,
or a cache hit or a write buffer with N free entries for a cached system. An STM of a single value is exceptional, taking
twocycles.

Multiply instructions take a varying number of cycles depending on the value of the second operand in the product.

Howtoschedulecodeefficientlyonthe ARM, The ARM9TDMI processor performs five operations in parallel:

8 Fetch: Fetch from memory the instruction at address pc. The instruction is loaded into the core and
thenprocesses down the core pipeline.

8 Decode: Decode the instruction that was fetched in the previous cycle. The processor alsoreads the
input operands from the register bank if they are not available viaone of the forwarding paths.

ALU: Executes the instruction that was decoded in the previous cycle. Note this instruction was
originally fetched from address pc — 8 (ARM state) or pc — 4 (Thumb state). Normally this
involves calculating the answer for a data processing operation, or the address for a load, store,
or branch operation.

n LS1: Load or store the data specified by a load or store instruction. If the instruction is not a load or
store, then this stage hasno effect.

» LS2: Extract and zero- or sign-extend the data loaded by a byte or half word load instruction.
Iftheinstructionisnotaload ofan§-bitbyte or 16-bithalf word item, thenthisstagehasnoeffect.

Five-stage ARMITDMI pipeline. After an instruction has completed the five stages of the pipeline, the core

writes the result to the register file. pc points to the address of the instruction being fetched. The ALU is executing the
instructionthatwasoriginally fetched from address pc—8in parallel with fetching the instruction at address pc.

If an instruction requires the result of a previous instruction that is not available, then the processor stalls. This is called a
pipeline hazardorpipelineinterlock.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 45
Whyabranchinstructiontakesthreecycles. Theprocessormustflush the pipeline when jumping toanew address.

MOV rl, #1
B casel
AND 1r0,r0,r1 EOR 12,12,13

SUB 10,10, rl

The three executed instructions take a total of five cycles. The MOV instruction executes on the first cycle. On the second
cycle, the branch instruction calculates the destination address.

Thiscausesthe coretoflushthepipelineandrefill itusing thisnew pc value.

Therefill takes twocycles. Finally, the SUBinstructionexecutes normally. The pipeline drops the two instructions following
the branch when the branch takes place.

Register Allocation:

We canuse 14 of the 16 visible ARM registers to hold general-purpose data. The other two registers are the stack
pointer /3 and the program counter /5. For a functiontobe ATPCS compliant it must preserve the callee values
ofregistersr4torl 1. ATPCS also specifies that thestack shouldbe eight-bytealigned; therefore youmust preserve
thisalignmentifcalling subroutines. Use the following template for optimized assembly routines requiring many
registers:

Allocating Variables to Register Numbers:

An assembly routine, it is best to start by using names for the variables, rather than explicit register numbers.
This allows o change the allocation of variables to register numbers easily. Register names increase the clarity and
readability of optimized code.

Ifswapalloccurrences of two registers Ra and Rb in a routine, the function of the routine does not
change. However, thereareseveral cases where the physical number ofthe registerisimportant:

n Argument registers. The ATPCS convention defines that the first four arguments to a function are
placed in registers 70 to r3. Further arguments are placed on the stack. The return value must be
placedinr0.

n Registers used in a load or store multiple. Load and store multiple instructions LDM and STM
operate on a list of registers in order of ascending register number. If 70 and »I appear in the
register list, then the processor will always load or store 70 using a lower addressthanr/ andsoon.

8 Loadandstoredoubleword. The LDRDand STR Dinstructionsintroducedin ARMvSE operate
on a pair of registers with sequential register numbers, Rd and Rd + 1. Furthermore, Rd must
beanevenregisternumber.

For an example of how to allocate registers when writing assembly, suppose we want to shift an array
of Nbitsupwards inmemory by £ bits. For simplicity assume that Nis large and amultiple of256.

Assume that 0 < k& < 32 and that the input and output pointers are word aligned. This type of operation is

common in dealing with the arithmetic of multiple precision numbers where we want to multiply by 2k Itis
alsousefultoblock copyfromonebitorbytealignmenttoadifferentbitorbytealignment.

The C routine shift bits implements the simple k-bit shift of N bits of data. It returns the & bits remaining
following the shift.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 46

unsigned int shift bits(unsigned int *out, unsigned int *in,
unsigned int N, unsigned int k)

{

unsigned int carry=0, x;

do

{
X = *int++;
*out++ = (x<<k) | carry;
carry = x>>(32-k); N
-=32;

} while (N);

return carry;

}

The obvious way to improve efficiency is tounroll the loop to process eight words of 256 bits at a time so that
can use load and store multiple operations to load and store eight words ata time for maximum efficiency.

There are two remaining variables carry and kr, but only one remaining free register /r. There are several
possible ways proceeding when we run out of registers:

» Reducethenumberofregisters werequire by performing fewer operations ineach loop. Inthis case we
could load four words in each load multiple rather than eight.

n Use the stack to store the least-used values to free up more registers. In this case we could store the loop
counter N on the stack. Alterthecodeimplementationtofreeupmoreregisters.

Making the Most of Available Registers:

On load-store architecture such as the ARM, it is more efficient to access values held in registers than values
held in memory. There are several tricks you can use to fit several sub-32-bit length variables into a single 32-
bitregister and thus canreduce code size and increase performance.

Singleissue Multiple Data (SIMD):

Arrays of 8-bitor 16-bit values, itis sometimes possible tomanipulate multiple values atatime by packing several
valuesintoasingle32-bitregister. Thisiscalled singleissue multiple data(SIMD)processing.

Conditional Execution:

The processor core can conditionally execute most ARM instructions. This conditional assembler defaults to
the execute always condition (AL). The other 14 conditions split into seven pairs of complements. The conditions depend
on the four condition code flags N, Z, C, Vstored inthe cpsrregister.

By default, ARM instructions do not update the N, Z, C, V' flags in the ARM cpsr. For mostinstructions, toupdate these
flagsyouappendanSsuffixtotheinstructionmnemonic.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 47

Exceptions to this are comparison instructions that do not write to a destination register. Their sole purpose is to update the
flags and so they don’trequire the Ssuffix.

By combining conditional execution and conditional setting of the flags, you can imple- ment simple if statements without
any need for branches. This improves efficiency since branches can take many cycles and also reduces code size.

Example: The following Ccode convertsanunsignedinteger(0 <i < 15toahexadecimal characterc:

if (i<10)
{

c=1+°0"
}

else

{
c=1+A-10;
¥

Writeinassembly using conditional executionrather thanconditional branches:

CMP i, #10
ADDLO c,i,#0’
ADDHS c,i,#A’-10

Thesequence workssince the first ADDdoesnotchange the conditioncodes. The second ADDisstillconditional ontheresult
ofthecompare. Conditional execution is even more powerful for cascading conditions.

Example: Consider the following code that detects if cis a letter:

if(>=*A’ &&o<="2")||(c>="2’ && c<="2"))
{

letter++;

}

To implement this efficiently, we can use an addition or subtraction to move each range to the form 0 < c¢< /imiz. Then
we use unsigned comparisons to detect this range and conditional comparisons to chain together ranges. The following
assemblyimplementsthis efficiently:

SUB temp, c,#A’
CMP temp, #72°-°A’
SUBHI temp, ¢, #‘a’
CMPHI temp, #7’-‘a’
ADDLS letter, letter,
#1

UNIT-V
Real Time Operating Systems: Brief History of OS - Defining RTOS - The
Scheduler - Objects — Services - Characteristics of RTOS - Defining a Task -
Tasks States and Scheduling - Task Operations - Structure -
Synchronization - Communication and Concurrency. Defining Semaphores -
Operations and Use - Defining Message Queue - States — Content — Storage -
Operations and Use.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 48

Introduction To Real-Time Operating Systems

Introduction

A real-time operating system (RTOS) is key to many embedded systems today and,

provides a software platform upon which to build applications. Not all embedded systems,

however, are designed with an RTOS. Some embedded systems with relatively simple

hardware or a small amount of software application code might not require an RTOS. Many

embedded systems, however, with moderate-to-large software applications require some form

of scheduling, and these systems require an RTOS.

This chapter sets the stage for all subsequent chapters in this section. It describes the key

concepts upon which most real-time operating systems are based. Specifically, this chapter

provides

A brief history of operating systems,
A definition of an RTOS,

A description of the scheduler,

A discussion of objects,

A discussion of services, and

The key characteristics of an RTOS.
A Brief History of Operating Systems

In the early days of computing, developers created software applications that included
low-level machine code to initialize and interact with the system's hardware directly.
This tight integration between the software and hardware resulted in non-portable
applications. A small change in the hardware might result in rewriting much of the

application itself. Obviously, these systems were difficult and costly to maintain.

As the software industry progressed, operating systems that provided the basic
software foundation for computing systems evolved and facilitated the abstraction of
the underlying hardware from the application code. In addition, the evolution of
operating systems helped shift the design of software applications from large,
monolithic applications to more modular, interconnected applications that could run
on top of the operating system environment.

Later in the decade, momentum started building for the next generation of computing:

the post-PC, embedded-computing era. To meet the needs of embedded computing,

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 49

commercial RTOSes, such as VxWorks, were developed. Although some functional
similarities exist between RTOSes and GPOSes, many important differences occur as well.

These differences help explain why RTOSes are better suited for real-time embedded systems.

Some core functional similarities between a typical RTOS and GPOS include:

e Some level of multitasking,

e Software and hardware resource management,

e Provision of underlying OS services to applications, and

e Abstracting the hardware from the software application.
On the other hand, some key functional differences that set RTOSes apart from GPOSes
include:

e Better reliability in embedded application contexts,

e The ability to scale up or down to meet application needs,

e Faster performance,

¢ Reduced memory requirements,

e Scheduling policies tailored for real-time embedded systems,

e Support for diskless embedded systems by allowing executables to boot and run from

ROM or RAM, and

e Better portability to different hardware platforms.

