
 

 
 

 

DEPARTMENT OF ELECTRONICS AND 

COMMUNICATION ENGINEERING 

 
 

 

 

 

EC T35 CIRCUIT THEORY 

NOTES 

 

 

II YEAR/ III SEM 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

EC T35 CIRCUIT THEORY 

COURSE OBJECTIVE  
 

To understand the need for various theorems to solve complicated Electrical circuits  

To explore the use of Resonant circuits and tuned circuits in the field of communication  

To analyze the transient behavior of Electrical circuits  

To identify the ways and means to solve magnetically coupled circuits  

To understand the use of network topology in circuit solving  

 

UNIT- I 
DC Circuit Analysis: Sources-Transformation and manipulation, Network theorems -

Superposition theorem, Thevenin‘s theorem, Norton‘s theorem, Reciprocity theorem, Millman‘s 

theorem, Compensation theorem, Maximum power transfer theorem and Tellegen‘s theorem – 

Application to DC circuit analysis.  

UNIT- II 
AC Circuit Analysis: Series circuits - RC, RL and RLC circuits and Parallel circuits –RLC circuits 

- Sinusoidal steady state response - Mesh and Nodal analysis - Analysis of circuits using 

Superposition, Thevenin‘s, Norton‘s and Maximum power transfer theorems.  

Resonance - Series resonance - Parallel resonance - Variation of impedance with frequency - 

Variation in current through and voltage across L and C with frequency – Bandwidth – Q factor -

Selectivity.  

UNIT- III 
Transient Analysis: Natural response-Forced response - Transient response of RC, RL and RLC 

circuits to excitation by DC and exponential sources - Complete response of RC, RL and RLC 

Circuits to sinusoidal excitation-Transient analysis by Laplace Transformation Technique.  

UNIT- IV 
Magnetically Coupled Circuits: Self inductance - Mutual inductance - Dot rule - Coefficient of 

coupling - Analysis of multi winding coupled circuits - Series, Parallel connection of coupled 

inductors - Single tuned and double tuned coupled circuits.  

UNIT -V 
Network Topology: Network terminology - Graph of a network - Incidence and reduced incidence 

matrices – Trees –Cutsets - Fundamental cutsets - Cutset matrix – Tiesets – Link currents and 

Tieset schedules -Twig voltages and Cutset schedules, Duality and dual networks. 
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UNIT- I DC Circuit Analysis 

 

1.  Circuit : Acircuit is a closed conducting path through which an electric current either flows or is 

intended to flow. 

2.  Parameters. The various elements of an electric circuit are called its parameters like 

resistance, inductance and capacitance. These parameters may be lumped or distributed. 

3.  Liner Circuit. A linear circuit is one whose parameters are constant i.e. they do not change 

with voltage or current. 

4.  Non-linearCircuit. It is that circuit whose parameters change with voltage or current. 

5.  BilateralCircuit.A bilateral circuit is one whose properties or characteristics are the same 

In either direction. The usual transmission line is bilateral ,because it can be made to perform its 

function equally well in either direction. 

6.  UnilateralCircuit.  It is that circuit whose properties or characteristics change with the 

direction of its operation. A diode rectifier is a unilateral circuit, because it cannot perform 

rectification in both directions. 

7.  ElectricNetwork. A combination of various electric elements, connected in any manner 

whatsoever, is called an electric network. 

8.  PassiveNetwork is one which contains no source of e.m.f. in it. 

9.  ActiveNetwork is one which contains one or more than one source of e.m.f. 

10.  Node is a junction in a circuit where two or more circuit elements are connected together. 

11.  Branch is that part of a network which lies between two junctions. 

12.  Loop. It is a close path in a circuit in 

which  no element or node is encountered 

more than once. 

13.  Mesh. It is a loop that contains   

No other loop within it.   



Sources-Transformation and manipulation 

 

• A source transformation is the process of replacing a voltage source Vs in series with a 

resistor R by a current source is in parallel with a resistor R, or vice versa.   

 Vs=isR  or  is=Vs/R 

 

 

 

 

 

 

 

 

 

 

 

• It also applies to dependent sources: 

 

 

 

 

 

 

 

 

 

1. Example, find out Vo 

 

 

 

 

 

 

 

 

 



2. find out I (use source transformation ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 I =0.25 A 

 

 

THE SUPERPOSITION THEOREM  

In an electrical network made up from linear resistances and containing more than one 

sourceof emf, the resultant current flowing in any branch is the algebraic sum of the currents that 

would flow in that branch if the effects of each emf were considered separately all other emfs being 

suppressed and replaced by their respective internal resistances( normally this is a short circuit ).   

“The total power delivered to a resistive element must be determined using the total 

current through or the total voltage across the element and cannot be determined by a 

simple sum of the power levels established by each source.” 
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Advantages 

 Used to find the solution to networks with two or more sources that are not in series or 

parallel. 

 The current through, or voltage across, an element in a network is equal to the algebraic 

sum of the currents or voltages produced independently by each source. 

 Since the effect of each source will be determined independently, the number of networks 

to be analyzed will equal the number of sources. 

 Linearity is the property of an element describing a linear relationship between cause and 

effect. 

 A linear circuit is one whose output is linearly ( or directly proportional) to its input. 

 

 

1. Solve the circuit shown below by super position principle. 
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              1. Find the total current iT and Req in the circuit when 200v source alone 

acting. 

