
SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 1 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

Department of Computer Science and Engineering

Subject Name: OBJECT ORIENTED PROGRAMMING Subject Code: CS T45

1. LIST OUT THE LIMITATIONS OF C++

UNIT 1
2 MARKS

It is not pure object oriented language.
Does not provide very strong type-checking.
C++ code is easily prone to errors related to data types, their conversions.
Does not provide efficient means for garbage collection, as already mentioned.
No built in support for threads

2. DEFINE JAVA AND ITS FEATURES
Java is a pure object oriented general purpose language.
A general-purpose computer programming language designed to produce programs that
will run on any computer system.
Java is a programming language and computing platform first released by Sun
Microsystems in 1995.
There are lots of applications and websites that will not work unless you have Java
installed, and more are created every day. Java is fast, secure, and reliable

3. WHAT ARE THE FEATURES OF JAVA LANGUAGE?
The features of java are:
Simple, small and familiar.
Object Oriented.
Distributed
Robust
Secure
Architectural neutral (or) platform independent

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 2 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

Portable
Compiled and interpreted
High performance
Dynamic and extensible

4. HISTORY OF JAVA?
James Gosling initiated the Java language project in June 1991 for use in one of his many
set-top box projects. The language, initially called Oak after an oak tree that stood outside
Gosling's office, also went by the name Green and ended up later being renamed as Java,
from a list of randomwords.

Sun released the first public implementation as Java 1.0 in 1995. It promised Write Once,
Run Anywhere (WORA), providing no-cost run-times on popular platforms.

On 13 November 2006, Sun released much of Java as free and open source software under
the terms of the GNU General Public License (GPL).

On 8 May 2007, Sun finished the process, making all of Java's core code free and open-
source, aside from a small portion of code to which Sun did not hold the copyright.

5. DEFINE JDK AND JRE
JAVA RUNTIME ENVIRONMENT

Provides the backbone for running Java application.
Is a collection of software.
Allows a computer system to run a Java application.
Consists of

JVMs, Java Virtual Machines, interpret Java bytecodeinto machine code.
Standard class libraries
User interface toolkits
A variety of utilities.

JAVA DEVELOPMENT KIT

Provides all of the components and necessary resources to develop Java applications.
Is a programming environment for compiling, debugging, and running Java applets,
applications, and Java Beans.
Includes the JRE, Java Programming language, development tools and tool APIs.

6. DEFINE JVM

JAVA VIRTUAL MACHINE:
An abstract computing machine, or virtual machine, JVM is a platform-independent execution

environment that converts Java bytecode into machine language and executes it. Most
programming languages compile source code directly into machine code that is designed to run
on a specific microprocessor architecture or operating system, such as Windows or UNIX

7. GIVE THE COMMAND USED FOR CREATING, COMPILING AND EXECUTION OF A PROGRAM

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 3 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

Java is a command driven language. So the programs are compiled and executed by giving
commands in command prompt.

Creating a program:
Create a program using any text editor such as edit in DOS or notepad or word pad etc. and
save it in java directory.
Syntax:

filename.java

Compiling the program:
Compile the created program using java compiler.
Syntax:

javac sourcefilename.java
Running the program:
Run the compiled program using java interpreter.
Syntax:

java classname

EXAMPLE:
Name of the source file- Sample.java
Name of the class file- Sample.class
To run the program-c>java sample

8. WHAT IS BYTECODE?
Bytecode is a highly optimized set of instructions designed to be executed by the java run-time

system. Which is called the java virtual machine (JVM)? JVM is an interpreter for bytecode.

9. What is a Literal? What are the different types of literals?
A Literal represents a value of a certain type where the type describes the behaviors of the

value. The different types of literals are:
Number literals
Character literals
Boolean literals
String literals

10.What is a Character literals?
Character literals are expressed by a single character enclosed within single quotes.

Characters are stored as Unicode characters.

Escape Meaning
\n
\t
\b
\r
\f
\\

Newline
Tab
Backspace
Carriage
return
Form feed

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 4 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

Backslash

11.What is a String literals?
A string is a combination of characters. string literals are a set of characters that are enclosed

within double quotes. As they are real objects, it is possible to concatenate, modify and test them. For
example, “This is a test string” represents a string. Strings can contain character constants and
Unicode characters

12.WHAT ARE JAVA TOKENS?

A token is an individual element in java. A program is written by using the available tokens.
The various tokens are:

Keywords
Identifies
Constants or literals
Operators
Separators

13.WHAT ARE KEYWORDS (OR) DEFINE KEYWORDWITH EG:

Keywords are words which belong to java language. They have standard predefined meaning.
The users have no right to change its meaning. Keywords should be written in lowercase.

The list of keywords are: abstract, boolean, int, float, static, byte, char, for, if,… etc.

14.WHAT ARE THE DATA TYPES IN JAVA
Data types specify the size and type of value that are to be stored. The data types are

defined into two categories.
They are:

Primitive (or) built-in data types
Derived (or) reference data types

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 5 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

15.DEFINE TYPE CASTING AND ITS TYPES?
Type casting in Java is to cast one type, a class or interface, into another type i.e. another
class or interface.

Casting is used when a method returns a type different than the one we require.

SYNTAX:
type variable1 = (type) variable2;

Ex:
int m = 50;
byte n = (byte)m;
long count = (long) m;

TYPES:
Widening
Narrowing

16.HOWDO YOU KNOW IF AN EXPLICIT OBJECT CASTING IS NEEDED?
If you assign a superclass object to a variable of a subclass's data type, you need to do explicit

casting.
For example:

Object a; Customer b; b = (Customer) a;
When you assign a subclass to a variable having a superclass type, the casting is

performed automatically

17.DIFFERENTIABLE BETWEEN BREAK AND CONTINUE STATEMENTS?
The break keyword halts the execution of the current loop and forces control out of the loop.

The term break refers to the act of breaking out of a b lock of code. Continue is similar to break,
except that instead of halting the execution of the loop, it starts the next iteration.

18.DEFINE OPERATORS AND ITS TYPES IN JAVA

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 6 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

An operator is a symbol that operates on one or more arguments to produce a result.
Java provides a rich set of operators to manipulate variables

TYPES OF OPERATORS

Assignment Operators
Increment Decrement Operators
Arithmetic Operators
Bitwise Operators
Relational Operators
Logical Operators
Ternary Operators
Comma Operators
Instanceof Operators

19.DEFINE OBJECT
An object is an real world entity that has its own properties (or) state and actions (or)

behavior

EX:
a pen, a person, a student

20.DEFINE CLASS
A class is a template/blue print of objects those have similar properties (or) state and actions

(or) behavior

Ex:
Pen, Person, Student

21.STATE THE CLASS MODEL

<access-specifiers> class class_name
{

access-specifiers data-type variable-name1;
access-specifiers data-type variable-name2;
access-specifiers return-type method_name1(arg1,arg2,arg3)
{

……….
……….

}
access-specifiers return-type method_name2(arg1)
{

……….
……….

}
}

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 7 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

22.DEFINE OBJECT CREATION IN JAVA
Syntax:

class_name object_name=new class_name();
It has two parts:

object declaration
Associate an object name with its class type to reserve proper amount of

memory for that object

class_name object_name; --> Student s1;

object instantiation
Creation of object using new operator in the heap memory and return the

reference to the stack memory
object_name=new class_name(); --> s1=new Student();

23.WHAT IS OBJECT REFERENCE?

When we declare a variable, we can use a class name as a type. Such variable refers to as
the objects of that class
These variables are known as object references

24.DEFINE THE DOT(.) OPERATOR

The dot (.) operator is used to access the instance variables and methods within an object.

General Form:
Object reference (.) Variable name

Object Reference is a reference to an object and variable name is the name of the instance.
Ex:
p.x = 10;
p.y=20;

25.DEFINE VARIABLES AND ITS TYPES IN JAVA
Variable is name of reserved area allocated in memory. Ex: int data=50; //data is variable

Types of variable:

Local Variable:
A variable that is declared inside the method is called local variable

Instance Variable:
A variable that is declared inside the class but outside the method is called instance variable.

It is not declared as static

Static Variable:
A variable that is declared as static is called static variable. It is common to all objects

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 8 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

Example:
class A
{

int data=50;//instance variable
static intm=100;//static variable
voidmethod()
{

int n=90; //local variable
}

}//end of class

26.DEFINE METHOD AND ITS SYNTAX IN JAVA
A Java method is a collection of statements that are grouped together to perform an operation
Methods are also known as Procedures or Functions

Syntax:
Method definition consists of a method header and a method body

access-specifier returnType nameOfMethod (Parameter List)
{

}
Example:

// method body

public void add(int a, int b)
{

System.out.println(a+b);}
27.STATE THE CHARACTERISTICS OF CONSTRUCTORS IN JAVA

Constructor in java is a special type of method that is used to initialize the object.
Java constructor is invoked at the time of object creation
Constructor name must be same as its class name
Constructor must have no explicit return type
Constructor can be overloaded

28.RULES FOR CREATING JAVA CONSTRUCTOR
There are basically two rules defined for the constructor.

1. Constructor name must be same as its class name
2. Constructor must have no explicit return type

29.WHAT IS THE PURPOSE OF DEFAULT CONSTRUCTOR?
Default constructor provides the default values to the object like 0, null etc. depending on the

type

30.DEFINE PACKAGES IN JAVA?
Packages provide a mechanism for grouping a variety of classes and / or interfaces
together.
Grouping is based on functionality

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 9 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

Types of packages:
Pre-defined packages or Java API packages
User-defined packages

31.DEFINE THE SYNTAX OF DEFINING PACKAGE IN JAVA

Syntax:
package [PackageName];
public class [ClassName]
{

}
Example:

//Body of the class

package firstPackage;
public class FirstClass
{

//Body of the class
}

32.DEFINE ACCESS SPECIFIERS AND ITS TYPES IN JAVA?
Access specifiers specifies the type of access levels for the classes, variables, methods and

constructor

Types of access-specifiers:

Default - Visible to the package, the default.
Private - Visible to the class only.
Public - Visible to the world.
Protected -Visible to the package and all subclasses.

33.DEFINE METHOD OVERLOADING IN JAVA?
If a class have multiple methods by same name but different parameters, it is known
asMethod Overloading
Method Overloading increases the readability of the program

There are two ways to overload the method in java
By changing number of arguments
By changing the data type

34.STATE DIFFERENCE BETWEEN CONSTRUCTOR ANDMETHODS

Java Constructor Java Method

Constructor is used to initialize the state
of an object.

Method is used to expose behaviour of
an object.

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 10 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

Constructor must not have return type. Method must have return type.

Constructor is invoked implicitly. Method is invoked explicitly.

The java compiler provides a default
constructor if you don't have any
constructor.

Method is not provided by compiler in
any case.

Constructor name must be same as the
class name.

Method name may or may not be same
as class name.

35.WHAT IS CONSTRUCTOR OVERLOADING?
Constructor overloading is a technique in Java in which a class can have any number of

constructors that differ in parameter lists
The compiler differentiates these constructors in two ways
the different number of parameters
the different type of parameters

36.DEFINE NEW OPERATOR
The 'new' operator in java is responsible for the creation of new object and dynamically

allocates memory in the heap with the reference pointed from the stack memory.

37.DEFINE DESTRUCTOR (OR) FINALIZE METHOD
The finalize method is called when an object is about to get garbage collected. That can be at

any time after it has become eligible for garbage collection

38.WHAT IS THE FINALIZE METHOD DO?
Before the invalid objects get garbage collected, the JVM give the user a chance to clean up

some resources before it got garbage collected

39.WHAT IS THE FINAL KEYWORDDENOTES?
Final keyword denotes that it is the final implementation for that method or variable or class.

You can’t override that method/variable/class any more

40.DEFINE INTERFACE
An interface in java is a blueprint of a class. It has static constants and abstract methods only.

It is used to achieve fully abstraction and multiple inheritance in Java. It cannot be instantiated just
like abstract class

41.SYNTAX OF DEFINING INTERFACE
interface interfaceName
{

Variables declaration;
Method declaration;

}

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 11 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

42.WHAT ARE THE USES OF INTERFACE
It is used to achieve fully abstraction.
By interface, we can support the functionality of multiple inheritance.
It can be used to achieve loose coupling

43.DIFFERENCE BETWEEN CLASS AND INTERFACE
CLASS INTERFACE

The members of a class can be constant or
variables.

The class definition can contain the code for
each of its methods. That is , the methods can
be abstract or non-abstract.

The members of an interface are always
declared as constant , i.e., their values are final.

The methods in an interface are abstract in
nature , i.e., there is no code associated with
them. It is later defined by the class that
implements the interface.

It can be instantiated by declaring objects. It cannot be used to declare objects. It can only
be inherited by a class.

It can use various access specifiers like public ,
private or protected.

It can only use the public access specifier.

44.WHAT’S THE DIFFERENCE BETWEEN AN INTERFACE AND AN ABSTRACT CLASS?
An abstract class may contain code in method bodies, which is not allowed in an interface.

With abstract classes, you have to inherit your class from it and Java does not allow multiple
inheritance. On the other hand, you can implement multiple interfaces in your class

45.DEFINE INTERNALIZATION
Internationalization is a mechanism to create such an application that can be adapted to

different languages and regions.
Internationalization is one of the powerful concepts of java if you are developing an

application and want to display messages, currencies, date, time etc. according to the specific region
or language

46.WHAT IS LOCALE?
A Locale object represents a specific geographical, political, or cultural region

47.STATE THE TYPES OF CONSTRUTOR
There are two types of constructors:

1. Default constructor (no-arg constructor)
2. Parameterized constructor

48.EXPLAIN THE USAGE OF JAVA PACKAGES
This is a way to organize files when a project consists of multiple modules. It also helps

resolve naming conflicts when different packages have classes with the same names. Packages
access level also allows you to protect data from being used by the non-authorized classes.

49.CAN YOU CALL ONE CONSTRUCTOR FROMANOTHER IF A CLASS HAS MULTIPLE
CONSTRUCTORS

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 12 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

Yes. Use this() syntax

50.HOW CAN A SUBCLASS CALL A METHOD ORA CONSTRUCTOR DEFINED IN A SUPERCLASS?
Use the following syntax: super.myMethod(); To call a constructor of the super class, just

write super(); in the first line of the subclass's constructor

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 1 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Department of Computer Science and Engineering

Subject Name: OBJECT ORIENTED PROGRAMMING Subject Code: CS T45

UNIT 1
11 MARKS

1. WRITE ABOUT JAVA AND ITS FEATURES

Java is an object-oriented, multi-threaded programming language developed by Sun
Microsystems in 1991. It is designed to be small, simple and portable across different platforms
as well as operating systems.

The popularity of java is due to its unique technology that is designed on the basis of three key
elements. They are the usage of applets, powerful programming language constructs and rich set
of significant object classes.

When a program is compiled, it is translated into machine code or processor instructions that
are specific to the processor. In the Java development environment there are two parts: a Java
compiler and a Java Interpreter. The compiler generates bytecode (asset of instructions that
resemble machine code but are not specific to any processor) instead of machine code and the
interpreter executes the Java program.

The disadvantage of using bytecode is the execution speed. Since system specific programs
run directly on the hardware, they are faster than the Java bytecodes that is processed by the
interpreter. In order to write a Java program, an editor, a Java compiler and a Java Runtime
Environment are needed.

Java is guaranteed to be Write Once, Run Anywhere.

History of Java:

James Gosling initiated the Java language project in June 1991 for use in one of his many set-
top box projects. The language, initially called Oak after an oak tree that stood outside Gosling's

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 2 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

office, also went by the name Green and ended up later being renamed as Java, from a list of
random words.

Sun released the first public implementation as Java 1.0 in 1995. It promised Write Once, Run
Anywhere (WORA), providing no-cost run-times on popular platforms.

On 13 November 2006, Sun released much of Java as free and open source software under the
terms of the GNU General Public License (GPL).

On 8 May 2007, Sun finished the process, making all of Java's core code free and open-source,
aside from a small portion of code to which Sun did not hold the copyright.

As of December 2008, the latest release of the Java Standard Edition is 6 (J2SE). With the
advancement of Java and its widespread popularity, multiple configurations were built to suite
various types of platforms. Ex: J2EE for Enterprise Applications, J2ME for Mobile Applications.

Sun Microsystems has renamed the new J2 versions as Java SE, Java EE and Java ME
respectively.

Features of Java:

Object Oriented: In Java, everything is an Object. Java can be easily extended since it is
based on the Object model.

Platform independent: Unlike many other programming languages including C and C++,
when Java is compiled, it is not compiled into platform specific machine, rather into
platform independent byte code. This byte code is distributed over the web and
interpreted by virtual Machine (JVM) on whichever platform it is being run.

Simple: Java is designed to be easy to learn. If you understand the basic concept of OOP
Java would be easy to master.

Secure: With Java's secure feature it enables to develop virus-free, tamper-free systems.
Authentication techniques are based on public-key encryption.

Architectural-neutral : Java compiler generates an architecture-neutral object file format
which makes the compiled code to be executable on many processors, with the presence
of Java runtime system.

Portable: Being architectural-neutral and having no implementation dependent aspects of
the specification makes Java portable. Compiler in Java is written in ANSI C with a clean
portability boundary which is a POSIX subset.

Robust: Java makes an effort to eliminate error prone situations by emphasizing mainly
on compile time error checking and runtime checking.

Multithreaded: With Java's multithreaded feature it is possible to write programs that
can do many tasks simultaneously. This design feature allows developers to construct
smoothly running interactive applications.

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 3 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Interpreted: Java byte code is translated on the fly to native machine instructions and is
not stored anywhere. The development process is more rapid and analytical since the
linking is an incremental and light weight process.

High Performance: With the use of Just-In-Time compilers, Java enables high
performance.

Distributed: Java is designed for the distributed environment of the internet.

Dynamic: Java is considered to be more dynamic than C or C++ since it is designed to
adapt to an evolving environment. Java programs can carry extensive amount of run-time
information that can be used to verify and resolve accesses to objects on run-time.

NEWLY ADDED FEATURES IN JAVA 2:

SWING is a set of user interface components that is implemented entirely in java. The user
can use a look and feel that is either specific to a particular operating systems.

Collections are group of objects. Java provides several types of collection, such as linked
lists, dynamic arrays, and hash tables, for our use. Collections offer a new way to solve
several common programming problems.

Various tools such as javac, java and javadoc have been enhanced. Debugger and profiler
interfaces for the JVM are available.

Performance improvements have been made in several areas. A Just-In-Time (JIT)
compiler is included in the JDK.

Policy files can define the permission for code from various sources. These determine if a
particular file or directory may be accessed, or if a connection can be established to a
specific host and port.

Digital certificates provide a mechanism to establish the identity of a user, which can be
referred as electronic passports.

The Java 2D library provides advanced features for working with shapes, images and text.

Various security tools are available that enable the user to create and store cryptographic
keys and digital certificates, sign Java Archive (JAR) files, and check the signature of a JAR
file.

The user can now play audio files such as MIDI, AU, WAV and RMF files using Java
programs

2. EXPLAIN IN DETAIL ABOUT JAVA PLATFORM

The computer world currently has many platforms, among them Microsoft Windows,
Macintosh, OS/2, UNIX® and NetWare®; software must be compiled separately to run on each

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 4 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

platform. The binary file for an application that runs on one platform cannot run on another
platform, because the binary file is machine specific.

The Java Platform is a software platform for delivering and running highly interactive,
dynamic, and secure applets and applications on networked computer systems. But what sets the
Java Platform apart is that it sits on top of these other platforms, and compiles to bytecodes, which
are not specific to any physical machine, but are machine instructions for a virtual machine.

A program written in the Java Language compiles to a bytecode file that can run wherever the
Java Platform is present, on any underlying operating system. In other words, the same exact file can
run on any operating system that is running the Java Platform. This portability is possible because at
the core of the Java Platform is the Java Virtual Machine.

The Java Platform is therefore ideal for the Internet, where one program should be capable of
running on any computer in the world.

The Java Platform is designed to provide this “Write Once, Run Anywhere” capability.

Developers use the Java Language to write source code for Java-powered applications. They
compile once to the Java Platform, rather than to the underlying system. Java Language source code
compiles to an intermediate, portable form of bytecodes that will run anywhere the Java Platform is
present.

Developers can write object-oriented, multithreaded, dynamically linked applications using
the Java Language. The platform has built-in security, exception handling, and automatic garbage
collection. Just-in-time compilers are available to speed up execution by converting Java bytecodes
into machine language. From within the Java Language, developers can also write and call native
methods—methods in C, C++ or another language, compiled to a specific underlying operating
system—for speed or special functionality.

The Java Language is the the entry ramp to the Java Platform. Programs written in the Java
Language and then compiled will run on the Java Plaform.

The Java Platform has two basic parts:

• Java Virtual Machine
• Java Application Programming Interface (Java API)

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 5 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Java Virtual Machine - The Java Virtual Machine is a “soft” computer that can be implemented in
software or hardware. It’s an abstract machine designed to be implemented on top of existing
processors. The porting interface and adapters enable it to be easily ported to new operating systems
without being completely rewritten.

Java API - The Java API forms a standard interface to applets and applications, regardless of the
underlying operating system. The Java API is the essential framework for application development.

This API specifies a set of essential interfaces in a growing number of key areas that
developers will use to build their Java-powered applications.

The Java Base API provides the very basic language, utility, I/O, network, GUI, and applet
services; OS companies that have licensed Java have contracted to include them in any Java
Platform they deploy.

The Java Standard Extension API extends the capabilities of Java beyond the Java Base API.
Some of these extensions will eventually migrate to the Java Base API. Other nonstandard
extension APIs can be provided by the applet, application, or underlying operating system. As
each new extension API specification is published, it will be made available for industry
review and feedback before it is finalized.

A Java Language development environment includes both the compile-time and runtime
environments, as shown in below figure. The Java Platform is represented by the runtime
environment.

The developer writes Java Language source code (.java files) and compiles it to bytecodes
(.class files). These bytecodes are instructions for the Java Virtual Machine.

To create an applet, the developer next stores these bytecode files on an HTTP server, and
adds an <applet code=filename> tag to a Web page, which names the entry-point bytecode file.

When an end user visits that page, the <applet> tag causes the bytecode files to be
transported over the network from the server to the end user’s browser in the Java Platform. At this

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 6 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

end, the bytecodes are loaded into memory and then verified for security before they enter the
Virtual Machine.

Once in the Virtual Machine, the bytecodes are interpreted by the Intepreter, or optionally
turned into machine code by the just-in-time (JIT) code generator, known more commonly as the JIT
Compiler.

The Interpreter and JIT Compiler operate in the context of the runtime system (threads,
memory, other system resources). Any classes from the Java Class Libraries (API) are dynamically
loaded as needed by the applet.

3. EXPLAIN IN DETAIL ABOUT THE DATA TYPES IN JAVA

Variables are nothing but reserved memory locations to store values. This means that when you
create a variable you reserve some space in memory.

Based on the data type of a variable, the operating system allocates memory and decides what can
be stored in the reserved memory.

Therefore, by assigning different data types to variables, you can store integers, decimals, or
characters in these variables.

There are two data types available in Java:

Primitive Data Types
Reference/Object Data Types

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 7 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Primitive Data Types:

There are eight primitive data types supported by Java. Primitive data types are predefined by the
language and named by a keyword. Let us now look into detail about the eight primitive data types.

byte:

Byte data type is an 8-bit signed two's complement integer.
Minimum value is -128 (-2^7)
Maximum value is 127 (inclusive)(2^7 -1)
Default value is 0
Byte data type is used to save space in large arrays, mainly in place of integers, since a byte is
four times smaller than an int.
Example: byte a = 100 , byte b = -50

short:

Short data type is a 16-bit signed two's complement integer.
Minimum value is -32,768 (-2^15)
Maximum value is 32,767 (inclusive) (2^15 -1)
Short data type can also be used to save memory as byte data type. A short is 2 times smaller
than an int

Default value is 0.
Example: short s = 10000, short r = -20000

int:

Int data type is a 32-bit signed two's complement integer.
Minimum value is - 2,147,483,648.(-2^31)
Maximum value is 2,147,483,647(inclusive).(2^31 -1)
Int is generally used as the default data type for integral values unless there is a concern about
memory.
The default value is 0.
Example: int a = 100000, int b = -200000

long:

Long data type is a 64-bit signed two's complement integer.
Minimum value is -9,223,372,036,854,775,808.(-2^63)
Maximum value is 9,223,372,036,854,775,807 (inclusive). (2^63 -1)
This type is used when a wider range than int is needed.
Default value is 0L.
Example: long a = 100000L, int b = -200000L

float:

Float data type is a single-precision 32-bit IEEE 754 floating point.
Float is mainly used to save memory in large arrays of floating point numbers.
Default value is 0.0f.
Float data type is never used for precise values such as currency.

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 8 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Example: float f1 = 234.5f

double:

double data type is a double-precision 64-bit IEEE 754 floating point.
This data type is generally used as the default data type for decimal values, generally the default
choice.
Double data type should never be used for precise values such as currency.
Default value is 0.0d.
Example: double d1 = 123.4

boolean:

boolean data type represents one bit of information.
There are only two possible values: true and false.
This data type is used for simple flags that track true/false conditions.
Default value is false.
Example: boolean one = true

char:

char data type is a single 16-bit Unicode character.
Minimum value is '\u0000' (or 0).
Maximum value is '\uffff' (or 65,535 inclusive).
Char data type is used to store any character.
Example: char letterA ='A'

Reference Data Types:

Reference variables are created using defined constructors of the classes. They are used to
access objects. These variables are declared to be of a specific type that cannot be changed. For
example, Employee, Puppy etc.
Class objects, and various type of array variables come under reference data type.
Default value of any reference variable is null.
A reference variable can be used to refer to any object of the declared type or any compatible
type.
Example: Animal animal = new Animal("giraffe");

Java Literals:
A literal is a source code representation of a fixed value. They are represented directly in the code

without any computation.

Literals can be assigned to any primitive type variable.

For Example:

byte a = 68;
char a = „A‟

byte, int, long, and short can be expressed in decimal(base 10), hexadecimal(base 16) or

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 9 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

octal(base 8) number systems as well.

Different Types of literals are:

Number literals
Character literals
Boolean literals
String literals

Number

Prefix 0 is used to indicate octal and prefix 0x indicates hexadecimal when using these number
systems for literals.

For Example:

int decimal = 100;

int hexa = 0x64;

Boolean

Boolean literals consist of the keywords true and false

String and Character

String literals in Java are specified like they are in most other languages by enclosing a sequence of
characters between a pair of double quotes.

For Example:

“Hello World”
“two\nlines”

String and char types of literals can contain any Unicode characters.
For Example: char

a = „\u0001‟; String

a = “\u0001”;

Java language supports few special escape sequences for String and char literals as well.

They are:
\n - newline
\t - tab
\” - Double Quote
\r - Carriage Return
\s - Space

4. WRITE IN DETAIL ABOUT OPERATORS IN JAVA

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 10 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Java provides a rich set of operators to manipulate variables. We can divide all the Java
operators into the following groups:

Arithmetic Operators

Relational Operators

Bitwise Operators

Logical Operators

Assignment Operators

Misc Operators

THE ARITHMETIC OPERATORS:

Arithmetic operators are used in mathematical expressions in the same way that they are
used in algebra. The following table lists the arithmetic operators:

Assume integer variable A holds 10 and variable B holds 20, then:

Operator Description Example

+ Addition - Adds values on either side of the operator A + B will give 30

Subtraction - Subtracts right hand operand from left hand
operand

- A - B will give -10

Multiplication - Multiplies values on either side of the
operator

A * B will give
200

*

Division - Divides left hand operand by right hand
operand

/ B / A will give 2

Modulus - Divides left hand operand by right hand
operand and returns remainder% B% Awill give 0

++ Increment - Increases the value of operand by 1 B++ gives 21

-- Decrement - Decreases the value of operand by 1 B-- gives 19

THE RELATIONAL OPERATORS:

There are following relational operators supported by Java language

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 11 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Assume variable A holds 10 and variable B holds 20, then:

Operator Description Example

Checks if the values of two operands are equal or not, if yes
then condition becomes true.

(A == B) is not
true.

==

Checks if the values of two operands are equal or not, if
values are not equal then condition becomes true.

!= (A != B) is true.

Checks if the value of left operand is greater than the value
of right operand, if yes then condition becomes true.

> (A > B) is not true.

Checks if the value of left operand is less than the value of
right operand, if yes then condition becomes true.

< (A < B) is true.

Checks if the value of left operand is greater than or equal
to the value of right operand, if yes then condition becomes
true.

(A >= B) is not
true.

>=

Checks if the value of left operand is less than or equal to
the value of right operand, if yes then condition becomes
true.

<= (A <= B) is true.

THE BITWISE OPERATORS:

Java defines several bitwise operators, which can be applied to the integer types, long, int,
short, char, and byte.

Bitwise operator works on bits and performs bit-by-bit operation. Assume if a = 60; and b =
13; now in binary format they will be as follows:

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

P a g e | 12 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

The following table lists the bitwise operators:

Assume integer variable A holds 60 and variable B holds 13 then:

Operator Description Example

Binary AND Operator copies a bit to the
result if it exists in both operands.

(A & B) will give 12 which is 0000
1100

&

Binary OR Operator copies a bit if it
exists in either operand.| (A | B) will give 61 which is 0011 1101

Binary XOR Operator copies the bit if it is
set in one operand but not both.

(A ^ B) will give 49 which is 0011
0001^

(~A) will give -61 which is 1100 0011
in 2's complement form due to a
signed binary number.

Binary Ones Complement Operator is
unary and has the effect of 'flipping' bits.

~

Binary Left Shift Operator. The left
operands value is moved left by the
number of bits specified by the right
operand.

A << 2 will give 240 which is 1111
0000

<<

Binary Right Shift Operator. The left
operands value is moved right by the
number of bits specified by the right
operand.

>> A >> 2 will give 15 which is 1111

Shift right zero fill operator. The left
operands value is moved right by the
number of bits specified by the right
operand and shifted values are filled up
with zeros.

A >>>2 will give 15 which is 0000
1111

>>>

The Logical Operators:

The following table lists the logical operators:

Assume Boolean variables A holds true and variable B holds false, then:

Operator Description Example

P a g e | 13 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Called Logical AND operator. If both the operands are non-
zero, then the condition becomes true.

&& (A && B) is false.

Called Logical OR Operator. If any of the two operands are
non-zero, then the condition becomes true.

|| (A || B) is true.

Called Logical NOT Operator. Use to reverses the logical state
of its operand. If a condition is true then Logical NOT operator
will make false.

! !(A && B) is true.