RTOSes, on the other hand, can meet these requirements. They are reliable, compact, and
scalable, and they perform well in real-time embedded systems. In addition, RTOSs can be

easily tailored to use only those components required for a particular application.

Defining an RTOS

A real-time operating system (RTOS) is a program that schedules execution in a
timely manner, manages system resources, and provides a consistent foundation for
developing application code. Application code designed on an RTOS can be quite diverse,
ranging from a simple application for a digital stopwatch to a much more complex
application for aircraft navigation. Good RTOSes, therefore, are scalable in order to meet

different sets of requirements for different applications.

For example, in some applications, an RTOS comprises only a kernel, which is the
core supervisory software that provides minimal logic, scheduling, and resource-management

algorithms. Every RTOS has a kernel. On the other hand, an RTOS can be a combination of

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS

50

various modules, including the kernel, a file system, networking protocol stacks, and other

components required for a particular application, as illustrated at a high level in Figure 1.

Application
RTOS
Networking File Other
Protocols System Components
s
C/C++ Suppﬂ'ﬂ ! Kernel } POSIX
Libraries M _ " Support
Device Debugging Device
Drivers Facilities f{®]
BSP
Target Hardware

Figure 1: High-level view of an RTOS, its kernel, and other components found in embedded

systems.

RTOSes can scale up or down to meet application requirements, this book focuses on the

common element at the heart of all RTOSes-the kernel. Most RTOS kernels contain the

following components:

. Scheduler - is contained within each kernel and follows a set of algorithms that

determines which task executes when. Some common examples of scheduling algorithms

include round-robin and preemptive scheduling.

. Objects - are special kernel constructs that help developers create applications for

real-time embedded systems. Common kernel objects include tasks, semaphores, and

message queucs.

. Services - are operations that the kernel performs on an object or, generally

operations such as timing, interrupt handling, and resource management.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0023.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0401_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0025.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0026.html

CS T62 - EMBEDDED SYSTEMS 51

o ?

Timers Other

Cbjects ISRs
. T
I pax @ Ghjects Message
Spmepcs E""G"'tE Tasks Queues
cuunung Scheduler @J Ma-mom
@ $Emaph0le5. ASR;
s Bmar]?:r s-enrlgeg .._ |
amap D_I‘G& Time Management $Er\'1r.es ‘.
- Interrupt Handling Services h"‘--,

Memory Management Services
Device Managamenl Services
Other Services

Figure 2: Common components in an RTOS kernel that including objects, the scheduler, and

some services.

This diagram is highly simplified; remember that not all RTOS kernels conform to

this exact set of objects, scheduling algorithms, and services.
The Scheduler

The scheduler is at the heart of every kernel. A scheduler provides the algorithms needed
to determine which task executes when. To understand how scheduling works, this section

describes the following topics:
. Schedulable entities,

. Multitasking,

. Context switching,
. Dispatcher, and
. Scheduling algorithms.

1. Schedulable Entities

A schedulable entity is a kernel object that can compete for execution time on a
system, based on a predefined scheduling algorithm. Tasks and processes are all examples of

schedulable entities found in most kernels.

A task is an independent thread of execution that contains a sequence of
independently schedulable instructions. Some kernels provide another type of a schedulable

object called a process. Processes are similar to tasks in that they can independently compete

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0402_0.jpg

CS T62 - EMBEDDED SYSTEMS 52

for CPU execution time. Processes differ from tasks in that they provide better memory
protection features, at the expense of performance and memory overhead. Despite these

differences, for the sake of simplicity, this book uses task to mean either a task or a process.

Note that message queues and semaphores are not schedulable entities. These items are inter-

task communication objects used for synchronization and communication.

2. Multitasking

Multitasking is the ability of the operating system to handle multiple activities within
set deadlines. A real-time kernel might have multiple tasks that it has to schedule to run. One

such multitasking scenario is illustrated in Figure 3.

Context Switch

Save Task Current

1 Info Thread of Task 2
Execution

Current
Context

List of
Tasks

TaSk 2 f
i
Task 1 :

—h-| |1- Context Switch Time

Time
Figure 3: Multitasking using a context switch.

In this scenario, the kernel multitasks in such a way that many threads of execution
appear to be running concurrently; however, the kernel is actually interleaving executions
sequentially, based on a preset scheduling algorithm The scheduler must ensure that the

appropriate task runs at the right time.

An important point to note here is that the tasks follow the kernel’s scheduling
algorithm, while interrupt service routines (ISR) are triggered to run because of hardware

interrupts and their established priorities.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0024.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/other-0404_0.jpg

CS T62 - EMBEDDED SYSTEMS 53

As the number of tasks to schedule increases, so do CPU performance requirements.
This fact is due to increased switching between the contexts of the different threads of

execution.

3. The Context Switch

Each task has its own context, which is the state of the CPU registers required each
time it is scheduled to run. A context switch occurs when the scheduler switches from one
task to another. To better understand what happens during a context switch, let’s examine

further what a typical kernel does in this scenario.

Every time a new task is created, the kernel also creates and maintains an associated
task control block (TCB). TCBs are system data structures that the kernel uses to maintain
task-specific information. TCBs contain everything a kernel needs to know about a particular
task. When a task is running, its context is highly dynamic. This dynamic context is
maintained in the TCB. When the task is not running, its context is frozen within the TCB, to

be restored the next time the task runs. A typical context switch scenario is illustrated

in Figure 3.

As shown in Figure 3, when the kernel’s scheduler determines that it needs to stop running
task 1 and start running task 2, it takes the following steps:
1. The kernel saves task 1’°s context information in its TCB.
2. It loads task 2’s context information from its TCB, which becomes the current thread
of execution.
3. The context of task 1 is frozen while task 2 executes, but if the scheduler needs to run

task 1 again, task 1 continues from where it left off just before the context switch.
1. The Dispatcher

The dispatcher is the part of the scheduler that performs context switching and
changes the flow of execution. At any time an RTOS is running, the flow of execution, also
known as flow of control, is passing through one of three areas: through an application task,
through an ISR, or through the kernel. When a task or ISR makes a system call, the flow of
control passes to the kernel to execute one of the system routines provided by the kernel.
When it is time to leave the kernel, the dispatcher is responsible for passing control to one of
the tasks in the user’s application. It will not necessarily be the same task that made the

system call. It is the scheduling algorithms (to be discussed shortly) of the scheduler that

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0024.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0024.html

CS T62 - EMBEDDED SYSTEMS 54

determines which task executes next. It is the dispatcher that does the actual work of context

switching and passing execution control.

Depending on how the kernel is first entered, dispatching can happen differently.
When a task makes system calls, the dispatcher is used to exit the kernel after every system
call completes. In this case, the dispatcher is used on a call-by-call basis so that it can
coordinate task-state transitions that any of the system calls might have caused. (One or more

tasks may have become ready to run, for example.)
4. Scheduling Algorithms

As mentioned earlier, the scheduler determines which task runs by following a
scheduling algorithm (also known as scheduling policy). Most kernels today support two
common scheduling algorithms:

. Preemptive priority-based scheduling, and

. Round-Robin scheduling.

The RTOS manufacturer typically predefines these algorithms; however, in some cases,
developers can create and define their own scheduling algorithms. Each algorithm is

described next.
Preemptive Priority-Based Scheduling

Of the two scheduling algorithms introduced here, most real-time kernels use
preemptive priority-based scheduling by default. As shown in Figure 4 with this type of
scheduling, the task that gets to run at any point is the task with the highest priority among all

other tasks ready to run in the system.

F 3

IGH

i __ Task Complation
Preemplon = -—
— | /
Task
Priority |Eﬂ| Taszk2
|
Task1 Task1 .
LOW *
.
Time

Figure 4: Preemptive priority-based scheduling.

Real-time kernels generally support 256 priority levels, in which 0 is the highest and

255 the lowest. Some kernels appoint the priorities in reverse order, where 255 is the highest
[VI SEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0024.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/other-0405_0.jpg

CS T62 - EMBEDDED SYSTEMS 55

and 0 the lowest. Regardless, the concepts are basically the same. With a preemptive priority-
based scheduler, each task has a priority, and the highest-priority task runs first. If a task with
a priority higher than the current task becomes ready to run, the kernel immediately saves the
current task’s context in its TCB and switches to the higher-priority task. As shown in Figure
4 task 1 is preempted by higher-priority task 2, which is then preempted by task 3. When task

3 completes, task 2 resumes; likewise, when task 2 completes, task 1 resumes.

Although tasks are assigned a priority when they are created, a task’s priority can be
changed dynamically using kernel-provided calls. The ability to change task priorities
dynamically allows an embedded application the flexibility to adjust to external events as
they occur, creating a true real-time, responsive system. Note, however, that misuse of this

capability can lead to priority inversions, deadlock, and eventual system failure.
Round-Robin Scheduling

Round-robin scheduling provides each task an equal share of the CPU execution time.
Pure round-robin scheduling cannot satisfy real-time system requirements because in real-
time systems, tasks perform work of varying degrees of importance. Instead, preemptive,
priority-based scheduling can be augmented with round-robin scheduling which uses time

slicing to achieve equal allocation of the CPU for tasks of the same priority as shown

in Figure 5.
HIGH
’ Preamptlion Task Complation
Task i
Prcrity | O SR \ [Tasid
| |
oW | Toskl | Task2 | Taskd | T1 T e 2

L J

Tima

Figure 5: Round-robin and preemptive scheduling.

With time slicing, each task executes for a defined interval, or time slice, in an
ongoing cycle, which is the round robin. A run-time counter tracks the time slice for each
task, incrementing on every clock tick. When one task’s time slice completes, the counter is
cleared, and the task is placed at the end of the cycle. Newly added tasks of the same priority

are placed at the end of the cycle, with their run-time counters initialized to 0.