             2. Calculate the iT and Req in the circuit when 20A source alone acting. 

             3. Determine the  total current through 23Ω  in the circuit. 

              4. Compute the current through 4 Ω resistor in the circuit. 

Solution: With the 200-V source acting alone, the 20-A current source is 

replaced by an open circuit is shown in figure (a) 

             (a) 

                                                          

When the 20-A source acts alone, the 200-V source is replaced by a 
short circuit, Fig.(b). The equivalent resistance to the left of the source is 

                                                     

(b) 

                                                                                 



2. Consider the network shown in fig and solve by super position theorem. 

              
1.Calculate  Vcg using superposition theorem. 
2.Calculate Iab using superposition theorem. 
3.Determine the total current flow when voltage source alone acting 
4.Find the current through R4 resistor. 
Solution: 

First consider the voltage source that acts only in the circuit and the current source is 
replaced by its internal resistance and it is shown below. 

  

                                        
 
Calculate the current flowing through the ‘a-b’ branch 

 

 

 

 

 

 

 

 
 

Current source only (retain one source at a time): 



Now consider the current source only acting and the voltage source is replaced by its internal 
resistance which is zero in the present case. The circuit diagram is shown below                                   

 
  

 

 
 

Thevenin’s and Norton’s Theorems 

 That if we are only interested in current, voltage and power delivered by a linear 

portion of a circuit, we can replace that portion (potentially a large complex 

network,) by an equivalent circuit containing only an independent source and a 

single resistor.  The response will be unchanged in the rest of the original circuit.   

 

 Thevenin’s Theorem says that the independent source is a voltage source and we 

should place it in series with the resistor.  The theorem also tells us how to 

calculate the value of the voltage source, Vs, and the value of the resistance, Rt, 

called the Thevenin Resistance. 

 

 Norton’s Theorem says that the independent source is a current source and we 

should place it in parallel with the resistance. The theorem also tell us how to 

calculate the value of the current source, Is, and the value of the resistance, Rt, 

called the Thevenin Resistance. 

 

 Of course, by source transformations, we can always switch from the “Thevenin” 

equivalent circuit to the “Norton” equivalent circuit. 

 

 

 

 



To find the Thevenin Equivalent Network 

 

1. First you must identify the network to find the 

equivalent of. 
You can rearrange any circuit in the form of two 

networks connected by two resistance-less conductors, 

labeled terminals A and B.  (Note: If either network 

contains a dependant source, its control variable must be 

in the same network.) 

 

If one of the networks is linear it can be replaced by this 

Thevenin equivalent network: 

 

The only thing left to do is find the values of Rt and Vs. 

 

2. To find Vs: 

Define a voltage, voc, as the open circuit voltage which would appear across the terminals A and 

B (of the original network) if there was an open circuit between A and B.  This voltage is Vs. 

 

3. To find Rt: 

There are three different cases that will require different methods to find Rt: 

a. If there are only independent sources in the network, then “kill” them.   

Rt = Req 

b. If there are dependant sources and independent sources in the network, find both voc 

and isc.   

Rt =  voc / isc . 

c. If there are only dependent sources apply a 1A current source at the terminals A and B. 

Calculate the resulting voltage, v, across this current source.  

Rt =  v / 1A   

(Alternatively you can apply a 1V voltage source and measure resulting current, i, 

through it. Rt = 1V / i) 

 

To find the Norton Equivalent Network 

 

1. First you must identify the network to find the 

equivalent of. 
You can rearrange any circuit in the form of two 

networks connected by two resistance-less conductors, 

labeled terminals A and B.  (Note: If either network 

contains a dependant source, its control variable must be 

in the same network.) 

 

If one of the networks is linear it can be replaced by this 

Norton equivalent network: 

 

The only thing left to do is find the values of Rt and Is. 

 

2. To find Is: 

Define a current, isc, as the short circuit current which would be the current that would flow 

from terminal A to B (of the original network) if A and B were short circuited.  This current is 

Is. 

 

3. To find Rt: 

There are three different cases that will require different methods to find Rt: 



a. If there are only independent sources in the network then “kill” them.    

Rt = Req 

b. If there are dependant sources and independent sources in the network, find both voc and 

isc.   

Rt =  voc / isc . 

c. If there are only dependent sources apply a 1A current source at the terminals A and B. 

Calculate the resulting voltage, v, across this current source.    

Rt =  v / 1A   

(Alternatively you can apply a 1V voltage source and measure resulting current, i, 

through it. Rt = 1V / i) 

 

 

1. Solve the circuit shown below by thevenin’s theorem. 

 

1. Calculate current through 10Ω resistor by thevenin’s theorem. 

2. Find the Req after voltage source is removed. 

3. Determine the voltage across 10Ω resistor. 

4. Obtain  the thevenin’s equivalent circuit. 

Solution: The 10 Ω resistance is removed from the circuit as shown in 

Figure 

 

No current flowing in the 5 Ω resistor and current I1 is 

                              
 

                               
 

Removing the source of e.m.f. gives the circuit of Figure 

                                                                         



                                                               

The equivalent Thevenin’s circuit is shown in Figure 

 

                                                  

Hence the current flowing in the 10 Ω resistor of Figure is 0.482 A. 

 

 

2. Determine the voltage across 2Ω resistor by thevenin’s theorem. 

 
Solution: 

Step:1- Decide to designate R2 as the “load” resistor in this circuit. 