THE ASSIGNMENT OPERATORS:

There are following assignment operators supported by Java language:

Operator Description Example

Simple assignment operator, Assigns values from right
side operands to left side operand

C = A + B will assign
value of A + B into C

=

Add AND assignment operator, It adds right operand to
the left operand and assign the result to left operand

C += A is equivalent
to C = C + A

+=

Subtract AND assignment operator, It subtracts right
operand from the left operand and assign the result to
left operand

C -= A is equivalent to
C = C - A

-=

Multiply AND assignment operator, It multiplies right
operand with the left operand and assign the result to
left operand

C *= A is equivalent to
C = C * A

*=

Divide AND assignment operator, It divides left operand
with the right operand and assign the result to left
operand

C /= A is equivalent to
C = C / A

/=

Modulus AND assignment operator, It takes modulus
using two operands and assign the result to left operand

C %= A is equivalent
to C = C% A

%=

C <<= 2 is same as C =
C << 2

<<= Left shift AND assignment operator

C >>= 2 is same as C =
C >> 2>>= Right shift AND assignment operator

P a g e | 14 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

C &= 2 is same as C =
C & 2

&= Bitwise AND assignment operator

C ^= 2 is same as C =
C ^ 2

^= bitwise exclusive OR and assignment operator

C |= 2 is same as C = C
| 2

|= bitwise inclusive OR and assignment operator

MISC OPERATORS

There are few other operators supported by Java Language.

Conditional Operator (? :):

Conditional operator is also known as the ternary operator. This operator consists of three
operands and is used to evaluate Boolean expressions. The goal of the operator is to decide which
value should be assigned to the variable. The operator is written as:

variable x = (expression) ? value if true : value if false

Example:

public class Test
{
public static void main(String args[])
{
int a , b;
a = 10;
b = (a == 1) ? 20: 30;
System.out.println("Value of b is : " + b);

b = (a == 10) ? 20: 30;
System.out.println("Value of b is : " + b);

}
}

This would produce the following result:

Value of b is : 30
Value of b is : 20

instanceof Operator:

This operator is used only for object reference variables. The operator checks whether the
object is of a particular type(class type or interface type). instanceof operator is wriiten as:

(Object reference variable) instanceof (class/interface type)

P a g e | 15 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

If the object referred by the variable on the left side of the operator passes the IS-A check for
the class/interface type on the right side, then the result will be true. Following is the example:

public class Test
{
public static void main(String args[])
{
String name = "James";
// following will return true since name is type of String
boolean result = name instanceof String;
System.out.println(result);

}
}

This would produce the following result:

true

PRECEDENCE OF JAVA OPERATORS:

Operator precedence determines the grouping of terms in an expression. This affects how an
expression is evaluated. Certain operators have higher precedence than others; for example, the
multiplication operator has higher precedence than the addition operator:

For example, x = 7 + 3 * 2; here x is assigned 13, not 20 because operator * has higher
precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the
lowest appear at the bottom. Within an expression, higher precedence operators will be evaluated
first.

Category Operator Associativity

Postfix () [] . (dot operator) Left to right

Unary ++ - - ! ~ Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift >> >>> << Left to right

Relational > >= < <= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left

Comma , Left to right

5. EXPLAIN IN DETAIL ABOUT THE JAVA DECISION MAKING STATEMENTS IN JAVA

There are two types of decision making statements in Java.
They are:

if statements
switch statements

The if Statement:
An if statement consists of a Boolean expression followed by one or more statements.

Syntax:
The syntax of an if statement is:

if(Boolean_expression)
{
//Statements will execute if the Boolean expression is true

P a g e | 16 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

}

If the Boolean expression evaluates to true then the block of code inside the if statement will
be executed. If not the first set of code after the end of the if statement (after the closing curly brace)
will be executed.

Example:
public class Test
{
public static void main(String args[])
{
int x = 10;

if(x < 20)
{
System.out.print("This is if statement");

}
}

}

This would produce the following result:

This is if statement

The if...else Statement:
An if statement can be followed by an optional else statement, which executes when the

Boolean expression is false.

Syntax:

The syntax of an if...else is:
if(Boolean_expression)
{
//Executes when the Boolean expression is true

}
else
{
//Executes when the Boolean expression is false

}
Example:
public class Test {

public static void main(String args[]){
int x = 30;

if(x < 20){
System.out.print("This is if statement");

P a g e | 17 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

}else{
System.out.print("This is else statement");

}
}

}
This would produce the following result:
This is else statement

The if...else if...else Statement:
An if statement can be followed by an optional else if...else statement, which is very useful to

test various conditions using single if...else if statement.

When using if , else if , else statements there are few points to keep in mind.
An if can have zero or one else's and it must come after any else if's.
An if can have zero to many else if's and they must come before the else.
Once an else if succeeds, none of the remaining else if's or else's will be tested.

Syntax:

The syntax of an if...else is:

if(Boolean_expression 1){
//Executes when the Boolean expression 1 is true

}else if(Boolean_expression 2){
//Executes when the Boolean expression 2 is true

}else if(Boolean_expression 3){
//Executes when the Boolean expression 3 is true

}else {
//Executes when the none of the above condition is true.

}

Example:

public class Test {

public static void main(String args[]){
int x = 30;

if(x == 10){
System.out.print("Value of X is 10");

}else if(x ==
20){ System.out.print("Value of X is
20");

}else if(x ==
30){ System.out.print("Value of X is
30");

}else{
System.out.print("This is else statement");

}
P a g e | 18 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

P a g e | 19 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

}

This would produce the following result:
Value of X is 30

Nested if...else Statement:

It is always legal to nest if-else statements which means you can use one if or else if statement
inside another if or else if statement.

Syntax:
The syntax for a nested if...else is as follows:

if(Boolean_expression 1){
//Executes when the Boolean expression 1 is true
if(Boolean_expression 2){
//Executes when the Boolean expression 2 is true

}
}

You can nest else if...else in the similar way as we have nested if statement.
Example:
public class Test {

public static void main(String args[]){
int x = 30;
int y = 10;

if(x == 30){
if(y == 10){
System.out.print("X = 30 and Y = 10");

}
}

}
}

This would produce the following result:
X = 30 and Y = 10
THE SWITCH STATEMENT:

A switch statement allows a variable to be tested for equality against a list of values. Each
value is called a case, and the variable being switched on is checked for each case.

Syntax:

The syntax of enhanced for loop is:

P a g e | 20 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

switch(expression){
case value :
//Statements
break; //optional

case value :
//Statements
break; //optional

//You can have any number of case statements.
default : //Optional
//Statements

}

The following rules apply to a switch statement:
The variable used in a switch statement can only be a byte, short, int, or char.
You can have any number of case statements within a switch. Each case is followed by the value
to be compared to and a colon.
The value for a case must be the same data type as the variable in the switch and it must be a
constant or a literal.
When the variable being switched on is equal to a case, the statements following that case will
execute until a break statement is reached.
When a break statement is reached, the switch terminates, and the flow of control jumps to the
next line following the switch statement.
Not every case needs to contain a break. If no break appears, the flow of control will fall through
to subsequent cases until a break is reached.
A switch statement can have an optional default case, which must appear at the end of the switch.
The default case can be used for performing a task when none of the cases is true. No break is
needed in the default case.

Example:
public class Test {

public static void main(String args[]){
//char grade = args[0].charAt(0);
char grade = 'C';

switch(grade)
{
case 'A' :
System.out.println("Excellent!");
break;

case 'B' :
case 'C' :
System.out.println("Well done");
break;

case 'D' :
System.out.println("You passed");

case 'F' :
System.out.println("Better try again");
break;

P a g e | 21 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

default :
System.out.println("Invalid grade");

}
System.out.println("Your grade is " + grade);

}
}

Compile and run above program using various command line arguments. This would produce the
following result:

$ java Test
Well done
Your grade is C
$

6. EXPLAIN IN DETAIL ABOUT THE LOOPING STATEMENTS IN JAVA

There may be a situation when we need to execute a block of code several number of times, and is
often referred to as a loop.

Java has very flexible three loopingmechanisms. You can use one of the following three loops:
while Loop
do...while Loop
for Loop

As of Java 5, the enhanced for loopwas introduced. This is mainly used for Arrays.

The while Loop:
A while loop is a control structure that allows you to repeat a task a certain number of times.

Syntax:
The syntax of a while loop is:
while(Boolean_expression)
{
//Statements

}

When executing, if the boolean_expression result is true, then the actions inside the loop will be
executed. This will continue as long as the expression result is true.

Here, key point of the while loop is that the loop might not ever run. When the expression is
tested and the result is false, the loop body will be skipped and the first statement after the while
loop will be executed.

Example:
public class Test {

P a g e | 22 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

public static void main(String args[]) {
int x = 10;

while(x < 20)
{ System.out.print("value of x : " +
x); x++;
System.out.print("\n");

}
}

}
This would produce the following result:
value of x : 10
value of x : 11
value of x : 12
value of x : 13
value of x : 14
value of x : 15
value of x : 16
value of x : 17
value of x : 18
value of x : 19

The do...while Loop:
A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to

execute at least one time.

Syntax:
The syntax of a do...while loop is:
do
{
//Statements

}while(Boolean_expression);
Notice that the Boolean expression appears at the end of the loop, so the statements in the

loop execute once before the Boolean is tested.

If the Boolean expression is true, the flow of control jumps back up to do, and the statements
in the loop execute again. This process repeats until the Boolean expression is false.

Example:
public class Test {
public static void main(String args[]){
int x = 10;

do{
System.out.print("value of x : " + x);
x++;
System.out.print("\n");

}while(x < 20);

P a g e | 23 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

}
}
This would produce the following result:
value of x : 10
value of x : 11
value of x : 12
value of x : 13
value of x : 14
value of x : 15
value of x : 16
value of x : 17
value of x : 18
value of x : 19

The for Loop:
A for loop is a repetition control structure that allows you to efficiently write a loop that needs

to execute a specific number of times.
A for loop is useful when you know how many times a task is to be repeated.

Syntax:
The syntax of a for loop is:
for(initialization; Boolean_expression; update)
{
//Statements

}

Here is the flow of control in a for loop:
The initialization step is executed first, and only once. This step allows you to declare and
initialize any loop control variables. You are not required to put a statement here, as long as a
semicolon appears.
Next, the Boolean expression is evaluated. If it is true, the body of the loop is executed. If it is
false, the body of the loop does not execute and flow of control jumps to the next statement
past the for loop.
After the body of the for loop executes, the flow of control jumps back up to the update
statement. This statement allows you to update any loop control variables. This statement can
be left blank, as long as a semicolon appears after the Boolean expression.
The Boolean expression is now evaluated again. If it is true, the loop executes and the process
repeats itself (body of loop, then update step, then Boolean expression). After the Boolean
expression is false, the for loop terminates.

Example:
public class Test {
public static void main(String args[]) {
for(int x = 10; x < 20; x = x+1)
{ System.out.print("value of x : " +
x); System.out.print("\n");

}
}

P a g e | 24 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

}
This would produce the following result:
value of x : 10
value of x : 11
value of x : 12
value of x : 13
value of x : 14
value of x : 15
value of x : 16
value of x : 17
value of x : 18
value of x : 19

Enhanced for loop in Java:
As of Java 5, the enhanced for loop was introduced. This is mainly used for Arrays.

Syntax:
The syntax of enhanced for loop is:
for(declaration : expression)
{
//Statements

}
Declaration: The newly declared block variable, which is of a type compatible with the
elements of the array you are accessing. The variable will be available within the for block and
its value would be the same as the current array element.
Expression: This evaluates to the array you need to loop through. The expression can be an
array variable or method call that returns an array.

Example:
public class Test {

public static void main(String args[]){
int [] numbers = {10, 20, 30, 40, 50};

for(int x :
numbers){ System.o
ut.print(x);
System.out.print(",");

}
System.out.print("\n");
String [] names ={"James", "Larry", "Tom", "Lacy"};
for(String name : names)
{ System.out.print(name)
; System.out.print(",");

}
}

}
This would produce the following result:

P a g e | 25 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

10,20,30,40,50,
James,Larry,Tom,Lacy,
The break Keyword:

The break keyword is used to stop the entire loop. The break keyword must be used inside
any loop or a switch statement.

The break keyword will stop the execution of the innermost loop and start executing the next
line of code after the block.

Syntax:
The syntax of a break is a single statement inside any loop:
break;

Example:
public class Test {

public static void main(String args[]) {
int [] numbers = {10, 20, 30, 40, 50};

for(int x : numbers) {
if(x == 30) {

break;
}
System.out.print(x);
System.out.print("\n");

}
}

}

This would produce the following result:
10
20

The continue Keyword:
The continue keyword can be used in any of the loop control structures. It causes the loop to

immediately jump to the next iteration of the loop.
In a for loop, the continue keyword causes flow of control to immediately jump to the update
statement.
In a while loop or do/while loop, flow of control immediately jumps to the Boolean
expression.

Syntax:
The syntax of a continue is a single statement inside any loop:
continue;

Example:
public class Test {

P a g e | 26 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

public static void main(String args[])
{ int [] numbers = {10, 20, 30, 40, 50};
for(int x : numbers) {
if(x == 30) {

continue;
}
System.out.print(x);
System.out.print("\n");

}
}

}

This would produce the following result:
10
20
40
50

7. WRITE IN DETAIL ABOUT CLASSES AND OBJECTS IN JAVA
SYNOPSIS

Object
Class
Class Model
Access Specifiers
Variables
Methods
Object Creation
Accessing Members of object
Example Program

OBJECT:
An object is an real world entity that has its own properties (or) state and actions (or)

behavior

EX:
a pen, a person, a student

CLASS:

P a g e | 27 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

A class is a template/blue print of objects those have similar properties (or) state and actions
(or) behavior

Ex:
Pen, Person, Student

CLASS MODEL:
<access-specifiers> class class_name
{

access-specifiers data-type variable-name1;
access-specifiers data-type variable-name2;
access-specifiers return-type method_name1(arg1,arg2,arg3)
{

……….
……….

}
access-specifiers return-type method_name2(arg1)
{

……….
……….

}
}

EX:
public class Sample
{

private int a;
public double average;
double total;
public void add()
{

System.out.println(“METHOD 1”);
}
void display(int k, double j)
{

System.out.println(“METHOD 2”);
}

}

ACCESS SPECIFIERS:
Access specifiers specifies the type of access levels for the classes, variables, methods and

constructor

P a g e | 28 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Types of access-specifiers:

Default - Visible to the package, the default.
Private - Visible to the class only.
Public - Visible to the world.
Protected -Visible to the package and all subclasses.

VARIABLES:
Variable is name of reserved area allocated in memory. Ex: int data=50; //data is variable

Types of variable:

Local Variable:
A variable that is declared inside the method is called local variable

Instance Variable:
A variable that is declared inside the class but outside the method is called instance

variable. It is not declared as static

Static Variable:
A variable that is declared as static is called static variable. It is common to all objects

Ex:

class A
{

int data=50;//instance variable
static intm=100;//static variable
voidmethod()
{

int n=90; //local variable
}

}//end of class

METHODS:
A Java method is a collection of statements that are grouped together to perform an operation
Methods are also known as Procedures or Functions

Syntax:
Method definition consists of a method header and a method body

access-specifier returnType nameOfMethod (Parameter List)
{

// method body

P a g e | 29 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

}
Ex:

public void add(int a, int b)
{

System.out.println(a+b);
}

OBJECT CREATION:
Syntax:

class_name object_name=new class_name();
It has two parts:

object declaration
Associate an object name with its class type to reserve proper amount of

memory for that object

class_name object_name; --> Student s1;

object instantiation
Creation of object using new operator in the heap memory and return the

reference to the stack memory
object_name=new class_name(); --> s1=new Student();

THE NEWOPERATOR:
The new operator creates a single instance of a named class and returns a reference to

that object.
Ex:

point p = new point();

p is a reference of the new point object.

ACCESSING OF OBJECT MEMBERS:
The dot (.) operator is used to access the instance variables and methods withing an

object.

General Form:
Object reference (.) Variable name

Object Reference is a reference to an object and variable name is the name of the instance.
Ex:

p.x=10;
p.y=20;

EXAMPLE PROGRAM:

import java.util.*;

P a g e | 30 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

class Student
{

private int regNo,m1,m2,m3,total;
private String name,dept,res;
Scanner s=new Scanner(System.in);

public void getDetails()
{

System.out.println("Enter Register No.");
regNo=s.nextInt();
System.out.println("Enter Name:");
name=s.next();
System.out.println("Enter Department");
dept=s.next();
System.out.println("Enter Mark1");
m1=s.nextInt();
System.out.println("Enter Mark2");
m2=s.nextInt();
System.out.println("Enter Mark3");
m3=s.nextInt();

}

public void display()
{

System.out.println("Name:" + name + "Reg No." + regNo);
System.out.println("Mark 1:" + m1 + "Mark 2:" + m2 + " Mark 3:" + m3);
System.out.println("total:"+total+"result:"+res);

}
public void cal()
{

total=m1+m2+m3;
if((m1>=50) && (m2>=50) && (m3>=50))
{

}
else
{

}
}

res="pass";

res="fail";

public static void main(String arg[])
{

P a g e | 31 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Student s1=new Student();
s1.getDetails();
s1.cal();
s1.display();

}
}

8. WRITE SHORT NOTES ABOUT CONSTRUCTORS AND DESTRUCTORS

CONSTRUCTORS:

Constructor in java is a special type of method that is used to initialize the object.
Java constructor is invoked at the time of object creation.
It constructs the values i.e. provides data for the object that is why it is known as
constructor

CHARACTERISTICS OF CONSTRUCTOR:

Constructor is used to initialize object.
Constructor must not have return type.
Constructor is invoked implicitly.
The java compiler provides a default constructor if you don't have any constructor.
Constructor name must be same as the class name.
Generally constructor is declared as public mode.
Constructor can be overloaded.
Constructor may be virtual.
Constructor of one class can call constructor of base class using super keyword.

TYPES OF CONSTRUCTOR:

Default Constructor

Parameterized Constructor

Default constructor:

It is also known as no-arg constructor. Constructor with no arguments is known as default
constructor.

Syntax:

<class_name>()
{

………
}

P a g e | 32 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Ex:

class Car
{

public Car()
{

System.out.println(“Car created”);
}
public static void main(String arg[])
{

Car c= new Car();
}

}

OUTPUT:

Car created

If there is no constructor in a class, compiler automatically creates a default constructor

Parameterized constructor:

Constructor with argument list is known as parameterized constructor.
Parameterized constructor is used to provide different values to the distinct objects

Syntax:

<class_name>(type arg1, type arg2)
{

………
}

P a g e | 33 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

EXAMPLE:

class Student
{

int id;
String name;

Student(int i,String n)
{

id = i;
name = n;

}
void display()
{

System.out.println(id+" "+name);
}

public static voidmain(String args[])
{

Student s1 = new Student(101,“Guru");
Student s2 = new Student(102,“Mani");
s1.display();
s2.display();

}
}
OUTPUT:

101 Guru

102 Mani

Destructor and finalize() method

A destructor is a special method typically used to perform cleanup after an object is no
longer needed by the program. C++ supports destructors, but JAVA does not support
destructors.

JAVA supports another mechanism for returning memory to the operating system when it
is no longer needed by an object.

Sometimes an object will need to perform some action when it is destroyed.
For example,

If an object is holding some non-Java resource such as a file handle or window
character font, then you might want to make sure these resources are freed before an
object is destroyed. To handle such situations, Java provides a mechanism called
finalization.

P a g e | 34 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

By using finalization, you can define specific actions that will occur when an object is just
about to be reclaimed by the garbage collector.

Example of finalize() method:

public class Thing {

public static int number_of_things = 0;
public String what;

public Thing (String what)
{ this.what = what;
number_of_things++;
}

protected void finalize () { //Destructor function
number_of_things--;
}

}

Garbage Collection

Since objects are dynamically allocated by using the new operator, you might be
wondering how such objects are destroyed and their memory released for later
reallocation. In some languages, such as C++, dynamically allocated objects must be
manually released by use of a delete operator.

Java takes a different approach; It handles deallocation for you automatically. The technique
that accomplishes this is called garbage collection.

It works like this: when no references to an object exist, that object is assumed
to be no longer needed, and the memory occupied by the object can be reclaimed. There is
no explicit need to destroy objects as in C++.

Garbage collection only occurs sporadically (if at all) during the execution of your program. It
will not occur simply because one or more objects exist that are no longer used.

Furthermore, different Java run-time implementations will take varying approaches to
garbage collection, but for the most part, you should not have to think about it while writing your
programs.

9. EXPLAIN CONSTRUCTORS IN JAVAWITH AN EXAMPLE PROGRAM
SYNOPSIS

CONSTRUCTORS
CHARACTERISTICS OF CONSTRUCTORS
TYPES OF CONSTRUCTORS
DEFAULT CONSTRUCTORWITH SYNTAX AND EXAMPLE
PARAMETRISED CONSTRUCTORWITH SYNTAX AND EXAMPLE

P a g e | 35 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

CONSTRUCTOR OVERLOADING
SAMPLE PROGRAM
DIFFERENCE BETWEEN CONSTRUCTOR ANDMETHOD

CONSTRUCTORS:

Constructor in java is a special type of method that is used to initialize the object.
Java constructor is invoked at the time of object creation.
It constructs the values i.e. provides data for the object that is why it is known as
constructor

CHARACTERISTICS OF CONSTRUCTOR:

Constructor is used to initialize object.
Constructor must not have return type.
Constructor is invoked implicitly.
The java compiler provides a default constructor if you don't have any constructor.
Constructor name must be same as the class name.
Generally constructor is declared as public mode.
Constructor can be overloaded.
Constructor may be virtual.
Constructor of one class can call constructor of base class using super keyword.

TYPES OF CONSTRUCTOR:

Default Constructor

Parameterized Constructor

Default constructor:

It is also known as no-arg constructor. Constructor with no arguments is known as default
constructor.

Syntax:

<class_name>()
{

………
}

Ex:

class Car
{

P a g e | 36 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

public Car()
{

System.out.println(“Car created”);
}
public static void main(String arg[])
{

Car c= new Car();
}

}

OUTPUT:

Car created

If there is no constructor in a class, compiler automatically creates a default constructor

Parameterized constructor:

Constructor with argument list is known as parameterized constructor.
Parameterized constructor is used to provide different values to the distinct objects

Syntax:

<class_name>(type arg1, type arg2)
{

}

EXAMPLE:

………

class Student

P a g e | 37 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

{
int id;
String name;

Student(int i,String n)
{

id = i;
name = n;

}
void display()
{

System.out.println(id+" "+name);
}

public static voidmain(String args[])
{

Student s1 = new Student(101,“Guru");
Student s2 = new Student(102,“Mani");
s1.display();
s2.display();

}
}
OUTPUT:

101 Guru

102 Mani

CONSTRUCTOR OVERLOADING

Constructor overloading is a technique in Java in which a class can have any number of
constructors that differ in parameter lists

The compiler differentiates these constructors in two ways
the different number of parameters
the different type of parameters

EXAMPLE:

class Student
{

int id, age; String
name; Student(int
i,String n)
{

id = i;

P a g e | 38 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

name = n;
}
Student(int i,String n,int a)
{

id = i;
name = n;
age = a;

}
void display()
{

System.out.println(id+" "+name+” “+age);
}

public static voidmain(String args[])
{

Student s1 = new Student(101,“Guru");
Student s2 = new Student(102,“Mani“,30);
s1.display();
s2.display();

}
}

OUTPUT:

101 Guru 0

102 Mani 30

DIFFERENCE BETWEEN CONSTRUCTOR ANDMETHODS

Java Constructor Java Method

Constructor is used to initialize the state
of an object.

Method is used to expose behaviour of
an object.

Constructor must not have return type. Method must have return type.

Constructor is invoked implicitly. Method is invoked explicitly.

The java compiler provides a default
constructor if you don't have any
constructor.

Method is not provided by compiler in
any case.

P a g e | 39 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Constructor name must be same as the
class name.

Method name may or may not be same
as class name.

10.EXPLAIN IN DETAIL ABOUT PACKAGES IN JAVA
SYNOPSIS

INTRODUCTION
BENEFITS
TYPES OF PACKAGES
ACCESSING CLASS FROM A PACKAGE
CREATING YOUR OWN PACKAGE
DEFAULT PACKAGE
FINDING PACKAGE
CLASSPATH ENVIRONMENT VARIABLE
ACCESS SPECIFIERS
EXAMPLE

INTRODUCTION:
Packages provide a mechanism for grouping a variety of classes and / or interfaces
together.
Grouping is based on functionality

Benefits of Packages:

The classes contained in the packages of other programs can be reused.
In packages, classes can be unique compared with classes in other packages.
Packages provides a way to hide classes

Types of packages:
Pre-defined packages or Java API packages
User-defined packages

Java API packages:
A large number of classes grouped into different packages based on functionality.

Examples:
1. java.lang
2. java.util
3. java.io
4. java.awt
5.java.net
6.java. applet etc.

Accessing Classes in a Package

1. Fully Qualified class name:
Example:java.awt.Color

P a g e | 40 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

2. import packagename.classname;
Example: import java.awt.Color;

or
import packagename.*;
Example: import java.awt.*;

Import statement must appear at the top of the file, before any class declaration

Creating Your Own Package

1. Declare the package at the beginning of a file using the form
package packagename;

2. Define the class that is to be put in the package and declare it public.
3. Create a subdirectory with same name as package name under the directory where the

main source files are stored.
4. Store the listing as classname.java in the subdirectory created.
5. Compile the file. This creates .class file in the subdirectory

Syntax:
package [PackageName];
public class [ClassName]
{

//Body of the class
}

Example:
package firstPackage;
public class FirstClass
{

}

Example:

//Body of the class

//Class in package
package p1;
public class ClassA
{

public void displayA()
{
System.out.println(“Class A”);
}

}

P a g e | 41 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

//Importing class from package
import p1.*;
class testclass
{

public static void main(String str[])
{

ClassA obA=new ClassA();
obA.displayA();

}
}

Creating Packages:
Consider the following declaration:

package firstPackage.secondPackage;
This package is stored in subdirectory named firstPackage.secondPackage.

A java package can contain more than one class definitions that can be declared as public.
Only one of the classes may be declared public and that class name with .java extension is
the source file name.

Default Package:
If a source file does not begin with the package statement, the classes contained in the
source file reside in the default package
The java compiler automatically looks in the default package to find classes

Finding Packages:
1. By default, java runtime system uses current directory as starting point and search all
the subdirectories for the package.
2. Specify a directory path using CLASSPATH environmental variable

CLASSPATH Environment Variable
The compiler and runtime interpreter know how to find standard packages such as
java.lang and java.util
The CLASSPATH environment variable is used to direct the compiler and interpreter to
where programmer defined imported packages can be found
The CLASSPATH environment variable is an ordered list of directories and files
To set the CLASSPATH variable we use the following command:

set CLASSPATH=c:\
Java compiler and interpreter searches the user defined packages from the above
directory.
To clear the previous setting we use:

set CLASSPATH=

ACCESS SPECIFIERS:

P a g e | 42 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Access specifiers specifies the type of access levels for the classes, variables, methods and
constructor

Types of access-specifiers:

Default - Visible to the package, the default.
Private - Visible to the class only.
Public - Visible to the world.
Protected -Visible to the package and all subclasses.

Levels of Access Control:

public protected friendly
(default)

private

same
class

Yes Yes Yes Yes

Subclass
in the
same
package

Yes Yes Yes No

Other
class in
the same
package

Yes Yes Yes No

Subclass
in other
packages

Yes Yes No No

Non-
subclass
in other
package

Yes No No No

Example 1:
package my_package;
class A // package scope
{

// A’s public & private members
}
public class B // public scope
{

}

Example 2:

// B’s public and private members

P a g e | 43 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

package my_package;
class A
{

}
class B
{

int get() { return data; } // package scope
public A(int d) { data=d;} // public scope
private int data; // private scope

void f()
{

A a=new A(d); // OK A has package scope
int d=a.get(); // OK – get() has package scope
int d1=a.data; // Error! – data is private

}
}

11.WRITE IN DETAIL ABOUT INTERFACES IN JAVA

INTERFACES
An interface in java is a blueprint of a class. It has static constants and abstract
methods only.
The interface in java is a mechanism to achieve fully abstraction. There can be only
abstract methods in the java interface not method body.
It is used to achieve fully abstraction and multiple inheritance in Java.
Java Interface also represents IS-A relationship.
It cannot be instantiated just like abstract class.

USE OF INTERFACE:

There are mainly three reasons to use interface. They are given below.
It is used to achieve fully abstraction.
By interface, we can support the functionality of multiple inheritance.
It can be used to achieve loose coupling.

RELATIONSHIP BETWEEN CLASSES AND INTERFACES

As shown in the figure given below, a class extends another class, an interface extends another
interface but a class implements an interface

P a g e | 44 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

DIFFERENCE BETWEEN CLASSES AND INTERFACES

CLASS INTERFACE
The members of a class can be constant or
varaibles.

The members of an interface are always declared
as constant , i.e., their values are final.

The class definition can contain the code for
each of its methods. That is , the methods can be
abstract or non-abstract.

The methods in an interface are abstract in
nature , i.e., there is no code associated with
them. It is later defined by the class that
implements the interface.

It can be instantiated by declaring objects. It cannot be used to declare objects. It can only be
inherited by a class.

It can use various access specifiers like public ,
private or protected.

It can only use the public access specifier.

INTERFACE SYNTAX:
interface interfaceName
{

Variables declaration;
Method declaration;

}

interface - keyword.
interfacename - any valid java variable.

SIMPLE EXAMPLE OF JAVA INTERFACE
In this example, Printable interface have only one method, its implementation is provided in the A
class.

interface printable{
void print();
}

P a g e | 45 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

class A6 implements printable{
public void print(){System.out.println("Hello");}

public static voidmain(String
args[]){ A6 obj = new A6();
obj.print();
}
}

Output: Hello

MULTIPLE INHERITANCE IN JAVA BY INTERFACE
If a class implements multiple interfaces, or an interface extends multiple interfaces i.e.

known as multiple inheritance.

interface Printable{
void print();
}

interface Showable{
void show();
}

class A7 implements Printable,Showable{

public void print(){System.out.println("Hello");}
public void show(){System.out.println("Welcome");}

public static voidmain(String
args[]){ A7 obj = new A7();
obj.print();

P a g e | 46 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

obj.show();
}
}

Output:Hello
Welcome

12. WRITE SHORT NOTES ON INTERNALIZATION IN JAVA

INTERNATIONALIZATION AND LOCALIZATION IN JAVA
o Internationalization is also abbreviated as I18N because there are total 18 characters

between the first letter 'I' and the last letter 'N'.
o Internationalization is a mechanism to create such an application that can be adapted to

different languages and regions.
o Internationalization is one of the powerful concept of java if you are developing an

application and want to display messages, currencies, date, time etc. according to the
specific region or language.

o Localization is also abbreviated as I10N because there are total 10 characters between
the first letter 'L' and last letter 'N'.

o Localization is the mechanism to create such an application that can be adapted to a
specific language and region by adding locale-specific text and component.