If a task in a round-robin cycle is preempted by a higher-priority task, its run-time

count is saved and then restored when the interrupted task is again eligible for execution. This

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0024.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0024.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0024.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/other-0406_0.jpg

CS T62 - EMBEDDED SYSTEMS 56

idea is illustrated in Figure 5, in which task 1 is preempted by a higher-priority task 4 but

resumes where it left off when task 4 completes.

Objects

Kernel objects are special constructs that are the building blocks for application

development for real-time embedded systems. The most common RTOS kernel objects are

. Tasks—are concurrent and independent threads of execution that can compete for
CPU execution time.

. Semaphores—are token-like objects that can be incremented or decremented by tasks
for synchronization or mutual exclusion.

. Message Queues—are buffer-like data structures that can be used for synchronization,

mutual exclusion, and data exchange by passing messages between tasks. Developers
creating real-time embedded applications can combine these basic kernel objects (as well
as others not mentioned here) to solve common real-time design problems, such as
concurrency, activity synchronization, and data communication. These design problems

and the kernel objects used to solve them.

Services

Along with objects, most kernels provide services that help developers create
applications for real-time embedded systems. These services comprise sets of API calls that
can be used to perform operations on kernel objects or can be used in general to facilitate
timer management, interrupt handling, device I/O, and memory management. Again, other

services might be provided; these services are those most commonly found in RTOS kernels.

Key Characteristics of an RTOS

"An application's requirements define the requirements of its underlying RTOS. Some of
the more common attributes are
. Reliability,
. Predictability,
. Performance,
. Compactness, and

. Scalability.
1. Reliability

Embedded systems must be reliable. Depending on the application, the system might

need to operate for long periods without human intervention.
[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0024.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0029.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0036.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0041.html

CS T62 - EMBEDDED SYSTEMS 57

Different degrees of reliability may be required. For example, a digital solar-powered
calculator might reset itself if it does not get enough light, yet the calculator might still be
considered acceptable. On the other hand, a telecom switch cannot reset during operation
without incurring high associated costs for down time. The RTOSes in these applications

require different degrees of reliability.

Although different degrees of reliability might be acceptable, in general, a reliable
system is one that is available (continues to provide service) and does not fail. While RTOSes
must be reliable, note that the RTOS by itself is not what is measured to determine system
reliability. It is the combination of all system elements-including the hardware, BSP, RTOS,

and application-that determines the reliability of a system.
2. Predictability

Because many embedded systems are also real-time systems, meeting time
requirements is key to ensuring proper operation. The RTOS used in this case needs to be
predictable to a certain degree. The term deterministic describes RTOSes with predictable

behavior, in which the completion of operating system calls occurs within known timeframes.

Developers can write simple benchmark programs to validate the determinism of an
RTOS. The result is based on timed responses to specific RTOS calls. In a good deterministic

RTOS, the variance of the response times for each type of system call is very small.
3. Performance

This requirement dictates that an embedded system must perform fast enough to fulfill
its timing requirements. Typically, the more deadlines to be met-and the shorter the time
between them-the faster the system's CPU must be. Although underlying hardware can
dictate a system's processing power, its software can also contribute to system performance.

Typically, the processor's performance is expressed in million instructions per second (MIPS).

Throughput also measures the overall performance of a system, with hardware and
software combined. One definition of throughput is the rate at which a system can generate
output based on the inputs coming in. Throughput also means the amount of data transferred
divided by the time taken to transfer it. Data transfer throughput is typically measured in

multiples of bits per second (bps).

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 58

Sometimes developers measure RTOS performance on a call-by-call basis.
Benchmarks are written by producing timestamps when a system call starts and when it
completes. Although this step can be helpful in the analysis stages of design, true

performance testing is achieved only when the system performance is measured as a whole.
Tasks

Introduction

Simple software applications are typically designed to run sequentially , one
instruction at a time, in a pre-determined chain of instructions. However, this scheme is
inappropriate for real-time embedded applications, which generally handle multiple inputs
and outputs within tight time constraints. Real-time embedded software applications must be

designed for concurrency.

Concurrent design requires developers to decompose an application into small,
schedulable, and sequential program units. When done correctly, concurrent design allows
system multitasking to meet performance and timing requirements for a real-time system.
Most RTOS kernels provide task objects and task management services to facilitate designing

concurrency within an application.

This chapter discusses the following topics:

. Task definition,

. Task states and scheduling,

. Typical task operations,

. Typical task structure, and

. Task coordination and concurrency.

Defining a Task

A task is an independent thread of execution that can compete with other concurrent
tasks for processor execution time. As mentioned earlier, developers decompose applications
into multiple concurrent tasks to optimize the handling of inputs and outputs within set time

constraints.

A task is schedulable; the task is able to compete for execution time on a system,
based on a predefined scheduling algorithm. A task is defined by its distinct set of parameters
and supporting data structures. Specifically, upon creation, each task has an associated name,

a unique ID, a priority (if part of a preemptive scheduling plan), a task control block (TCB), a
[VI SEM - CSE |

CS T62 - EMBEDDED SYSTEMS 59

stack, and a task routine, as shown in Figure 1). Together, these components make up what is

known as the task object.

Task Control Block Task Stack
TCE | sTACK
Highast
Task — Pricrty
Mamel ID Leval
i int My Task()
Task (
Routing whibe (1) Task
ELLEED 130 Priority
}
}
-
Licraenest
Priaity
= Lovwal

Figure 1: A task, its associated parameters, and supporting data structures.

When the kernel first starts, it creates its own set of system tasks and allocates the

appropriate priority for each from a set of reserved priority levels. The reserved priority

levels refer to the priorities used internally by the RTOS for its system tasks. An application

should avoid using these priority levels for its tasks because running application tasks at such

level may affect the overall system performance or behavior. For most RTOSes, these

reserved priorities are not enforced. The kernel needs its system tasks and their reserved

priority levels to operate. These priorities should not be modified. Examples of system tasks

include:

Initialization or startup task—initializes the system and creates and starts system
tasks,

Idle task—uses up processor idle cycles when no other activity is present,

Logging task—logs system messages,

Exception-handling task—handles exceptions, and

Debug agent task—allows debugging with a host debugger. Note that other system
tasks might be created during initialization, depending on what other components are

included with the kernel.

The idle task, which is created at kernel startup, is one system task that bears mention

and should not be ignored. The idle task is set to the lowest priority, typically executes in an

endless loop, and runs when either no other task can run or when no other tasks exist, for the

sole purpose of using idle processor cycles. The idle task is necessary because the processor

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0501_0.jpg

CS T62 - EMBEDDED SYSTEMS 60

executes the instruction to which the program counter register points while it is running.
Unless the processor can be suspended, the program counter must still point to valid
instructions even when no tasks exist in the system or when no tasks can run. Therefore, the
idle task ensures the processor program counter is always valid when no other tasks are

running.

In some cases, however, the kernel might allow a user-configured routine to run instead
of the idle task in order to implement special requirements for a particular application. One
example of a special requirement is power conservation. When no other tasks can run, the
kernel can switch control to the user-supplied routine instead of to the idle task. In this case,
the user-supplied routine acts like the idle task but instead initiates power conservation code,

such as system suspension, after a period of idle time.

After the kernel has initialized and created all of the required tasks, the kernel jumps to a
predefined entry point (such as a predefined function) that serves, in effect, as the beginning
of the application. From the entry point, the developer can initialize and create other

application tasks , as well as other kernel objects, which the application design might require.

As the developer creates new tasks, the developer must assign each a task name, priority,
stack size, and a task routine. The kernel does the rest by assigning each task a unique ID and

creating an associated TCB and stack space in memory for it.

Task States and Scheduling

Whether it's a system task or an application task, at any time each task exists in one of
a small number of states, including ready, running, or blocked. As the real-time embedded
system runs, each task moves from one state to another, according to the logic of a simple
finite state machine (FSM). Figure 2 illustrates a typical FSM for task execution states, with

brief descriptions of state transitions.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0031.html

CS T62 - EMBEDDED SYSTEMS 61

Task is mitkalizgd and
enters the finile stabe
maching.

Task ks unblocked
Bt is not tha Task i longer Mk

highsieslspricrity bask the highesl priority. Task has the
highest preority.

Task is unblocked

i i tha
highast-pricrty
Blocked fack

Task 2 blocked
dua o a request
fgr an unavailable
PESOUNGE,

Figure 2: A typical finite state machine for task execution states.

Although kernels can define task-state groupings differently, generally three main states are

used in most typical preemptive-scheduling kernels, including:

. Ready state-the task is ready to run but cannot because a higher priority task is
executing.
. Blocked state-the task has requested a resource that is not available, has requested to

wait until some event occurs, or has delayed itself for some duration.

. Running state-the task is the highest priority task and is running.

Note some commercial kernels, such as the VxWorks kernel, define other, more granular
states, such as suspended, pended, and delayed. In this case, pended and delayed are actually
sub-states of the blocked state. A pended task is waiting for a resource that it needs to be
freed; a delayed task is waiting for a timing delay to end. The suspended state exists for
debugging purposes. For more detailed information on the way a particular RTOS kernel

implements its FSM for each task, refer to the kernel's user manual.

Regardless of how a kernel implements a task's FSM, it must maintain the current state of
all tasks in a running system. As calls are made into the kernel by executing tasks, the
kernel's scheduler first determines which tasks need to change states and then makes those

changes.

In some cases, the kernel changes the states of some tasks, but no context switching
occurs because the state of the highest priority task is unaffected. In other cases, however,
these state changes result in a context switch because the former highest priority task either
gets blocked or is no longer the highest priority task. When this process happens, the former
running task is put into the blocked or ready state, and the new highest priority task starts to

execute.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0502_0.jpg

CS T62 - EMBEDDED SYSTEMS 62

1. Ready State

When a task is first created and made ready to run, the kernel puts it into the ready
state. In this state, the task actively competes with all other ready tasks for the processor's
execution time. As Figure 2 shows, tasks in the ready state cannot move directly to the
blocked state. A task first needs to run so it can make a blocking call , which is a call to a
function that cannot immediately run to completion, thus putting the task in the blocked state.
Ready tasks, therefore, can only move to the running state. Because many tasks might be in
the ready state, the kernel's scheduler uses the priority of each task to determine which task to

move to the running state.