                  

 

Step:2-Remove the load resistor 

                 

 



Step:3-Find the voltage across load resistor by applying the rules of series circuits, 

Ohm’s Law, and Kirchhoff ’s Voltage Law:(consider as Vth) 

                  

 

 

Step:4-Find the  equivalent resistance across load resistor:(consider as Rth) 

                      

Step:5-Finally draw the Thevenin Equivalent circuit 

                     
 

Voltage across 2 Ω resistor 𝑉𝐿 =
11.2𝑋 2

0.8+2
= 8𝑉 

 

 

 

 

 

 

 

 

 

 



3. Find RN, IN, the current flowing through and Load Voltage across the 

load resistor in fig (1) by using Norton’s Theorem. 

 

 
 

Step 1. 
Short the 1.5Ω load resistor 

 
 

Step 2. 
Calculate / measure the Short Circuit Current. This is the Norton Current (IN). 
We have shorted the AB terminals to determine the Norton current, IN. The 6Ω and 
3Ω are then in parallel and this parallel combination of 6Ω and 3Ω are then in 
series with 2Ω. 
So the Total Resistance of the circuit to the Source is:- 
2Ω + (6Ω || 3Ω) ….. (|| = in parallel with). 
  
RT = 2Ω + [(3Ω x 6Ω) / (3Ω + 6Ω)] → IT= 2Ω + 2Ω = 4Ω. 
RT = 4Ω 
IT = V / RT 
IT = 12V / 4Ω 
IT = 3A.. 
Now we have to find ISC = IN… Apply CDR… (Current Divider Rule)… 
ISC = IN = 3A x [(6Ω / (3Ω + 6Ω)] = 2A. 

ISC= IN = 2A. 
 



 
Step 3. 
Open Current Sources, Short Voltage Sources and Open Load Resistor. 

 
 

Step 4. 
Calculate /measure the Open Circuit Resistance. This is the Norton Resistance 
(RN) 
We have Reduced the 12V DC source to zero is equivalent to replace it with a 
short in step (3), as shown in figure (4)  We can see that 3Ω resistor is in series 
with a parallel combination of 6Ω resistor and  2Ω resistor. i.e.: 
3Ω + (6Ω || 2Ω) ….. (|| = in parallel with) 
  
RN = 3Ω + [(6Ω x 2Ω) / (6Ω + 2Ω)] 
RN = 3Ω + 1.5Ω 
RN = 4.5Ω 



 
 

Step 5. 
Connect the RN in Parallel with Current Source INand re-connect the load resistor. 
This is shown in fig (6) i.e. Norton Equivalent circuit with load resistor. 

 
Step 6. 

Now apply the last step i.e. calculate the load current through and Load voltage 

across load resistor by Ohm’s Law as shown in fig 7. 
Load Current through Load Resistor… 
IL = IN x [RN / (RN+ RL)] 
= 2A x (4.5Ω /4.5Ω +1.5kΩ) → = 1.5A 
IL = 1. 5A 
And 
Load Voltage across Load Resistor… 
VL = IL x RL 
VL = 1.5A x 1.5Ω 

VL= 2.25V 
 

 

4. Find the Norton’s Equivalent of the above circuit we firstly have to remove the 

centre 40Ω load resistor and short out the terminals A and B to give us the 

following circuit. 

http://electricaltechnology.org/2013/10/ohms-law-with-simple-explanation.html


 

with A-B Shorted Out 

 

  

If we short-out the two voltage sources and open circuit terminals A and B, the two 

resistors are now effectively connected together in parallel. The value of the internal 

resistor Rs is found by calculating the total resistance at the terminals A and B giving us the 

following circuit. 

 

Find the Equivalent Resistance (Rs) 

 

  

Having found both the short circuit current, Is and equivalent internal resistance, Rs this then gives 

us the following Nortons equivalent circuit. 



Nortons equivalent circuit. 

 

Ok, so far so good, but we now have to solve with the original 40Ω load resistor connected across 

terminals A and B as shown below. 

 

Again, the two resistors are connected in parallel across the terminals A and B which gives us a 

total resistance of: 

 

The voltage across the terminals A and B with the load resistor connected is given as: 

 

Then the current flowing in the 40Ω load resistor can be found as: 

 

 
RECIPROCITY THEOREM 
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• Case 1  The current in any branch of a network, due to a single voltage source E anywhere 

else in the network, will equal the current through the branch in which the source was 

originally located if the source is placed in the branch in which the current I was originally 

measured. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 2 :   
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Case 3 :  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Verify reciprocity theorem for the voltage V and current I for the network shown in figure. 

 
Solution 

The various branch currents are shown as 
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Now interchange the positions of V and I 

 

 

 
In both the cases the ratio of V/I is same and hence reciprocity theorem is verified. 

MILLMAN‘S THEOREM,  

 Any number of parallel voltage sources can be reduced to one. 

 This permits finding the current through or voltage across RL without having to 

apply a method such as mesh analysis, nodal analysis, superposition and so on. 

 Convert all voltage sources to current sources. 

 Combine parallel current sources. 



 Convert the resulting current source to a voltage source and the desired single-

source network is obtained. 

 

 
 

 

 

 



 

 



COMPENSATION THEOREM,  

 

In any linear network consisting of linear and bilateral impedances and active sources, if the 

impedance Z of the branch carrying current I increases by dI, then the increment of voltage or 

current in each branch of the network is that voltage or current that would be produced by an 

opposing voltage source of value VC (= I.dZ) introduced in the altered branch after replacing 

original sources by their internal impedances. 