Understanding the culturally dependent data before starting internationalization
Before starting the internationalization, Let's first understand what are the informations that

differ from one region to another.

There is the list of culturally dependent data:
Messages
Dates
Times
Numbers
Currencies
Measurements
Phone Numbers
Postal Addresses
Labels on GUI components etc.

Importance of Locale class in Internationalization
An object of Locale class represents a geographical or cultural region. This object can be used

to get the locale specific information such as country name, language, variant etc.

Fields of Locale class

There are fields of Locale class:

P a g e | 47 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

1. public static final Locale ENGLISH
2. public static final Locale FRENCH
3. public static final Locale GERMAN
4. public static final Locale ITALIAN
5. public static final Locale JAPANESE
6. public static final Locale KOREAN
7. public static final Locale CHINESE
8. public static final Locale SIMPLIFIED_CHINESE
9. public static final Locale TRADITIONAL_CHINESE
10. public static final Locale FRANCE
11. public static final Locale GERMANY
12. public static final Locale ITALY
13. public static final Locale JAPAN
14. public static final Locale KOREA
15. public static final Locale CHINA
16. public static final Locale PRC
17. public static final Locale TAIWAN
18. public static final Locale UK
19. public static final Locale US
20. public static final Locale CANADA
21. public static final Locale CANADA_FRENCH
22. public static final Locale ROOT

Constructors of Locale class
There are three constructors of Locale class. They are as follows:
1. Locale(String language)
2. Locale(String language, String country)
3. Locale(String language, String country, String variant)

Commonly usedmethods of Locale class
There are given commonly used methods of Locale class.

1. public static Locale getDefault() it returns the instance of current Locale
2. public static Locale[] getAvailableLocales() it returns an array of available locales.
3. public String getDisplayCountry() it returns the country name of this locale object.
4. public String getDisplayLanguage() it returns the language name of this locale object.
5. public String getDisplayVariant() it returns the variant code for this locale object.
6. public String getISO3Country() it returns the three letter abbreviation for the current

locale's country.
7. public String getISO3Language() it returns the three letter abbreviation for the current

locale's language.

P a g e | 48 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Example of Local class that prints the informations of the default locale
In this example, we are displaying the informations of the default locale. If you want to get the

informations about any specific locale, comment the first line statement and uncomment the second
line statement in the main method.

import java.util.*;
public class LocaleExample {
public static voidmain(String[] args)
{ Locale locale=Locale.getDefault();
//Locale locale=new Locale("fr","fr");//for the specific locale

System.out.println(locale.getDisplayCountry());
System.out.println(locale.getDisplayLanguage());
System.out.println(locale.getDisplayName());
System.out.println(locale.getISO3Country());
System.out.println(locale.getISO3Language());
System.out.println(locale.getLanguage());
System.out.println(locale.getCountry());

}
}

Output:
United States
English
English (United States)
USA
eng
en
US

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 1 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

1. WHAT IS METHOD OVERRIDING?

UNIT 2 - 2 MARKS

If subclass (child class) has the same method as declared in the parent class, it is known
as method overriding in java
This is possible by defining a method in the subclass that has the same name , same arguments
and same returntype as a method in the superclass
When the method is called, the method defined in the subclass is invoked and executed
instead of the one in the superclass

2. WHAT IS THE USE OF METHOD OVERRIDING?
to provide specific implementation of a method that is already provided by its super class
runtime polymorphism

3. WRITE DOWN THE RULES OF METHOD OVERRIDING?
methodmust have same name as in the parent class
methodmust have same parameter as in the parent class.
must be IS-A relationship (inheritance)

4. WHAT IS METHOD OVERLOADING ANDMETHOD OVERRIDING?
When a method in a class having the same method name with different arguments is said to

be method overloading. Method overriding: When a method in a class having the same method name
with same arguments is said to be method overriding

5. DEFINE FINAL MODIFIER?
All methods and variables can be overriden by default in subclasses.
To prevent the subclasses from overriding the members of the superclass, we can declare
them as final by using the keyword final as a modifier.
Example:
finalint SIZE = 100;
final void showstatus ()
{
……..
}

The functionality defined in this method will never be altered in any way

6. DEFINE INHERITANCE
The mechanism of deriving a new from a from an old one is called inheritance
The old class is known as the base class or super class or parent class
The new class is called the subclass or derived class or child class
The inheritance allows subclasses to inherit all the variables and methods of their parent
classes

7. STATE THE USES OF INHERITANCE
Code Reusability
Method Overriding (so runtime polymorphism can be achieved).

8. STATE THE TYPES OF INHERITANCE
Single inheritance [only one super class]
Hierarchical inheritance [one super classes, many subclasses]
Multilevel inheritance [derived from a derived class].

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 2 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

Method Description

1) public void write(int)throws
IOException:

is used to write a byte to
the current output stream.

2) public void write(byte[])throws
IOException:

is used to write an array of byte to the
current output stream.

3) public void flush()throws IOException: flushes the current output stream.

4) public void close()throws IOException: is used to close the current output
stream.

9. WHYMULTIPLE INHERITANCE IS NOT SUPPORTED IN JAVA
To reduce the complexity and simplify the language
To remove ambiguity

10.SYNTAX TO EXTENDA CLASS
class subclassname extends superclassname
{

Variable declaration;
Methods declaration;

}
The keyword extends signifies that the properties of the superclassname are extended to the
subclassname

11.DEFINE SUPER KEYWORD
The super keyword in java is a reference variable that is used to refer immediate parent class

object.
Whenever you create the instance of subclass, an instance of parent class is created implicitly
i.e. referred by super reference variable

12.WHAT IS THE USE OF SUPER KEYWORD
super is used to refer immediate parent class instance variable
super() is used to invoke immediate parent class constructor
super is used to invoke immediate parent class method

13.WHAT IS A STREAM?
A stream is a sequence of data. In Java a stream is composed of bytes. It's called a stream

because it's like a stream of water that continues to flow

14.WHAT ARE THE THREE STREAM THAT AUTOMATICALLY GENERATED IN JAVA
a) System.out: standard output stream
b) System.in: standard input stream
c) System.err: standard error stream

EX:

EX:

System.out.println("simple message");
System.err.println("error message");

int i=System.in.read();//returns ASCII code of 1st character

15.WHAT ARE THE COMMONLY USEDMETHODS IN OUTPUTSTREAM CLASS

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 3 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

16.WHAT ARE THE COMMONLY USEDMETHODS IN INPUTSTREAM CLASS
Method Description

1) public abstract int read()throws
IOException:

reads the next byte of data from the input
stream.It returns -1 at the end of file.

2) public int available()throws
IOException:

returns an estimate of the number of bytes that
can be read from the current input stream.

3) public void close()throws
IOException:

is used to close the current input stream.

17.WHAT ARE THE VARIOUS CLASSES USED IN FILE HANDLING
FileOutputSteam – to write byte data to a file
FileInputStream – to read byte data from file
FileReader - to read character oriented data from file
FileWriter -to write character oriented data to a file

18.HOW COULD JAVA CLASSES DIRECT PROGRAM MESSAGES TO THE SYSTEM CONSOLE, BUT
ERRORMESSAGES, SAY TO A FILE?

The class System has a variable out that represents the standard output, and the variable err
that represents the standard error device. By default, they both point at the system console.

This how the standard output could be re-directed:
Stream st = new Stream(new FileOutputStream("output.txt")); System.setErr(st);
System.setOut(st);

19.WHAT IS MULTI-THREADING
A process is a program in execution. Two or more processes running concurrently in a

computer is called multi-tasking. In java it is term asmulti-threading.
Ex.While typing a document, we can take printout.

20.WHAT IS THREAD
A single sequential flow of control.
All programs have at least one thread-the main thread.
More than one thread can executing concurrently.

21.WHAT ARE THE ADVANTAGES OF MULTITHREADING
Reduces complexity of large programs.
Maximizes CPU utilization.
Increases the speed of execution.

22.WHAT ARE ALL THE METHODS USED IN THREAD

Java’s multi-threading operation is based on the thread class. Thread is a class and it
contains constructors and methods for creating threads. Thread class is available in java.lang
package. Thread class contains different methods to control threads. They are,

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 4 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

Run()
Start()
Yield()
Sleep()
Stop()
Suspend()
Resume()
Notify()

23.WHAT’S THE DIFFERENCE BETWEEN THE METHODS SLEEP() ANDWAIT()
The code sleep(1000); puts thread aside for exactly one second. The code wait(1000),

causes a wait of up to one second. A thread could stop waiting earlier if it receives the notify() or
notifyAll() call. The method wait() is defined in the class Object and the method sleep() is defined
in the class Thread

24.HOW TO DEFINE AND RUN A THREAD

A thread class can be created by extending the thread class. The thread class is available in
java.lang package. The following steps are followed to define and run a thread.

Declare the class by extending thread class.
Override the run()method in extended class.
Create the thread object using the class declared.
Call the start()method to initiate thread execution.

25.WHAT IS MEAN BY LIFE CYCLE OF A THREAD

There are five states in a lifetime of a thread. at a time, the thread may be in any one of the
following five states. They are,

New born state
Runnable state
Running state
Blocked state
Dead state

26.DEFINE THREAD PRIORITIES.

The programmer can set the priorities for threads. This can be done using setpriority()
method of thread class. The syntax is,

Threadname.setpriority (value);

The value is an integer value. This integer value must be between 1 to 10. In addition the
thread class defines some predefined constants also.

MIN_PRIORITY = 1

NORM_PRIORITY = 5

MAX_PRIORITY = 10

The default value is 5.

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 5 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

27.DEFINE THREAD SCHEDULING

Allocating CPU time for the threads in the program is called thread scheduling.

28.WHAT IS MEAN BY THREAD SYNCHRONIZATION

The data and the methods that are common to many threads may commonly be placed
outside the thread.

In such situations more than one thread can try to access the same method and data at the
same time or a thread can try to access the method that is currently in use by another thread.

This problem can be overcome by using a technique called synchronization the general
form is,

Synchronized return-type method-name
{ ---------------------------

Statements;

}

29.WHICH CLASS IS THEWAIT() METHOD DEFINED IN?
The wait() method is defined in the Object class, which is the ultimate superclass of all others

30.WHAT IS A GREEN THREAD?
A green thread refers to a mode of operation for the Java Virtual Machine (JVM) in which all

code is executed in a single operating system thread.

31.WHAT ARE NATIVE OPERATING SYSTEM THREADS?
Native operating system threads are those provided by the computer operating system that

plays host to a Java application, be it Windows, Mac or GNU/Linux.

32.WHAT IS EXCEPTION
An exception is a condition caused by runtime error in the program. Java interpreter
encounters an error such as division by zero and throws it

33.WHAT IS THE PURPOSE OF EXCEPTION HANDLING
Exception handling mechanism is to provide ameans to detect and report an
“exceptional circumstance”.
This mechanism suggests a separate error handling code.

34.WHAT ARE THE SEGMENTS IN EXCEPTION HANDLINGMECHANISM
Find the problem(Hit the exception)
Inform that an error has occurred(throw the exception)
Receive the error information(catch the exception)
Take corrective measures(Handle the exception)

35.WRITE DOWN THE SYNTAX FOR EXCEPTIONHANDLING
try
{ Statemen
t;
}
catch(exception_type e)
{
Statement;
}

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 6 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

36.DEFINE THE TWO BLOCKS IN EXCEPTION HANDLING

Try Block – Statement causing exception
Catch block – Statement handling the exception

37.MENTION SOME OF THE TYPES OF EXCEPTION
Arithmetic exception
Arrayindexoutof bound exception
Arrayshareexception
ClassCastException
NegativeArraysizeException
SecurityException

38.DOES IT MATTER IN WHAT ORDER CATCH STATEMENTS FOR FILENOTFOUNDEXCEPTION
AND IOEXCEPTIPONAREWRITTEN?

Yes, it does. The FileNoFoundException is inherited from the IOException. Exception’s
subclasses have to be caught first

39.STATE THE KEYWORDS IN EXCEPTION HANDLING
There are 5 keywords used in java exception handling.
1. try
2. catch
3. finally
4. throw
5. throws

40.DEFINE JAVA FINALLY BLOCK
Java finally block is a block that is used to execute important code such as closing connection,

stream etc.
Java finally block is always executed whether exception is handled or not.
Java finally block must be followed by try or catch block

41.WHAT’S THE DIFFERENCE BETWEEN AN INTERFACE AND AN ABSTRACT CLASS?
An abstract class may contain code in method bodies, which is not allowed in an interface.

With abstract classes, you have to inherit your class from it and Java does not allow multiple
inheritance. On the other hand, you can implement multiple interfaces in your class

42.DEFINE ABSTRACT CLASS?
Abstract classes are classes from which instances are usually not created. It is basically

used to contain common characteristics of its derived classes. Abstract classes are generally
higher up the hierarchy and act as super classes. Methods can also be declared as abstract. This
implies that non-abstract classes must implement these methods

43.WHAT'S THE DIFFERENCE BETWEEN AN INTERFACE AND AN ABSTRACT CLASS?
An abstract class may contain code in method bodies, which is not allowed in an interface.

With abstract classes, you have to inherit your class from it and Java does not allow multiple
inheritance. On the other hand, you can implement multiple interfaces in your class

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLGOY

P a g e | 1 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

11 MARKS
1. WRITE IN DETAIL ABOUTMETHOD OVERLOADINGWITH EXAMPLE PROGRAM

SYNOPSIS
METHOD OVERLOADING
DIFFERENTWAYS TO OVERLOAD THE METHOD
DIFFERENT NO. OF ARGUMENTS
DIFFERENT TYPES OF ARGUMENTS
OVERLOADING MAIN METHOD
METHOD OVERLOADING AND TYPEPROMOTION

METHOD OVERLOADING:
o If a class have multiple methods by same name but different parameters, it is known as

method overloading.

o If we have to perform only one operation having same name of the methods increases
the readability of the program.

Suppose you have to perform addition of the given numbers but there can be any number of
arguments, if you write the method such as a(int,int) for two parameters, and b(int,int,int) for three
parameters then it may be difficult for you as well as other programmers to understand the behavior
of the method because its name differs. So, we perform method overloading to figure out the
program quickly

ADVANTAGE OF METHOD OVERLOADING
increases the readability of the program

DIFFERENTWAYS TO OVERLOAD THE METHOD :
There are two ways to overload the method in java

* By changing the number of arguments
* By changing the data type

In java, method overloading is not possible by changing the return type of the
method.

EXAMPLE PROGRAMS:

1) DIFFERENT NO.OF ARGUMENTS :

class calculation
{

void sum(int a,int b)
{

System.out.println(a+b);
}
void sum(int a,int b,int c)
{

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLGOY

P a g e | 2 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

System.out.println(a+b+c);
}
public static void main(String args[])
{

Calculation obj=new calculatiom();
obj.sum(10,10,10);
obj.sum(20,20);

}
}

OUTPUT:
30
40

2) DIFFERENT TYPES OF ARGUMENTS :

class calculation
{

void sum(int a,int b)
{

System.out.println(a+b);
}

void sum(double a,double b)
{

System.out.println(a+b);
}

public static void main(String args[])
{

calculation obj=new calculation();
obj.sum(10,10);
obj.sum(22.3,22.5);

}
}
OUTPUT :

20
48.1

3) OVERLOADINGMAIN() METHOD :

class overloading
{

public static void main(int a)
{

System.out.println(a);
}
public static void main(String args[])
{

System.out.println(“main method() inoked”);

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLGOY

P a g e | 3 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

main(10);
}

}

OUTPUT :
Main method() invoked
10

METHOD OVERLOADING AND TYPEPROMOTION
One type is promoted to another implicitly if no matching data type is found. Let's understand

the concept by the figure given below:

As displayed in the above diagram, byte can be promoted to short, int, long, float or double.
The short datatype can be promoted to int,long,float or double. The char datatype can be
promoted to int,long,float or double and so on

class OverloadingCalculation1
{

void sum(int a,long b)
{

System.out.println(a+b);
}
void sum(int a,int b,int c)
{

System.out.println(a+b+c);
}

public static voidmain(String args[])

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLGOY

P a g e | 4 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

{

}
}

OUTPUT:
40
60

OverloadingCalculation1 obj=new OverloadingCalculation1();
obj.sum(20,20);//now second int literal will be promoted to long
obj.sum(20,20,20);

2. EXPLAIN IN DETAIL ABOUT INHERITANCE IN JAVA
SYNOPSIS

INTRODUCTION
USE OF INHERITANCE
FORMS OF INHERITANCE
WHY NO MULTIPLE INHERITANCE
SUPER KEYWORD
EXAMPLE PROGRAMS

INTRODUCTION:
The mechanism of deriving a new from a from an old one is called inheritance
The old class is known as the base class or super class or parent class
The new class is called the subclass or derived class or child class
The inheritance allows subclasses to inherit all the variables and methods of their parent
classes

USE OF INHERITANCE:
Code Reusability
Method Overriding (so runtime polymorphism can be achieved).

FORMS OF INHERITANCE:

1. Single inheritance [only one super class]
2. Multiple inheritance [several super classes]
3. Hierarchical inheritance [one super classes, many subclasses]
4. Multilevel inheritance [derived from a derived class].

Java does not directly implement multiple inheritance but by using the concept of secondary
inheritance path in the form of interfaces.

The diagrammatical representation of the forms of inheritance is as follows:

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLGOY

P a g e | 5 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

WHYMULTIPLE INHERITANCE IS NOT SUPPORTED:
• To reduce the complexity and simplify the language
• To remove ambiguity

TYPES OF AMBUIGUITIES IN C++:
1) AMBUIGUITY IN MULTIPLE INHERITANCE:

2) AMBUIGUITY IN MULTI-PATH INHERITANCE:

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLGOY

P a g e | 6 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

DEFINING A SUBCLASS :

• A Subclass can be defined as follows:

class subclassname extends superclassname
{

Variable declaration;
Methods declaration;

}

• The keyword extends signifies that the properties of the superclassname are extended to
the subclassname.

• Now , the subclass contains its own variables and methods as well those of the superclass

EXAMPLE:

OUTPUT:
Parent Method
Child Method

SUPER KEYWORD:

• The super keyword in java is a reference variable that is used to refer immediate parent class
object.

• Whenever you create the instance of subclass, an instance of parent class is created implicitly
i.e. referred by super reference variable.

USE OF SUPER :
• super is used to refer immediate parent class instance variable
• super() is used to invoke immediate parent class constructor
• super is used to invoke immediate parent class method

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLGOY

P a g e | 7 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

1) super is used to refer immediate parent class instance variable:

class Vehicle
{

int speed=50;
}
class Bike3 extends Vehicle
{

int speed=100;
void display()
{

System.out.println(super.speed); //will print speed of Vehicle
System.out.println(speed);//will print speed of Bike

}
public static void main(String args[])
{

Bike3 b=new Bike3();
b.display();

}
}

OUTPUT:
50
100

2) SUPER CAN BE USED TO INVOKE PARENT CLASS METHOD:

class Person
{

void message()
{

System.out.println("welcome");
}

}

class Student extends Person
{

void message()
{

System.out.println("welcome to java");
}

void display()
{

message();//will invoke current class message() method
super.message();//will invoke parent class message() method

}

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLGOY

P a g e | 8 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

public static void main(String args[])
{

Student s=new Student();
s.display();

}
}

OUTPUT:

Welcome to java
Welcome

3) SUPER IS USED TO INVOKE PARENT CLASS CONSTRUCTOR

class Vehicle
{

Vehicle()
{

System.out.println("Vehicle is created");
}

}

class Bike extends Vehicle
{

Bike()
{

}

super();//will invoke parent class constructor
System.out.println("Bike is created");

public static void main(String args[])
{

Bike b=new Bike();
}

}

OUTPUT: Vehicle
is created Bike is

created

3. EXPLAIN IN DETAIL ABOUTMULTITHREADING IN JAVA
MULTITHREADED PROGRAMMING

Multithreading is a powerful programming tool that makes java distinctly different
from its fellow programming languages.

• The ability of executing several programs simultaneously is called Multitasking.
• The ability of executing several processes simultaneously is called Multithreading.

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLGOY

P a g e | 9 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

THREAD

• A Thread is simple process
• A thread has a beginning, a body, and an end, and executes command sequentially.
• All the main program can be called single-threaded programs.
• Since threads in java share the same memory space, they are known as Lightweight threads

or Lightweight processes.
• ‘Threads running in parallel’ does not mean they are running at the same time.

USES OF MULTITHREADING
• Enables programmers to do multi things at a time.
• A long program can be divided into threads and execute them in parallel.
• Extensively used in java-enabled browsers as Hot. Java

DIFFERENCE BETWEENMULTITASKING ANDMULTITHREADING

Sl.
No

MULTITHREADING MULTITASKING

1 It is a programming concept in which a
program is divided into two or more threads
executed in parallel

An operating system concept in which
multiple tasks are performed
simultaneously

2 It supports execution of multiple process
simultaneously

It supports execution of multiple program
simultaneously

3 The processor has to switch between
different parts or threads of a program

The processor has to switch between
different programs.

4 Highly efficient Less efficient compared to multithreading.

5 A thread is the smallest unit in
multithreading

A program is the smallest unit in
multitasking

6 Helps in developing efficient programs Helps in developing efficient OS.

7 It is cost-effective in case of context
switching

Expensive in case of context switching.

CREATING THREADS

• Threads are implemented in the form of objects that contain a method called run ().
• The run () method is the heart and soul of any thread.
• It makes up the entire body of the method.
• It’s the only method in which the thread’s behavior can be implemented.
• The run () method should be invoked by an object of the concerned thread.
• This can be done by creating a thread and initializing it with the help of another

method called start () .

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLGOY

P a g e | 10 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Syntax:
public void run ()
{
……………….. (statements)
………………..
}

LIFE CYCLE OF A THREAD

During the lifetime of a thread, it can enter many states as,

1. Newborn state.
2. Runnable state
3. Running state
4. Blocked state
5. Dead state

NEWBORN STATE:

• When we create the Thread object, the thread is born and is said to be in Newborn state.
• At this state we can do only one of the following,

1. Schedule it for running using start ()method.
2. Kill it using stop ()method.

RUNNABLE STATE:

• The runnable state means that the thread is ready for execution and is waiting for the
availability of the processor.

• The process of assigning time to threads is known as time- slicing.
• The first-come, first-serve manner is used here.

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLGOY

P a g e | 11 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

• If we want to relinquish control to another thread to equal the priority before it comes, we
can use the yield ()method

RUNNING STATE :

• Running means that the processor has given its time to the thread for its execution.
• A running thread may relinquish its control in one of the following situations:

1. It has been suspended using suspend () method. A suspended thread can be resumed
by using the resume ()method.

2. It has been made to sleep by using the sleep ()method.
3. It has been told to wait until some event occurs using the wait ()method .

BLOCKED STATE:

• A thread is said to be blocked when it is prevented from entering into the runnable state and
the running state.

• A blocked thread is considered “ not runnable” but not dead, and is fully qualified to run again.

DEAD STATE:

• A running thread ends its life when it has completed executing its run () method.
• It is natural death !.
• A thread can be killed as soon as it is born, or while running or even when it is in “not

runnable “ condition.

CREATING A NEW THREAD:

There are two ways,
1. By creating a thread class - Define a class that extends Thread class and override its run ()

method.
2. By converting a class to a thread – Define a class that implements Runnable interface.

EXTENDING THE THREAD CLASS:

• We can extend the class by using java.lang.Thread.
• This gives access to all thread methods directly.
• It includes the following:

1. Declare the class as extending the Thread class.
2. Implement the run ()method for executing the Thread.
3. Create a thread object and class the start ()method to initiate thread execution.

DECLARING THE CLASS :

The Thread class can be extended as follows:
class MyThread extends Thread
{
…………………
………………....
}

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLGOY

P a g e | 12 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Now we have a new type of threadMyThread.

STARTING A NEW THREAD:

The syntax for creating and running an instance of the thread is as follows,

MyThread t1 = newMyThread();
t1.start();

First line – instantiates a new object of class MyThread.
Second Line - calls the start ()method causing the thread to move into the runnable state.

EXAMPLE PROGRAM:

import java.lang.*;

class MyThreadA extends Thread
{

public void run()
{

for(int i=1;i<=10;i++)
{
System.out.println("MyThread 1 :"+i);
}

}
}

class MyThreadB extends Thread
{

public void run()
{
for(int i=1;i<=5;i++)
{

System.out.println("MyThread 2 :"+i);
}
}

}

public class ThreadExample
{

public static void main(String args[]) throws Exception
{
MyThreadA m1=new MyThreadA();
MyThreadB m2=new MyThreadB();

m1.start();
m2.start();
}

}

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLGOY

P a g e | 13 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

4. EXPLAIN IN DETAIL ABOUT FILES AND STREAM IN JAVA

INTRODUCTION:

• Java I/O (Input and Output) is used to process the input and produce the output based on the
input.

• Java uses the concept of stream to make I/O operation fast. The java.io package contains all
the classes required for input and output operations.

• We can perform file handling in java by java IO API.

STREAM

• A stream is a sequence of data. In Java a stream is composed of bytes. It's called a stream
because it's like a stream of water that continues to flow.

• In java, 3 streams are created for us automatically. All these streams are attached with console
1) System.out: standard output stream
2) System.in: standard input stream
3) System.err: standard error stream
Let's see the code to print output and error message to the console.

System.out.println("simple message");
System.err.println("error message");

Let's see the code to get input from console.
int i=System.in.read();//returns ASCII code of 1st character
System.out.println((char)i);//will print the character

TYPES OF STREAM

OutputStream
Java application uses an output stream to write data to a destination, it may be a file, an

array, peripheral device or socket.

InputStream
Java application uses an input stream to read data from a source, it may be a file, an

array, peripheral device or socket.

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLGOY

P a g e | 14 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

STREAM CLASS

OutputStream class
OutputStream class is an abstract class. It is the superclass of all classes representing

an output stream of bytes. An output stream accepts output bytes and sends them to some
sink.
COMMONLY USEDMETHODS OF OUTPUTSTREAM CLASS

METHOD DESCRIPTION

1) public void write(int)throws IOException: is used to write a byte to the current output
stream.

2)public void write(byte[]) throws
IOException:

is used to write an array of byte to the current
output stream.

3) public void flush()throws IOException: flushes the current output stream.

4) public void close()throws IOException: is used to close the current output stream.

InputStream class
InputStream class is an abstract class.It is the superclass of all classes representing an

input stream of bytes.

Commonly usedmethods of OutputStream class
METHOD DESCRIPTION

1) public abstract int read()throws
IOException:

reads the next byte of data from the input
stream.It returns -1 at the end of file.

2) public int available()throws IOException: returns an estimate of the number of bytes
that can be read from the current input
stream.

3) public void close()throws IOException: is used to close the current input stream.

FILE HANDLING STREAM CLASS
• FileOutputSteam
• FileInputStream
• FileReader
• FileWriter

Prefer FileInputStream and FileOutputStream classes to read and write primitive
values or byte-oriented data (for example to read image, audio, video etc.,) in a file

Prefer FileReader and FileWriter classes to read and write character-oriented data or
text in a file

FileOutputStream can write byte-oriented as well as character - oriented data

P a g e | 15 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

SRI MANAKULA VINAYAGAR ENGINEERING COLLEGE

FILEOUTPUTSTREAM

Java FileOutputStream is an output stream for writing data to a file

FILEOUTPUTSTREAM

EXAMPLE:

import java.io.*;
public class FDemo
{
public static void main(String arg[]) throws IOException
{

FileOutputStream out=new FileOutputStream("Sample.txt");
out.write(20);//writing integer value 20 in file
//out.write(“HI”);//Nt possible to write string with FOS object
String s=“HI”;
byte b[]=s.getBytes();//converting string to bytes
out.write(b);

}
}

USE OF PRINTSTREAM

import java.io.*;
public class FDemo
{
public static void main(String arg[]) throws IOException
{

FileOutputStream out=new FileOutputStream("Sample.txt");
PrintStream ps=new PrintStream(out);
ps.println(“HI”); //using ps object writing HI in file

P a g e | 16 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

SRI MANAKULA VINAYAGAR ENGINEERING COLLEGE

ps.println(“Hello”);
}

}

FILEINPUTSTREAM

• Java FileInputStream class obtains input bytes from a file.
• It is used for reading streams of raw bytes such as image data.
• For reading streams of characters, consider using FileReader

import java.io.*;
public class FDemo
{
public static void main(String arg[]) throws IOException
{

FileInputStream in=new FileInputStream("Sample.txt");
int a=in.read();//read() reads a character from a file
System.out.println((char)a);

}
}

EXAMPLE: import
java.io.*; public
class FDemo
{
public static void main(String arg[]) throws IOException
{

FileInputStream in=new FileInputStream("Sample.txt");
int i;
while((i=in.read())!=-1)//read() will return -1 if it reaches end of file
{

System.out.println((char)i);
}

}

P a g e | 17 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

SRI MANAKULA VINAYAGAR ENGINEERING COLLEGE

}

USE OF BUFFEREDREADER

EXAMPLE:
import java.io.*;
public class FDemo
{
public static void main(String arg[]) throws IOException
{

FileReader in=new FileReader("Sample.txt");
BufferedReader br=new BufferedReader(in);
String s=br.readLine();//reads a line from the file
System.out.println(s);

}
}

5. EXPLAIN IN DETAIL ABOUT EXCEPTION HANDLING IN JAVA
SYNOPSIS

EXCEPTION HANDLING IN JAVA
EXCEPTION HANDLING
ADVANTAGE OF EXCEPTION HANDLING
HIERARCHY OF EXCEPTION CLASSES
TYPES OF EXCEPTION
SCENARIOS WHERE EXCEPTIONMAY OCCUR
KEYWORDS IN EXCEPTION HANDLING

The exception handling in java is one of the powerfulmechanism to handle the runtime
errors so that normal flow of the application can be maintained.

What is exception
Dictionary Meaning: Exception is an abnormal condition.
In java, exception is an event that disrupts the normal flow of the program.

WHAT IS EXCEPTION HANDLING
Exception Handling is a mechanism to handle runtime errors such as ClassNotFound, IO, SQL,

Remote etc.

ADVANTAGE OF EXCEPTION HANDLING
The core advantage of exception handling is to maintain the normal flow of the application.
Exception normally disrupts the normal flow of the application that is why we use exception
handling.

Let's take a scenario:
1. statement 1;

P a g e | 18 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

SRI MANAKULA VINAYAGAR ENGINEERING COLLEGE

2. statement 2;
3. statement 3;
4. statement 4;
5. statement 5;//exception occurs
6. statement 6;
7. statement 7;
8. statement 8;
9. statement 9;
10. statement 10;

Suppose there is 10 statements in your program and there occurs an exception at statement 5,
rest of the code will not be executed i.e. statement 6 to 10 will not run. If we perform exception
handling, rest of the exception will be executed. That is why we use exception handling in java.