Figure 3 illustrates, in a five-step scenario, how a kernel scheduler might use a task-
ready list to move tasks from the ready state to the running state. This example assumes a
single-processor system and a priority-based preemptive scheduling algorithm in which 255
is the lowest priority and 0 is the highest. Note that for simplicity this example does not show

system tasks, such as the idle task.

o First-Step: Stale of Task-Ready List

Task 1 Task 2 Task 3 Taskd ||| Tasks
Pricrity=70 Priority=80 Pririty=80 Priovity=80 | || Priority =90

e Second-Step: State of Task-Ready List

Task 2 Task 3 Task 4 Task 5
Prioeitys80 | | Priontys80 | | Prioriy=80 | | Priority=50

a Thln:l-stnp State of Task -Fllady List

Tulra l Task 4 H Tuu

o Fourth-Step: State of Task - Ready List

Task 4 Task 5

© Firtn-stop: State of Task -Ready List

Task 4 Task 2 Tnk 5
Priarity=80 Priority=80

Figure 3: Five steps showing the way a task-ready list works.

In this example, tasks 1, 2, 3, 4, and 5 are ready to run, and the kernel queues them by priority
in a task-ready list. Task 1 is the highest priority task (70); tasks 2, 3, and 4 are at the next-
highest priority level (80); and task 5 is the lowest priority (90). The following steps explains
how a kernel might use the task-ready list to move tasks to and from the ready state:

1. Tasks 1,2, 3,4, and 5 are ready to run and are waiting in the task-ready list.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0031.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0031.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0503_0.jpg

CS T62 - EMBEDDED SYSTEMS 63

2. Because task 1 has the highest priority (70), it is the first task ready to run. If nothing
higher is running, the kernel removes task 1 from the ready list and moves it to the
running state.

3. During execution, task 1 makes a blocking call. As a result, the kernel moves task 1 to
the blocked state; takes task 2, which is first in the list of the next-highest priority tasks
(80), off the ready list; and moves task 2 to the running state.

4. Next, task 2 makes a blocking call. The kernel moves task 2 to the blocked state; takes
task 3, which is next in line of the priority 80 tasks, off the ready list; and moves task 3
to the running state.

5. As task 3 runs, frees the resource that task 2 requested. The kernel returns task 2 to
the ready state and inserts it at the end of the list of tasks ready to run at priority level

80. Task 3 continues as the currently running task.
2. Running State

On a single-processor system, only one task can run at a time. In this case, when a
task is moved to the running state, the processor loads its registers with this task's context.

The processor can then execute the task's instructions and manipulate the associated stack.

A task can move back to the ready state while it is running. When a task moves from
the running state to the ready state, it is preempted by a higher priority task. In this case, the
preempted task is put in the appropriate, priority-based location in the task-ready list, and the

higher priority task is moved from the ready state to the running state.

Unlike a ready task, a running task can move to the blocked state in any of the following

ways:

. by making a call that requests an unavailable resource,

. by making a call that requests to wait for an event to occur, and
. by making a call to delay the task for some duration.

3. Blocked State

The possibility of blocked states is extremely important in real-time systems because
without blocked states, lower priority tasks could not run. If higher priority tasks are not

designed to block, CPU starvation can result.

CPU starvation occurs when higher priority tasks use all of the CPU execution time

and lower priority tasks do not get to run.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 64

A task can only move to the blocked state by making a blocking call, requesting that some
blocking condition be met. A blocked task remains blocked until the blocking condition is
met. (It probably ought to be called the urn blocking condition, but blocking is the
terminology in common use among real-time programmers.) Examples of how blocking
conditions are met include the following:

. a semaphore token for which a task is waiting is released,

. a message, on which the task is waiting, arrives in a message queue, or a time delay

imposed on the task expires.

Typical Task Operations

In addition to providing a task object, kernels also provide task-management services .
Task-management services include the actions that a kernel performs behind the scenes to

support tasks, for example, creating and maintaining the TCB and task stacks.

A kernel, however, also provides an API that allows developers to manipulate tasks.
Some of the more common operations that developers can perform with a task object from

within the application include:

. Creating and Deleting tasks,
. Controlling task scheduling, and
. Obtaining task information.

Developers should learn how to perform each of these operations for the kernel selected for

the project. Each operation is briefly discussed next.
1. Task Creation and Deletion

The most fundamental operations that developers must learn are creating and deleting

tasks, as shown in Table 1.

Table 1: Operations for task creation and deletion.

Operation Description
Create Creates a task
Delete Deletes a task

Developers typically create a task using one or two operations, depending on the

kernel’s API. Some kernels allow developers first to create a task and then start it. In this case,

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0032.html

CS T62 - EMBEDDED SYSTEMS 65

the task is first created and put into a suspended state; then, the task is moved to the ready

state when it is started (made ready to run).

Creating tasks in this manner might be useful for debugging or when special
initialization needs to occur between the times that a task is created and started. However, in

most cases, it is sufficient to create and start a task using one kernel call.

Many kernels also provide user-configurable hooks , which are mechanisms that execute
programmer-supplied functions, at the time of specific kernel events. The
programmer registers the function with the kernel by passing a function pointer to a kernel-
provided API . The kernel executes this function when the event of interest occurs. Such
events can include:

. When a task is first created,
. When a task is suspended for any reason and a context switch occurs, and

. When a task is deleted.

2. Task Scheduling

From the time a task is created to the time it is deleted, the task can move through
various states resulting from program execution and kernel scheduling. Although much of
this state changing is automatic, many kernels provide a set of API calls that allow developers
to control when a task moves to a different state, as shown in Table 2. This capability is

called manual scheduling .

Table 2: Operations for task scheduling.

Operation Description

Suspend Suspends a task

Resume Resumes a task

Delay Delays a task

Restart Restarts a task

Get Priority Gets the current task’s priority

Set Priority Dynamically sets a task’s priority

Preemption lock Locks out higher priority tasks from preempting the current
task

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0032.html

CS T62 - EMBEDDED SYSTEMS 66

Table 2: Operations for task scheduling.

Operation Description

Preemption unlock Unlocks a preemption lock

Using manual scheduling, developers can suspend and resume tasks from within an
application. Doing so might be important for debugging purposes or, as discussed earlier, for

suspending a high-priority task so that lower priority tasks can execute.

A developer might want to delay (block) a task, for example, to allow manual
scheduling or to wait for an external condition that does not have an associated interrupt.
Delaying a task causes it to relinquish the CPU and allow another task to execute. After the
delay expires, the task is returned to the task-ready list after all other ready tasks at its priority
level. A delayed task waiting for an external condition can wake up after a set time to check

whether a specified condition or event has occurred, which is called polling.

Typical Task Structure

When writing code for tasks, tasks are structured in one of two ways:
. Run to completion, or

. Endless loop.

Both task structures are relatively simple. Run-to-completion tasks are most useful for
initialization and startup. They typically run once, when the system first powers on. Endless-
loop tasks do the majority of the work in the application by handling inputs and outputs.

Typically, they run many times while the system is powered on.
1 Run-to-Completion Tasks

An example of a run-to-completion task is the application-level initialization task,
shown in Listing 1. The initialization task initializes the application and creates additional
services, tasks, and needed kernel objects.

Listing 1: Pseudo code for a run-to-completion task.

RunToCompletionTask ()

{

Initialize application

Create ‘endless loop tasks'

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0033.html

CS T62 - EMBEDDED SYSTEMS 67

Create kernel objects

Delete or suspend this task

2. Endless-Loop Tasks

As with the structure of the application initialization task, the structure of an endless
loop task can also contain initialization code. The endless loop's initialization code, however,
only needs to be executed when the task first runs, after which the task executes in an endless

loop, as shown in Listing 2.

The critical part of the design of an endless-loop task is the one or more blocking calls
within the body of the loop. These blocking calls can result in the blocking of this endless-
loop task, allowing lower priority tasks to run.

Listing 5.2: Pseudo code for an endless-loop task.
EndlessLoopTask ()
{
Initialization code
Loop Forever
{
Body of loop

Make one or more blocking calls

Sgnchronization! Communication, and Concurrency

Tasks synchronize and communicate amongst themselves by using intertask
primitives , which are kernel objects that facilitate synchronization and communication
between two or more threads of execution. Examples of such objects include semaphores,

message queues, signals, and pipes, as well as other types of objects.

The concept of concurrency and how an application is optimally decomposed into
concurrent tasks. For now, remember that the task object is the fundamental construct of most

kernels. Tasks, along with task-management services, allow developers to design applications

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0033.html

CS T62 - EMBEDDED SYSTEMS 68

for concurrency to meet multiple time constraints and to address various design problems
inherent to real-time embedded applications.

Modularizing An Application For Concurrency

Introduction

Many activities need to be completed when designing applications for real-time
systems. One group of activities requires identifying certain elements. Some of the more

important elements to identify include:

—

. system requirements,

2. inputs and outputs,

3. real-time deadlines,

4. events and event response times,

5. event arrival patterns and frequencies,
6. required objects and other components,
7. tasks that need to be concurrent,

8. system schedulability, and

9. useful or needed synchronization protocols for inter-task communications.

Svnchronization And Communication

Introduction

Software applications for real-time embedded systems use concurrency to maximize
efficiency. As a result, an application's design typically involves multiple concurrent threads,
tasks, or processes. Coordinating these activities requires inter-task synchronization and

communication.

This chapter focuses on:

. resource synchronization,

. activity synchronization,

. inter-task communication, and

. ready-to-use embedded design patterns.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 69

Synchronization

Synchronization is classified into two categories: resource
synchronization and activity synchronization . Resource synchronization determines whether
access to a shared resource is safe, and, if not, when it will be safe. Activity synchronization
determines whether the execution of a multithreaded program has reached a certain state and,

if it hasn't, how to wait for and be notified when this state is reached.
Resource Synchronization

Access by multiple tasks must be synchronized to maintain the integrity of a shared
resource. This process is called resource synchronization , a term closely associated with

critical sections and mutual exclusions.