 

In many circuits, after the circuit is analysed, it is realised that only a small change need to 

be made to a component to get a desired result. In such a case we would normally have to 

recalculate. The compensation theorem allows us to compensate properly for such changes 

without sacrificing accuracy. In any linear bilateral active network, if any branch carrying a 

current I has its impedance Z changed by an amount ∆Z, the resulting changes that occur in 

the other branches are the same as those which would have been caused by the injection of 

a voltage source of (-) I . ∆Z in the modified branch 

 
Consider the voltage drop across the modified branch. V +∆V = (Z+∆Z)( I+∆I) = Z . I + ∆Z 

. I + (Z + ∆Z) . ∆I from the original network, V = Z . I ∴ ∆V = ∆Z . I + (Z + ∆Z) . ∆I Since the 

value I is already known from the earlier analysis, and the change required in the 

impedance, ∆Z , is also known, I .∆Z is a known fixed value of voltage and may thus be 

represented by a source of emf I. ∆Z . 

 

 

 

 

 

 

 

 

 

 

 

Calculate the change in current in the network shown in figure using compensation theorem 

when the reactance has changed to j35Ω. 



 
Solution: 

 

 

 
 

 

 

MAXIMUM POWER TRANSFER THEOREM  

Replacing the original network by its Thevenin equivalent, then the power delivered to the load is 
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Power delivered to the load as a function of RL 

 

 

 

 

 

 

The variable resistor in the circuit in Fig. shown below is adjusted for maximum power transfer 

to R0. 
 

 

 

Solve the circuit given below to obtain maximum power 

                                                  

              1.Find the value of RL for maximum power transfer in the circuit.  

              2. Calculate the Rth. 

             3.Calculate the Vth. 

             4. Find the maximum power. 

             

  Solution: 
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Solve the circuit given below to obtain maximum power 

                                                  

              1. Find R so that maximum power is transferred to the resistance R.   

              2. Calculate the Rth. 



             3.Calculate the Vth. 

             4. Find the maximum power.  

          Solution:  

                   

          

 

 

           

 



                                   

 

                                   

            1.Find the value of Ro for maximum power transfer in the circuit.  

              2. Calculate the Rth. 

             3.Calculate the Vth. 

             4. Find the maximum power transfer to Ro. 

                Solution: 
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Tellegen‘s theorem  

• If there are b branches in a lumped circuit, and the voltage uk, current ik of each branch 

apply passive sign convention, then we have  



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kkiu
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• If two lumped circuits    and     have the same topological graph with b branches, and the 

voltage, current of each branch apply passive sign convention, then we have not only 
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Example:  
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UNIT- II 

AC Circuit Analysis: Series circuits - RC, RL and RLC circuits and Parallel circuits –RLC circuits 

- Sinusoidal steady state response - Mesh and Nodal analysis - Analysis of circuits using 

Superposition, Thevenin‘s, Norton‘s and Maximum power transfer theorems.  

 

Alternating Current Circuits 

 

Review of rms values. rms values are root-mean-square values of quantities (such as voltage and 

current) that vary periodically with time. In AC circuits voltage and current vary sinusoidally with 

time: 

 

   sin ,        sinv V t i I t      

 

where V and I are the voltage and current amplitudes, respectively.  is the angular frequency ( = 

2f, where f is the frequency) and  is a phase constant that we will discuss later. The rms values of 

voltage and current are defined to be 

 

   2 2 2 2

rms rmssin ,        sinV V t I I t      

 

Where the overbar indicates the average value of the function over one cycle. Since the average 

value of sin
2
 over one cycle is ½, we get 

 

rms rms    and     
2 2

V I
V I   

 

Note that these formulas are valid only if the voltage varies sinusoidally with time. 

 

What we will study in this chapter is what happens to the current and power in an AC series circuit 

if a resistor, a capacitor and an inductor are present in the circuit. 

Resistors and Resistance 

 

If just a resistor of resistance R is connected across an AC generator the generator is said to have a 

purely resistive load. The phase constant  is zero and we write 

 



    rms rmssin ,        sin     and     v V t i I t V I R     . 

 

Since the angle for v and i is the same, the instantaneous voltage and current are said to be in phase. 

Note that 

 

rms

rms

V
R

I
  

 

is a constant independent of the frequency f of the AC generator. We assume that the resistor 

maintains its resistance regardless of how fast or slow the generator’s armature is turning. R, of 

course, is measured in ohms. 

 

For a purely resistive load the average power delivered to the circuit by the generator is given by 

 
2

rms rms rms  or  P I V P I R   

 

which are analogous to the familiar formulas for DC circuits. P, as usual, is measured in watts. 

Capacitors and Capacitive Reactance 

 

Now let us connect just a capacitor of capacitance C across an AC generator. In this case the 

generator is said to have a purely capacitive load. The phase constant  is 
2


  and we write 

 

  rms rms Csin ,        sin   and    
2

v V t i I t V I X
 

      
 

 

 

where XC is called the capacitive reactance. Capacitive reactance, like resistance, is measured in 

ohms. 

 

Since the angle for the instantaneous current is greater than the angle for the instantaneous voltage 

by /2 radians or 90, the current is said to lead the voltage by 90or lead the voltage by a quarter 

cycle. (Remember that a full cycle is 360 - a “complete trip” around a circle.) We can also say that 

the voltage lags the current by 90 or lags the current by a quarter cycle. 