Types of Exception

There are mainly two types of exceptions: checked and unchecked where error is considered
as unchecked exception. The sun microsystem says there are three types of exceptions:

1. Checked Exception
2. Unchecked Exception
3. Error

Difference between checked and unchecked exceptions

1) Checked Exception
The classes that extend Throwable class except RuntimeException and Error are known as checked
exceptions e.g.IOException, SQLException etc. Checked exceptions are checked at compile-time.

2) Unchecked Exception
The classes that extend RuntimeException are known as unchecked exceptions e.g.
ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc. Unchecked
exceptions are not checked at compile-time rather they are checked at runtime.

3) Error
Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, AssertionError etc.

Common scenarios where exceptions may occur

There are given some scenarios where unchecked exceptions can occur.
They are as follows:
1) Scenario where ArithmeticException occurs

If we divide any number by zero, there occurs an ArithmeticException.
int a=50/0;//ArithmeticException

2) Scenario where NullPointerException occurs

P a g e | 19 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

SRI MANAKULA VINAYAGAR ENGINEERING COLLEGE

If we have null value in any variable, performing any operation by the variable occurs an
NullPointerException.

String s=null;
System.out.println(s.length());//NullPointerException

3) Scenario where NumberFormatException occurs
The wrong formatting of any value, may occur NumberFormatException. Suppose I have a

string variable that have characters, converting this variable into digit will occur
NumberFormatException.

String s="abc";
int i=Integer.parseInt(s);//NumberFormatException

4) Scenario where ArrayIndexOutOfBoundsException occurs
If you are inserting any value in the wrong index, it would result

ArrayIndexOutOfBoundsException as shown below:
int a[]=new int[5];
a[10]=50; //ArrayIndexOutOfBoundsException

JAVA EXCEPTION HANDLING KEYWORDS
There are 5 keywords used in java exception handling.

1. try
2. catch
3. finally
4. throw
5. throws

JAVA TRY BLOCK
Java try block is used to enclose the code that might throw an exception. It must be used

within the method.
Java try block must be followed by either catch or finally block

Syntax of java try-catch
try
{

}
//code that may throw exception

catch(Exception_type obj)
{

}

JAVA CATCH BLOCK
Java catch block is used to handle the Exception. It must be used after the try block only.
You can use multiple catch block with a single try

P a g e | 20 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

SRI MANAKULA VINAYAGAR ENGINEERING COLLEGE

EXAMPLE PROGRAM
public class Testtrycatch2
{

public static voidmain(String args[])
{

try
{

}
int data=50/0;

catch(ArithmeticException e)
{

System.out.println(e);
}
System.out.println("rest of the code...");

}
}

JAVA FINALLY BLOCK
Java finally block is a block that is used to execute important code such as closing connection,

stream etc.
Java finally block is always executed whether exception is handled or not.
Java finally block must be followed by try or catch block

JAVA THROWKEYWORD

• The Java throw keyword is used to explicitly throw an exception.
• We can throw either checked or uncheked exception in java by throw keyword.
• The throw keyword is mainly used to throw custom exception

EXAMPLE PROGRAM
class ExceptionThrowDemo
{

public static void main(String args[])
{

P a g e | 21 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

SRI MANAKULA VINAYAGAR ENGINEERING COLLEGE

int a=Integer.parseInt(args[0]);
try
{

if(a>10)
{

throw new ArithmeticException("A is greater than 10");
}

}
catch(ArithmeticException e)
{

System.out.println(e);
}
System.out.println("Program End");

}
}

JAVA THROWS

• The Java throws keyword is used to declare an exception.
• It gives an information to the programmer that there may occur an exception so it is

better for the programmer to provide the exception handling code so that normal flow can
be maintained

• Exception Handling is mainly used to handle the checked exceptions
• If there occurs any unchecked exception such as NullPointerException, it is

programmers fault that he is not performing check up before the code being used

Syntax:
return_type method_name() throws exception_class_name
{
...
}

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 1 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

UNIT 3 - 2 MARKS

1. DEFINE APPLICATION PROGRAMS AND APPLET PROGRAMS:
Using java we can develop two types of programs.
They are:

Application programs
Applet programs
Application programs are programs to do jobs on a local computer.

Applet programs are programs that have an ability to run on internet through a web
browser.

2. DIFFERENCE BETWEEN APPLICATION ANDAPPLET

APPLICATION APPLET

1) Application can access the local file
system and resources.
2) Functionality of the applications are
known.
3) Author is known.
4) Creating and running an application
is easy.
5) This is executed by typing
commands on command line.

1) Restricted to access the local file
system and resources.
2) Functionality of applets are not
known.
3) Author is not known.
4) Creating and running an applet is
complex.
5) This is executed by using applet
viewer or any browser.

3. DEFINE APPLET
Applets are small applications that are accessed on an internet server.
They are small, dynamic and graphical user interactive program that can execute inside a
webpage displayed by JAVA capable browser such as IE, Netscape navigator etc

4. APPLET TAG IN HTML
<applet> tag is used to start applet from inside the HTML document as well from the
applet viewer.
Each <applet> tag may be executed in separate window by applet viewer.
BUT, the JAVA Capable browser can execute numerous applets inside a single webpage.

5. APPLET LIFE CYCLE
There are four stages in the applet life cycle. They are
Born (or) Initialization State
Running state
Idle State
Dead/Destroyed State

6. WHAT ARE THE TYPES OF CONTAINERS IN JAVA ANDMENTION THEM
There are two types of AWT Container Classes:

Top-Level Containers: Frame, Dialog and Applet
Secondary Containers: Panel and ScrollPane

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 2 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

7. MENTION ANY TWO FEATURES OF SWING
Swing is written in pure Java (except a few classes) and therefore is 100% portable.
Swing components are lightweight. The AWT components are heavyweight (in terms of
system resource utilization).

8. WHAT IS GRAPHICS CLASS?
One of the Most important features of JAVA is its ability to draw GRAPHICS.
Every applet has its own area of the screen known as CANVAS (display area)

9. DEFINE AWT PACKAGES?
AWT is huge. It consists of 12 packages. But only 2 packages - java.awt and

java.awt.event - are commonly-used.
1. The java.awt package contains the core AWT graphics classes:

o GUI Component classes (such as Button, TextField, and Label),
o GUI Container classes (such as Frame, Panel, Dialog and ScrollPane),
o Layout managers (such as FlowLayout, BorderLayout and GridLayout),
o Custom graphics classes (such as Graphics, Color and Font).

2. The java.awt.event package supports event handling:
o Event classes (such as ActionEvent, MouseEvent, KeyEvent and WindowEvent),
o Event Listener Interfaces (such as ActionListener, MouseListener, KeyListener and

WindowListener),
o Event Listener Adapter classes (such as MouseAdapter, KeyAdapter, and

WindowAdapter).

10.DIFFERENCE BETWEEN SWING AND AWT?

No. Java AWT Java Swing

1) AWT components are platform-
dependent. Java swing components are platform-independent.

2) AWT components are heavyweight. Swing components are lightweight.

3) AWT doesn't support pluggable look
and feel. Swing supports pluggable look and feel.

4) AWT provides less components than
Swing.

Swing provides more powerful components such as
tables, lists, scrollpanes, colorchooser, tabbedpane etc.

11.NAME SOME COMMONMETHODS USED IN AWT?

Method Description
public void add(Component c) inserts a component on this component.
public void setSize(int width,int height) sets the size (width and height) of the component.
public void setLayout(LayoutManager m) defines the layout manager for the component.
public void setVisible(boolean status) changes the visibility of the component, by default false.

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 3 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

12.WHAT ARE THE GUI COMPONENTS AVAILABLE IN JAVA
Buttons

Adding buttons to a Frame or Panel
Action Listeners for Buttons
Inner Classes

Other GUI components
Labels
Text Fields
Text Areas

Assignment

13.WHAT IS SWING IN JAVA?
Swing is a set of program components for Java programmers that provide the ability to
create graphical user interface (GUI) components, such as buttons and scroll bars, that
are independent of the windowing system for specific operating system .
Swing components are used with the Java Foundation Classes (JFC).
Swing provides the look and feel of the modern java GUI

14.WRITE DOWN THE FEATURES OF SWING IN JAVA.
Swing Components are light weight
Swing supports a pluggable look and full

15.SPECIFY FEWCOMPONENTS OF SWING
JEditorPanes and JPasswordFields - for displaying web pages and inputting confidential
information
Dialogs - for displaying warnings, errors, prompting for input
Check Boxes - for selecting a small set of options
Radio Buttons - for mutually exclusive selection of options
Combo Boxes - for selecting a small set of qualified options
JLists - for selecting from a large set of qualified options
JTables - for table displays
JMenuBar, JMenu, and JMenuItems - for creating menus
File Chooser - for navigating through files and directories, and selecting files and
directories
Tabbed Panels - for allowing different panels to occupy the same screen area.

16.WHAT IS JCOMPONENT
The class JComponent is the base class for all Swing components except top-level
containers.
To use a component that inherits from JComponent, you must place the component in a
containment hierarchy whose root is a top-level Swing container.

17.WHAT IS CONTAINER?
Container, in the context of Java development, refers to a part of the server that is
responsible for managing the lifecycle of Web applications.
The Web applications specify the required lifecycle management with the help of a
contract presented in XML format.
The Web container cannot be accessed directly by a client. Rather, the server manages the
Web container, which in turn manages the Web application code.

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 4 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

18.WHAT ARE THE TYPES OF CONTAINER?
Two types:

Top level container
Light weight container

19.MENTION SOME OF THE TOP LEVEL CONTAINER
JFrame, JDialog, Jwindow and JApplet

20.MENTION SOME OF THE LIGHTWEIGHT CONTAINER
General purpose container. Eg: Jpanel
A light weight container can be contained in another light weight container.

21.WHAT IS THEMAIN PACKAGE NEEDED TO RUN SWING IN JAVA?
Javax.swing

22.WHAT IS ADAPTER CLASS?
An adapter class provides the default implementation of all methods in an event listener
interface.
Adapter classes are very useful when you want to process only few of the events that are
handled by a particular event listener interface.

23.DEFINE EVENT HANDLING IN JAVA
When an application or a program keeps on monitoring and quickly responds to any
action that occurs at the GUI interface, like mouse movement, selecting an item in a list or
entering a keyboard input and so on then such a scenario is termed as event handling.
In java the events from the event sources are captured and they are sent to event listeners
for respective actions to be taken.

24.WHAT IS DELEGATION EVENTMODEL.
The event handling mechanism used by swing is the same that used by AWT. This is

called Delegation Event Model.

Event Delegation Model is based on four concepts:
The Event Classes
The Event Listeners
Explicit Event Enabling
Adapters

25.WHICH PACKAGE IS NEEDED TO IMPLEMENT EVENT HANDLING IN JAVA
Java.awt.event package is needed to implement event handling in java

26.SPECIFY SOME OF THE MOUSE RELATED EVENTS
Some of themouse related events are
MouseEnter
MouseExit
MouseMove
MouseDrag

http://docs.oracle.com/javase/tutorial/uiswing/components/frame.html
http://docs.oracle.com/javase/tutorial/uiswing/components/dialog.html
http://docs.oracle.com/javase/tutorial/uiswing/components/applet.html

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 5 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

27.WHAT IS THE PURPOSE OF LAYOUTMANAGER?
Layouts are invoked using layout manager interface and set by the setlayout method.
Java LayoutManagers are used to save you the effort of manually putting Components
where you want them on a Container.
Even more useful is the fact that a LayoutManager object will handle repositioning your
objects whenever the Container is resized.

28.MENTION SOME OF THE TYPES OF LAYOUTS
Flow Layout
Border Layout
GridLayout
CardLayout
Gridbag Layout

29.DEFINE FLOWLAYOUT
FlowLayout is the default manager. It implements a simple layout style, which is similar to
how words flow in a text editor.
Components are laid out from the upper left corner, left to right and top to bottom.
When no more components fit on a line, the next one appears on the next line.
A small space inleft between each component,above and below, as well as left and right.

The Constructors are:
FlowLayout()
FlowLayout(int how)
FlowLayout(int how,int horz,int vert)

30.DEFINE BORDER LAYOUT
The Border layout class implements a common layout style for top-level windows. It has four
narrow, fixed-width components at the edges and one large area in the center.

The four sides are referred as north,south,east,west. The middle area is called the center.

The Constructors are,
BorderLayout() – creates a defalt border layout.
BorderLayout(int horz, int vert) - allows to specify the horizontal and vertical space
between components in horz and vertical.

The constants, used to specify the regions:
BorderLayout.CENTER
BorderLayout.NORTH
BorderLayout.EAST
BorderLayout.WEST
BorderLayout.SOUTH

31.DEFINE GRID LAYOUT
Grid layout is used to lay out components in a two dimensional grid. We can define the
number of rows and columns.
The constructors are,
GridLayout() – creates a single column grid layout.
GridLayout(int rows,int columns) – creates a grid layout with the specified number of
rows and columns.

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 6 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

GridLayout(int rows,int columns,int horz,int vert) – creates a grid layout with the specified
number of rows and columns and allows to specify the horizontal and vertical space
between components in horz and vertical respectively.

32.DEFINE CARD LAYOUT
Card layout is unique from other layout manager useful for user interfaces

33.WRITE ABOUT GRAPHICS IN JAVA
Graphics object encapsulates state information needed for the basic rendering operations that
Java supports.
This state information includes the following properties:
The Component object on which to draw
A translation origin for rendering and clipping coordinates.
The current clip.
The current color.
The current font.
The current logical pixel operation function (XOR or Paint).
The current XOR alternation color (see setXORMode(java.awt.Color)).

34.WHICH CLASS ANDWHAT ARE THEWAYS TO OBTAIN GRAPHICS IN JAVA
A graphics context is encapsulated by the graphics class and obtained in two ways
It is passed to an applet when one of its various methods such as paint() or update() is
called
It is returned by the getGraphics() method of component.

35.METHODS OF A GRAPHICS CLASS
g.drawLine(x1 , y1 , x2 , y2);
g.drawOval(left , top ,width , height);
g.fillOval(left , top ,width , height);
g.drawRoundRect(left , top ,width , height);
g.fillRoundRect(left , top ,width , height);
g.drawArc(left , top ,width , height , startAngle , arcAngle);
g.drawString(string , x , y);

36.What is source and listener?
source: A source is an object that generates an event. This occurs when the internal state

of that object changes in some way.

listener : A listener is an object that is notified when an event occurs. It has two major
requirements.

First, it must have been registered with one or more sources to receive notifications about
specific types of events. Second, it must implement methods to receive and process these
notifications.

37.STATE THE STEPS TO PERFORM EVENT HANDLING
Following steps are required to perform event handling:

Implement the Listener interface and overrides its methods
Register the component with the Listener

http://docs.oracle.com/javase/7/docs/api/java/awt/Graphics.html

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 7 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

38.ILLUSTRATE THEWORKING OF EVENT HANDLING

38.WHAT IS MEANT BY CONTROLS AND WHAT ARE DIFFERENT TYPES OF CONTROLS IN
AWT?

Controls are components that allow a user to interact with your application and the
AWT supports the following types of controls:

Labels, Push Buttons, Check Boxes, Choice Lists, Lists, Scrollbars, Text Components.

39.WHAT IS THE DIFFERENCE BETWEEN SCROLLBAR AND SCROLLPANE?
A Scrollbar is a Component, but not a Container whereas Scrollpane is a Conatiner and

handles its own events and perform its own scrolling.

40.WHAT IS A LAYOUT MANAGER AND WHAT ARE DIFFERENT TYPES OF LAYOUT
MANAGERS AVAILABLE IN JAVA.AWT?

A layout manager is an object that is used to organize components in a container. The
different layouts are available are FlowLayout, BorderLayout, CardLayout, GridLayout and
GridBagLayout.

41.HOW ARE THE ELEMENTS OF DIFFERENT LAYOUTS ORGANIZED?
FlowLayout: The elements of a FlowLayout are organized in a top to bottom, left to right
fashion.
BorderLayout: The elements of a BorderLayout are organized at the borders (North, South,
East and West) and the center of a container.
CardLayout: The elements of a CardLayout are stacked, on top of the other, like a deck of
cards.
GridLayout: The elements of a GridLayout are of equal size and are laid out using the square
of a grid.
GridBagLayout: The elements of a GridBagLayout are organized according to a grid.
However, the elements are of different size and may occupy more than one row or column of
the grid. In addition, the rows and columns may have different sizes.

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 8 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

42.WHICH CONTAINERS USE A BORDER LAYOUT AS THEIR DEFAULT LAYOUT?
Window, Frame and Dialog classes use a BorderLayout as their layout.

43.WHICH CONTAINERS USE A FLOW LAYOUT AS THEIR DEFAULT LAYOUT?
Panel and Applet classes use the FlowLayout as their default layout.

39.WHAT IS EVENT HANDLER?
When an application or a program keeps on monitoring and quickly responds to any

action that occurs at the GUI interface, like mouse movement, selecting an item in a list or
entering a keyboard input and so on then such a scenario is termed as event handling.

In JAVA the events from the event sources are captured and they are sent to event
listeners for respective actions to be taken.

40.WHAT IS AN APPLET?
Applets are JAVA programs that may be embedded into HTML documents. The applet

runs in the page as soon as it has been downloaded.
More specifically JAVA applets are JAVA programs that inherit the Applet (awt) or

JApplet class (swing). There are two types of applet.
Local applet
Remote applet

41.WHAT IS GARBAGE COLLECTION? WHAT IS THE PROCESS THAT IS RESPONSIBLE FOR
DOING THAT IN JAVA?

Reclaiming the unused memory by the invalid objects. Garbage collector is responsible
for this process

42.WHAT KIND OF THREAD IS THE GARBAGE COLLECTOR THREAD? - It is a daemon thread

43.HOW CAN YOU FORCE GARBAGE COLLECTION?
You can't force GC, but could request it by calling System.gc(). JVM does not guarantee that

GC will be started immediately

44.HOW CAN YOUMINIMIZE THE NEED OF GARBAGE COLLECTION ANDMAKE THE
MEMORY USE MORE EFFECTIVE?
Use object pooling and weak object references

45.CAN YOUWRITE A JAVA CLASS THAT COULD BE USED BOTH AS AN APPLET ASWELL AS
AN APPLICATION?
Yes. Add a main() method to the applet

46.LIST THE AWT CONTROLS?
Label
Button
Checkbox
TextComponent
Choice
List
Scrollbar

SRI VENKATESHWARAACOLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 9 OBJECT ORIENTED PROGRAMMING DEPARTMENT OF CSE

47.WRITE A NOTE ON PUSH BUTTON CONTROL?

A push button is a component that contains a label and that generates as event when it is
pressed. Push buttons are objects of type Button. Button defines these two constructors.

Button()
Button(String str)

The first version creates an empty button. The second creates a button that contains
str as a label.

48.WRITE A NOTE ON BORDERLAYOUT?
The BorderLayout class implements a common layout style for top-level windows. It has

four narrow, fixed-width components at the edges and one large area in the center. The four sides
are referred to as north, south, east, and west. The middles area is called the center. Here are the
constructors defined by BorderLayout

BorderLayout()
BorderLayout(int horz, int vert)

49.WRITE A NOTE ON CHECK BOX CONTROL IN JAVA?
A check box is a control that is used to turn an option on or off. It consists of a small box

that can either contain a check mark or not. There is a label associated with each check box that
describes what option the box represents. You change the state of a check box by clicking on it.
Check boxes can be used individually or as part of a group. Check boxes are objects of the
Checkbox class.

Checkbox()
Checkbox(String str)
Checkbox(String str, Boolean on)
Checkbox(String str, Boolean on, CheckboxGroup cbGroup)

50.DISTINGUISH BETWEEN COMPONENT AND CONTAINER
Component is an abstract class that encapsulates all of the attributes of a visual

component. All user interface elements that are displayed on the screen and that interact with the
user are subclasses of Component.

The container class is a subclass of Component. It has additional methods that allow other
Component objects to be nested within it. Other Container objects can be stored inside of a
container.

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 1 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

11 MARKS
1. EXPLAIN IN DETAIL ABOUT ABSTRACT WINDOWING TOOLKIT IN JAVA WITH EXAMPLE

PROGRAM
SYNOPSIS
INTRODUCTION
PROGRAMMING GUI WITH AWT
AWT PACKAGES
CONTAINERS AND COMPONENTS
AWT CONTAINER CLASSES
AWT COMPONENT CLASSES
EXAMPLE PROGRAM

INTRODUCTION

There are two sets of Java APIs for GUI programming:

AWT (Abstract Windowing Toolkit) and Swing.

AWT API was introduced in JDK 1.0. Most of the AWT components have become obsolete and
should be replaced by newer Swing components.

AWT API consists of set of classes needed to create GUI application in java

Swing API, a much more comprehensive set of graphics libraries that enhances the AWT, was
introduced as part of Java Foundation Classes (JFC) after the release of JDK 1.1.

JFC, which consists of Swing, Java2D, Accessibility API, Internationalization, and Pluggable
Look-and-Feel Support, was an add-on to JDK 1.1 but has been integrated into core Java since
JDK 1.2.

Programming GUI with AWT:

Java Graphics APIs - AWT and Swing - provide a huge set of reusable GUI components, such as
button, text field, label, choice, panel and frame for building GUI applications. You can simply
reuse these classes rather than re-invent the wheels.

Many AWT classes are now obsolete and they are used only in exceptional circumstances.

AWT Packages

AWT is huge. It consists of 12 packages. But only 2 packages - java.awt and java.awt.event -
are commonly-used.

1. The java.awt package contains the core AWT graphics classes:
o GUI Component classes (such as Button, TextField, and Label),
o GUI Container classes (such as Frame, Panel, Dialog and ScrollPane),
o Layout managers (such as FlowLayout, BorderLayout and GridLayout),
o Custom graphics classes (such as Graphics, Color and Font).

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 2 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

2. The java.awt.event package supports event handling:
o Event classes (such as ActionEvent, MouseEvent, KeyEvent and WindowEvent),
o Event Listener Interfaces (such as ActionListener, MouseListener, KeyListener and

WindowListener),
o Event Listener Adapter classes (such as MouseAdapter, KeyAdapter, and

WindowAdapter).

AWT provides a platform-independent and device-independent interface to develop graphic
programs that runs on all platforms, such as Windows, Mac, and Linux.

CONTAINERS AND COMPONENTS:

There are two types of GUI elements:

1. Component: Components are elementary GUI entities (such as Button, Label, and TextField.)

2. Container: Containers (such as Frame, Panel and Applet) are used to hold components in a
specific layout. A container can also hold sub-containers.

In the below example, there are three containers: a Frame and two Panels.

A Frame is the top-level container of an AWT GUI program. A Frame has a title bar (containing
an icon, a title, and the minimize/maximize(restore-down)/close buttons), an optional menu bar
and the content display area.

A Panel is a rectangular area (or partition) used to group related GUI components in a certain
layout. In the above example, the top-level Frame contains two Panels.

There are five components: a Label (providing description), a TextField (for users to enter
text), and three Buttons (for user to trigger certain programmed actions).

In a GUI program, a component must be kept in a container. You need to identify a container
to hold the components. Every container has a method called add(Component c). A container
(says aContainer) can invoke aContainer.add(aComponent) to add aComponent into itself.

For example,

Panel panel = new Panel(); // Panel is a Container
Button btn = new Button("Press"); // Button is a Component
panel.add(btn); // The Panel Container adds a Button Component

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 3 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

AWT CONTAINER CLASSES

There are two types of Containers. They are

i) Top Level Containers
ii) Secondary Level Containers

i) TOP-LEVEL CONTAINERS: Frame, Dialog and Applet

Each GUI program has a top-level container. The commonly-used top-level containers in AWT
are Frame, Dialog and Applet:

Frame:

A Frame provides the "main window" for the GUI application, which has a title bar
(containing an icon, a title, minimize, maximize/restore-down and close buttons), an
optional menu bar, and the content display area.
To write a GUI program, we typically start with a subclass extending from java.awt.Frame
to inherit the main window as follows:

Dialog:

An AWT Dialog is a "pop-up window" used for interacting with the users. A Dialog has a
title-bar (containing an icon, a title and a close button) and a content display area, as
illustrated.

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 4 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Applet:

An AWT Applet (in package java.applet) is the top-level container for an applet, which is a
Java program running inside a browser.

SECONDARY CONTAINERS: Panel and ScrollPane

Secondary containers are placed inside a top-level container or another secondary container.

AWT also provide these secondary containers:

Panel: a rectangular box (partition) under a higher-level container, used to layout a set of
related GUI components. See the above examples for illustration.

ScrollPane: provides automatic horizontal and/or vertical scrolling for a single child
component.

AWT COMPONENT CLASSES

AWT provides many ready-made and reusable GUI components. The frequently-used are:
Button, TextField, Label, Checkbox, CheckboxGroup (radio buttons), List, and Choice, as
illustrated below.

AWT ComponentS:
Label

A java.awt.Label provides a text description message. Take note that System.out.println()
prints to the system console, not to the graphics screen. You could use a Label to label another
component (such as text field) or provide a text description.

Button
A java.awt.Button is a GUI component that triggers a certain programmed action upon

clicking.

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 5 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

TextField
A java.awt.TextField is single-line text box for users to enter texts. (There is a multiple-line

text box called TextArea.) Hitting the "ENTER" key on a TextField object triggers an action-event.

EXAMPLE PROGRAM:

import java.awt.*;

public class AWTDemo
{

public static void main(String args[])
{

Frame f=new Frame("AWTDemo");
f.setSize(500, 500);
f.setVisible(true);

Panel p=new Panel();

Label l=new Label("VALUE A");
Button b=new Button("ADD");
TextField tf=new TextField(50);

p.add(l);
p.add(tf);
p.add(b);

f.add(p);

}

}

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 6 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

2. EXPLAIN IN DETAIL ABOUT APPLET PROGRAMMING IN JAVA
SYNOPSIS
DEFINITION
CATEGORIES OF APPLET
STEPS TO CREATE AND EXECUTE AN APPLET
APPLET TAG IN HTML
APPLET LIFE CYCLE
COLOR CONTROL
FONT CONTROL
GRAPHICS CLASS
EXAMPLE PROGRAM

DEFINITION
Applets are small applications that are accessed on an internet server.

They are small, dynamic and graphical user interactive program that can execute inside a
webpage displayed by JAVA capable browser such as IE, Netscape navigator etc.

Application :
Animation
multimedia presentation
Real time games

CATEGORIES OF APPLET

i) Local Applet
ii) Remote Applet

Local Applet :

Developed locally and stored in a local system.
Internet connection is not necessary

Remote Applet :

Developed externally and store in a remote computer.
Internet connection is necessary.

STEPS TO CREATE AND EXECUTE AN APPLET

Typing and saving the source code

Eg : c:\jdk 1.2\bin>edit appl.java

Compile the source code (Program)

Eg : c:\jdk1.2\bin>javac appl.java
(now the class file (appl.class) is created)

Create a .html file and write html code for getting class file for appl.class

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 7 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Eg : c:\jdk 1.2\bin>edit appl.html

Example code:
<HTML>
<applet code = “appl.class” height=400 width=400 >
</applet>
</html>

To execute using applet viewer :

Eg: C:\jdk1.2\bin>appletviewer appl.html

APPLET TAG IN HTML

<applet> tag is used to start applet from inside the HTML document as well from the
applet viewer.
Each <applet> tag may be executed in separate window by applet viewer.
BUT, the JAVA Capable browser can execute numerous applets inside a single webpage.

Attributes of <applet> tag:

Height
Width ,
Code etc.,

APPLET LIFE CYCLE

There are four stages in the applet life cycle. They are

Born (or) Initialization State
Running state
Idle State
Dead/Destroyed State

BORN (OR) INITIALIZATION STATE

Whenever an applet is loaded it enters into the initialization state.
This is achieved by calling the init() method .

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 8 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

It occurs only once in an applet lifecycle.

SYNTAX:

public void init()
{
……………….
……………….(Action)
……………….
}

RUNNING STATE

Applet enters the running state when the system calls the start() method of the applet
class.
The start() method is also executed automatically after the applet is initialised.
The start () method can be called several times.

SYNTAX :

public void start()
{
……………
…………… (Action)
……………
}

DISPLAY STATE

An Applet moves to the display state whenever it has to perform some output operations
on the screen.
The paint()method is used to accomplish this task when it enters the running state.

SYNTAX

public void paint(Graphics g)
{
…………………….
…………………….// Display Statements
}

IDLE (OR) STOPPED STATE

When we leave the page containing the current applet, it enters the idle/stopped state
automatically.
We can also stop the applet explicitly by calling the stop()method.
While using a thread to run an applet , it is mandatory to use stop() method to terminate
the thread.

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 9 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

SYNTAX

public void stop()
{
…………….
……………. (Action)
}

DEAD (OR) DESTROYED STATE

An applet is said to be dead when it is removed from the memory.
This state also occurs automatically by invoking the destroy() method when we quit the
browser.
It occurs only once like the initialization state.

SYNTAX
public void destroy()
{
……………..
……………..(Action)
}

COLOR CONTROL

Color is one of the classes from java.awt.* package.
Using this class, we can include more colors to the applet programs.

Example :

setBackgroundColor (Color.blue);
setForegroundColor (Color.white);
setColor(Color.green);
getColor();

FONT CONTROL

Different types of fonts are available in the font class in java.awt.*;
Some of the available fonts are :

Example :

Times New Roman
Verdana
Serif etc

GRAPHICS CLASS

One of the Most important features of JAVA is its ability to draw GRAPHICS.
Every applet has its own area of the screen known as CANVAS (display area)

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 10 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Methods Of A Graphics Class

g.drawLine(x1 , y1 , x2 , y2);
g.drawOval(left , top ,width , height);
g.fillOval(left , top ,width , height);
g.drawRoundRect(left , top ,width , height);
g.fillRoundRect(left , top ,width , height);
g.drawArc(left , top ,width , height , startAngle , arcAngle);
g.drawString(string , x , y);

Example Program:

import java.awt.*;
import java.applet.*;
/*
<applet code="Shapes" width=800 height=250>
</applet>
*/

public class Shapes extends Applet
{

public void init()
{

System.out.println("Initialize");
}

public void start()
{

System.out.println("Start");
}

public void paint(Graphics g)
{

g.drawString("SHAPES",200,20);
g.setColor(Color.blue);
g.drawLine(10,30,400,30);
g.drawOval(20,50,150,100);
g.fillRect(200,50,200,100);

}

public void stop()
{

System.out.println("Stop");
}

public void destroy()
{

System.out.println("Destroy");
}

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 11 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

}

3. EXPLAIN IN DETAIL ABOUT THE SWING COMPONENTS IN JAVA.

SWING :

Java Swing is a GUI toolkit for Java. Swing is one part of the Java Foundation Classes (JFC).
Swing includes graphical user interface (GUI) widgets such as text boxes, buttons, split-panes, and
tables.