Mutual exclusion is a provision by which only one task at a time can access a shared

resource. A critical section is the section of code from which the shared resource is accessed.

As an example, consider two tasks trying to access shared memory. One task (the
sensor task) periodically receives data from a sensor and writes the data to shared memory.
Meanwhile, a second task (the display task) periodically reads from shared memory and
sends the data to a display. The common design pattern of using shared memory is illustrated

in Figure 1.

Inputs from
1fO Device ———

Outputs o
10 Devica

Figure 1: Multiple tasks accessing shared memory.

Problems arise if access to the shared memory is not exclusive, and multiple tasks can
simultaneously access it. For example, if the sensor task has not completed writing data to the
shared memory area before the display task tries to display the data, the display would

contain a mixture of data extracted at different times, leading to erroneous data interpretation.

The section of code in the sensor task that writes input data to the shared memory is a

critical section of the sensor task. The section of code in the display task that reads data from

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0091.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/1501_0.jpg

CS T62 - EMBEDDED SYSTEMS 70

the shared memory is a critical section of the display task. These two critical sections are

called competing critical sections because they access the same shared resource.

A mutual exclusion algorithm ensures that one task's execution of a critical section is

not interrupted by the competing critical sections of other concurrently executing tasks.

One way to synchronize access to shared resources is to use a client-server model, in
which a central entity called a resource server is responsible for synchronization. Access
requests are made to the resource server, which must grant permission to the requestor before
the requestor can access the shared resource. The resource server determines the eligibility of

the requestor based on pre-assigned rules or run-time heuristics.

Barrier synchronization comprises three actions:

. a task posts its arrival at the barrier,
. the task waits for other participating tasks to reach the barrier, and
. the task receives notification to proceed beyond the barrier.

= Another representative of activity synchronization mechanisms is rendezvous
synchronization , which, as its name implies, is an execution point where two tasks
meet. The main difference between the barrier and the rendezvous is that the barrier
allows activity synchronization among two or more tasks, while rendezvous

synchronization is between two tasks.

= In rendezvous synchronization, a synchronization and communication point called
an entry is constructed as a function call. One task defines its entry and makes it
public. Any task with knowledge of this entry can call it as an ordinary function call.
The task that defines the entry accepts the call, executes it, and returns the results to
the caller. The issuer of the entry call establishes a rendezvous with the task that

defined the entry.

Communication

Tasks communicate with one another so that they can pass information to each other
and coordinate their activities in a multithreaded embedded application. Communication can
be signal-centric, data-centric, or both. In signal-centric communication , all necessary
information is conveyed within the event signal itself. In data-centric communication |
information is carried within the transferred data. When the two are combined, data transfer

accompanies event notification.

[VISEM - CSE |

CS T62 - EMBEDDED SYSTEMS 71

When communication involves data flow and is unidirectional, this communication
model is called loosely coupled communication. In this model, the data producer does not
require a response from the consumer. Figure 4 illustrates an example of loosely coupled

communication.

Imterrupt

Message Queue

. |Il_ Task

Figure 4: Loosely coupled ISR-to-task communication using message queues.

For example, an ISR for an I/O device retrieves data from a device and routes the data
to a dedicated processing task. The ISR neither solicits nor requires feedback from the
processing task. By contrast, in tightly coupled communication , the data movement is
bidirectional. The data producer synchronously waits for a response to its data transfer before
resuming execution, or the response is returned asynchronously while the data producer

continues its function.

Message Queue #1

Task B -ll "\.\ﬂ Task

21 —_| #2

Message Queue #2
1] | l u B

Figure 5: Tightly coupled task-to-task communication using message queues.

In tightly coupled communication, as shown in Figure 5, task #1 sends data to task #2 using
message queue #2 and waits for confirmation to arrive at message queue #1. The data
communication is bidirectional. It is necessary to use a message queue for confirmations
because the confirmation should contain enough information in case task #1 needs to re-send
the data. Task #1 can send multiple messages to task #2, i.e., task #1 can continue sending

messages while waiting for confirmation to arrive on message queue #2.

Communication has several purposes, including the following:

. transferring data from one task to another,

. signaling the occurrences of events between tasks,

. allowing one task to control the execution of other tasks,
. synchronizing activities, and

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0092.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/1504_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/1505_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0092.html

CS T62 - EMBEDDED SYSTEMS 72

. implementing custom synchronization protocols for resource sharing.

» The first purpose of communication is for one task to transfer data to another task.
Between the tasks, there can exist data dependency, in which one task is the data
producer and another task is the data consumer. For example, consider a specialized
processing task that is waiting for data to arrive from message queues or pipes or from
shared memory. In this case, the data producer can be either an ISR or another task.
The consumer is the processing task. The data source can be an I/O device or another

task.

= The second purpose of communication is for one task to signal the occurrences of
events to another task. Either physical devices or other tasks can generate events. A
task or an ISR that is responsible for an event, such as an I/O event, or a set of events
can signal the occurrences of these events to other tasks. Data might or might not
accompany event signals. Consider, for example, a timer chip ISR that notifies

another task of the passing of a time tick.

= The third purpose of communication is for one task to control the execution of other
tasks. Tasks can have a master/slave relationship, known as process control . For
example, in a control system, a master task that has the full knowledge of the entire
running system controls individual subordinate tasks. Each subtask is responsible for
a component, such as various sensors of the control system. The master task sends
commands to the subordinate tasks to enable or disable sensors. In this scenario, data
flow can be either unidirectional or bidirectional if feedback is returned from the

subordinate tasks.

= The fourth purpose of communication is to synchronize activities. The computation

example given in 'Activity Synchronization' on page 233, section 15.2.2, shows that

when multiple tasks are waiting at the execution barrier, each task waits for a signal
from the last task that enters the barrier, so that each task can continue its own
execution. In this example, it is insufficient to notify the tasks that the final
computation has completed; additional information, such as the actual computation

results, must also be conveyed.

= The fifth purpose of communication is to implement additional synchronization

protocols for resource sharing. The tasks of a multithreaded program can implement

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0091.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0091.html

CS T62 - EMBEDDED SYSTEMS 73

custom, more-complex resource synchronization protocols on top of the system-

supplied synchronization primitives.

Semaphores

Introduction

Multiple concurrent threads of execution within an application must be able to
synchronize their execution and coordinate mutually exclusive access to shared resources. To
address these requirements, RTOS kernels provide a semaphore object and associated

semaphore management services.

This chapter discusses the following:

. Defining a semaphore,

. Typical semaphore operations, and
. Common semaphore use.
Defining Semaphores

A semaphore (sometimes called a semaphore token) is a kernel object that one or
more threads of execution can acquire or release for the purposes of synchronization or

mutual exclusion.

When a semaphore is first created, the kernel assigns to it an associated semaphore
control block (SCB), a unique ID, a value (binary or a count), and a task-waiting list, as

shown in Figure 1.

Semaphora-
Control Block
SCB
Semaphore
Hnmnpur D Task-Waiting List
..f = *
Tagk 2 | wss
N r—— =

Valus
" Determines how many
Binary or a semaphore lokens are
Count

availabla.

Figure 1: A semaphore, its associated parameters, and supporting data structures.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0037.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0601_0.jpg

CS T62 - EMBEDDED SYSTEMS 74

A semaphore is like a key that allows a task to carry out some operation or to access a
resource. If the task can acquire the semaphore, it can carry out the intended operation or
access the resource. A single semaphore can be acquired a finite number of times. In this
sense, acquiring a semaphore is like acquiring the duplicate of a key from an apartment
manager—when the apartment manager runs out of duplicates, the manager can give out no
more keys. Likewise, when a semaphore’s limit is reached, it can no longer be acquired until

someone gives a key back or releases the semaphore.

The kernel tracks the number of times a semaphore has been acquired or released by
maintaining a token count, which is initialized to a value when the semaphore is created. As a
task acquires the semaphore, the token count is decremented; as a task releases the semaphore,

the count is incremented.

If the token count reaches 0, the semaphore has no tokens left. A requesting task,
therefore, cannot acquire the semaphore, and the task blocks if it chooses to wait for the

semaphore to become available.

The task-waiting list tracks all tasks blocked while waiting on an unavailable
semaphore. These blocked tasks are kept in the task-waiting list in either first in/first out

(FIFO) order or highest priority first order.

When an unavailable semaphore becomes available, the kernel allows the first task in
the task-waiting list to acquire it. The kernel moves this unblocked task either to the running
state, if it is the highest priority task, or to the ready state, until it becomes the highest priority
task and is able to run. Note that the exact implementation of a task-waiting list can vary from

one kernel to another.
1. Binary Semaphores

A binary semaphore can have a value of either 0 or 1. When a binary semaphore’s
value is 0, the semaphore is considered unavailable (or empty); when the value is 1, the
binary semaphore is considered available (or full). Note that when a binary semaphore is
first created, it can be initialized to either available or unavailable (1 or 0, respectively). The

state diagram of a binary semaphore is shown in Figure 2.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0037.html

CS T62 - EMBEDDED SYSTEMS 75

Acquire
rvaiE =0
—

Initial Available Unavailable Initial
value = 1 valupe =0
Release

(walue = 1)

Figure 2: The state diagram of a binary semaphore.

Binary semaphores are treated as global resources, which means they are shared
among all tasks that need them. Making the semaphore a global resource allows any task to

release it, even if the task did not initially acquire it.
2. Counting Semaphores

A counting semaphore uses a count to allow it to be acquired or released multiple
times. When creating a counting semaphore, assign the semaphore a count that denotes the
number of semaphore tokens it has initially. If the initial count is 0, the counting semaphore
is created in the unavailable state. If the count is greater than 0, the semaphore is created in

the available state, and the number of tokens it has equals its count, as shown in Figure 3.