For a capacitive load the ratio rms

rms

V

I
 is not a constant independent of the frequency of the generator. 

It can be shown that in fact 
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C

rms

1 1
   so that   .

2 2

V
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I fC fC
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 
 

 

Units check: 
C C1 1
V V

1 1 1 V

Hz F A
s s

ohms   
  

. See Figure 23.2 on page 714 of your text. 

For a purely capacitive load the average power delivered to the circuit by the generator is zero. The 

reason for this is that the instantaneous voltage and current in the circuit are exactly 90 out of 

phase. Over one cycle the generator delivers as much power to the capacitor as it gets back from the 

capacitor. (Remember that over a generator cycle the capacitor will charge then discharge.) 

 

Example 

 

Two stripped wires from the end of a lamp cord are soldered to the terminals of a 200 F capacitor. 

The lamp cord, which has a standard electric plug on the other end, is then plugged into a 120 V, 60 

Hz AC outlet. 

(Do not try this at home.) 

 

a. Find the reactance of the capacitor. 

 

  
C C C4

1 1
;  ;    13.3 ohms

2 2 60 2 10
X X X

fC 
  

  
 

 

b. Find the rms current drawn from the wall outlet. 

 

rms
rms rms C rms rms rms

C

120 V
;   ;    ;      9.02 A

13.3 

V
V I X I I I

X
   


 

 



 

 

 

Inductors and Inductive Reactance 

 

Now let us connect just an inductor of inductance L across an AC generator. In this case the 

generator is said to have a purely inductive load. The phase constant  is 
2


  and we write 

 

  rms rms Lsin ,        sin   and    
2

v V t i I t V I X
 

      
 

 

 

where XL is called the inductive reactance. Inductive reactance, like resistance, is measured in 

ohms. 

 

Since the angle for the instantaneous current is smaller than the angle for the instantaneous voltage 

by /2 radians or 90, the current is said to lag the voltage by 90or lag the voltage by a quarter 

cycle. (Alternatively one can say that thevoltage leads the current by 90or the voltage leads the 

current by a quarter cycle.) 

For an inductive load the ratio rms

rms

V

I
 is not a constant independent of the frequency of the generator. 

It can be shown that in fact 

 

rms
L

rms

2    so that   2 .
V

fL X fL
I

     

 

Units check: 
A
s

1 V V
Hz H

s A
ohms     . See Figure 23.6 on page 716 of your text. 

For a purely inductive load the average power delivered to the circuit by the generator is zero. The 

reason for this is that the instantaneous voltage and current in the circuit are exactly 90 out of 

phase. Over one cycle the generator delivers as much power to the inductor as it gets back from the 

inductor. (Remember that over a generator cycle the induced emf in the inductor will reverse 

direction.) 

 

Example 

 



Two stripped wires from the end of a lamp cord are soldered to the terminals of a 200 mH inductor. 

The lamp cord, which has a standard electric plug on the other end, is then plugged into a 120 V, 60 

Hz AC outlet. 

(Do not try this at home.) 

 

a. Find the reactance of the inductor. 

 

  L L L2 ;  2 60 0.200 ;   75.4 ohmsX fL X X      

 

b. Find the rms current drawn from the wall outlet. 

 

rms
rms rms L rms rms rms

L

120 V
;   ;    ;      1.59 A

75.4 

V
V I X I I I

X
   


 



RCL Series Circuits 

 

An RCL series circuit consists of a resistor, a capacitor, an inductor and an AC generator connected 

in series. See the figure. 

 

The mathematical analysis of this circuit requires the solution of a 

differential equation. However, there is a way to solve the circuit 

using a geometrical device that is analogous to a vector. This device 

is called a phasor (or rotor). A phasor is a vector whose tail sits at 

the origin of an xy-coordinate system. The phasor rotates 

counterclockwise about the origin with angular frequency  (the 

angular frequency of the AC generator). The phasor represents either voltage or current, and its y-

component is the instantaneous value of the quantity it represents. 

 

We will assume that at any instant the current through each circuit element 

is given by 

 

 sini I t   . 

 

The current phasor has length I and makes an angle of t -  with respect to 

the x-axis. At any instant its y-component equals the current in the circuit. 

 

Now consider the voltage phasor of the resistor. The instantaneous voltage across the resistor is just 

 

   R Rsin   or  siniR IR t v V t       

 

The length of the resistor’s voltage phasor is the voltage amplitude VR. At 

any instant the angle it makes with the x-axis is t - . The y-component of 

this phasor is then 

 

 R sinV t  , 

 

which is the instantaneous voltage across the resistor. Note that the current 

and voltage across the resistor are in phase. Hence the voltage phasor for 

the resistor lies on top the current phasor. 

 sinV t

 

t   

I 

{ 

t   

I 

VR 

{ 

t   

I 

VR 

VC 



 

Now consider the voltage phasor for the capacitor. Here it is critically important to remember the 

phase relationship between the current and voltage for a capacitor. Does the current lead or lag the 

voltage in a capacitor? By how many degrees? The current leads the voltage by 90. Since the 

phasors rotate counterclockwise, the voltage phasor for the capacitor must lie 90clockwise from 

the current phasor. 

Now consider the voltage phasor for the inductor. It is critically important to 

remember the phase relationship between the current and voltage for an 

inductor. Does the current lead or lag the voltage in an inductor? By how 

many degrees? The current lags the voltage by 90. Since the phasors rotate 

counterclockwise, the voltage phasor for the inductor must lie 

90counterclockwise from the current phasor. 