Swing widgets provide more sophisticated GUI components than the earlier Abstract Window
Toolkit. Since they are written in pure Java, they run the same on all platforms, unlike the AWT which
is tied to the underlying platform's windowing system.

Swing supports pluggable look and feel – not by using the native platform's facilities, but by
roughly emulating (imitate) them. This means you can get any supported look and feel on any platform.

Swing’s Features:

Swing is huge and has great depth. Compared with AWT, Swing provides a huge and
comprehensive collection of reusable GUI components, as shown in the Figure below

Main Features:

Swing is written in pure Java (except a few classes) and therefore is 100% portable.

Swing components are lightweight. The AWT components are heavyweight (in terms of system
resource utilization).

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 12 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Each AWT component has its own opaque native display, and always displays on top of the
lightweight components.

AWT components rely heavily on the underlying windowing subsystem of the native operating
system.

For example, an AWT button ties to an actual button in the underlying native windowing
subsystem, and relies on the native windowing subsystem for their rendering and processing.

Swing components (JComponents) are written in Java. They are generally not "weight-down"
by complex GUI considerations imposed by the underlying windowing subsystem.

Swing components support pluggable look-and-feel. You can choose between Java look-and-
feel and the look-and-feel of the underlying OS (e.g., Windows, UNIX or Mac).

If the later is chosen, a Swing button runs on the Windows looks like a Windows' button and
feels like a Window's button. Similarly, a Swing button runs on the UNIX looks like a UNIX's
button and feels like a UNIX's button.

Swing supports mouse-less operation, i.e., it can operate entirely using keyboard.

Swing components support "tool-tips".

SWING COMPONENTS:

Various JComponents available in SWING package:

JPanel

Jpanel is Swing's version of the AWT class Panel and uses the same default layout, FlowLayout.
JPanel is descended directly from JComponent.

CONSTRUCTORS:

JPanel ()
Constructs a new blank JPanel

METHODS:

void paint (Graphics g)
Overrides the paint method of JPanel.

void repaint ()
Repaints this component, and causes a call to the paint method.

void setLayout (LayoutManager Manager)
Sets the layout manager for the panel.

Component add (Component Item)
Appends the specified component to the end of this container.

void add (Component Item, Object Constraints)
Appends the specified component with the specified constraints.

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 13 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

JFrame

JFrame is Swing's version of Frame and is descended directly from that class. The components
added to the frame are referred to as its contents; these are managed by the contentPane. To add a
component to a JFrame, we must use its contentPane instead.

CONSTRUCTORS:

JFrame ()
Creates a blank Button instance.

JFrame (String Text)
Creates a Frame instance with the specified text in the title bar

METHODS:

void addWindowListener(WindowListener Handler)
Configures a window event handler for the frame.

Container getContentPane()
Returns the contentPane object for this frame.

void setBackground (Color BackgroundColor)
Sets the background color of the frame.

void setFont (Font TextFont)
Sets the font for this component.

void setForeground (Color TextColor)
Sets the color of the text for the frame.

void setSize (int Width, int Height)
Resizes this window so that it has the specified Width and Height.

void setTitle (String Text)
Sets the text for the title bar.

void show ()
Makes the window visible.

JLabel

JLabel descended from JComponent, is used to create text labels.

CONSTRUCTORS:

JLabel ()
Creates a blank JLabel instance.

JLabel (String Text)
Creates a JLabel instance with the specified text.

JLabel (String Text, int Alignment)
Creates a JLabel instance with the specified text and horizontal alignment

METHODS:

void setBackground (Color BgdColor)
Sets the color of the background for the label.

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 14 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

void setHorizontalAlignment (int Alignment)
Sets the alignment of the label's contents along the X axis.

void setFont (Font TextFont)
Sets the font for this component.Arguments

void setForeground (Color TextColor)
Sets the color of the text for the label.

void setText (String Text)
Sets the text for the label.

JButton

JButton is a component the user clicks to trigger a specific action.

The abstract class AbstractButton extends class JComponent and provides a foundation for a family
of button classes, including JButton

CONSTRUCTORS:

JButton ()
Creates a blank JButton instance.

JButton (String Text)
Creates a JButton instance with the specified text.

METHODS:

void addActionListener (ActionListener Handler)
Configures an event handler for the button.

void setActionCommand (String ActionText)
Sets the text for the action event of the button.

void setBackground (Color BackgroundColor)
Sets the background color of the button.

void setEnabled (boolean State)
Enables or disables the button.

void setFont (Font TextFont)
Sets the font for this component.

void setForeground (Color TextColor)
Sets the color of the text for the button.

void setText (String Text)
Sets the text for the button.

JTextField

JTextField allows editing of a single line of text. New features include the ability to justify the text
left, right, or center, and to set the text's font.

CONSTRUCTORS:

JTextField ()
Creates a blank JTextField instance.

JTextField (String Text)
Creates a JTextField instance with the specified text.

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 15 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

JTextField (int Columns)
Creates a blank JTextField instance with the specified number of columns.

JTextField (String Text, int Columns)
Creates a JTextField instance with the specified text and the specified number of
columns.

METHODS:

void addActionListener (ActionListener Handler)
Configures an event handler for the TextField.

String getText ()
Returns the text in the field.

void setBackground (Color BackgroundColor)
Sets the background color of the TextField.

void setEditable (boolean Editable)
Sets the field as being editable or fixed.

void setFont (Font TextFont)
Sets the font for this component.

void setText (String Text)
Sets the text for the field.

OTHER JCOMPONENT CLASSES:

JInternalFrame

JInternalFrame is confined to a visible area of a container it is placed in. It can be iconified ,
maximized and layered.

JWindow

JWindow is Swing's version of Window and is descended directly from that class. Like Window, it
uses BorderLayout by default.

JDialog

JDialog is Swing's version of Dialog and is descended directly from that class. Like Dialog, it uses
BorderLayout by default. Like JFrame and JWindow,

JDialog contains a rootPane hierarchy including a contentPane, and it allows layered and glass
panes. All dialogs are model, which means the current thread is blocked until user interaction with it
has been completed.

JDialog class is intended as the basis for creating custom dialogs; however, some of the most
common dialogs are provided through static methods in the class JOptionPane.

JPasswordField

JPasswordField (a direct subclass of JTextField) you can suppress the display of input.

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 16 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Each character entered can be replaced by an echo character.

This allows confidential input for passwords, for example. By default, the echo character is the
asterisk, *.

JTextArea

JTextArea allows editing of multiple lines of text. JTextArea can be used in conjunction with class
JScrollPane to achieve scrolling.

The underlying JScrollPane can be forced to always or never have either the vertical or horizontal
scrollbar;

JRadioButton

JRadioButton is similar to JCheckbox, except for the default icon for each class. A set of radio
buttons can be associated as a group in which only one button at a time can be selected.

JCheckBox

JCheckBox is not a member of a checkbox group. A checkbox can be selected and deselected, and
it also displays its current state.

JComboBox

list.
JComboBox is like a drop down box. You can click a drop-down arrow and select an option from a

For example,

When the component has focus, pressing a key that corresponds to the first character in some
entry's name selects that entry. A vertical scrollbar is used for longer lists.

JList

JList provides a scrollable set of items from which one or more may be selected. JList can be
populated from an Array or Vector.

JList does not support scrolling directly, instead, the list must be associated with a scrollpane.

The view port used by the scroll pane can also have a user-defined border. JList actions are handled
using ListSelectionListener.

JTabbedPane

JTabbedPane contains a tab that can have a tool tip and a mnemonic, and it can display both text
and an image.

JToolbar

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 17 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

JToolbar contains a number of components whose type is usually some kind of button which can
also include separators to group related components within the toolbar.

JMenubar

JMenubar can contain several JMenu's. Each of the JMenu's can contain a series of JMenuItem 's
that you can select. Swing provides support for pull-down and popup menus.

Scrollable JPopupMenu

Scrollable JPopupMenu is a scrollable popup menu that can be used whenever we have so many
items in a popup menu that exceeds the screen visible height.

EXAMPLE PROGRAM:

import java.awt.*;
import javax.swing.*;

public class Calculator
{

public Calculator()
{
JFrame f=new JFrame("CALCULATOR");
f.setVisible(true); f.setSize(300,300);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JPanel p=new JPanel();

JLabel l1=new JLabel("Value A");
JLabel l2=new JLabel("Value B");
JLabel l3=new JLabel("Result");

JTextField t1 = new JTextField(10);
JTextField t2 = new JTextField(10);
JTextField t3 = new JTextField(10);

JButton b1=new JButton("ADD");
p.add(l1);
p.add(t1);
p.add(l2);
p.add(t2);
p.add(l3);
p.add(t3);
p.add(b1);

p.setLayout(new GridLayout(4,2));
f.setContentPane(p);

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 18 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

}

public static void main(String[] args)
{
Calculator c=new Calculator();

}

}
}

4.EXPLAIN IN DETAIL ABOUT LAYOUTMANAGER IN JAVA.

LAYOUTMANAGER:

Layouts are invoked using layout manager interface and set by the setlayout method.
Java LayoutManagers are used to save you the effort of manually putting Components where
you want them on a Container.
Even more useful is the fact that a LayoutManager object will handle repositioning your objects
whenever the Container is resized.

TYPES OF LAYOUT:

Flow Layout
Border Layout
Grid Layout
GridBag Layout

FLOWLAYOUT MANAGER

The FlowLayout manager arrange components in its container horizontally left to right and top
to bottom starting from center by default.
If you try to add more components in a single row then the row splits into second row.
Justification - FlowLayout.LEFT, FlowLayout.CENTER or FlowLayout.RIGHT.
Default is FlowLayout.CENTER.
The components added to a container using FlowLayout manager, even if you resize the
window, component does not change it's original size.
FlowLayout honors the preferred size of the component.

EXAMPLE:

public class TestFlow
{

public static void main(String args[])
{
Panel p = new Panel();
Button b = new Button("NORTH");

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 19 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

}
}

Output:

Button b1 = new Button("SOUTH");
Button b2 = new Button("CENTER");
p.add(b);
p.add(b1);
p.add(b2);
Frame f = new Frame();
f.setSize(150,150);
f.setVisible(true);
f.add(p);

If you resize the window to smaller size then the top row splits into second row but the the size of
the component does not change, which means Flow Layout manager honors the component preferred
size.

BORDERLAYOUT MANAGER

The BorderLayout manager is a default layout manager for frames.

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 20 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

This layout manager divides container in to five regions where you can place components,
called "North", "South", "East", "West", and "Center".
The center region occupies leftover space if you did not place any component in other regions.

Example :

import java.awt.*;
public class TestBorder
{
public static void main(String args[])
{

Button b = new Button("Hello");
Frame f= new Frame();
f.setSize(150,150);
f.setVisible(true);
f.add(b);

}
}

Output:

If you don't specify the location of the component, then the center is the default location of the
component in the BorderLayout, and component occupies all the leftover space.

While adding a component you can use "North", "South" , "East", "West", "Center" or the
following constants to specify the location of the component. You can also specify mixing of
both.

BorderLayout.NORTH
BorderLayout.SOUTH
BorderLayout.EAST
BorderLayout.WEST
BorderLayout.CENTER
public class TestBorder {

public static void main(String args[]) {

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 21 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Button b = new Button("NORTH");
Button b1 = new Button("SOUTH");
Button b2 = new Button("CENTER");
Frame f= new Frame();
f.setSize(150,150);
f.setVisible(true);
f.add(b, BorderLayout.NORTH);
f.add(b1, "South");
f.add(b2, BorderLayout.CENTER);

}
}

Output:

If you use BorderLayout when you resize the window, the components in the container also resized.

GRIDLAYOUTMANAGER

The GridLayout manager divides the space in the container in to ROWS AND COLUMNS
specified in the constructor.

Basically it divides the region into number of rows and columns which you specified while
setting the layout manager for the container.

Example:

public class TestGrid {
public static void main(String args[])

{ Panel p = new Panel();
Button b1 = new Button("Button1");
Button b2 = new Button("Button2");
Button b3 = new Button("Button3");

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 22 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Button b4 = new Button("Button4");
Frame f = new Frame();
f.setSize(150,150);
f.setVisible(true);
f.add(p);
p.setLayout(new GridLayout(2,2));
p.add(b1);
p.add(b2);
p.add(b3);
p.add(b4);

}
}

Output:

If you use GridLayout manager and when you resize the window all the components in the
container also resized.

GRIDBAG LAYOUT MANAGER

GridBagLayout determines the number of rows and columns from the constraints placed upon
the components it lays out.
It does not require providing the rows and columns as in the GridLayout.
It allows spanning the components to more than one grid cell.

Output:

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 23 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

5. JAVA GRAPHICS CLASS IN DETAIL

Graphics:

Java supports graphics along with the AWT. A graphics context is encapsulated by the graphics
class and obtained in 2 ways

It is passed to an applet when one of its various methods such as paint() and update() is called.
It is returned by the getGraphics() method of component.

Working with drawing:

Graphic class defines a number of drawing function. Each shape can be drawn edge-only or filled.

Methods are:

drawLine

Draws a line between the coordinates (x1,y1) and (x2,y2). The line is drawn below and to the
left of the logical coordinates

public abstract void drawLine(int x1,int y1, int x2, int y2)

Parameters:
x1 - the first point's x coordinate
y1 - the first point's y coordinate
x2 - the second point's x coordinate
y2 - the second point's y coordinate

drawRect

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 24 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Draws the outline of the specified rectangle using the current color. Use drawRect(x, y, width-
1, height-1) to draw the outline inside the specified rectangle.

public void drawRect(int x, int y, int width, int height)

Parameters:

x - the x coordinate
y - the y coordinate
width - the width of the rectangle
height - the height of the rectangle

fillRect

Fills the specified rectangle with the current color.

public abstract void fillRect(int x, int y, int width, int height)

Parameters:

x - the x coordinate
y - the y coordinate
width - the width of the rectangle
height - the height of the rectangle

Other methods are

o draw3DRect(int, int, int, int, boolean)
Draws a highlighted 3-D rectangle.

o drawArc(int, int, int, int, int, int)
Draws an arc bounded by the specified rectangle from startAngle to endAngle.

o drawBytes(byte[], int, int, int, int)
Draws the specified bytes using the current font and color.

o drawChars(char[], int, int, int, int)
Draws the specified characters using the current font and color.

o drawImage(Image, int, int, ImageObserver)
Draws the specified image at the specified coordinate (x, y).

o drawImage(Image, int, int, int, int, ImageObserver)
Draws the specified image inside the specified rectangle.

o drawOval(int, int, int, int)
Draws an oval inside the specified rectangle using the current color.

o drawPolygon(int[], int[], int)
Draws a polygon defined by an array of x points and y points.

o drawPolygon(Polygon)
Draws a polygon defined by the specified point.

o drawRoundRect(int, int, int, int, int, int)
Draws an outlined rounded corner rectangle using the current color.

o drawString(String, int, int)

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 25 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Draws the specified String using the current font and color.
o fill3DRect(int, int, int, int, boolean)

Paints a highlighted 3-D rectangle using the current color.
o fillArc(int, int, int, int, int, int)

Fills an arc using the current color.
o fillOval(int, int, int, int)

Fills an oval inside the specified rectangle using the current color.
o fillPolygon(int[], int[], int)

Fills a polygon with the current color.
o fillPolygon(Polygon)

Fills the specified polygon with the current color.
o fillRoundRect(int, int, int, int, int, int)

Draws a rounded rectangle filled in with the current color.

WORKING WITH COLORS:

Color can be given to the shapes drawn using draw methods.

Methods are

getColor

Gets the current color

public abstract Color getColor()

setColor

public abstract void setColor(Color c)

Sets the current color to the specified color. All subsequent graphics operations will use this
specified color.

Parameters:

c - the color to be set

setPaintMode

Sets the default paint mode to overwrite the destination with the current color.

public abstract void setPaintMode()

WORKING WITH FONTS:

http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.Color.html
http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.Color.html

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 26 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

getFont

Gets the current font.

public abstract Font getFont()

setFont

Sets the font for all subsequent text-drawing operations.

public abstract void setFont(Font font)

Parameters:

font - the specified font

getFontMetrics

Gets the current font metrics.

public FontMetrics getFontMetrics()

getFontMetrics

Gets the current font metrics for the specified font.

public abstract FontMetrics getFontMetrics(Font f)

Parameters:

f - the specified font

Some of the other methods in graphics are

clearRect(int, int, int, int)

Clears the specified rectangle by filling it with the current background color of the current
drawing surface.

clipRect(int, int, int, int)

Clips to a rectangle.

copyArea(int, int, int, int, int, int)

Copies an area of the screen.

create()

http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.Font.html
http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.Font.html
http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.FontMetrics.html
http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.FontMetrics.html
http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.Font.html
http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.Graphics.html
http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.Graphics.html
http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.Graphics.html
http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.Graphics.html

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 27 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Creates a new Graphics Object that is a copy of the original Graphics Object.

create(int, int, int, int)

Creates a new Graphics Object with the specified parameters, based on the original Graphics
Object.

dispose()

Disposes of this graphics context.

scale(float, float)

Scales the graphics context.

setColor(Color)

Sets the current color to the specified color.

setXORMode(Color)

Sets the paint mode to alternate between the current color and the new specified color.

toString()

Returns a String object representing this Graphic's value.

translate(int, int)

Translates the specified parameters into the origin of the graphics context.

6. DESCRIBE ABOUT EVENT HANDLINGMECHANISM

Event describes the change of state of any object.
Example : Pressing a button, Entering a character in Textbox.

Any action that user performs on a GUI component must be listened and necessary action
should to be taken.

For example, if a user clicks on a Exit button, then we need to write code to exit the program.

we need to know that the user has clicked the button. This process of knowing is called as
listening . The action done by the user is called an event. Writing the corresponding code for a
user action is called as Event handling

http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.Graphics.html
http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.Graphics.html
http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.Graphics.html
http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.Graphics.html
http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.Graphics.html
http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.Graphics.html
http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.awt.Graphics.html

SRI VENKATESHWARAACOLLEGEOF ENGINEERING& TECHNOLOGY

P a g e | 28 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

COMPONENTS OF EVENT HANDLING
Event handling has three main components,

• Events : An event is a change of state of an object.

• Events Source : Event source is an object that generates an event.

• Listeners : A listener is an object that listens to the event. A listener gets notified when an
event occurs

STEPS TO PERFORM EVENT HANDLING

Following steps are required to perform event handling:

• Implement the Listener interface and overrides its methods

• Register the component with the Listener

WORKING OF EVENT HANDLING

THE SEQUENCE OF STEPS IS ILLUSTRATED ABOVE:
1. The source object registers its listener(s) for a certain type of event.

Source object fires event event upon triggered. For example, clicking an Button fires
an ActionEvent, mouse-click fires MouseEvent, key-type fires KeyEvent, etc.

The source and listener understand each other via an agreed-upon interface.

For example, if a source is capable of firing an event called XxxEvent (e.g., MouseEvent)
involving various operational modes (e.g., mouse-clicked, mouse-entered, mouse-exited,
mouse-pressed, and mouse-released).

Firstly, we need to declare an interface called XxxListener (e.g., MouseListener)
containing the names of the handler methods. Recall that an interface contains
only abstract methods without implementation.

For example,

// A MouseListener interface, which declares the signature of the handlers
// for the various operational modes.
public interface MouseListener {
public voidmousePressed(MouseEvent evt); // Called back uponmouse-button pressed
public voidmouseReleased(MouseEvent evt); // Called back upon mouse-button released
public void mouseClicked(MouseEvent evt); // Called back upon mouse-button clicked

(pressed and released)
public void mouseEntered(MouseEvent evt); // Called back when mouse pointer entered

the component
public void mouseExited(MouseEvent evt); // Called back when mouse pointer exited the

component
}

Secondly, all the listeners interested in the XxxEvent must implement
the XxxListener interface. That is, the listeners must provide their own implementations (i.e.,
programmed responses) to all the abstract methods declared in the XxxListener interface. In
this way, the listenser(s) can response to these events appropriately.

For example

// An example of MouseListener, which provides implementation to the handler methods
class MyMouseListener implement MouseListener {

@Override
public voidmousePressed(MouseEvent e)
{ System.out.println("Mouse-button
pressed!");

}

@Override
public voidmouseReleased(MouseEvent e)
{ System.out.println("Mouse-button
released!");

}

@Override
public voidmouseClicked(MouseEvent e)
{ System.out.println("Mouse-button clicked (pressed and

P a g e | 29 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

mailto:@Override
mailto:@Override
mailto:@Override

}

@Override
public voidmouseEntered(MouseEvent e)
{ System.out.println("Mouse-pointer entered the source
component!");

}

@Override
public voidmouseExited(MouseEvent e)
{ System.out.println("Mouse exited-pointer the source
component!");

}
}

Thirdly, in the source, we need to maintain a list of listener object(s), and define two
methods: addXxxListener() and removeXxxListener() to add and remove a listener from this
list.

The signature of the methods are:

public void addXxxListener(XxxListener l);
public void removeXxxListener(XxxListener l);

In summary, we identify the source, the event-listener interface, and the listener
object. The listener must implement the event-listener interface. The source object then
registers listener object via theaddXxxListener() method:

aSource.addXxxListener(alistener); // aSource registers aListener for XxxEvent

2. The source is triggered by a user.

3. The source create an XxxEvent object, which encapsulates the necessary information about
the activation. For example, the (x, y) position of the mouse pointer, the text entered, etc.

4. Finally, for each of the listeners in the listener list, the source invokes the appropriate handler
on the listener(s), which provides the programmed response.

In brief, triggering a source fires an event to all its registered listeners, and invoke an
appropriate handler of the listener.

EVENT HANDLING INTERFACES AND ITS METHODS

mailto:@Override
mailto:@Override

P a g e | 30 OBJECT ORIENTED PROGRAMMING AND DEPARTMENT OF CSE

P a g e | 31 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

P a g e | 32 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 1 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

UNIT 4 - 2 MARKS

1. DEFINE GENERICS
The Java Generics programming is introduced in J2SE 5 to deal with type-safe objects.
Before generics, we can store any type of objects in collection i.e. non-generic.
Now generics, forces the java programmer to store specific type of objects

2. STATE THE ADVANTAGES OF GENERICS
There are mainly 3 advantages of generics. They are as follows:

1) Type-safety:We can hold only a single type of objects in generics. It doesn’t allow to store
other objects.

2) Type casting is not required: There is no need to typecast the object.

Before Generics, we need to type cast.
List list = new ArrayList();
list.add("hello");
String s = (String) list.get(0);//typecasting

After Generics, we don't need to typecast the object.
List<String> list = new ArrayList<String>();
list.add("hello");
String s = list.get(0);

3) Compile-Time Checking: It is checked at compile time so problem will not occur at
runtime. The good programming strategy says it is far better to handle the problem at compile
time than runtime.

List<String> list = new ArrayList<String>();
list.add("hello");
list.add(32);//Compile Time Error

3. DEFINE COLLECTIONS FRAMEWORK

Collection framework represents a unified architecture for storing and manipulating group of
object.

All the operations that you perform on a data such as searching, sorting, insertion, deletion
etc. can be performed by Java Collection Framework

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 2 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

4. STATE THE COLLECTIONS HIERARCHY

5. DEFINE SET INTERFACE
The Set interface is used to represent a group of unique elements. It extends the Collection

interface. The class HashSet, LinkedHashSet implements the Set interface.

6. DEFINE LIST INTERFACE
The list interface extends the Collection interface to represent sequence of numbers in a fixed

order with allowing duplicate elements. Classes ArrayList, Vector and LinkedList are implementation
of List interface

7. DEFINE MAP INTERFACE
The Map Interface is a basic interface that is used to represent mapping of keys to values. A

map contains values based on the key i.e. key and value pair. Each pair is known as an entry. Map
contains only unique elements. Classes HashMap and LinkedHashMap are implementations of Map
interface

8. WHAT IS ITERATOR?
Iterator interface provides the facility of iterating the elements in forward direction only

Methods of Iterator interface
There are only three methods in the Iterator interface. They are:
1. public boolean hasNext() it returns true if iterator has more elements.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 3 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

2. public object next() it returns the element and moves the cursor pointer to the next
element

3. public void remove() it removes the last elements returned by the iterator. It is rarely
used

9. LIST THE CLASS COMES UNDER LIST
ARRAYLIST
LINKEDLIST
VECTOR

10.LIST THE CLASS COMES UNDER SET
HASHSET
LINKEDHASHSET
TREESET

11.LIST THE CLASS COMES UNDERMAP
HASHMAP
LINKEDHASHMAP
TREEMAP

12.STATE THE COMMONMETHODS IN COLLECTIONS
No. METHOD DESCRIPTION

1 add(Object element) is used to insert an element in this collection.

is used to insert the specified collection
elements in the invoking collection.

2 addAll(collection c)

3 remove(Object element) is used to delete an element from this
collection.

is used to delete all the elements of specified
collection from the invoking collection.

4 removeAll(Collection c)

5 retainAll(Collection c) is used to delete all the elements of invoking
collection except the specified collection.

13.COMPARE LIST AND SET

No. LIST SET

1 ALLOW DUPLICATE ELEMENTS DON’T ALLOW DUPLICATE ELEMENTS

2 ORDER IS MAINTAINED ORDER IS NOT MAINTAINED

3 USE LISTITERATOR INTERFACE USE ITERATOR INTERFACE

4 CLASSES:ARRAYLIST, CLASSES: HASHSET, TREESET
LINKEDLIST

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 4 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

14.DISTINGUISH BETWEEN ARRAYLIST AND LINKEDLIST IN COLLECTIONS

No. ARRAYLIST LINKEDLIST

1 USES A DYNAMIC ARRAY FOR
STORING THE ELEMENTS

USES DOUBLY LINKED LIST TO STORE THE
ELEMENTS

2 RANDOM ACCESS NO RANDOM ACCESS

3 MANIPULATION SLOW
BECAUSE A LOT OF SHIFTING
NEEDS TO BE OCCURRED

MANIPULATION FAST BECAUSE NO
SHIFTING NEEDS TO BE OCCURRED

15.LIST SOME OF THE CLASSES IN UTILITY PACKAGE
Arrays
Date
Calendar
Dictionary
Currency

17.STATE CALENDER CLASS
The Calendar class is an abstract class that provides methods for converting between a

specific instant in time and a set of calendar fields such as YEAR, MONTH, DAY_OF_MONTH, HOUR,
and so on, and for manipulating the calendar fields, such as getting the date of the next week

16.WHAT IS SCANNER CLASS
A simple text scanner which can parse primitive types and strings using regular expressions

17.DEFINE INNER CLASS
Java inner class or nested class is a class i.e. declared inside the class or interface.
We use inner classes to logically group classes and interfaces in one place so that it can be
more readable and maintainable.
Additionally, it can access all the members of outer class including private data members and
methods

18.STATE THE ADVANTAGES OF INNER CLASS
There are basically three advantages of inner classes in java. They are as follows:
1) Nested classes represent a special type of relationship that is it can access all the
members (datamembers and methods) of outer class including private.
2) Nested classes are used to develop more readable andmaintainable code because it
logically group classes and interfaces in one place only.
3) Code Optimization: It requires less code to write.

19.WHAT ARE THE TYPES OF INNER CLASSES IN JAVA
a)Member inner class
b)Anonymous inner class
c)Local inner class

https://docs.oracle.com/javase/7/docs/api/java/util/Calendar.html

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 5 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

20.WHAT IS STATIC NESTED CLASS
A static class created within class is called as static nested class. Static nested class is not a
inner class

21.DEFINE JAVA LOCAL INNER CLASS
A class i.e. created inside a method is called local inner class in java. If you want to invoke the
methods of local inner class, you must instantiate this class inside the method

22.DEFINE JAVA MEMBER INNER CLASS
A non-static class that is created inside a class but outside a method is called member inner

class.

23.DEFINE JAVA ANONYMOUS INNER CLASS
A class that have no name is known as anonymous inner class in java. It should be used if you

have to override method of class or interface. Java Anonymous inner class can be created by two
ways:

1. Class (may be abstract or concrete).
2. Interface

24.HOW JAVA COMMUNICATEWITH THE DATABASE
JDBC is a standard interface for connecting to databases from Java. Java API for connecting

programs written in Java to the data in relational databases. The JDBC classes and interfaces are in
the java.sql package

25.LIST THE STEPS TO FOLLOW IN JDBC
There are 7 steps to follow in JDBC

1. Import package java.sql
2. Register the driver
3. Establish the connection
4. Create the statement
5. Execute the query
6. Process the result
7. Close the connection

26.WHAT IS JDBC DRIVER
A JDBC Driver is an interpreter that translates JDBC method calls to vendor-specific database
commands
Implements interfaces in java.sql
Can also provide a vendor’s extensions to the JDBC standard

27.WHAT ARE THE TYPES OF DRIVER IN JDBC
There are mainly four types

JDBC-ODBC
Native API Drivers
Network API
Network Protocol Driver

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 6 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

28.WHAT ARE THE TWOWAYS USED TO REGISTER DRIVER IN JDBC
There are Two Ways:

1)Using Class.forName()

Class.forName("oracle.jdbc.driver.OracleDriver");

2)Using DriverManager.registerDriver()

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

29.WHAT IS STATEMENT CLASS
A Statement object sends your SQL statement to the database.
You need an active connection to create a JDBC statement.
Statement has three methods to execute a SQL statement:

1. executeQuery() for QUERY statements
2. executeUpdate() for INSERT, UPDATE, DELETE, or DDL statements

execute() for either type of statement

30.DEFINE PREPARED STATEMENT IN JDBC
A PreparedStatement object holds precompiled SQL statements.
Use this object for statements you want to execute more than once.
A prepared statement can contain variables that you supply each time you execute the
statement

31.WHAT ARE THE TYPES OF QUERIES IN DATABASE
There are mainly four queries in database management. They are

Insert
Select
Update
Delete

32.DEFINE JAVA SECURITY
The Java platform provides a number of features designed to improve the security of Java
applications. This includes enforcing runtime constraints through the use of the Java Virtual
Machine (JVM), a security manager that sandboxes un trusted code from the rest of the
operating system, and a suite of security APIs that Java developers can utilize

33.WHAT IS SAND BOX SECURITY MODEL
The sandbox security model is an intrinsic part of Java's architecture. The sandbox, a shell

that surrounds a running Java program, protects the host system from malicious code. This security
model helps give users confidence in downloading un trusted code across network.

34.WHAT ARE THE SAFETY FEATURES BUILT INTO THE JVM
Type-safe reference casting
Structured memory access (no pointer arithmetic)
Automatic garbage collection (can't explicitly free allocated memory)
Array bounds checking
Checking references for null

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 7 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

35.WHAT IS DRIVERMANAGER?
The basic service to manage set of JDBC drivers.