Release
foount = cound +)
Release
(count = 1)
—
Iniffal count = O Unavallable fnitial cournt = 0

Vo
Acquire

| (count=0)

o

Acquireg

{count = counl -1)

Figure 3: The state diagram of a counting semaphore.

One or more tasks can continue to acquire a token from the counting semaphore until
no tokens are left. When all the tokens are gone, the count equals 0, and the counting
semaphore moves from the available state to the unavailable state. To move from the

unavailable state back to the available state, a semaphore token must be released by any task.
3. Mutual Exclusion (Mutex) Semaphores

A mutual exclusion (mutex) semaphore is a special binary semaphore that supports
ownership, recursive access, task deletion safety, and one or more protocols for avoiding

problems inherent to mutual exclusion. Figure 4 illustrates the state diagram of a mutex.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0602_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0037.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0603_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0037.html

CS T62 - EMBEDDED SYSTEMS 76

Acquire (recursive)
: {lock count = lock count +1)
Acquirg

{lock couwrnt = 1) I./_‘\.I
| |

___,.r"" -

Initial Unlocked
flock cout =)
—r "'FH’..‘.
Release)
{lock count = Q) =

Release (recursiva)
flock count = lock count - 1)

Figure 4: The state diagram of a mutual exclusion (mutex) semaphore.

A mutex is initially created in the unlocked state, in which it can be acquired by a task.
After being acquired, the mutex moves to the locked state. Conversely, when the task releases
the mutex, the mutex returns to the unlocked state. Note that some kernels might use the

terms lock and unlock for a mutex instead of acquire and release.

Depending on the implementation, a mutex can support additional features not found
in binary or counting semaphores. These key differentiating features include ownership,

recursive locking, task deletion safety, and priority inversion avoidance protocols.

Typical Semaphore Operations

Typical operations that developers might want to perform with the semaphores in an

application include:

. creating and deleting semaphores,

. acquiring and releasing semaphores,

. clearing a semaphore’s task-waiting list, and
. getting semaphore information.

1. Creating and Deleting Semaphores

Table 1 identifies the operations used to create and delete semaphores.

Table 1: Semaphore creation and deletion operations.

Operation Description
Create Creates a semaphore
Delete Deletes a semaphore

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0604_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0038.html

CS T62 - EMBEDDED SYSTEMS 77

Several things must be considered, however, when creating and deleting semaphores. If a
kernel supports different types of semaphores, different calls might be used for creating

binary, counting, and mutex semaphores, as follows:

. Binary—specify the initial semaphore state and the task-waiting order.
. Counting—specify the initial semaphore count and the task-waiting order.
. Mutex—specify the task-waiting order and enable task deletion safety, recursion, and

priority-inversion avoidance protocols, if supported.

Semaphores can be deleted from within any task by specifying their IDs and making
semaphore-deletion calls. Deleting a semaphore is not the same as releasing it. When a
semaphore is deleted, blocked tasks in its task-waiting list are unblocked and moved either to
the ready state or to the running state (if the unblocked task has the highest priority). Any
tasks, however, that try to acquire the deleted semaphore return with an error because the

semaphore no longer exists.
2. Acquiring and Releasing Semaphores

Table 2 identifies the operations used to acquire or release semaphores.

Table 2: Semaphore acquire and release operations.

Operation Description
Acquire Acquire a semaphore token
Release Release a semaphore token

The operations for acquiring and releasing a semaphore might have different names,
depending on the kernel: for example, take and give , sm p and sm v , pend and post ,
and lock and umnlock . Regardless of the name, they all effectively acquire and release

semaphores.

Tasks typically make a request to acquire a semaphore in one of the following ways:

. Wait forever—task remains blocked until it is able to acquire a semaphore.

. Wait with a timeout—task remains blocked until it is able to acquire a semaphore or
until a set interval of time, called the timeout interval , passes. At this point, the task is
removed from the semaphore’s task-waiting list and put in either the ready state or the
running state.

. Do not wait—task makes a request to acquire a semaphore token, but, if one is not

available, the task does not block.
[VI SEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0038.html

CS T62 - EMBEDDED SYSTEMS 78

Typical Semaphore Use

Semaphores are useful either for synchronizing execution of multiple tasks or for
coordinating access to a shared resource. The following examples and general discussions
illustrate using different types of semaphores to address common synchronization design

requirements effectively, as listed:

. Wait-and-signal synchronization,

. Multiple-task wait-and-signal synchronization,

. Credit-tracking synchronization,

. Single shared-resource-access synchronization,

. Recursive shared-resource-access synchronization, and
. Multiple shared-resource-access synchronization.

Note that, for the sake of simplicity, not all uses of semaphores are listed here. Also, later
chapters of this book contain more advanced discussions on the different ways that mutex

semaphores can handle priority inversion.
1 Wait-and-Signal Synchronization

Two tasks can communicate for the purpose of synchronization without exchanging
data. For example, a binary semaphore can be used between two tasks to coordinate the

transfer of execution control, as shown in Figure 5.

tSignalTask .@ o| tWaitTask

Binary Semaphore
(Initial value = 0)

Figure 5: Wait-and-signal synchronization between two tasks.

In this situation, the binary semaphore is initially unavailable (value
of 0). tWaitTask has higher priority and runs first. The task makes a request to acquire the
semaphore but is blocked because the semaphore is unavailable. This step gives the lower
priority tSignalTask a chance to run; at some point, tSignalTask releases the binary

semaphore and unblocks tWaitTask. The pseudo code for this scenario is shown in Listing 1.
2. Multiple-Task Wait-and-Signal Synchronization

When coordinating the synchronization of more than two tasks, use the flush

operation on the task-waiting list of a binary semaphore, as shown in Figure 6.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0605_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html

CS T62 - EMBEDDED SYSTEMS 79

tWaitTask 1

tSignalTask tWaitTask 2
Binary Semaphore i

(Initial value = 0) WaitTask 3

Figure 6: Wait-and-signal synchronization between multiple tasks.

As in the previous case, the binary semaphore is initially unavailable (value of 0). The higher
priority tWaitTasks 1, 2, and 3 all do some processing; when they are done, they try to
acquire the unavailable semaphore and, as a result, block. This action gives tSignalTask a
chance to complete its processing and execute a flush command on the semaphore,
effectively unblocking the three tWaitTasks, as shown in Listing 2.

3. Credit-Tracking Synchronization

Sometimes the rate at which the signaling task executes is higher than that of the
signaled task. In this case, a mechanism is needed to count each signaling occurrence. The
counting semaphore provides just this facility. With a counting semaphore, the signaling task
can continue to execute and increment a count at its own pace, while the wait task, when

unblocked, executes at its own pace, as shown in Figure 7.

tSignalTask —b@—b WaitTask

Counting Semaphore
(Initial value = 0)

Figure 7: Credit-tracking synchronization between two tasks.

Again, the counting semaphore's count is initially 0, making it unavailable. The lower
priority tWaitTask tries to acquire this semaphore but blocks until tSignalTask makes the
semaphore available by performing a release on it. Even then, tWaitTask will waits in the
ready state until the higher priority tSignalTask eventually relinquishes the CPU by making a
blocking call or delaying itself, as shown in Listing 3.

4. Single Shared-Resource-Access Synchronization

One of the more common uses of semaphores is to provide for mutually exclusive
access to a shared resource. A shared resource might be a memory location, a data structure,
or an I/O device-essentially anything that might have to be shared between two or more
concurrent threads of execution. A semaphore can be used to serialize access to a shared

resource, as shown in Figure 8.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0606_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0607_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html

CS T62 - EMBEDDED SYSTEMS 80

tAccessTask 1 s

tAccessTask 2

Binary .)
Semaphore™-.___
(Initial value = 1)

Figure 8: Single shared-resource-access synchronization.

In this scenario, a binary semaphore is initially created in the available state (value = 1) and is
used to protect the shared resource.

5. Recursive Shared-Resource-Access Synchronization

Sometimes a developer might want a task to access a shared resource recursively.
This situation might exist if tAccessTask calls Routine A that calls Routine B, and all three

need access to the same shared resource, as shown in Figure 9.

thccessTask v

——»{ Routine A

L]
)

| Routine B Recursive™-.._ e
—_— Mutex

Figure 9: Recursive shared- resource-access synchronization.

If a semaphore were used in this scenario, the task would end up blocking, causing a
deadlock. When a routine is called from a task, the routine effectively becomes a part of the
task. When Routine A runs, therefore, it is running as a part of tAccessTask. Routine A trying
to acquire the semaphore is effectively the same as tAccessTask trying to acquire the same
semaphore. In this case, tAccessTask would end up blocking while waiting for the
unavailable semaphore that it already has.

One solution to this situation is to use a recursive mutex. After tAccessTask locks the mutex,
the task owns it. Additional attempts from the task itself or from routines that it calls to lock
the mutex succeed. As a result, when Routines A and B attempt to lock the mutex, they
succeed without blocking.

6. Multiple Shared-Resource-Access Synchronization

For cases in which multiple equivalent shared resources are used, a counting

semaphore comes in handy, as shown in Figure 10.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0608_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0609_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html

CS T62 - EMBEDDED SYSTEMS 81

tAccessTask 1 “ [Equivalent | .
Shared
Resource
tAccessTask 2 |
' Equivalent
Countingkﬂ Shared ’

tAccessTask 3 \ d

Semaphare*, Resource |

Figure 10: Single shared-resource-access synchronization.

Note that this scenario does not work if the shared resources are not equivalent. The counting
semaphore's count is initially set to the number of equivalent shared resources: in this
example, 2. As a result, the first two tasks requesting a semaphore token are successful.
However, the third task ends up blocking until one of the previous two tasks releases a
semaphore token, as shown in Listing 6. Note that similar code is used for tAccessTask

1,2, and 3.