 

Note that the voltage phasors for the inductor and the capacitor lie along the 

same line. (We have arbitrarily assumed that VL is larger than Vc.)Using the 

rules of vector addition we may combine them to obtain the next diagram.  

 

By Kirchhoff’s loop rule the voltage drops across the capacitor, resistor 

and inductor must, at any instant, equal the voltage rise across the 

generator. This will be satisfied if the vector sum of the VL – VC  and the 

VR phasors matches the voltage phasor of the generator. See the last 

diagram below. 

 

From the last diagram we obtain some very important relationships. In 

particular, note that 

 

   

     

 

2 22 2 2

L C R L C R

L L C C R

2 2 2 2

L C L C

2 2

L C

  or   

since ,   and  we can write

  or  

or     where  

V V V V V V V V

V IX V IX V IR

V IX IX IR V I X X R

V IZ Z X X R

     

  

     

   

 

 

Z is called the impedance of the circuit and is measured in ohms. Note 

that we have dropped the “rms” subscripts for the voltage and the 

current in the V = IX formulas above because the formulas are also valid 

if we replace each rms value with its corresponding amplitude (the 

square root of 2 cancels from both sides of each equation). 

 

t   

I 

VR 

VC 

VL 

t   

I 

VR 
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t   

I 

VR 

L CV V
 

V 

t  



We can now find a formula for the phase  of the current. From the right triangle with sides V, VR 

and VL - VC in the diagram above we have 

 

L C L C L C

R

tan   so that   tan
V V IX IX X X

V IR R

  
      

 

Power in AC Circuits II 

 

15.1 Power Dissipation in an AC circuit 

In general, an ac circuit will contain a combination of resistive and reactive components and 

the reactive elements may be either inductive or capacitive as shown in Fig.1 below. This 

means that at different points in the circuit the current and voltage relationships will vary 

depending on the elements involved. From the point of view of a voltage source driving such a 

circuit, the overall network will have an impedance, which has a magnitude and phase and a 

current will flow into the circuit which also possesses a corresponding magnitude and phase 

as shown below.  
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R1 

v(t) 

C1 

- 

R2 L2 

C2 ~ 

i(t) 

Z 

R3 



 

Fig. 1  The Phase Relationship Associated with an AC Circuit having ReactanceA plot of the 

voltage, which is taken as the reference zero angle, and the current with the instantaneous 

power is shown in Fig. 2 below. The current is seen to lag behind the voltage by an angle . 

Note that, unlike the case for resistive and purely reactive circuits, the instantaneous power 

profile is not symmetrical. It can be seen in this example that the power profile is positive for 

longer than it is negative and also that it reaches a higher positive peak than negative peak. 

This means that more power is delivered to the network in each cycle of the sinusoidal source 

than is returned to the source. Therefore there is a net transfer of power from the source to 

the circuit and this power is dissipated in the resistive components of the network. 
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Fig. 2   Waveforms Showing Power Relations in an AC Circuit having Reactance 

 

Instantaneous Power: 

The instantaneous power can be found as before as the product of the voltage and current as 

continuous functions of time: 

 

If 
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Using the trigonometric expansion 

 

 

Using the trigonometric expansion 

 

gives: 



 

But   

So that: 

 

The factors Cos and Sin are constants for a given circuit where there is a given phase 

shift between the supply voltage and the current drawn by the circuit so that: 
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The last two terms in this expression have a value of zero as before so that finally: 

 Cos
2

I
x

2

V
Cos

2

IV
P mmmm

AVE  

 

 CosIVP RMSRMSAVE  

The term Cos is referred to as the Power Factor of the circuit. This is a property of the ac 

network and is determined by the phase angle of the network impedance. 



 CosFactorPower  

The Power Factor varies between a value of 0 and 1. 

 

circuitreactivepurely0P0Cos90
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AVE
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RMSRMSAVE
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
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The average power calculated above is the actual power consumed from the power delivered 

to the network. This is dissipated by the resistive elements of the circuit. However, the source 

must be rated to generate and deliver the total power demanded by the circuit even though 

not all of this is consumed. The power dissipated is also referred to as Active Power and 

represents energy consumed. 

 

 

15.2 Complex Power 

It has been seen from the previous waveform showing the instantaneous power that the positive 

excursion is greater than the negative excursion, so that there is a net transfer of power from the 

source to the load per cycle of the source voltage. The phase of the impedance of the network 

results in a phase angle between voltage and current which gives the Power Factor in the Average 

or Active Power drawn by the network. However, as with purely reactive circuits, there is also 

some power which is drawn from the source, stored temporarily in the reactive elements and then 

returned to the source in a later part of each cycle. This is referred to as the Reactive Power. In 

practice the source driving the network must be rated to handle and deliver both the active and 

reactive power, even though only the active power will be dissipated by the circuit. The vector sum 

of the Active and Reactive Power is referred to as the Apparent Power and gives the concept of 

Complex Power as illustrated in phasor form in Fig. 3 below. 
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Fig. 3  A Phasor  
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In order to avoid having to have a source which must be capable of providing much more power 

than is actually going to be consumed by a network, the aim is to minimise the amount of reactive 

power demanded of the source. Therefore the aim is to make the apparent power and the active 

power equal. This means making the power factor as close to unity as is possible. 