36.WHAT IS CLASS.FORNAME() DOES AND HOW IT IS USEFUL?
It loads the class into the ClassLoader. It returns the Class. Using that you can get the

instance (―class-instance‖.newInstance()).

37.WHAT ARE BYTE STREAM IN JAVA?
The byte stream classes provide a rich environment for handling byte-oriented I/O.

List of Byte Stream classes
ByteArrayInputStream
ByteArrayOutputStream
FilteredByteStreams
BufferedByteStreams

38.WHAT ARE CHARACTER STREAM IN JAVA?
The Character Stream classes provide a rich environment for handling character-

oriented I/O.
List of Character Stream classes

FileReader
FileWriter
CharArrayReader
CharArrayWriter

39.WRITE A NOTE ON CHAR ARRAY READER
The CharArrayReader allows the usage of a character array as an InputStream. The usage of

CharArrayReader class is similar to ByteArrayInputStream. The constructor is given below:

public CharArrayReader(char c[])

40.HOWWILL YOU FIND OUT THE LENGTH OF A STRING IN JAVA? GIVE AN EXAMPLE?
length() method is used to number of characters is string. For example,

String str=”Hello”;
System.out.println(“Length of string is “+str.length());

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 1 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

UNIT - IV
11 MARKS

1. WRITE ABOUT COLLECTION CLASSES IN JAVA

Collection Framework provides an architecture to store and manipulate the group of
objects.

All the operations that you perform on a data such as searching, sorting, insertion, deletion
etc. can be performed by Java Collection Framework.

Collection simply means a single unit of objects. Collection framework provides many
interfaces (Set, List, Queue, Deque etc.) and classes (ArrayList, Vector, LinkedList, PriorityQueue,
HashSet, LinkedHashSet, TreeSet etc).

object.
Collection framework represents a unified architecture for storing and manipulating group of

It has:
1. Interfaces and its implementations i.e. classes
2. Algorithm

HIERARCHY OF COLLECTION FRAMEWORK

The java.util package contains all the classes and interfaces for Collection framework.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 2 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

METHODS OF COLLECTION INTERFACE
There are many methods declared in the Collection interface. They are as follows:

No. METHOD DESCRIPTION

1 add(Object element) is used to insert an element in this collection.

2 addAll(collection c) is used to insert the specified collection
elements in the invoking collection.

3 remove(Object element) is used to delete an element from this
collection.

4 removeAll(Collection c) is used to delete all the elements of specified
collection from the invoking collection.

5 retainAll(Collection c) is used to delete all the elements of invoking
collection except the specified collection.

6 size() return the total number of elements in the
collection.

7 clear() removes the total no of element from the
collection.

8 contains(object element) is used to search an element.

9 containsAll(Collection c) is used to search the specified collection in
this collection.

10 iterator() returns an iterator.

11 toArray() converts collection into array.

12 isEmpty() checks if collection is empty.

13 equals(Object element) matches two collection.

14 hashCode() returns the hashcode number for collection.

ITERATOR INTERFACE
Iterator interface provides the facility of iterating the elements in forward direction only

Methods of Iterator interface
There are only three methods in the Iterator interface. They are:
1. public boolean hasNext() it returns true if iterator has more elements.
2. public object next() it returns the element and moves the cursor pointer to the next

element
3. public void remove() it removes the last elements returned by the iterator. It is rarely

used.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 3 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

LIST INTERFACE
The list interface extends the Collection interface to represent sequence of numbers in a fixed

order with allowing duplicate elements. Classes ArrayList, Vector and LinkedList are implementation
of List interface.

List Implemented Classes
ArrayList

uses a dynamic array for storing the elements. It extends AbstractList class and implements
List interface.
can contain duplicate elements.
maintains insertion order.
not synchronized.
random access because array works at the index basis.
manipulation slow because a lot of shifting needs to be occurred.

LinkedList
uses doubly linked list to store the elements. It extends the AbstractList class and
implements List and Deque interfaces.
can contain duplicate elements.
maintains insertion order.
not synchronized.
No random access.
manipulation fast because no shifting needs to be occurred.
can be used as list, stack or queue

EXAMPLE

import java.io.*;
import java.util.*;

public class arraylist
{

public static void main(String args[])
{

ArrayList al = new ArrayList(); //Creating object for ArrayList

System.out.println("Array List");

al.add("A"); //Adding element on ArrayList
al.add("B");
al.add("C");
al.add("D");

System.out.println("Size of Array List: " + al.size());

System.out.println("Contents of al: " + al); //Displaying element on ArrayList

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 4 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

al.add(1, "X"); //Adding element at position 1 on ArrayList

System.out.println("Contents of al: " + al); //Displaying element on ArrayList

al.remove("C"); //Removing element on ArrayList

System.out.println("Contents of al: " + al);

al.remove(2); //Removing element at position 2 on ArrayList

System.out.println("Contents of al: " + al);

//Finding element at position 3 on ArrayList
System.out.println("Element at position 3: " + al.get(2));

//Finding position of element on ArrayList
System.out.println("Position of character X is : " + al.indexOf("X"));

if(al.contains("S")) //Searching element on ArrayList
{

}
else
{

}

System.out.println("Element Found");

System.out.println("Element Not Found");

al.clear(); //Clearing all element on ArrayList

System.out.println("Size of Array List: " + al.size());
}

}

SET INTERFACE

The Set interface is used to represent a group of unique elements. It extends the Collection
interface. The class HashSet, LinkedHashSet implements the Set interface.

Set Implemented Classes

HashSet

uses hashtable to store the elements.It extends AbstractSet class and implements Set
interface.
contains unique elements only.

LinkedHashSet

contains unique elements only like HashSet. It extends HashSet class and implements Set
interface.
maintains insertion order.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 5 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

SORTEDSET INTERFACE
The SortedSet interface extends the Set interface. It provides extra functionality of keeping

the elements sorted. So SortedSet interface is used to represent collections consisting of unique,
sorted elements. The class TreeSet is an implementation of interface SortedSet.

Sortedset Implemented Class

Treeset
contains unique elements only like HashSet. The TreeSet class implements NavigableSet
interface that extends the SortedSet interface.
maintains ascending order

MAP INTERFACE
The Map Interface is a basic interface that is used to represent mapping of keys to values. A

map contains values based on the key i.e. key and value pair. Each pair is known as an entry. Map
contains only unique elements. Classes HashMap and LinkedHashMap are implementations of Map
interface

Commonly Used Methods of Map Interface
1. public Object put(object key,Object value): is used to insert an entry in this map.
2. public void putAll(Map map):is used to insert the specified map in this map.
3. public Object remove(object key):is used to delete an entry for the specified key.
4. public Object get(Object key):is used to return the value for the specified key.
5. public boolean containsKey(Object key):is used to search the specified key from this map.
6. public boolean containsValue(Object value):is used to search the specified value from this

map.
7. public Set keySet():returns the Set view containing all the keys.
8. public Set entrySet():returns the Set view containing all the keys and values.

Map Implemented Classes

HashMap
A HashMap contains values based on the key. It implements the Map interface and extends
AbstractMap class.
It contains only unique elements.
It may have one null key and multiple null values.
It maintains no order

LinkedHashMap
A LinkedHashMap contains values based on the key. It implements the Map interface and
extends HashMap class.
It contains only unique elements.
It may have one null key and multiple null values.
It is same as HashMap instead maintains insertion order.

SORTEDMAP INTERFACE

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 6 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

The SortedMap Interface extends Map interface and maintains their mappings in key order.
The class TreeMap implements SortedMap interface

SortedMap Implemented Class

TreeMap
A TreeMap contains values based on the key. It implements the NavigableMap interface and
extends AbstractMap class.
It contains only unique elements.
It cannot have null key but can have multiple null values.
It is same as HashMap instead maintains ascending order

EXAMPLE PROGRAM

import java.io.*;
import java.util.*;

public class javacollections
{

public static void main(String[] args)
{

List linked = new LinkedList();
System.out.println("\n*******LinkedList class*******");
linked.add("element1");
linked.add("element2");
System.out.println(linked);

List array = new ArrayList();
System.out.println("\n*******ArrayList class*******");
array.add("x");
array.add("y");
System.out.println(array);

Set hashSet = new HashSet();
System.out.println("\n*******HashSet class*******");
hashSet.add("set1");
hashSet.add("set2");
System.out.println(hashSet);

SortedSet treeSet = new TreeSet();
System.out.println("\n*******TreeSet class*******");
treeSet.add("1");
treeSet.add("2");
System.out.println(treeSet);

LinkedHashSet linkedHashset = new LinkedHashSet();
System.out.println("\n*******LinkedHashSet class*******");
linkedHashset.add("one");
linkedHashset.add("two");

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 7 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

System.out.println(linkedHashset);

Map map1 = new HashMap();
System.out.println("\n*******Hashmap class*******");
map1.put("key1", "J");
map1.put("key2", "K");
System.out.println(map1.keySet());
System.out.println(map1.values());
System.out.println(map1);

}
}

2. EXPLAIN IN DETAIL ABOUT THE UTILITY PACKAGE

The java.util package defines a number of useful classes, primarily collections classes
that are useful for working with groups of objects. This package should not be considered
merely a utility package that is separate from the rest of the language; in fact, Java depends
directly on several of the classes in this package. Figure 1 shows the collection classes of this
package, while Figure 2 shows the other classes.

It contains the collections framework, legacy collection classes, event model, date and
time facilities, internationalization, and miscellaneous utility classes (a string tokenizer, a
random-number generator, and a bit array).

LIST OF INTERFACES

INTERFACES DESCRIPTION
Collection<E> The root interface in the collection hierarchy.
Comparator<T> A comparison function, which imposes a total ordering on some collection

of objects.
Deque<E> A linear collection that supports element insertion and removal at both

ends.
Enumeration<E> An object that implements the Enumeration interface generates a series of

elements, one at a time.
EventListener A tagging interface that all event listener interfaces must extend.
Formattable The Formattable interface must be implemented by any class that needs to

perform custom formatting using the 's' conversion specifier of Formatter.
Iterator<E> An iterator over a collection.
List<E> An ordered collection (also known as a sequence).
ListIterator<E> An iterator for lists that allows the programmer to traverse the list in

either direction, modify the list during iteration, and obtain the iterator's
current position in the list.

Map<K,V> An object that maps keys to values.
Map.Entry<K,V> Amap entry (key-value pair).
NavigableMap<K,V> A SortedMap extended with navigation methods returning the closest

matches for given search targets.
NavigableSet<E> A SortedSet extended with navigation methods reporting closest matches

for given search targets.
Observer A class can implement the Observer interface when it wants to be informed

of changes in observable objects.

https://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html
https://docs.oracle.com/javase/7/docs/api/java/util/SortedMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/SortedSet.html

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 8 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Queue<E> A collection designed for holding elements prior to processing.
RandomAccess Marker interface used by List implementations to indicate that they

support fast (generally constant time) random access.
Set<E> A collection that contains no duplicate elements.
SortedMap<K,V> AMap that further provides a total ordering on its keys.
SortedSet<E> A Set that further provides a total ordering on its elements.

LIST OF CLASSES

CLASS DESCRIPTION
AbstractCollection<
E>

This class provides a skeletal implementation of the Collection interface, to
minimize the effort required to implement this interface.

AbstractList<E> This class provides a skeletal implementation of the List interface to
minimize the effort required to implement this interface backed by a
"random access" data store (such as an array).

AbstractMap<K,V> This class provides a skeletal implementation of the Map interface, to
minimize the effort required to implement this interface.

AbstractMap.Simpl
eEntry<K,V>

An Entry maintaining a key and a value.

AbstractMap.Simpl
eImmutableEntry<
K,V>

An Entry maintaining an immutable key and value.

AbstractQueue<E> This class provides skeletal implementations of some Queue operations.
AbstractSequential
List<E>

This class provides a skeletal implementation of the List interface to
minimize the effort required to implement this interface backed by a
"sequential access" data store (such as a linked list).

AbstractSet<E> This class provides a skeletal implementation of the Set interface to
minimize the effort required to implement this interface.

ArrayDeque<E> Resizable-array implementation of the Deque interface.
ArrayList<E> Resizable-array implementation of the List interface.
Arrays This class contains various methods for manipulating arrays (such as

sorting and searching).
BitSet This class implements a vector of bits that grows as needed.
Calendar The Calendar class is an abstract class that provides methods for

converting between a specific instant in time and a set of calendar
fields such as YEAR, MONTH, DAY_OF_MONTH,HOUR, and so on, and for
manipulating the calendar fields, such as getting the date of the next week.

Collections This class consists exclusively of static methods that operate on or return
collections.

Currency Represents a currency.
Date The class Date represents a specific instant in time, with millisecond

precision.
Dictionary<K,V> The Dictionary class is the abstract parent of any class, such as Hashtable,

which maps keys to values.
EnumMap<K
extends Enum<K>,V

A specializedMap implementation for use with enum type keys.

https://docs.oracle.com/javase/7/docs/api/java/util/Map.html
https://docs.oracle.com/javase/7/docs/api/java/util/Set.html
https://docs.oracle.com/javase/7/docs/api/java/util/List.html
https://docs.oracle.com/javase/7/docs/api/java/util/Queue.html
https://docs.oracle.com/javase/7/docs/api/java/util/Deque.html
https://docs.oracle.com/javase/7/docs/api/java/util/Calendar.html
h
https://docs.oracle.com/javase/7/docs/api/java/util/Calendar.html
https://docs.oracle.com/javase/7/docs/api/java/util/Map.html

>
EnumSet<E
extends Enum<E>>

A specialized Set implementation for use with enum types.

EventListenerProxy
<T
extends EventListen
er>

An abstract wrapper class for an EventListener class which associates a set
of additional parameters with the listener.

EventObject The root class from which all event state objects shall be derived.
FormattableFlags FomattableFlags are passed to the Formattable.formatTo()method and

modify the output format for Formattables.
Formatter An interpreter for printf-style format strings.
GregorianCalendar GregorianCalendar is a concrete subclass of Calendar and provides the

standard calendar system used by most of the world.
HashMap<K,V> Hash table based implementation of the Map interface.
HashSet<E> This class implements the Set interface, backed by a hash table (actually

a HashMap instance).
Hashtable<K,V> This class implements a hash table, which maps keys to values.
IdentityHashMap<K
,V>

This class implements the Map interface with a hash table, using reference-
equality in place of object-equality when comparing keys (and values).

LinkedHashMap<K,
V>

Hash table and linked list implementation of the Map interface, with
predictable iteration order.

LinkedHashSet<E> Hash table and linked list implementation of the Set interface, with
predictable iteration order.

LinkedList<E> Doubly-linked list implementation of the List and Deque interfaces.
ListResourceBundl
e

ListResourceBundle is an abstract subclass of ResourceBundle that
manages resources for a locale in a convenient and easy to use list.

Locale A Locale object represents a specific geographical, political, or cultural
region.

Locale.Builder Builder is used to build instances of Locale from values configured by the
setters.

Objects This class consists of static utility methods for operating on objects.
Observable This class represents an observable object, or "data" in the model-view

paradigm.
PriorityQueue<E> An unbounded priority queue based on a priority heap.
Properties The Properties class represents a persistent set of properties.
PropertyPermissio
n

This class is for property permissions.

PropertyResourceB
undle

PropertyResourceBundle is a concrete subclass of ResourceBundle that
manages resources for a locale using a set of static strings from a property
file.

Random An instance of this class is used to generate a stream of pseudorandom
numbers.

ResourceBundle Resource bundles contain locale-specific objects.
ResourceBundle.Co
ntrol

ResourceBundle.Control defines a set of callback methods that are invoked
by the ResourceBundle.getBundle factory methods during the bundle
loading process.

P a g e | 9 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

https://docs.oracle.com/javase/7/docs/api/java/util/Set.html
https://docs.oracle.com/javase/7/docs/api/java/util/Formattable.html
https://docs.oracle.com/javase/7/docs/api/java/util/Formattable.html
https://docs.oracle.com/javase/7/docs/api/java/util/Queue.html
https://docs.oracle.com/javase/7/docs/api/java/util/ResourceBundle.html

P a g e | 10 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Scanner A simple text scanner which can parse primitive types and strings using
regular expressions.

ServiceLoader<S> A simple service-provider loading facility.
SimpleTimeZone SimpleTimeZone is a concrete subclass of TimeZone that represents a time

zone for use with a Gregorian calendar.
Stack<E> The Stack class represents a last-in-first-out (LIFO) stack of objects.
StringTokenizer The string tokenizer class allows an application to break a string into

tokens.
Timer A facility for threads to schedule tasks for future execution in a background

thread.
TimerTask A task that can be scheduled for one-time or repeated execution by a

Timer.
TimeZone TimeZone represents a time zone offset, and also figures out daylight

savings.
TreeMap<K,V> A Red-Black tree based NavigableMap implementation.
TreeSet<E> A NavigableSet implementation based on a TreeMap.
UUID A class that represents an immutable universally unique identifier (UUID).

3. DESCRIBE ABOUT THE ARRAYS CLASS IN UTILITY PACKAGE?

This class defines static methods for sorting, searching, and performing other useful
operations on arrays. It also defines the asList() method, which returns a Listwrapper around a
specified array of objects.

Any changes made to the List are also made to the underlying array. This is a powerful
method that allows any array of objects to be manipulated in any of the ways a List can be
manipulated. It provides a link between arrays and the Java collections framework.

The various sort() methods sort an array (or a specified portion of an array) in place. Variants
of the method are defined for arrays of each primitive type and for arrays of Object. For arrays of
primitive types, the sorting is done according to the natural ordering of the type.

For arrays of objects, the sorting is done according to the specified Comparator, or, if the array
contains only java.lang.Comparable objects, according to the ordering defined by that interface.
When sorting an array of objects, a stable sorting algorithm is used so that the relative ordering of
equal objects is not disturbed. (This allows repeated sorts to order objects by key and subkey, for
example.)

The binarySearch() methods perform an efficient search (in logarithmic time) of a sorted
array for a specified value. If a match is found in the array,binarySearch() returns the index of the
match. If no match is found, the method returns a negative number.

For a negative return value r, the index -(r+1) specifies the array index at which the specified
value can be inserted to maintain the sorted order of the array. When the array to be searched is an
array of objects, the elements of the array must all implement java.lang.Comparable, or you must
provide a Comparator object to compare them.

https://docs.oracle.com/javase/7/docs/api/java/util/NavigableMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/NavigableSet.html
https://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html

P a g e | 11 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

The equals() methods test whether two arrays are equal. Two arrays of primitive type are
equal if they contain the same number of elements and if corresponding pairs of elements are equal
according to the == operator.

Two arrays of objects are equal if they contain the same number of elements and if
corresponding pairs of elements are equal according to the equals() method defined by those objects.
The fill() methods fill an array or a specified range of an array with the specified value.

public class Arrays {
// No Constructor
// Public Class Methods
public static java.util.List asList (Object[] a);
public static int binarySearch (short[] a, short key);
public static int binarySearch (Object[] a, Object key);
public static int binarySearch (long[] a, long key);
public static int binarySearch (int[] a, int key);
public static int binarySearch (double[] a, double key);
public static int binarySearch (byte[] a, byte key);
public static int binarySearch (char[] a, char key);
public static int binarySearch (float[] a, float key);
public static int binarySearch (Object[] a, Object key, Comparator c);
public static boolean equals (boolean[] a, boolean[] a2);
public static boolean equals (byte[] a, byte[] a2);
public static boolean equals (float[] a, float[] a2);
public static boolean equals (double[] a, double[] a2);
public static boolean equals (int[] a, int[] a2);
public static boolean equals (long[] a, long[] a2);
public static boolean equals (char[] a, char[] a2);
public static boolean equals (short[] a, short[] a2);
public static boolean equals (Object[] a, Object[] a2);
public static void fill (double[] a, double val);
public static void fill (char[] a, char val);
public static void fill (short[] a, short val);
public static void fill (Object[] a, Object val);
public static void fill (float[] a, float val);
public static void fill (byte[] a, byte val);
public static void fill (int[] a, int val);
public static void fill (long[] a, long val);
public static void fill (boolean[] a, boolean val);
public static void fill (Object[] a, int fromIndex, int toIndex, Object val);
public static void fill (boolean[] a, int fromIndex, int toIndex, boolean val);
public static void fill (byte[] a, int fromIndex, int toIndex, byte val);
public static void fill (float[] a, int fromIndex, int toIndex, float val);

P a g e | 12 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

public static void fill (short[] a, int fromIndex, int toIndex, short val);
public static void fill (int[] a, int fromIndex, int toIndex, int val);
public static void fill (long[] a, int fromIndex, int toIndex, long val);
public static void fill (double[] a, int fromIndex, int toIndex, double val);
public static void fill (char[] a, int fromIndex, int toIndex, char val);
public static void sort (char[] a);
public static void sort (short[] a);
public static void sort (int[] a);
public static void sort (byte[] a);
public static void sort (double[] a);
public static void sort (float[] a);
public static void sort (long[] a);
public static void sort (Object[] a);
public static void sort (Object[] a, Comparator c);
public static void sort (short[] a, int fromIndex, int toIndex);
public static void sort (Object[] a, int fromIndex, int toIndex);
public static void sort (byte[] a, int fromIndex, int toIndex);
public static void sort (char[] a, int fromIndex, int toIndex);
public static void sort (float[] a, int fromIndex, int toIndex);
public static void sort (double[] a, int fromIndex, int toIndex);
public static void sort (int[] a, int fromIndex, int toIndex);
public static void sort (long[] a, int fromIndex, int toIndex);
public static void sort (Object[] a, int fromIndex, int toIndex, Comparator c);

}

4. DESCRIBE ABOUT THE CALENDAR CLASS IN JAVA.UTIL PACKAGE

This abstract class defines methods that perform date and time arithmetic. It also includes
methods that convert dates and times to and from the machine-usable millisecond format used
by the Date class and units such as minutes, hours, days, weeks, months, and years that are more
useful to humans. As an abstract class,Calendar cannot be directly instantiated.

Instead, it provides static getInstance() methods that return instances of a Calendar
subclass suitable for use in a specified or default locale with a specified or default time zone. See
also Date, DateFormat, and TimeZone.

Calendar defines a number of useful constants. Some of these are values that represent
days of the week and months of the year. Other constants, such as HOUR and DAY_OF_WEEK,
represent various fields of date and time information. These field constants are passed to a
number of Calendar methods, such as get() and set(), in order to indicate what particular date or
time field is desired.

setTime() and the various set() methods set the date represented by
a Calendar object. The add() method adds (or subtracts) values to a calendar field, incrementing

P a g e | 13 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

the next larger field when the field being set rolls over. roll() does the same, without modifying
anything but the specified field. before() andafter() compare two Calendar objects.

Many of the methods of the Calendar class are replacements for methods of Date that have
been deprecated as of Java 1.1. While the Calendar class converts a time value to its various hour,
day, month, and other fields, it is not intended to present those fields in a form suitable for
display to the end user. That function is performed by the java.text.DateFormat class, which
handles internationalization issues.

//
protected Calendar ();
protected Calendar (TimeZone zone, Locale aLocale);

//
public static final int AM ;
public static final int AM_PM ;
public static final int APRIL ;
public static final int AUGUST ;
public static final int DATE ;
public static final int DAY_OF_MONTH ;
public static final int DAY_OF_WEEK ;
public static final int DAY_OF_WEEK_IN_MONTH ;
public static final int DAY_OF_YEAR ;
public static final int DECEMBER ;
public static final int DST_OFFSET ;
public static final int ERA ;
public static final int FEBRUARY ;
public static final int FIELD_COUNT ;
public static final int FRIDAY ;
public static final int HOUR ;
public static final int HOUR_OF_DAY ;
public static final int JANUARY ;
public static final int JULY ;
public static final int JUNE ;
public static final intMARCH ;
public static final intMAY ;
public static final intMILLISECOND ;
public static final intMINUTE ;
public static final intMONDAY ;
public static final intMONTH ;
public static final int NOVEMBER ;
public static final int OCTOBER ;
public static final int PM ;
public static final int SATURDAY ;
public static final int SECOND ;

P a g e | 14 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

public static final int SEPTEMBER ;
public static final int SUNDAY ;
public static final int THURSDAY ;
public static final int TUESDAY ;
public static final int UNDECIMBER ;
public static final intWEDNESDAY ;
public static final intWEEK_OF_MONTH ;
public static final intWEEK_OF_YEAR ;
public static final int YEAR ;
public static final int ZONE_OFFSET ;

//
public static Locale[] getAvailableLocales ();
public static Calendar getInstance ();
public static Calendar getInstance (Locale aLocale);
public static Calendar getInstance (TimeZone zone);
public static Calendar getInstance (TimeZone zone, Locale aLocale);

//
public int getFirstDayOfWeek ();
public void setFirstDayOfWeek (int value);
public boolean isLenient ();
public void setLenient (boolean lenient);
public int getMinimalDaysInFirstWeek ();
public void setMinimalDaysInFirstWeek (int value);
public final java.util.Date getTime ();
public final void setTime (java.util.Date date);
public TimeZone getTimeZone ();
public void setTimeZone (TimeZone value);

//
public abstract void add (int field, int amount);
public boolean after (Object when);
public boolean before (Object when);
public final void clear ();
public final void clear (int field);
public final int get (int field);

1.2 public int getActualMaximum (int field);
1.2 public int getActualMinimum (int field);

public abstract int getGreatestMinimum (int field);
public abstract int getLeastMaximum (int field);
public abstract int getMaximum (int field);
public abstract int getMinimum (int field);
public final boolean isSet (int field);

P a g e | 15 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

1.2 public void roll (int field, int amount);
public abstract void roll (int field, boolean up);
public final void set (int field, int value);
public final void set (int year, intmonth, int date);
public final void set (int year, intmonth, int date, int hour, intminute);
public final void set (int year, intmonth, int date, int hour, intminute, int second);

//
public Object clone ();
public boolean equals (Object obj);

1.2 public int hashCode ();
public String toString ();

//
protected void complete ();
protected abstract void computeFields ();
protected abstract void computeTime ();
protected long getTimeInMillis ();
protected final int internalGet (int field);
protected void setTimeInMillis (longmillis);

//
protected boolean areFieldsSet ;
protected int[] fields ;
protected boolean[] isSet ;
protected boolean isTimeSet ;
protected long time ;

P a g e | 16 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

5. EXPLAIN IN DETAIL ABOUT GENERICS

The Java Generics programming is introduced in J2SE 5 to deal with type-safe objects.
Before generics, we can store any type of objects in collection i.e. non-generic.

Now generics, forces the java programmer to store specific type of objects.

Advantage of Java Generics
There are mainly 3 advantages of generics. They are as follows:

1) Type-safety :We can hold only a single type of objects in generics. It doesn’t allow to store other
objects.

2) Type casting is not required: There is no need to typecast the object.
Before Generics, we need to type cast.

List list = new ArrayList();
list.add("hello");
String s = (String) list.get(0);//typecasting

After Generics, we don't need to typecast the object.
List<String> list = new ArrayList<String>();
list.add("hello");
String s = list.get(0);

3) Compile-Time Checking: It is checked at compile time so problem will not occur at runtime. The
good programming strategy says it is far better to handle the problem at compile time than runtime.

List<String> list = new ArrayList<String>();
list.add("hello");
list.add(32);//Compile Time Error

Syntax to use generic collection
ClassOrInterface<Type>

Example to use Generics in java
ArrayList<String>

EXAMPLE OF GENERICS IN JAVA

Here, we are using the ArrayList class, but you can use any collection class such as ArrayList,
LinkedList, HashSet, TreeSet, HashMap, Comparator etc.

P a g e | 17 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

import java.util.*;

class TestGenerics1
{

public static voidmain(String args[])
{

ArrayList<String> list=new ArrayList<String>();
list.add("rahul");
list.add("jai");
//list.add(32);//compile time error

String s=list.get(1);//type casting is not required
System.out.println("element is: "+s);

Iterator<String> itr=list.iterator();
while(itr.hasNext())
{

System.out.println(itr.next());
}

}
}

Output:
element is: jai
rahul
jai

GENERIC CLASS
A class that can refer to any type is known as generic class. Here, we are using T type

parameter to create the generic class of specific type.

Let’s see the simple example to create and use the generic class.

Creating generic class:

class
MyGen<T>{ T obj;
void add(T obj){this.obj=obj;}
T get(){return obj;}
}

The T type indicates that it can refer to any type (like String, Integer, Employee etc.). The type
you specify for the class, will be used to store and retrieve the data.

P a g e | 18 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Using generic class:

Let’s see the code to use the generic class.

class TestGenerics3{
public static voidmain(String
args[]){ MyGen<Integer> m=new
MyGen<Integer>(); m.add(2);
//m.add("vivek");//Compile time error
System.out.println(m.get());
}}

Output: 2

GENERIC METHOD
Like generic class, we can create generic method that can accept any type of argument.

Let’s see a simple example of java generic method to print array elements. We are using here E to
denote the element.

public class TestGenerics4{

public static < E > void printArray(E[] elements) {
for (E element :
elements){ System.out.println
(element);

}
System.out.println();

}
public static voidmain(String args[])
{ Integer[] intArray = { 10, 20, 30, 40,
50 }; Character[] charArray = { 'J', 'A', 'V',
'A' };

System.out.println("Printing Integer Array");
printArray(intArray);

System.out.println("Printing Character Array");
printArray(charArray);

}
}

Output:

Printing Integer Array
10

P a g e | 19 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

20

P a g e | 20 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

30
40
50
Printing Character Array
J
A
V
A

6. WRITE IN DETAIL ABOUT INNER CLASSES IN JAVA

Java Inner Class
Java inner class or nested class is a class i.e. declared inside the class or interface.

We use inner classes to logically group classes and interfaces in one place so that it can be
more readable and maintainable.

Additionally, it can access all the members of outer class including private data members and
methods.

Syntax of Inner class
class Java_Outer_class{
//code
class Java_Inner_class{
//code
}
}

Advantage of java inner classes
There are basically three advantages of inner classes in java. They are as follows:

1) Nested classes represent a special type of relationship that is it can access all the
members (datamembers and methods) of outer class including private.

2) Nested classes are used to develop more readable andmaintainable code because it
logically group classes and interfaces in one place only.

3) Code Optimization: It requires less code to write.

TYPES OF NESTED CLASSES
There are two types of nested classes non-static and static nested classes.The non-static nested

classes are also known as inner classes.

1. Non-static nested class(inner class)
o a)Member inner class

P a g e | 21 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

o b)Annomynous inner class
o c)Local inner class

2. Static nested class

Type Description

Member Inner
Class

A class created within class and outside method.

Anonymous Inner
Class

A class created for implementing interface or extending class. Its
name is decided by the java compiler.