Message Queues

Introduction

Activity synchronization of two or more threads of execution. Such synchronization
helps tasks cooperate in order to produce an efficient real-time system. In many cases,
however, task activity synchronization alone does not yield a sufficiently responsive
application. Tasks must also be able to exchange messages. To facilitate inter-task data
communication, kernels provide a message queue object and message queue management

services.

This chapter discusses the following:

. Defining message queues,

. Message queue states,

. Message queue content,

. Typical message queue operations, and
. Typical message queue use.

Defining Message Queues

= A message queue is a buffer-like object through which tasks and ISRs send and

receive messages to communicate and synchornize with data. A message queue is like

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/06010_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0039.html

CS T62 - EMBEDDED SYSTEMS 82

a pipeline. It temporarily holds messages from a sender until the intended receiver is
ready to read them. This temporary buffering decouples a sending and receiving task;

that is, it frees the tasks from having to send and receive messages simultaneously.

= A message queue has several associated components that the kernel uses to manage
the queue. When a message queue is first created, it is assigned an associated queue
control block (QCB), a message queue name, a unique ID, memory buffers, a queue

length, a maximum message length, and one or more task-waiting lists, as illustrated

in Figure 1.
Quous Control Mamory
Black {System Pool or
Frivale Buffers)
oca
H , Receiving Task
Sending Task I Queuve NamalD |
Waiting List ! 1 POy Lot
S =k
Maximum
[Tosk |- | Message
Length d—> =
R T - >
Queus Length \
Queue
. Tall Head Eiament

Figure 1: A message queue, its associated parameters, and supporting data structures.

= It is the kernel’s job to assign a unique ID to a message queue and to create its QCB
and task-waiting list. The kernel also takes developer-supplied parameters—such as
the length of the queue and the maximum message length—to determine how much
memory is required for the message queue. After the kernel has this information, it
allocates memory for the message queue from either a pool of system memory or

some private memory space.

= The message queue itself consists of a number of elements, each of which can hold a
single message. The elements holding the first and last messages are called
the head and tail respectively. Some elements of the queue may be empty (not
containing a message). The total number of elements (empty or not) in the queue is
the total length of the queue . The developer specified the queue length when the

queue was created.

= As Figure 1 shows, a message queue has two associated task-waiting lists. The

receiving task-waiting list consists of tasks that wait on the queue when it is empty.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0042.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0701_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0042.html

CS T62 - EMBEDDED SYSTEMS 83

The sending list consists of tasks that wait on the queue when it is full. Empty and full

message-queue states, as well as other key concepts, are discussed in more detail next.

Message Queue States

= As with other kernel objects, message queues follow the logic of a simple FSM, as
shown in Figure 2 When a message queue is first created, the FSM is in the empty
state. If a task attempts to receive messages from this message queue while the queue
is empty, the task blocks and, if it chooses to, is held on the message queue's task-

waiting list, in either a FIFO or priority-based order.

Message Delvored

(msgs = mags —1)
Cuewe Created Meazsage Dalvened | Il Massage Delvered
(msgs = 0) {mags = 0} ! {msgs = msgs 1)
- B @ B -@
e Maszage Arrived
M Arreed
v =ﬂ;r- | | {mags = Quews Lenghh)
[msgs = 1) ,\‘ /

Message Arrived
(rmsgs = megs +71)

Figure 2: The state diagram for a message queue.

= In this scenario, if another task sends a message to the message queue, the message is
delivered directly to the blocked task. The blocked task is then removed from the
task-waiting list and moved to either the ready or the running state. The message

queue in this case remains empty because it has successfully delivered the message.

= If another message is sent to the same message queue and no tasks are waiting in the

message queue's task-waiting list, the message queue's state becomes not empty.

= As additional messages arrive at the queue, the queue eventually fills up until it has
exhausted its free space. At this point, the number of messages in the queue is equal to
the queue's length, and the message queue's state becomes full. While a message
queue is in this state, any task sending messages to it will not be successful unless

some other task first requests a message from that queue, thus freeing a queue element.

= In some kernel implementations when a task attempts to send a message to a full
message queue, the sending function returns an error code to that task. Other kernel
implementations allow such a task to block, moving the blocked task into the sending

task-waiting list, which is separate from the receiving task-waiting list.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0043.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0702_0.jpg

CS T62 - EMBEDDED SYSTEMS 84

tSendingTask |—— » = iReceivingTask
5 —~L. Message 1
i -"'"f 2 cupy
i Senaing lazk's ' Message- queLE s . : Receiving lask's |
" : Mamory ared | : _memary area : : maemaory area

Figure 3: Message copying and memory use for sending and receiving messages.

Message Queue Content

Message queues can be used to send and receive a variety of data. Some examples include:

. a temperature value from a sensor,

. a bitmap to draw on a display,

. a text message to print to an LCD,

. a keyboard event, and

. a data packet to send over the network.

Some of these messages can be quite long and may exceed the maximum message length,
which is determined when the queue is created. (Maximum message length should not be
confused with total queue length, which is the total number of messages the queue can hold.)
One way to overcome the limit on message length is to send a pointer to the data, rather than
the data itself. Even if a long message might fit into the queue, it is sometimes better to send

a pointer instead in order to improve both performance and memory utilization.

When a task sends a message to another task, the message normally is copied twice, as
shown in Figure 3 The first time, the message is copied when the message is sent from the
sending task’s memory area to the message queue’s memory area. The second copy occurs
when the message is copied from the message queue’s memory area to the receiving task’s

memory area.

An exception to this situation is if the receiving task is already blocked waiting at the
message queue. Depending on a kernel’s implementation, the message might be copied just
once in this case—from the sending task’s memory area to the receiving task’s memory area,

bypassing the copy to the message queue’s memory area.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0703_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0043.html

CS T62 - EMBEDDED SYSTEMS 85

Because copying data can be expensive in terms of performance and memory
requirements, keep copying to a minimum in a real-time embedded system by keeping
messages small or, if that is not feasible, by using a pointer instead.

Message Queue Storage

Different kernels store message queues in different locations in memory. One kernel might
use a system pool, in which the messages of all queues are stored in one large shared area of
memory. Another kernel might use separate memory areas, called private buffers, for each
message queue.

Typical Message Queue Operations

Typical message queue operations include the following:

. creating and deleting message queues,
. sending and receiving messages, and
. obtaining message queue information.

1 Creating and Deleting Message Queues

Message queues can be created and deleted by using two simple calls, as shown in Table 1.

Table 1: Message queue creation and deletion operations.

Operation Description
Create Creates a message queue
Delete Deletes a message queue

When created, message queues are treated as global objects and are not owned by any
particular task. Typically, the queue to be used by each group of tasks or ISRs is assigned in
the design.

When creating a message queue, a developer needs to make some initial decisions
about the length of the message queue, the maximum size of the messages it can handle, and

the waiting order for tasks when they block on a message queue.

Deleting a message queue automatically unblocks waiting tasks. The blocking call in
each of these tasks returns with an error. Messages that were queued are lost when the queue

1s deleted.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0046.html

CS T62 - EMBEDDED SYSTEMS 86

2 Sending and Receiving Messages

The most common uses for a message queue are sending and receiving messages.

These operations are performed in different ways, some of which are listed in Table 2 .

Table 2: Sending and receiving messages.

Operation Description

Send Sends a message to a message queue
Receive Receives a message from a message queue
Broadcast Broadcasts messages

Sending Messages

When sending messages, a kernel typically fills a message queue from head to tail in FIFO
order, as shown in Figure 4. Each new message is placed at the end of the queue.
Sending Messages — First-In, First-Out (FIFO) Order

Message Queua Receiving Task
Waiting List

e
- il Mag2 Mg 1 | ¥ m:.u
- : *‘

Msg 3
Sending Messages — Last-In, First-Out (LIFO) Order
Massage Queis Receiving Task
Walting List
i’
Msg 1 msg2 | [} ; _-_l]I.
Msg 3 |-

Figure 4: Sending messages in FIFO or LIFO order.

Many message-queue implementations allow urgent messages to go straight to the head
of the queue. If all arriving messages are urgent, they all go to the head of the queue, and the
queuing order effectively becomes last-in/first-out (LIFO). Many message-queue
implementations also allow ISRs to send messages to a message queue. In any case, messages
are sent to a message queue in the following ways:

. not block (ISRs and tasks),

. block with a timeout (tasks only), and

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0046.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0046.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0704_0.jpg

CS T62 - EMBEDDED SYSTEMS 87

. block forever (tasks only).

At times, messages must be sent without blocking the sender. If a message queue is
already full, the send call returns with an error, and the task or ISR making the call continues
executing. This type of approach to sending messages is the only way to send messages from

ISRs, because ISRs cannot block.

Most times, however, the system should be designed so that a task will block if it
attempts to send a message to a queue that is full. Setting the task to block either forever or
for a specified timeout accomplishes this step. (Figure 5). The blocked task is placed in the

message queue’s task-waiting list, which is set up in either FIFO or priority-based order.
Task Waiting List - First-In, First-Out (FIFQ) Order

Sending Task Waiting List Message Queve Receiving Task
‘Waiting List

| s || T || k| o T ob-(T T

Tk A
High
Biocking Task

Task Waiting List — Priority-Based Order

Sending Task Waiing List Message Quave Receiving Task
Weaiting List

ces | TEsk1 Task3 || Task2 | | I‘*‘—_l_'"
Mochen || Modhum (| Low |2 4 -‘_ -

Task 4
High

Blocking Task

Figure 7.5: FIFO and priority-based task-waiting lists.