 

Consider the network impedance shown in Fig. 4 below: 

 

 

 

 

 

 

 

 

 

Fig.  4 Power Factor in Complex Power 

where R is the overall equivalent resistance of the ac network as seen by the source. This may not 

actually be a resistive element but can represent work done by some piece of equipment or machine 

which is provided with electrical power and consumes energy. 

 

Consider the circuit shown in Fig. 5 below. 
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Fig. 5   An Example Circuit for AC Power Analysis 
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So that overall      Ω204j193Ζ   

 

 

The net impedance is more reactive than resistive and the reactance appears inductive. 

resistance     inductive reactance       capacitive reactance 

 j32j236193Ζ  



  281 204193Ζ 22
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The current flowing into the circuit from the source can be found as: 
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The Power factor of the network is given as: 

687.06.46CosCosFactorPower o   

The complex power can be evaluated as: 

W8.85
2

78.0x220

2

IV
IVPowerApparent mm

RMSRMS 
 

 

W9.58687.0x8.85Cos
2

IV
IVPower  Active mm

RMSRMS 

 

j62.4W7j85.8x0.72Sin
2

IV
jSinIV jPower Reactive mm

RMSRMS 

 

Average Power 
 

On average, only the resistance in the RCL series circuit consumes power. The average rate of 

power consumption is given by 

 

2

rmsP I R  

 

The triangle at the right is useful to remember since one can quickly obtain the 

formulas that were derived above from it: 

Z 

R 

XL -  XC 
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 
2 2 L C

L C   and  tan
X X

Z X X R
R


      

 

also note that  2

rms rms rmscos   so that  cos  and cos  or cos
R

R Z P I Z P I I Z
Z
         from 

which we obtain 

 

rms rms cosP I V   

 

cos is called the power factor of the RCL circuit. 

 

Using the formula L Ctan
X X

R


   we make the following observations and definitions: 

If L C ,  0X X    and the circuit is said to have an inductive load. 

If L C ,  0X X    and the circuit is said to have a capacitive load. 

If L C ,  0X X    and the circuit is said to have a resistive load. 

 

Example 

 

A series RCL circuit has a 75.0  resistor, a 20.0 F capacitor and a 55.0 mH inductor connected 

across an 800 volt rms AC generator operating at 128 Hz. 

 

a. Is the load on the circuit inductive, capacitive or resistive? What is the phase angle ? 
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b. What is the rms current in the circuit? 

 

To answer this question we must determine the circuit’s impedance Z then use Irms = Vrms/Z: 
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c. Write the formula for the current in the circuit as a function of time. 
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 
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(t in seconds and i in amperes.) 

 

d. Find the rms voltage across each circuit element. 
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Question: Shouldn’t these voltages add to 800 V? 

Answer: No. One must take into account the phase of the voltage across each element. See part 

e. 

 

 

 

e. Find the instantaneous voltage across each circuit element at t = 0 seconds. 
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Question: Why do these voltages add to zero? 

Answer: Their sum is in agreement with Kirchhoff’s loop rule; the voltage across the generator 

is    sin  or  800 2sin 804 0 at 0 s.v V t v t t      

 

f. Find the average power delivered to the circuit by the generator. 
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The Limiting Behavior of Capacitors and Inductors 
 

Unlike a resistor, which has a constant resistance R independent of the ac frequency, capacitors 

and inductors have reactances that do depend on it. 

 

The inductive reactance is given by 

 

L 2X fL   

 

If f is large, so is XL, and the inductor acts almost like an open circuit. If f is small, so is XL, and 

the inductor acts almost like a short circuit.  

 

The voltage across the capacitor lags 

the current by 90. 

The voltage across the inductor leads 

the current by 90. 



L

R

Vr

Vgeff =  Vin VL = Vout

Frequency  =  f
 

 

This circuit can be regarded as a high-pass filter.  At very-high frequencies the inductor has a 

high reactance and acts almost like an open circuit.  Thus, the current is low, the voltage drop in 

the resistor is low, and Vout = Vin.  At very-low frequencies the inductor has a low reactance 

and acts like a short circuit.  The output voltage is virtually zero.  Hence, the circuit passes 

high-frequency AC voltages but stops low-frequency AC voltages. 

 

The capacitive reactance is given by 
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1

2
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fC
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If f is large, XC is small, and the capacitor acts almost like a short circuit. If f is small, XC is 

large, and the capacitor acts almost like an open circuit. 

 

C

R

Vr

Vgeff =  Vin Vc = Vout

Frequency  =  f
 

 

This circuit can be regarded as a low-pass filter.  At very low frequencies the capacitor has a 

high reactance and is almost like an open circuit.  Thus, the current is low, the voltage drop in 

the resistor is low, and Vout = Vin.  At very high frequencies the capacitor has a low reactance 

and acts like a short circuit.  The output voltage is virtually zero.  Hence this circuit passes low-

frequency AC voltages but stops high-frequency AC voltages. 

 

Example 

 

Suppose that an RC circuit (as shown in the last diagram above) is used in a crossover network 

in a 2-way stereo speaker. (A 2-way stereo speaker has a small speaker – a “tweeter” – for high 

frequencies and a large speaker – a “woofer” – for low frequencies. A crossover network in the 

speaker system directs low frequencies to the woofer and high frequencies to the tweeter). In 

the last diagram above Vin is the voltage supplied by the speaker output jacks of a stereo 

receiver; Vout is the voltage to be delivered to the woofer. If R is 30 ohms, find the capacitance 

C so that the amplitude of frequency 8,000 Hz is reduced to half its value at output. 
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Remark. The frequency whose amplitude is reduced to half by the crossover network is called 

the crossover frequency. In the above example 8,000 Hz is the crossover frequency. 