Local Inner Class A class created within method.

Static Nested Class A static class created within class.

Nested Interface An interface created within class or interface.

JAVA MEMBER INNER CLASS
A non-static class that is created inside a class but outside a method is called member inner class.

Syntax:

class Outer{
//code
class Inner{
//code
}
}

Java Member inner class example
In this example, we are creating msg() method in member inner class that is accessing the

private data member of outer class.

class TestMemberOuter1{
private int data=30;
class Inner{
voidmsg(){System.out.println("data is "+data);}
}
public static voidmain(String
args[]){ TestMemberOuter1 obj=new
TestMemberOuter1(); TestMemberOuter1.Inner
in=obj.new Inner(); in.msg();
}

P a g e | 22 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

}
Output:

data is 30

Java Anonymous inner class
A class that have no name is known as anonymous inner class in java. It should be used if you

have to override method of class or interface. Java Anonymous inner class can be created by two
ways:

1. Class (may be abstract or concrete).
2. Interface

Java anonymous inner class example using class
abstract class Person{
abstract void eat();
}
class TestAnonymousInner{
public static voidmain(String
args[]){ Person p=new Person(){
void eat(){System.out.println("nice fruits");}
};
p.eat();
}
}

Output:

nice fruits

Java anonymous inner class example using interface

interface Eatable{
void eat();
}
class TestAnnonymousInner1{
public static voidmain(String
args[]){ Eatable e=new Eatable(){
public void eat(){System.out.println("nice fruits");}
};
e.eat();
}
}

P a g e | 23 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Output:

nice fruits

JAVA LOCAL INNER CLASS
A class i.e. created inside a method is called local inner class in java. If you want to invoke the

methods of local inner class, you must instantiate this class inside the method.

Java local inner class example

public class localInner1{
private int data=30;//instance variable
void display(){
class Local{
voidmsg(){System.out.println(data);}
}
Local l=new Local();
l.msg();
}
public static voidmain(String
args[]){ localInner1 obj=new
localInner1(); obj.display();
}
}

Output:

30

9. EXPLAIN IN DETAIL ABOUT JDBC API IN JAVA

JDBC is a standard interface for connecting to relational databases from Java.
Java API for connecting programs written in Java to the data in relational databases
The JDBC classes and interfaces are in the java.sql package.
JDBC 1.22 is part of JDK 1.1; JDBC 2.0 is part of Java 2

The standard defined by Sun Microsystems, allowing individual providers to implement and
extend the standard with their own JDBC drivers.

TASKS OF JDBC:

1) Establishes a connection with a database
2) Send SQL statements
3) Process the results

The JDBC API supports both two-tier and three-tier models for database access.

P a g e | 24 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

> Two-tier model -- a Java applet or application interacts directly with the database.
> Three-tier model -- introduces a middle-level server for execution of business logic:

> the middle tier to maintain control over data access.
> the user can employ an easy-to-use higher-level API which is translated by

the middle tier into the appropriate low-level calls.

JDBC ARCHITECTURE:

Class-I:
JDBC:ODBC (mainly for Desktop Applications)

> Use bridging technology
> Requires installation/configuration on client machines
> Not good for Web

Class-II:
Native API Drivers (Vendor Specific drivers)

> Requires installation/configuration on client machines
> Used to leverage existing CLI libraries
> Usually not thread-safe
> Mostly obsolete now
> e.g. Intersolv Oracle Driver, WebLogic drivers

Class-III:
Network API

> Calls middleware server, usually on database host
> Very flexible & allows access to multiple database using one driver

P a g e | 25 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Class-IV:

> Only need to download one driver
> But it’s another server application to install and maintain
> e.g. Symantec DBAnywhere

Network Protocol Driver (used for Network based Applications)
> Pure Java Drivers
> Use Java networking libraries to talk directly to database engines
> need to download a new driver for each database engine
> e.g. Oracle, MySQL

OVERVIEW OF QUERYING A DATABASEWITH JDBC

1) Connect
2) Query
3) Process Results
4) Close

1) CONNECT

i) Register the driver
ii) Connect to the Database

i) Register the driver

A JDBC Driver is an interpreter that translates JDBC method calls to vendor-
specific database commands
Implements interfaces in java.sql
Can also provide a vendor’s extensions to the JDBC standard

DRIVER DATABASE

Two Ways:

1)Using Class.forName()

Class.forName("oracle.jdbc.driver.OracleDriver");

2)Using DriverManager.registerDriver()

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

ii) Connect to the Database
Connection conn = DriverManager.getConnection(URL, userid, password);
URL:

JDBC uses a URL to identify the database connection.

P a g e | 26 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

2) QUERY

Ex:

Jdbc:<subprotocol>:<subname>
Where
Subprotocol – Database Server name
Subname – Database Identifier

Connection conn = DriverManager.getConnection
("jdbc:oracle:thin:@myhost:1521:orcl",
"scott", "tiger");

i) Create a Statement
ii) Query The Database

i) Create a Statement
The Statement Object

A Statement object sends your SQL statement to the database.
You need an active connection to create a JDBC statement.

Statement has three methods to execute a SQL statement:
executeQuery() for QUERY statements
executeUpdate() for INSERT, UPDATE, DELETE, or
DDL statements
execute() for either type of statement

a. Create an empty statement object.

Statement stmt = conn.createStatement();

b. Execute the statement.
ResultSet rset = stmt.executeQuery(statement);
int count = stmt.executeUpdate(statement);
boolean isquery = stmt.execute(statement);

The PreparedStatement Object
A PreparedStatement object holds precompiled SQL
statements.
Use this object for statements you want to execute more than
once.
A prepared statement can contain variables that you supply
each time you execute the statement.

a. Create an empty preparedstatement object.

Create the prepared statement, identifying variables with a
question mark (?).

PreparedStatement pstmt =conn.prepareStatement("update
ACME_RENTALS set STATUS = ? where RENTAL_ID
= ?");

b. Executing a Prepared Statement

mailto:jdbc:oracle:thin:@myhost:1521:orcl

P a g e | 27 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

1. Supply values for the variables

pstmt.setXXX(index, value);

2. Execute the statement

pstmt.executeQuery();
pstmt.executeUpdate();

Eg:

PreparedStatement pstmt =
conn.prepareStatement("update ACME_RENTALS
set STATUS = ? where RENTAL_ID = ?");
pstmt.setString(1, "OUT");
pstmt.setInt(2, rentalid);
pstmt.executeUpdate();

3. PROCESS RESULTS
i) Step through the results
ii) Assign Values to the results

The ResultSet Object

JDBC returns the results of a query in a ResultSet object.
A ResultSet maintains a cursor pointing to its current row of data.
Use next() to step through the result set row by row.
getString(), getInt(), and so on assign each value to a Java variable.

i) Step through the result set:
while (rset.next())
{
…
}

ii) Use getXXX() to get each column value

a) Using Column Name
String val = rset.getString(colname);

b) Using Column Index
String val = rset.getString(colIndex);

EG:
while (rset.next())
{

String title = rset.getString("TITLE");
String year = rset.getString("YEAR");

… // Process or display the data
}

P a g e | 28 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

4. CLOSE
i) Close the ResultSet object.

rset.close();
ii) Close the Statement object.

stmt.close();
iii) Close the connection (not necessary for server-side driver).

conn.close();

EXAMPLE PROGRAM:
public void AddStudent()
{

try
{

Class.forName("com.mysql.jdbc.Driver"); Connection con =
DriverManager.getConnection("jdbc:mysql://localhost:3306/sample","root","admin");
int rollno = Integer.parseInt(txtRollno.getText());
String name = txtName.getText();
String department = txtDept.getText();
int mark1 = Integer.parseInt(txtMark1.getText());
int mark2 = Integer.parseInt(txtMark2.getText());
int mark3 = Integer.parseInt(txtMark3.getText());
int total = mark1 + mark2 + mark3;
String result;
if(mark1 >=50 &&mark2 >=50 &&mark3 >=50)
{

}
else
{

}

result = "Pass";

result = "Fail";

PreparedStatement ps=con.prepareStatement("INSERT INTO student
(rollno,name,department,mark1,mark2,mark3,total,result) VALUES (?,?,?,?,?,?,?,?)");
ps.setInt(1,rollno);
ps.setString(2,name);
ps.setString(3,department);
ps.setInt(4,mark1);
ps.setInt(5,mark2);
ps.setInt(6,mark3);
ps.setInt(7,total);
ps.setString(8,result);

ps.executeUpdate();

ps.close();
con.close();

}
catch (Exception ex)

P a g e | 29 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

{
JOptionPane.showMessageDialog(this, ex);

}
}

10.EXPLAIN IN DETAIL ABOUT JAVA SECURITY

The Java platform provides a number of features designed to improve the security of Java
applications. This includes enforcing runtime constraints through the use of the Java
Virtual Machine (JVM), a security manager that sandboxes un trusted code from the rest of
the operating system, and a suite of security APIs that Java developers can utilise.

Despite this, criticism has been directed at the programming language, and Oracle, due to
an increase in malicious programs that revealed security vulnerabilities in the JVM, which
were subsequently not properly addressed by Oracle in a timely manner.
Java's security model is focused on protecting users from hostile programs downloaded
from un trusted sources across a network. To accomplish this goal, Java provides a
customizable "sandbox" in which Java programs run.

A Java program must play only inside its sandbox. It can do anything within the
boundaries of its sandbox, but it can't take any action outside those boundaries. The
sandbox for un trusted Java applets, for example, prohibits many activities, including:

Reading or writing to the local disk
Making a network connection to any host, except the host from which the applet
came
Creating a new process
Loading a new dynamic library and directly calling a native method

SAND BOX SECURITY MODEL

The sandbox security model is an intrinsic part of Java's architecture. The sandbox, a shell
that surrounds a running Java program, protects the host system from malicious code.
This security model helps give users confidence in downloading un trusted code across
network.

The sandbox is designed into the Java virtual machine and Java API. It touches all corners
of the architecture, but can be divided into four main components:

Safety features (covered in this article)
Class loaders (this will be covered next month)
Class verification (this will covered in the October issue)
The security manager (this will be covered in the November issue)

Safety features built into the JVM

Several built-in security mechanisms are operating as Java virtual machine bytecodes. You
have likely heard these mechanisms listed as features of the Java programming language that
make Java programs robust. They are, not surprisingly, also features of the Java virtual
machine. The mechanisms are:

P a g e | 30 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Type-safe reference casting
Structured memory access (no pointer arithmetic)
Automatic garbage collection (can't explicitly free allocated memory)
Array bounds checking
Checking references for null

Whenever you use an object reference, the JVM watches over you. If you attempt to cast a
reference to a different type, the JVM makes sure the cast is valid. If you access an array, the
JVM ensures the element you are requesting actually exists within the bounds of the array. If
you ever try and use a null reference, the JVM throws an exception.

The following sections explain the basic concepts necessary to understand how this model works:
Permissions
Protection Domains and Security Policies
Security Managers and Access Controllers

PERMISSIONS

A permission is a set of permissible operations on some set of resources. Every Java class
loaded into a running environment is assigned a set of permissions according to some criteria,
each permission granting a specific access to a particular resource. For example, a permission
can constrain the access to a database or disallow the editing of a file.

In code-based security, permissions are granted based on code characteristics, such as where
the code is coming from and whether it is digitally signed (and by whom). A codebase is a URL
indicating code location, such as the following:

file: (any file on the local file system)
http://*.oracle.com (any file on any host at oracle.com)
file:${j2ee.home}/lib/oc4j-internal.jar

A codesource expands this concept to optionally include an array of certificates (stored
in a Java keystore) to verify signed code originating from the location. A codesource is
represented by a java.security.CodeSource instance, which is constructed by specifying
a java.net.URL instance and an array of java.security.cert.Certificate instances.

The abstract Java class java.security.Permission represents a permission; concrete
types, all derived from this class, include the following:

java.security.AllPermission
java.lang.RuntimePermission (includes only a resource target)
java.io.FilePermission (includes a resource and actions)

PROTECTION DOMAINS AND SECURITY POLICIES
A protection domain associates permissions with codesources. The policy currently in

effect is what determines protection domains. A protection domain contains one or more
codesources. It may also contain a Principal array describing who is executing the code, a
classloader reference, and a permission set (java.security.PermissionCollection instance)
representing a collection of Permission objects.

http://*.oracle.com

P a g e | 31 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

A security policy defines the protection domains of an environment, that is, it identifies the
permissions assigned to classes from specified sources. The permissions assigned to a
class by a protection domain are bound statically, when the class is loaded, or dynamically,
when the executing code attempts a security-sensitive operation. Protections domains are
specified in one or several policy files.

The following sample entry in a policy file illustrates how code located in the directory
/home/sysadmin and signed by jJoe is granted read access to the file /tmp/abc:
grant signedby jJoe codeBase "file:/home/sysadmin/" {
permission java.io.FilePermission "/tmp/abc", "read";
};

The signedBy clause in the preceding example is optional. If omitted, the permission is
granted to all code in the specified location. Figure 1-1illustrates the relationship between
classes, protection domains, and permission sets.

Figure 1-1 Associating classes with permissions through protection domains

SECURITY MANAGERS ANDACCESS CONTROLLERS

A security manager is the component of the Java security model that enforces the permissions
granted to applications by security policies. For any security-sensitive operation that an application
attempts, the security manager checks the application permissions and determines whether the
operation should be allowed. The Java class java.lang.SecurityManager represents a security
manager and includes several check methods to determine whether an operation should be allowed
or a given permission is in effect.

An access controller is the object used by the security manager (or directly by an application, if
the security manager is not enabled) to control operations and decisions. More specifically, an access
controller:

Decides whether access to a system resource should be allowed or denied, based on the
current security policy in effect.

Marks code as being privileged, thus affecting subsequent access determinations.
Allows saving the current calling context so access-control decisions that consider the saved
context can be made from other, different contexts

https://docs.oracle.com/cd/E12839_01/core.1111/e10043/introjps.htm

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 1 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

UNIT 5
2 MARKS

1. DEFINE JAVA BEAN
A “JAVA Bean” is a reusable software component that can be manipulated visually in a builder
tool

2. STATE ANY TWO FEATURES OF JAVA BEANS
Support for “introspection” so that a builder tool can analyze how a bean works.
Support for “customization” to allow the customization of the appearance and behavior of a
bean

3. WHAT ARE THE ADVANTAGES OF JAVA BEANS
Beans is platform independent, that means it can be run anywhere.
It can be run in any locale and is distributed in nature.
Methods, properties and events of Beans can be controlled

4. STATE THE RULES TO DEFINE JAVA BEANS
A JavaBean should:

be public
implement the Serializable interface
have a no-arg constructor
be derived from javax.swing.JComponent or java.awt.Component if it is visual

5. WHAT ARE THE PHASES IN JAVA BEAN CREATION
The Java Bean components can exist in one of the following three phases of development:

• Construction phase
• Build phase
• Execution phase

6. WHAT ARE THE ELEMENTS OF JAVA BEAN
Properties
Methods
Events

7. STATE SOME OF THE JAVA BEANS COMPONENT SPECIFICATION
o Customization
o Persistence
o Communication
o Introspection

8. WHAT IS APPLICATION BUILDER TOOL
Application Buider Tool is used to configure and connect beans, and to create applications.

9. STATE ANY TWO PROPERTIES OF APPLICATION BUILDER TOOL
Palette is used to specify all the available beans. New beans can be added to palette
anytime.
Worksheet is used to display beans in a GUI (Graphical User Interface). Beans can be
dragged and dropped from palette to worksheet

10.NAME SOME APPLICATION BUILDER TOOLS
Java Workshop2.0
Jbuilder
Beans Development Kit

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 2 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

11.DEFINE BEAN DEVELOPMENT KIT
Provides a GUI to create, configure, and test JavaBeans.
Enables you to modify JavaBean properties and link multiple JavaBeans in an application
using BDK

12.WHAT ARE THE USES OF BDK?
Provides a set of sample JavaBeans.
Enables you to associate pre-defined events with sample JavaBeans

13.DEFINE JAR FILE
JAR file allows you to efficiently deploy a set of classes and their associated resources. JAR file
makes it much easier to deliver, install, and download. It is compressed

14.DEFINE INTROSPECTION
Introspection can be defined as the technique of obtaining information about bean properties,
events and methods
Introspection is the automatic process by which a builder tool finds out which properties,
methods, and events a bean supports

15.WHAT ARE THEWAYS TO IMPLEMENT INTROSPECTION
There are two ways

With the first method, simple naming conventions are used. These allow the
introspection mechanisms to infer information about a Bean.

In the second way, an additional class is provided that explicitly supplies this information

16.NAME THE INTERFACES IN JAVA BEANS PACKAGE
BeanInfo
AppletInitializer
Customizer
Visibility

17.DEFINE BEANINFO INTERFACE

Expose a Bean's features explicitly in a separate, associated class that implements
the BeanInfo interface.

Provide a more descriptive display name, or additional information about a Bean feature

18.DEFINE PERSISTANCE AND STATE ITS TYPES
Persistence means an ability to save properties and events of our beans to non-volatile
storage and retrieve later. It has the ability to save a bean to storage and retrieve it at a later
time Configuration settings are saved It is implemented by Java serialization

Java Beans supports two forms of persistence:

Automatic persistence
External persistence

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 3 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

19.DEFINE CUSTOMIZATION IN JAVA BEANS
Customization is the ability of JavaBean to allow its properties to be changed in build and
execution phase.

20.WHAT ARE THE SERVICES OF JAVA BEAN COMPONENT
Builder support
Layout
Interface publishing
Event handling
Persistence

21.DEFINE NETWORK
A network is a group of two or more computer systems linked together

22.STATE THE TYPES OF NETWORK
There are three types of network

LAN(Local Area Network)
MAN(Metropolitan Area Network)
WAN(Wide Area Network)

23.DEFINE PORT NUMBER
A port number is a way to identify a specific process to which an Internet or other network
message is to be forwarded when it arrives at a server. The port numbers are divided into
three ranges: the well-known ports, the registered ports, and the dynamic or private ports

24.DEFINE INETADDRESS CLASS
The java InetAddress or java.net.InetAddress class represents an IP address. The
Java InetAddress class provides methods to get the IP of any host name

25.NAME THEMETHODS IN INETADDRES
getByName(String host)- Determines the IP address of a host, given the host's name.
getHostAddress() - Returns the IP address string in textual presentation.
getHostName() - Gets the host name for this IP address.
getLocalHost()- Returns the local host

26.DEFINE SOCKET
A network socket is an endpoint of an inter-process communication across a computer
network. Today, most communication between computers is based on the Internet Protocol;
therefore most network sockets are Internet sockets

27.HOW JAVA IMPLEMENTS NETWORK PROGRAMMING?
o The term network programming refers to writing programs that execute across multiple

devices (computers), in which the devices are all connected to each other using a network.
o The java.net package of the J2SE APIs contains a collection of classes and interfaces that

provide the low-level communication details, allowing you to write programs that focus on
solving the problem at hand

28.DEFINE SERVER SOCKET AND SOMEMETHODS IN SERVER SOCKET
The java.net.ServerSocket class is used by server applications to obtain a port and listen
for client requests

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 4 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Here are some of the commonmethods of the ServerSocket class:

1. getLocalPort()- Returns the port that the server socket is listening on. This method is useful
if you passed in 0 as the port number in a constructor and let the server find a port for you.

2. accept()- Waits for an incoming client. This method blocks until either a client connects to the
server on the specified port or the socket times out, assuming that the time-out value has
been set using the setSoTimeout() method. Otherwise, this method blocks indefinitely

3. setSoTimeout(int timeout)- Sets the time-out value for how long the server socket waits for
a client during the accept().

29.DEFINE RMI
The Remote Method Invocation (RMI) is an API that provides a mechanism to create distributed
application in java. The RMI allows an object to invoke methods on an object running in another JVM

30.WHAT ARE THE STEPS TOWRITE RMI PROGRAM

There are 5 steps to follow

Server Side
1. Create the remote interface
2. Provide the implementation of the remote interface that extends UnicastRemoteObject
3. Create object for implementation class and register the object with the rmi registry

Client side
4. Create class in client side and get the remote reference by lookup the registry in the

remote system
5. Using the remote reference, invoke the remote method

31.WHAT IS AN INTERNET ADDRESS?
Every computer connected to a network has a unique IP address. An IP address is a 32-bit

number which has four numbers separated by periods. It is possible to connect to the Internet
either directly or by using Internet Service Provider. By connecting directly to the Internet, the
computer is assigned with a permanent IP address. In case connection is made using ISP, it
assigns a temporary IP address for each session. A simple IP address is given below

80.0.0.78

32.WHAT ARE DATAGRAM?
Datagram is a type of packet that represents an entire communication. There is no

necessity to have connection or disconnection stages when communicating using datagram. This
is less reliable than communication using TCP/IP.

33.DEFINE PROXY SERVER.
A proxy server speaks the client side of a protocol to another server. This is often required

when clients have certain restrictions on which servers they can connect to. Thus, a client would
connect to a proxy server, which did not have such restrictions, and the proxy server would in

SRI VENKATESHWARAA COLLEGE OF ENGINEERING & TECHNOLOGY

P a g e | 5 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

turn communicate for the client. A proxy server has the additional ability to filter certain requests
or cache the results of those requests for future use.

34.WHAT IS THE USE OF URL CLASS IN JAVA? NAME ANY TWOMETHODS IN IT.
URL stands for uniform Resource Locator and it points to resource files on the Internet.

The URL has four components – the protocol, IP address or the hostname, port
number and actual file path

Methods
getPort() get the port number
getHost() get the host name specified in URL
getFile() get the file name

35.WHAT IS SKELETON AND STUB? WHAT IS THE PURPOSE OF THOSE?
Stub is a client side representation of the server, which takes care of communicating

with the remote server. Skeleton is the server side representation. But that is no more in
use…it is deprecated long before in JDK

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 1 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

UNIT - V
11 MARKS

1. WRITE SHORT NOTES ON JAVA BEANS

Software components are self-contained software units developed according to the
motto “Developed them once, run and reused them everywhere”. Or in other words,
reusability is the main concern behind the component model.

A software component is a reusable object that can be plugged into any target software
application. You can develop software components using various programming languages,
such as C, C++, Java, and Visual Basic

JAVA BEANS- DEFINITION
A “JAVA Bean” is a reusable software component that can be manipulated visually in a

builder tool

JAVA BEANS – INTRODUCTION
The term software component model describe how to create and use reusable
software components to build an application
Builder tool is nothing but an application development tool which lets you both to
create new beans or use existing beans to create an application.
To enrich the software systems by adopting component technology JAVA came up with
the concept called Java Beans.
Java provides the facility of creating some user defined components by means of Bean
programming.
We create simple components using java beans.
We can directly embed these beans into the software

ADVANTAGES OF JAVA BEANS
1) Beans is platform independent, that means it can be run anywhere.
2) It can be run in any locale and is distributed in nature.
3) Methods, properties and events of Beans can be controlled.
4) It is easy to configure Java beans.
5) A bean can both receive and create events.
6) Configuration settings of a bean can be stored persistently and can be retrieved any
time.

What can we do/create by using JavaBean:
There is no restriction on the capability of a Bean.

It may perform a simple function, such as checking the spelling of a document, or a
complex function, such as forecasting the performance of a stock portfolio. A Bean
may be visible to an end user. One example of this is a button on a graphical user
interface.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 2 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Software to generate a pie chart from a set of data points is an example of a Bean
that can execute locally.

Bean that provides real-time price information from a stock or commodities
exchange.

Application Builder Tool:
It is used to configure and connect beans, and to create applications.

Properties of Application Builder Tool:
1) Palette is used to specify all the available beans. New beans can be added to palette
anytime.
2) Worksheet is used to display beans in a GUI (Graphical User Interface). Beans can be
dragged and dropped from palette to worksheet.
3) Editors are used for configuring a bean.
4) Commands can be used to check status of a bean.
5) Beans can be connected to one another.
6) Beans after configuration and connection can be stored persistently and can be retrieved
any time.

Some Examples of Application Builder tools:

TOOL VENDOR DESCRIPTION

Complete IDE that support
Java Workshop2.0 Sun MicroSystems., Inc., applet,

application and bean
development

Bean Oriented visual
Visual age for java IBM development

toolset.

Jbuilder Borland Inc. Suit of bean oriented java
development tool

Supports only Beans
Beans Development Kit SunMicroSystems., Inc., development

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 3 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

JAVA BEANS BASIC RULES
A JavaBean should:

be public
implement the Serializable interface
have a no-arg constructor
be derived from javax.swing.JComponent or java.awt.Component if it is visual

The classes and interfaces defined in the java.beans package enable you to create JavaBeans.

The Java Bean components can exist in one of the following three phases of development:

• Construction phase
• Build phase
• Execution phase

ELEMENTS OF A JAVABEAN:
Properties

Similar to instance variables.
A bean property is a named attribute of a bean that can affect its behavior or
appearance. Examples of bean properties include color, label, font, font size, and
display size.

Methods
Same as normal Java methods.
Every property should have accessor (get) and mutator (set) method.
All Public methods can be identified by the introspection mechanism.
There is no specific naming standard for these methods.

Events
Similar to Swing/AWT event handling.

THE JAVABEAN COMPONENT SPECIFICATION:
Customization: Is the ability of JavaBean to allow its properties to be changed in build and

execution phase.

Persistence: Is the ability of JavaBean to save its state to disk or storage device and restore
the saved state when the JavaBean is reloaded.

Communication: Is the ability of JavaBean to notify change in its properties to other
JavaBeans or the container.

Introspection:- Is the ability of a JavaBean to allow an external application to query the
properties, methods, and events supported by it.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 4 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

SERVICES OF JAVABEAN COMPONENTS
Builder support: Enables you to create and group multiple JavaBeans in an application.
Layout- Allows multiple JavaBeans to be arranged in a development environment.
Interface publishing: Enables multiple JavaBeans in an application to communicate with

each other.
Event handling: Refers to firing and handling of events associated with a JavaBean.
Persistence: Enables you to save the last state of JavaBean

FEATURES OF A JAVABEAN
Support for “introspection” so that a builder tool can analyze how a bean works.
Support for “customization” to allow the customization of the appearance and behavior of
a bean.
Support for “events” as a simple communication metaphor than can be used to
connect up beans.
Support for “properties”, both for customization and for programmatic use.
Support for “persistence”, so that a bean can save and restore its customized state.

BeanInfo

Methods

Properties

JavaBean Events
Component

Customizer JAR

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 5 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

2. WRITE IN DETAIL ABOUT BEAN DEVELOPMER KIT

Application Builder Tool:
It is used to configure and connect beans, and to create applications.

Properties of Application Builder Tool:
1) Palette is used to specify all the available beans. New beans can be added to palette
anytime.
2) Worksheet is used to display beans in a GUI (Graphical User Interface). Beans can be
dragged and dropped from palette to worksheet.
3) Editors are used for configuring a bean.
4) Commands can be used to check status of a bean.
5) Beans can be connected to one another.
6) Beans after configuration and connection can be stored persistently and can be retrieved
any time.

Some Examples of Application Builder tools:

TOOL VENDOR DESCRIPTION

Java Workshop2.0 Sun MicroSystems., Inc., Complete IDE that support applet,
application and bean development

Visual age for java IBM Bean Oriented visual development
toolset.

Jbuilder Borland Inc. Suit of bean oriented java
development tool

Beans Development
Kit SunMicroSystems., Inc., Supports only Beans development

BEANS DEVELOPMENT KIT
Is a development environment to create, configure, and test JavaBeans.

The features of BDK environment are:
• Provides a GUI to create, configure, and test JavaBeans.
• Enables you to modify JavaBean properties and link multiple JavaBeans in an

application using BDK.
• Provides a set of sample JavaBeans.
• Enables you to associate pre-defined events with sample JavaBeans.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 6 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Identifying BDK Components
• Execute the run.bat file of BDK to start the BDK development environment.

• The components of BDK development environment are:
• ToolBox
• BeanBox
• Properties
• Method Tracer

TOOLBOXWINDOW:
Lists the sample JavaBeans of BDK.

The following figure shows the ToolBox window:

BEANBOXWINDOW:
Is a workspace for creating the layout of JavaBean application.

The following figure shows the BeanBox window:

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 7 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

PROPERTIES WINDOW:
Displays all the exposed properties of a JavaBean. You can modify JavaBean properties in

the properties window.

The following figure shows the Properties window:

METHOD TRACERWINDOW:
Displays the debugging messages and method calls for a JavaBean application.

The following figure shows the Method Tracer window:

STEPS TO DEVELOP A USER-DEFINED JAVABEAN:

1. Create a directory for the new bean
2. Create the java bean source file(s)
3. Compile the source file(s)
4. Create a manifest file
5. Generate a JAR file
6. Start BDK
7. Load Jar file
8. Test.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 8 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

1. Create a directory for the new bean

Create a directory/folder like C:\Beans

2. Create bean source file - MyBean.java

import java.awt.*;
public class MyBean extends Canvas
{

public MyBean()
{

setSize(70,50);
setBackground(Color.green);

}
}

3. Compile the source file(s)

C:\Beans >Javac MyBean.java

4. Create amanifest file

Manifest File

· The manifest file for a JavaBean application contains a list of all the class files that make
up a JavaBean.

· The entry in the manifest file enables the target application to recognize the JavaBean classes
for an application.

· For example, the entry for the MyBean JavaBean in the manifest file is as shown:

Manifest-Version: 1.0
Name: MyBean.class
Java-Bean: true

Note:write that 2 lines code in the notepad and save that file as MyBean.mf

The rules to create a manifest file are:

· Press the Enter key after typing each line in the manifest file.
· Leave a space after the colon.
· Type a hyphen between Java and Bean.
· No blank line between the Name and the Java-Bean entry.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 9 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

5. Generate a JAR file

Syntax for creating jar file using manifest file
C:\Beans >jar cfm MyBean.jar MyBean.mf MyBean.class

JAR file:
JAR file allows you to efficiently deploy a set of classes and their associated resources. JAR

file makes it much easier to deliver, install, and download. It is compressed.

Java Archive File
• The files of a JavaBean application are compressed and grouped as JAR files to reduce

the size and the download time of the files.
• The syntax to create a JAR file from the command prompt is:

jar <options> <file_names>
• The file_names is a list of files for a JavaBean application that are stored in the JAR file.

The various options that you can specify while creating a JAR file are:

A: Indicates the new JAR file is created.
B: Indicates that the first file in the file_names list is the name of the JAR file.
C: Indicates that the second file in the file_names list is the name of the manifest file.
D: files and resources in the JAR file are to be displayed in a tabular format.
E: Indicates that the JAR file should generate a verbose output.
F: Indicates that the files and resources of a JAR file are to be extracted. o: Indicates that the
JAR file should not be compressed.
G: Indicates that the manifest file is not created.