In the case of a task set to block forever when sending a message, the task blocks until
a message queue element becomes free (e.g., a receiving task takes a message out of the
queue). In the case of a task set to block for a specified time, the task is unblocked if either a

queue element becomes free or the timeout expires, in which case an error is returned.
Receiving Messages

As with sending messages, tasks can receive messages with different blocking
policies—the same way as they send them—with a policy of not blocking, blocking with a
timeout, or blocking forever. Note, however, that in this case, the blocking occurs due to the
message queue being empty, and the receiving tasks wait in either a FIFO or prioritybased
order. The diagram for the receiving tasks is similar to Figure 5, except that the blocked
receiving tasks are what fills the task list.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0046.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0705_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0046.html

CS T62 - EMBEDDED SYSTEMS 88

For the message queue to become full, either the receiving task list must be empty or
the rate at which messages are posted in the message queue must be greater than the rate at
which messages are removed. Only when the message queue is full does the task-waiting list
for sending tasks start to fill. Conversely, for the task-waiting list for receiving tasks to start

to fill, the message queue must be empty.

Messages can be read from the head of a message queue in two different ways:
. destructive read, and

. non-destructive read.

In a destructive read, when a task successfully receives a message from a queue, the task
permanently removes the message from the message queue’s storage buffer. In a non-
destructive read, a receiving task peeks at the message at the head of the queue without
removing it. Both ways of reading a message can be useful; however, not all kernel

implementations support the non-destructive read.

Some kernels support additional ways of sending and receiving messages. One way is the
example of peeking at a message. Other kernels allow broadcast messaging, explained later in

this chapter.
3 Obtaining Message Queue Information

Obtaining message queue information can be done from an application by using the

operations listed in Table 3.

Table 3: Obtaining message queue information operations.

Operation Description
Show queue info Gets information on a message queue
Show queue’s task-waiting list Gets a list of tasks in the queue’s task-waiting list

Different kernels allow developers to obtain different types of information about a
message queue, including the message queue ID, the queuing order used for blocked tasks
(FIFO or priority-based), and the number of messages queued. Some calls might even allow

developers to get a full list of messages that have been queued up.

As with other calls that get information about a particular kernel object, be careful
when using these calls. The information is dynamic and might have changed by the time it’s

viewed. These types of calls should only be used for debugging purposes.
[VISEM - CSE]

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0046.html

CS T62 - EMBEDDED SYSTEMS 89

Typical Message Queue Use

The following are typical ways to use message queues within an application:

. non-interlocked, one-way data communication,
. interlocked, one-way data communication,

. interlocked, two-way data communication, and
. broadcast communication.

Note that this is not an exhaustive list of the data communication patterns involving message

queues. The following sections discuss each of these simple cases.
1 Non-Interlocked, One-Way Data Communication

One of the simplest scenarios for message-based communications requires a sending
task (also called the message source), a message queue, and a receiving task (also called a

message sink), as illustrated in Figure 6.

tSourceTask +—» —»| TSinkTask

Figure 6: Non-interlocked, one-way data communication.

This type of communication is also called non-interlocked (or loosely coupled), one-
way data communication. The activities of tSourceTask and tSinkTask are not
synchronized. TSourceTask simply sends a message; it does not require acknowledgement

from tSinkTask.
2. Interlocked, One-Way Data Communication

In some designs, a sending task might require a handshake (acknowledgement) that
the receiving task has been successful in receiving the message. This process is called
interlocked communication, in which the sending task sends a message and waits to see if the

message is received.

This requirement can be useful for reliable communications or task synchronization.
For example, if the message for some reason is not received correctly, the sending task can
resend it. Using interlocked communication can close a synchronization loop. To do so, you
can construct a continuous loop in which sending and receiving tasks operate in lockstep with

each other. An example of one-way, interlocked data communication is illustrated in Figure 7.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0047.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0706_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0047.html

CS T62 - EMBEDDED SYSTEMS 90

tSourceTask —® {SinkTask

il

,,

Figure 7: Interlocked, one-way data communication.

In this case, tSourceTask and tSinkTask use a binary semaphore initially set to 0 and a
message queue with a length of 1 (also called a mailbox). tSourceTask sends the message to
the message queue and blocks on the binary semaphore. tSinkTask receives the message and
increments the binary semaphore. The semaphore that has just been made available wakes
up tSourceTask. tSourceTask, which executes and posts another message into the message

queue, blocking again afterward on the binary semaphore.
3. Interlocked, Two-Way Data Communication

Sometimes data must flow bidirectionally between tasks, which is called interlocked,
two-way data communication (also called full-duplex or tightly coupled communication).
This form of communication can be useful when designing a client/server-based system. A

diagram is provided in Figure 8.

t ClientTask |4 t ServerTask

s
AR

Figure 8: Interlocked, two-way data communication.

Two separate message queues are required for full-duplex communication. If any kind of data
needs to be exchanged, message queues are required; otherwise, a simple semaphore can be

used to synchronize acknowledgement.

4. Broadcast Communication

Some message-queue implementations allow developers to broadcast a copy of the

same message to multiple tasks, as shown in Figure 9.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0707_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0047.html
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0708_0.jpg
http://www.embeddedlinux.org.cn/rtconforembsys/5107final/LiB0047.html

CS T62 - EMBEDDED SYSTEMS

tBroadcastTask —»

—

tSinkTask 1

tSinkTask 2

tSinkTask 3

Figure 9: Broadcasting messages.

91

Message broadcasting is a one-to-many-task relationship. tBroadcastTask sends the

message on which multiple tSink-Task are waiting.

[VISEM - CSE |

http://www.embeddedlinux.org.cn/rtconforembsys/5107final/images/0709_0.jpg

	Barrel Shifter:
	Arithmetic Instructions:
	Using the Barrel Shifter with Arithmetic Instructi
	Logical Instructions:
	Comparison Instructions:
	The comparison instructions are used to compare o
	Multiply Instructions:
	Syntax: MLA{<cond>}{S} Rd, Rm, Rs, Rn MUL{<cond>}{
	The number of cycles taken to execute a multiply i
	A simple multiply instruction that multiplies regi
	Branch Instructions:
	A simple fragment of code that branches to a subro
	The branch exchange (BX) and branch exchange with

	Load-Store Instructions:
	Single-Register Transfer:
	These instructions are used for moving a single da
	r1.
	The ﬁrst instruction loads a word from the address
	Single-Register Load-Store Addressing Modes:
	The ARM instruction set provides different modes f
	Multiple-Register Transfer:
	Load-store multiple instructions can transfer mult
	The transfer occurs from a base address register R
	Multiple-register transfer instructions are more e
	Stack Operations:

	When handling a checked stack there are three attr
	Stack base
	Stack pointer
	Stack limit.
	a)The stack base is the starting address of the stac
	b)The stack pointer initially points to the stack ba
	c)The stack pointer descends memory and continuously
	Swap Instruction:

	Software Interrupt Instruction:
	Program Status Register Instructions:
	Conditional Execution:
	Thumb has higher code density—the space taken up

	ARM-Thumb Interworking:
	Other Branch Instructions:
	Data Processing Instructions:
	Single-Register Load-Store Instructions:
	Multiple-Register Load-Store Instructions:
	Stack Instructions:
	Software Interrupt Instruction:
	4.2Basic C Data Types
	4.3.Local Variable Types:
	Function Argument Types:
	Signed versus Unsigned Types:

	Function Calls:
	Pointers:
	Floating Point:
	Inline Functions and Inline Assembly:
	Instruction Scheduling:
	Register Allocation:
	Allocating Variables to Register Numbers:
	Making the Most of Available Registers:

	Conditional Execution:
	Introduction To Real-Time Operating Systems
	 Introduction
	A Brief History of Operating Systems
	In the early days of computing, developers created
	As the software industry progressed, operating sys
	Later in the decade, momentum started building for
	Some core functional similarities between a typica
	Some level of multitasking,
	Software and hardware resource management,
	Provision of underlying OS services to application
	Abstracting the hardware from the software applica
	On the other hand, some key functional differences
	Better reliability in embedded application context
	The ability to scale up or down to meet applicatio
	Faster performance,
	Reduced memory requirements,
	Scheduling policies tailored for real-time embedde
	Support for diskless embedded systems by allowing
	Better portability to different hardware platforms
	RTOSes, on the other hand, can meet these requirem
	Defining an RTOS
	The Scheduler
	1. Schedulable Entities
	2. Multitasking
	3. The Context Switch
	1.The Dispatcher
	4.Scheduling Algorithms
	Preemptive Priority-Based Scheduling
	Round-Robin Scheduling

	 Objects
	Services
	Key Characteristics of an RTOS
	1.Reliability
	2. Predictability
	3. Performance

	Tasks
	Introduction
	Defining a Task
	Task States and Scheduling
	1. Ready State
	2. Running State
	3. Blocked State

	Typical Task Operations
	1. Task Creation and Deletion
	2. Task Scheduling

	Typical Task Structure
	1 Run-to-Completion Tasks
	2. Endless-Loop Tasks

	Synchronization, Communication, and Concurrency

	Modularizing An Application For Concurrency
	Introduction

	Synchronization And Communication
	Introduction
	Synchronization
	Resource Synchronization

	Communication

	Semaphores
	 Introduction
	 Defining Semaphores
	1. Binary Semaphores
	2. Counting Semaphores
	3. Mutual Exclusion (Mutex) Semaphores

	Typical Semaphore Operations
	1. Creating and Deleting Semaphores
	2. Acquiring and Releasing Semaphores

	Typical Semaphore Use
	1 Wait-and-Signal Synchronization
	2. Multiple-Task Wait-and-Signal Synchronization
	3. Credit-Tracking Synchronization
	4. Single Shared-Resource-Access Synchronization
	5. Recursive Shared-Resource-Access Synchronizatio
	6. Multiple Shared-Resource-Access Synchronization

	Message Queues
	Introduction
	Message Queue States
	Message Queue Content
	Message Queue Storage
	Typical Message Queue Operations
	1 Creating and Deleting Message Queues
	2 Sending and Receiving Messages
	Sending Messages
	Receiving Messages

	3 Obtaining Message Queue Information

	Typical Message Queue Use
	1 Non-Interlocked, One-Way Data Communication
	2. Interlocked, One-Way Data Communication
	3. Interlocked, Two-Way Data Communication
	4. Broadcast Communication