6. Start BDK

Go to-> C:\bdk1_1\beans\beanbox

Click on run.bat file. When we click on run.bat file the BDK software automatically started.

7. Load Jar file
Go to

Beanbox->File->Load jar. Here we have to select our created jar file when we click on
ok, our bean(userdefined) MyBean appear in the ToolBox.

8. Test our created user defined bean
Select the MyBean from the ToolBox when we select that bean one + simple appear then

drag that Bean in to the Beanbox.

If you want to apply events for that bean, now we apply the events for that Bean.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 10 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

3. WRITE IN DETAIL ABOUT INTROSPECTION, PROPERTIES AND PERSISTENCE IN JAVA
BEANS

Introspection:
Introspection can be defined as the technique of obtaining information about bean properties,
events and methods.
Basically introspection means analysis of bean capabilities.
Introspection is the automatic process by which a builder tool finds out which properties,
methods, and events a bean supports.
Introspection describes how methods, properties, and events are discovered in the beans that
you write.
This process controls the publishing and discovery of bean operations and properties
Without introspection, the JavaBeans technology could not operate.

4.DK Introspection:
Allows automatic analysis of a java beans component
Enables a builder tool to analyze how a bean works.
(Or)
A mechanism that allows classes to publish the operations and properties they support and a
mechanism to support the discovery of such mechanism.
Introspection can be defined as the technique of obtaining information about bean properties,
events and methods.
Basically introspection means analysis of bean capabilities

WAYS TO PERFORM INTROSPECTION
There are two ways

1) With the first method, simple naming conventions are used. These allow the
introspection mechanisms to infer information about a Bean.

2) In the second way, an additional class is provided that explicitly supplies this
information.

Design patterns for JavaBean Properties:-

A property is a subset of a Bean’s state.

A bean property is a named attribute of a bean that can affect its behavior or appearance.
Examples of bean properties include color, label, font, font size, and display size.

Properties are the private data members of the JavaBean classes.

Properties are used to accept input from an end user in order to customize a JavaBean
.

Properties can retrieve and specify the values of various attributes, which determine the behavior of
a JavaBean.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 11 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Types of JavaBeans Properties
· Simple properties
· Boolean properties
· Indexed properties

Simple Properties:

Simple properties refer to the private variables of a JavaBean that can have only a single value.
Simple properties are retrieved and specified using the get and set methods respectively.

A read/write property has both of these methods to access its values. The get method used to
read the value of the property .The set method that sets the value of the property.

The setXXX() and getXXX() methods are the heart of the java beans properties mechanism. This is
also called getters and setters. These accessor methods are used to set the property .

The syntax of get method is:
public return_type get<PropertyName>()
public T getN();
public void setN(T arg)

N is the name of the property and T is its type

Ex:

private int id;
public void setId(int id)
{

this.id = id;
}

public String getName()
{

return name;
}

Boolean Properties:

A Boolean property is a property which is used to represent the values True or False.

Have either of the two values, TRUE or FALSE.

It can identified by the following methods:

Syntax:
Let N be the name of the property and T be the type of the value then

public boolean isN();
public void setN(Boolean parameter);
public boolean getN();
public boolean is<PropertyName>()

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 12 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

public boolean get<PropertyName>()

First or second pattern can be used to retrieve the value of a Boolean.
• public void set<PropertyName>(boolean value)

For getting the values isN() and getN() methods are used and for setting the Boolean values setN()
method is used.

Ex:
public Boolean dotted=false;

public boolean isDotted()
{

return dotted;
}

public void setDotted(boolean dotted)
{

this.dotted=dotted;
}

Indexed Properties:

Indexed Properties are consists of multiple values. If a simple property can hold an array of value they
are no longer called simple but instead indexed properties. The method’s signature has to be adapted
accordingly.

An indexed property may expose set/get methods to read/write one element in the array (so-called
’index getter/setter’) and/or so-called ’array getter/setter’ which read/write the entire array.

Indexed Properties enable you to set or retrieve the values from an array of property values.

Indexed Properties are retrieved using the following get methods:

Syntax:
public int[] get<PropertyName>()

Ex:

private double data[];
public double getData(int index)
{

return data[index];
}
public void setData(int index, double value)
{

data[index] = value;
}
public double[] getData()
{

return data;
}
public void setData(double[] values)
{

data = new double[values.length];
System.arraycopy(values, 0, data, 0, values.length);

}

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 13 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

The properties window of BDK does not handle indexed properties. Hence the output cannot be displayed
here.

Bound Properties:

values.

A bean that has a bound property generates an event when the property is changed.
Bound Properties are the properties of a JavaBean that inform its listeners about changes in its

Bound Properties are implemented using the PropertyChangeSupport class and its methods.
Bound Properties are always registered with an external event listener.

The event is of type PropertyChangeEvent and is sent to objects that previously registered an
interest in receiving such notifications bean with bound property - Event source Bean implementing
listener -- event target

In order to provide this notification service a Java Bean needs to have the following two methods:

public void addPropertyChangeListener(PropertyChangeListener p)
{

changes.addPropertyChangeListener(p);
}

public void removePropertyChangeListener(PropertyChangeListener p)
{

changes.removePropertyChangeListener(p);
}

Constrained Properties:

It generates an event when an attempt is made to change it value Constrained Properties are
implemented using the PropertyChangeEvent class

The prototype of the get method is:

Syntax: public string get<ConstrainedPropertyName>()

Can be specified using the set method.
The prototype of the set method is:

Syntax : public string set<ConstrainedPropertyName>(String str)throws PropertyVetoException

DESIGN PATTERNS FOR EVENTS:

Handling Events in JavaBeans:

Enables Beans to communicate and connect together.

Beans generate events and these events can be sent to other objects.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 14 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Event means any activity that interrupts the current ongoing activity.

Example: mouse clicks, pressing key…

User-defined JavaBeans interact with the help of user-defined events, which are also called
custom events. You can use the Java event delegation model to handle these custom events.

The components of the event delegation model are:

• Event Source: Generates the event and informs all the event listeners that are
registered with it.

• Event Listener: Receives the notification, when an event source generates an event.
• Event Object: Represents the various types of events that can be generated by the

event sources.

Creating Custom Events:

The classes and interfaces that you need to define to create the custom JavaBean events are:
• An event class to define a custom JavaBean event.
• An event listener interface for the custom JavaBean event.
• An event handler to process the custom JavaBean event.
• A target Java application that implements the custom event.

Creating the Event Class:

The event class that defines the custom event extends the EventObject class of the java.util
package.

For example,
public class NumberEvent extends EventObject
{

public int number1,number2;
public NumberEvent(Object o,int number1,int number2)
{

super(o);
this.number1=number1;
this.number2=number2;

}
}

Beans can generate events and send them together objects.

Creating Event Listeners
• When the event source triggers an event, it sends a notification to the event listener

interface.
• The event listener interface implements the java.util.EventListener interface.

Syntax:
public void addTListener(TListener eventListener);
public void addTListener(TListener eventListener)throws TooManyListeners;
public void removeTListener(TListener eventListener);

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 15 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

The target application that uses the custom event implements the custom listener.

For example,

public interface NumberEnteredListener extends EventListener
{

public void arithmeticPerformed(NumberEvent mec);
}

Creating Event Handler

Custom event handlers should define the following methods:

• addXXListener(): Registers listeners of a JavaBean event.
• fireXX(): Notifies the listeners of the occurrence of a JavaBean event.
• removeXXListener(): Removes a listener from the list of registered listeners of a JavaBean.

PERSISTENCE

Persistence means an ability to save properties and events of our beans to non-volatile storage and
retrieve later. It has the ability to save a bean to storage and retrieve it at a later time Configuration
settings are saved It is implemented by Java serialization.

If a bean inherits directly or indirectly from Component class it is automatically Serializable.
Transient keyword can be used to designate data members of a Bean that should not be serialized.

Enables developers to customize Beans in an application builder, and then retrieve those Beans,
with customized features intact, for future use, perhaps in another environment.

Java Beans supports two forms of persistence:

Automatic persistence
External persistence

Automatic Persistence:

Automatic persistence are java’s built-in serialization mechanism to save and restore the state of
a bean.

External Persistence:

External persistence, on the other hand, gives you the option of supplying your own custom
classes to control precisely how a bean state is stored and retrieved.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 16 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

4) WRITE IN DETAIL ABOUT BEANINFO INTERFACE IN JAVA BEANS

INTERFACES IN JAVA BEANS

The JavaBeans functionality is provided by a set of classes and interfaces in
the java.beans package.

Interface Description

AppletInitializer Methods in this interface are used to initialize Beans that are also applets.

BeanInfo
This interface allows the designer to specify information about the events,
methods and properties of a Bean.

Customizer
This interface allows the designer to provide a graphical user interface
through which a bean may be configured.

DesignMode Methods in this interface determine if a bean is executing in design mode.

ExceptionListener A method in this interface is invoked when an exception has occurred.

PropertyChangeListener A method in this interface is invoked when a bound property is changed.

PropertyEditor
Objects that implement this interface allow the designer to change and
display property values.

VetoableChangeListener
A method in this interface is invoked when a Constrained property is
changed.

Visibility
Methods in this interface allow a bean to execute in environments where the
GUI is not available.

USING BEANINFO INTERFACE

you can explicitly expose a Bean's features in a separate, associated class that implements
the BeanInfo interface.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 17 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

By associating a BeanInfo class with your Bean, you can:

Expose only those features you want to expose.
Rely on BeanInfo to expose some Bean features while relying on low-level reflection to expose
others.
Associate an icon with the target Bean.
Specify a customizer class.
Segregate features into normal and expert categories.
Provide a more descriptive display name, or additional information about a Bean feature.

BEANINFO INTERFACE

A bean implementor who wishes to provide explicit information about their bean may
provide a BeanInfo class that implements this BeanInfo interface and provides explicit information
about the methods, properties, events, etc, of their bean.

A bean implementor doesn't need to provide a complete set of explicit information. You can pick and
choose which information you want to provide and the rest will be obtained by automatic analysis
using low-level reflection of the bean classes' methods and applying standard design patterns.

You get the opportunity to provide lots and lots of different information as part of the various
XyZDescriptor classes. But don't panic, you only really need to provide the minimal core information
required by the various constructors.

METHODS IN BEANINFO INTERFACE

Method Summary

BeanInfo[] getAdditionalBeanInfo()
This method allows a BeanInfo object to return an arbitrary collection

of other BeanInfo objects that provide additional information on the
current bean.

BeanDescriptor getBeanDescriptor()
Gets the beans BeanDescriptor.

int getDefaultEventIndex()
A bean may have a "default" event that is the event that will mostly

commonly be used by humans when using the bean.

int getDefaultPropertyIndex()
A bean may have a "default" property that is the property that will

mostly commonly be initially chosen for update by human's who are

http://bioportal.weizmann.ac.il/course/prog2/tutorial/javabeans/customization/index.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/beans/BeanInfo.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/beans/BeanInfo.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/beans/BeanDescriptor.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/beans/BeanInfo.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/beans/BeanInfo.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/beans/BeanInfo.html

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 18 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

customizing the bean.

EventSetDescriptor[] getEventSetDescriptors()
Gets the beans EventSetDescriptors.

Image getIcon(int iconKind)
This method returns an image object that can be used to represent

the bean in toolboxes, toolbars, etc.

MethodDescriptor[] getMethodDescriptors()
Gets the beans MethodDescriptors.

PropertyDescriptor[] getPropertyDescriptors()
Gets the beans PropertyDescriptors.

Feature Descriptors

BeanInfo classes contain descriptors that precisely describe the target Bean's features.

The BDK implements the following descriptor classes:

FeatureDescriptor is the base class for the other descriptor classes. It declares the aspects
common to all descriptor types.
BeanDescriptor describes the target Bean's class type and name, and describes the target
Bean's customizer class if it exists.
PropertyDescriptor describes the target Bean's properties.
IndexedPropertyDescriptor is a subclass of PropertyDescriptor, and describes the target
Bean's indexed properties.
EventSetDescriptor describes the events the target Bean fires.
MethodDescriptor describes the target Bean's methods.
ParameterDescriptor describes method parameters.

The BeanInfo interface declares methods that return arrays of the above descriptors.

Creating a BeanInfo Class

Here are the general steps to make a BeanInfoclass:

1. Name your BeanInfo class. You must append the string "BeanInfo" to the target class name.
If the target class name is ExplicitButton, then its associated Bean information class must be
named ExplicitButtonBeanInfo

2. Subclass SimpleBeanInfo. This is a convenience class that implements BeanInfo methods to
return null, or an equivalent no-op value.

http://docs.oracle.com/javase/1.5.0/docs/api/java/beans/EventSetDescriptor.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/beans/BeanInfo.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/awt/Image.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/beans/BeanInfo.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/beans/MethodDescriptor.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/beans/BeanInfo.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/beans/PropertyDescriptor.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/beans/BeanInfo.html

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 19 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

public class ExplicitButtonBeanInfo extends SimpleBeanInfo {

Using SimpleBeanInfo saves you from implementing all the BeanInfo methods; you only have
to override those methods you need.

3. Override the appropriate methods to return the properties, methods, or events that
you want exposed

There are two important things to note here:

o If you leave a descriptor out, that property, event or method will not be exposed. In
other words, you can selectively expose properties, events, or methods by leaving out
those you don't want exposed.

o If a feature's getter (for example, getMethodDescriptor()) method returns null, low-
level reflection is then used for that feature. This means, for example, that you can
explicitly specify properties, and let low-level reflection discover the methods. If you
don't override the SimpleBeanInfo default method, which returns null, low-level
reflection will be used for that feature.

4. Specify the target Bean class, and, if the Bean has a customizer, specify it also.

public BeanDescriptor getBeanDescriptor() {
return new BeanDescriptor(beanClass, customizerClass);

}
...
private final static Class beanClass = ExplicitButton.class;
private final static Class customizerClass = OurButtonCustomizer.class;

Keep the BeanInfo class in the same directory as its target class.

The BeanBox first searches for a target Bean's BeanInfo class in the target Bean's package path.

If no BeanInfo is found, then the Bean information package search path (maintained by
the Introspector) is searched.

The default Bean information search path is sun.beans.infos.

If no BeanInfo class is found, then low-level reflection is used to discover a Bean's features.

Using BeanInfo to Control What Features are Exposed

By using a BeanInfo class, you can expose subsets of a particular Bean feature. For example,
by not returning a method descriptor for a particular method, that method will not be exposed in a
builder tool.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 20 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

When you use a BeanInfo class:

Base class features will not be exposed. You can retrieve base class features by using
the BeanInfo.getAdditionalBeanInfo method.
Properties, events, or methods that have no descriptor will not be exposed. For a particular
feature, only those items returned in the descriptor array will be exposed. For example, if you
return descriptors for all your Bean methods except foo, then foo will not be exposed.
Low-level reflection will be used for features with getter methods returning null. For example
if your BeanInfo class contains this method implementation:

public MethodDescriptor[] getMethodDescriptors()
{
return null;

}

Then low-level reflection will be used to discover your Bean's public methods.

Locating BeanInfo Classes

Before examining a Bean, the Introspector will attempt to find a BeanInfo class associated
with the Bean.

By default, the Introspector takes the target Bean's fully qualified package name, and appends
"BeanInfo" to form a new class name.

For example, if the target Bean issunw.demo.buttons.ExplicitButton, then the Introspector will
attempt to locate sunw.demo.buttons.ExplicitButtonBeanInfo.

If that fails, then each package in the BeanInfo search path is searched.

The BeanInfo search path is maintained byIntrospector.setBeanInfoSearchPath() and
Introspector.getBeanInfoSearchPath().

5. DESCRIBE IN DETAIL ABOUT JAVA BEANS APIWITH BEAN BUILDER

Application Builder Tools
The primary purpose of beans is to enable the visual construction of applications. You've

probably used or seen applications like Visual Basic, Visual Age, or Delphi. These tools are referred to
as visual application builders, or builder tools for short.

Typically such tools are GUI applications, although they need not be. There is usually a palette
of components available from which a program designer can drag items and place them on
a form or client window.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 21 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

In Windows environments the form is often called the client window area.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 22 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

The form, or client window, represents the target application under construction and is
presented, during design, as it will appear when it runs independently of the builder program.

The most tell-tale window shared by many popular application builders is a property sheet,
sometimes called a property editor or simply a properties window.

A property sheet is used to modify properties and events associated with components. In
keeping with Java AWT terminology some property editors use the term action in place of event.

Applications built with powerful components can appear complex even when they take little
effort to build.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 23 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Linking Components in Builder Tools

The calculator program shown earlier is a good example of building a complex program with
no handwritten code.

The calculator was built without writing any Java code. Instead, components were linked by
using a mouse.

Generated events and event-handler methods were selected through pop-up menus.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 24 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Every time a button is pressed, an event is fired and side effects result. Example side effects
include appending digits to the invisible EnteredString storage buffer, performing a math operation,
or displaying text in the display pane.

To program an event sequence, select a button as the event source, and indicate that you want
to fire an event through a keystroke or menu command.

You'll see a menu, or a property sheet, listing events that can be fired. Select an event, then
drag a link to the target object which should receive the event. You will be presented with a menu
listing event handlers available for the target object.

The following sequence of screens shows a more complex example in a different builder tool.
An animation component is added to a subpanel within a client window.

First an Animation Bean is selected from the builder's palette and dropped on a panel object
in the client form.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 25 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

A Bean is customized by selecting action items from a property sheet, which in turn invokes a
custom Bean editor to select a specific event from a list of events that can be generated by an
Animation Bean.

A list of events is acquired by introspection; the builder tool uses Java introspection APIs to
query beans dropped on the form.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 26 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Default behavior for event handlers is usually acceptable, but in some cases you'll want to
manually override handler definitions with a text editor.

In this builder tool, much of the programming, including selection of events and event
handlers, is done using a class hierarchy browser. After selecting the event-handler method, a
template for the event handler is generated, while you flesh out details manually by writing code in
the browser.

However not all programs require text editing. As mentioned, the calcualtor example was
built without resorting to text coding. The maze of links required to hookup components can be
overwhelming, as you can see in the following figure.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 27 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

But, most builder tools allow you to easily edit links and filter the display of links so that you
see only the level of detail that you want.

Nesting Components
Once you have assembled components into an application, often that application itself can be

turned into a component. An earlier example showed an Animation component dropped onto a panel
to display an animation.

Most of the code for the example was created through menu selections. The component was
customized primarily by specifying the names of animation files to be displayed from the disk.

The mouseDrag event handler was overriden through the browser for detailed customization.

Once custom properties and behavior are defined, they can be preserved by making a new
Bean out of the customized instance.

This is usually accomplished by serializing the customized Bean using Java's built-in support
for object serialization. Most builder tools provide a way to turn compound components into custom
Beans.

In this example you select the Animation Bean, and issue a menu command to turn it into a
Bean component.

The builder generates code to turn the assembly (property and behavior definitions) into a
Bean. The bean is added to the component palette of the builder tool.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 28 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

Alternately the bean can be packaged in a JAR archive file for sale, or distribution to clients.

You could take the new custom Bean and use it to compose a compound assembly, creating
yet another custom Bean.

For example, you could group three instance of a MyAnimationBean on a panel and save the
whole assembly as a single new Bean.

The compound MyThreeBeans custom component is added to your builder's component
palette as a single Bean.

5. WRITE IN DETAIL ABOUT NETWORK PROGRAMMING IN JAVA.

The term network programming refers to writing programs that execute across multiple devices
(computers), in which the devices are all connected to each other using a network.

The java.net package of the J2SE APIs contains a collection of classes and interfaces that provide the low-
level communication details, allowing you to write programs that focus on solving the problem at hand.

The java.net package provides support for the two common network protocols:

TCP: TCP stands for Transmission Control Protocol, which allows for reliable communication
between two applications. TCP is typically used over the Internet Protocol, which is referred to as
TCP/IP.

UDP: UDP stands for User Datagram Protocol, a connection-less protocol that allows for
packets of data to be transmitted between applications.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 29 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

SOCKET PROGRAMMING:

Sockets provide the communication mechanism between two computers using TCP. A client
program creates a socket on its end of the communication and attempts to connect that socket to a server.

When the connection is made, the server creates a socket object on its end of the communication. The
client and server can now communicate by writing to and reading from the socket.

The java.net.Socket class represents a socket, and the java.net.ServerSocket class provides a mechanism for
the server program to listen for clients and establish connections with them.

The following steps occur when establishing a TCP connection between two computers using sockets:

The server instantiates a ServerSocket object, denoting which port number communication is to occur
on.

The server invokes the accept() method of the ServerSocket class. This method waits until a client
connects to the server on the given port.

After the server is waiting, a client instantiates a Socket object, specifying the server name and port
number to connect to.

The constructor of the Socket class attempts to connect the client to the specified server and port
number. If communication is established, the client now has a Socket object capable of communicating
with the server.

On the server side, the accept() method returns a reference to a new socket on the server that is
connected to the client's socket.

After the connections are established, communication can occur using I/O streams. Each socket has
both an OutputStream and an InputStream. The client's OutputStream is connected to the server's
InputStream, and the client's InputStream is connected to the server's OutputStream.

TCP is a two way communication protocol, so data can be sent across both streams at the same time. There
are following usefull classes providing complete set of methods to implement sockets.

SERVERSOCKET CLASS METHODS:

The java.net.ServerSocket class is used by server applications to obtain a port and listen for client
requests

The ServerSocket class has four constructors:

1. ServerSocket(int port) - Attempts to create a server socket bound to the specified port. An
exception occurs if the port is already bound by another application

2. ServerSocket(int port, int backlog) - Similar to the previous constructor, the backlog
parameter specifies how many incoming clients to store in a wait queue.

3. ServerSocket(int port, int backlog, InetAddress address) - Similar to the previous
constructor, the InetAddress parameter specifies the local IP address to bind to. The InetAddress
is used for servers that may have multiple IP addresses, allowing the server to specify which of
its IP addresses to accept client requests on

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 30 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

4. ServerSocket()- Creates an unbound server socket. When using this constructor, use the bind()
method when you are ready to bind the server socket

If the ServerSocket constructor does not throw an exception, it means that your application has
successfully bound to the specified port and is ready for client requests.

Here are some of the common methods of the ServerSocket class:

1. getLocalPort()- Returns the port that the server socket is listening on. This method is useful if you
passed in 0 as the port number in a constructor and let the server find a port for you.

2. accept()- Waits for an incoming client. This method blocks until either a client connects to the
server on the specified port or the socket times out, assuming that the time-out value has been set
using the setSoTimeout() method. Otherwise, this method blocks indefinitely

3. setSoTimeout(int timeout)- Sets the time-out value for how long the server socket waits for a
client during the accept().

4. bind(SocketAddress host, int backlog)- Binds the socket to the specified server and port in the
SocketAddress object. Use this method if you instantiated the ServerSocket using the no-argument
constructor.

When the ServerSocket invokes accept(), the method does not return until a client connects. After a
client does connect, the ServerSocket creates a new Socket on an unspecified port and returns a reference
to this new Socket. A TCP connection now exists between the client and server, and communication can
begin.

SOCKET CLASS METHODS:

The java.net.Socket class represents the socket that both the client and server use to communicate
with each other. The client obtains a Socket object by instantiating one, whereas the server obtains a Socket
object from the return value of the accept() method.

The Socket class has five constructors that a client uses to connect to a server:

1. Socket(String host, int port)- This method attempts to connect to the specified server at the
specified port. If this constructor does not throw an exception, the connection is successful and the
client is connected to the server.

2. Socket(InetAddress host, int port) - This method is identical to the previous constructor, except
that the host is denoted by an InetAddress object.

3. Socket(String host, int port, InetAddress localAddress, int localPort)- Connects to the specified
host and port, creating a socket on the local host at the specified address and port.

4. Socket(String host, int port, InetAddress localAddress, int localPort) - Connects to the
specified host and port, creating a socket on the local host at the specified address and port.

5. Socket()- Creates an unconnected socket. Use the connect() method to connect this socket to a
server.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 31 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

When the Socket constructor returns, it does not simply instantiate a Socket object but it actually
attempts to connect to the specified server and port.

Some methods of interest in the Socket class are listed here. Notice that both the client and server have a
Socket object, so these methods can be invoked by both the client and server.

1. connect(SocketAddress host, int timeout) - This method connects the socket to the specified host.
This method is needed only when you instantiated the Socket using the no-argument constructor.

2. getInetAddress()- This method returns the address of the other computer that this socket is
connected to.

3. getPort()- Returns the port the socket is bound to on the remote machine.

4. getLocalPort()- Returns the port the socket is bound to on the local machine.

5. getRemoteSocketAddress()-Returns the address of the remote socket.

6. getInputStream() - Returns the input stream of the socket. The input stream is connected to the
output stream of the remote socket.

7. getOutputStream() - Returns the output stream of the socket. The output stream is connected to
the input stream of the remote socket

8. close() - Closes the socket, which makes this Socket object no longer capable of connecting again
to any server

INETADDRESS CLASS METHODS:

This class represents an Internet Protocol (IP) address. Here are following useful methods which
you would need while doing socket programming:

1. getByAddress(byte[] addr)- Returns an InetAddress object given the raw IP address

2. getByAddress(String host, byte[] addr)- Create an InetAddress based on the provided host
name and IP address.

3. getByName(String host)- Determines the IP address of a host, given the host's name.

4. getHostAddress() - Returns the IP address string in textual presentation.

5. getHostName() - Gets the host name for this IP address.

6. getLocalHost()- Returns the local host.

7. toString()- Converts this IP address to a String.

CREATING TCP SERVERS

To create a TCP server, do the following:

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 32 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

1. Create a ServerSocket attached to a port number.

ServerSocket server = new ServerSocket(port);

2. Wait for connections from clients requesting connections to that port.
// Block on accept()
Socket channel = server.accept();

You'll get a Socket object as a result of the connection.

3. Get input and output streams associated with the socket.

out = new PrintWriter(channel.getOutputStream());
reader = new InputStreamReader(channel.getInputStream());
in = new BufferedReader (reader);

Now you can read and write to the socket, thus, communicating with the client.

String data = in.readLine();
out.println("Hi!");

When a server invokes the accept() method of the ServerSocket instance, the main server thread
blocks until a client connects to the server; it is then prevented from accepting further client connections
until the server has processed the client's request

Creating TCP Clients
To create a TCP client, do the following:

1. Create a Socket object attached to a remote host, port.

Socket client = new Socket(host, port);
When the constructor returns, you have a connection.

2. Get input and output streams associated with the socket.

out = new PrintWriter(client.getOutputStream());
reader = new InputStreamReader(client.getInputStream());
in = new BufferedReader (reader);

Now you can read and write to the socket, thus, communicating with the server.

out.println("Hello!!!");
String data = in.readLine();

EXAMPLE PROGRAM:

CHAT SERVER:

import java.io.*;
import java.net.*;

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 33 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

class TcpOneWayChatServer
{

public static void main(String a[])throws IOException
{

ServerSocket ss = new ServerSocket(8000);
Socket s=ss.accept();

BufferedReader keyIn = new BufferedReader(new InputStreamReader(System.in));
PrintStream socOut = new PrintStream(s.getOutputStream());

while(true)
{

System.out.print("Message: ");
String str = keyIn.readLine();
if(str.equals("bye"))
{

break;
}
socOut.println(str);

}

}
}
CHAT CLIENT

import java.io.*;
import java.net.*;

class TcpOneWayChatClient
{

public static void main(String args[])throws IOException
{

Socket c = new Socket("localhost", 8000);
BufferedReader socIn=new BufferedReader(new InputStreamReader(c.getInputStream()));
String str;
while(true)
{

str = socIn.readLine();
System.out.println("Message Received: " + str);

}
}

}

8. WRITE IN DETAIL ABOUT REMOTEMETHOD INVOCATION

The Remote Method Invocation (RMI) is an API that provides a mechanism to create
distributed application in java. The RMI allows an object to invoke methods on an object running in
another JVM.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 34 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

The RMI provides remote communication between the applications using two objects stub and
skeleton.

RMI uses stub and skeleton object for communication with the remote object. A remote object is an
object whose method can be invoked from another JVM.

STUB AND SKELETON OBJECTS:
STUB

The stub is an object, acts as a gateway for the client side. All the outgoing requests are
routed through it. It resides at the client side and represents the remote object. When the caller
invokes method on the stub object, it does the following tasks:

1. It initiates a connection with remote Virtual Machine (JVM),
2. It writes and transmits (marshals) the parameters to the remote Virtual Machine (JVM),
3. It waits for the result
4. It reads (unmarshals) the return value or exception, and
5. It finally, returns the value to the caller.

SKELETON

The skeleton is an object, acts as a gateway for the server side object. All the incoming
requests are routed through it. When the skeleton receives the incoming request, it does the
following tasks:

1. It reads the parameter for the remote method
2. It invokes the method on the actual remote object, and
3. It writes and transmits (marshals) the result to the caller.
4. In the Java 2 SDK, an stub protocol was introduced that eliminates the need for skeletons.

REQUIREMENTS FOR THE DISTRIBUTED APPLICATIONS

If any application performs these tasks, it can be distributed application.
1. The application need to locate the remote method
2. It need to provide the communication with the remote objects, and
3. The application need to load the class definitions for the objects.

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 35 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

The RMI application have all these features, so it is called the distributed application.

RMI LAYERS

RMI SYSTEM ARCHITECTURE

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 36 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

RMI FLOW

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 37 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

STEPS TOWRITE THE RMI PROGRAM

There are 5 steps to follow

Server Side
1. Create the remote interface
2. Provide the implementation of the remote interface that extends UnicastRemoteObject
3. Create object for implementation class and register the object with the rmi registry

Client side
4. Create class in client side and get the remote reference by lookup the registry in the

remote system
5. Using the remote reference, invoke the remote method

1. Create the remote interface
public interface FactInterface extends Remote
{
public int fact(int n) throws RemoteException;

}

2. Provide the implementation of the remote interface that extends UnicastRemoteObject
public class FactImplementation extends UnicastRemoteObject implements FactInterface
{
public FactImplementation() throws RemoteException

SRI VENKATESHWARAA COLLEGEOF ENGINEERING & TECHNOLOGY

P a g e | 38 OBJECT ORIENTED PROGRAMMING AND DESIGN DEPARTMENT OF CSE

{
}
public int fact(int n) throws RemoteException
{
int f = 1;
for(int i = 1; i <= n; i++)
{
f = f * i;

}
return f;

}
}

3. Create object for implementation class and register the object with the rmi registry

FactImplementation fi = new FactImplementation();
Naming.rebind("server", fi);
System.out.println("Server ready");

4. Create class in client side and get the remote reference by lookup the registry in the
remote system

FactInterface serv = (FactInterface) Naming.lookup("rmi://"127.0.0.1"/server");

5. Using the remote reference, invoke the remote method

int fact = serv.fact(5);