 

Example 

 

Estimate the impedance of the circuit shown at the left for a generator frequency of 

a. 1,000,000 Hz 

b. 0.001 Hz 

 

a. For a high frequency the inductors act like open circuits and the capacitor acts like a short 

circuit, effectively producing the circuit shown in the diagram on the next page. 

 

 

 

 

 

 

 

 
 
The impedance is now just the net resistance of the circuit. 

Since the resistors are in series, 

 

1 2;    1k 2k;    3 k ,    3 kR R R R R Z         

 

b. For a low frequency the inductors act as short circuits and the capacitor acts as an open 

circuit, effectively producing the circuit shown in the diagram below. 

 



The impedance is now just the net resistance of the circuit. Since the resistors are in parallel, 
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As the frequency of the AC generator is changed from very low values to very high values the 

impedance of the circuit will increase from the lower limit of 0.67 k to the upper limit of 3 

k. 

 

Note: The formula for impedance we found earlier, 

 
2 2

L CZ X X R   , does not apply to the given circuit 

in this example because the circuit elements are not 

connected in series! The formulas for the reactances, 

however, always apply. 

 

Electrical Resonance 
 

For an RCL series circuit the current amplitude is given by 
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where V is the voltage amplitude. If V , R, C, and L are fixed and the frequency of the AC generator 

is variable, we can change the reactances of the inductor and capacitor by changing the frequency 

of the generator. As the frequency of the generator changes, so does the impedance Z of the circuit 

and the current amplitude I. If we look at the above formula we see that Z can be minimized (made 

as small as possible) by making the reactances L C and X X equal to one another. The current 

amplitude I will then be maximized (made as large as possible). If these conditions are met, 

electrical resonance is said to occur in the circuit. The RCL series circuit is said to be at resonance. 

For resonance, 
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This value of f is called the resonant frequency of the RCL series circuit. At resonance the phase 

angle  is zero and the circuit has a resistive load. The power factor cos is 1 and maximum power 

is delivered to the circuit by the generator. At resonance the impedance Z equals the resistance R. 

 

Example 

 

An RCL series circuit is powered by an AC generator with rms voltage 200 V. 

20.0 ,  5.00 F,  200 mH.R C L      



 

a. Find the resonant frequency of the circuit. 
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b. Find the rms current at resonance. 
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200 V
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c. Find the average power delivered to the circuit at resonance. 

 

  rms rms;    10.0 A 200 V ;   2.00 kWP I V P P    

 

 

SINUSOIDAL STEADY STATE ANALYSIS 

Analyzing ac circuits usually requires three steps. 

Steps to analyze AC Circuits: 

1.  Transform the circuit to the phasor or frequency domain. 

2.  Solve the problem using circuit techniques (nodal analysis, mesh analysis, superposition, etc.). 

3.  Transform the resulting phasor to the time domain. 

 

 

NODAL ANALYSIS 

The basis of nodal analysis is Kirchhoff’s current law. Since KCL is valid for phasors, as 

demonstrated previously, we can analyze ac circuits by nodal analysis. The following examples 

illustrate this. 

Example: 

Find i x in the circuit shown using nodal analysis. 

 



1. Convert the circuit to the frequency domain and draw the equivalent circuit in the freq 

domain: 

 

 

 

 

Thus, the frequency-domain equivalent circuit is as shown 

 

 

 

 

2.  Now apply KCL at node 1 

 

 

 

 

At node 2 

 

But I x = V 1 / − j2.5. Substituting this gives 

 

Simplifying we get: 

11V 1 + 15V 2 = 0 

We now have two equations in V1 and V2.  We can solve this system of equations be substitution or 

using a matrix.  



 

 

The current I x is given by 

 

Transforming this to the time domain, 

i x = 7.59 cos(4t + 108.4◦) A 

 

 

MESH ANALYSIS 

Kirchhoff’s voltage law (KVL) forms the basis of mesh analysis.  The validity of KVL for ac 

circuits was shown previously and is illustrated in the following examples. 

Example: 

Determine current Io in the circuit below using mesh analysis. 

 

 

1.  Apply KVL to mesh 1 

 

 

Applying KVL to mesh 1, we obtain 

8I1 + j10*(I1-I3) –j2 *(I1 – I2) = 0 



(8 + j10 − j2)I1 − ( − j2)I2 − j10I3 = 0 

 

2. Apply KVL to mesh 2 

 

 

For mesh 2, 

(4 − j2 − j2)I2 − ( − j2)I1 − ( − j2)I3 + 20 , 90◦ = 0 

 

3.  Given that for mesh 3, I3 = 5, use this system of equations to solve for I1 and I2.   

 

 

 

(8 + j8)I1 + j2I2 = j50 

j2I1 + (4 − j4)I2 = − j20 − j10 

In matrix form as 

 

 

 

Since I0 = - I2 then we know I0.  

 

 

 

SUPERPOSITION THEOREM 

Since ac circuits are linear, the superposition theorem applies to ac circuits the same way it applies 

to dc circuits.  The theorem becomes important if the circuit has sources operating at different 

frequencies. In this case, since the impedances depend on frequency, we must have a different 

frequency-domain circuit for each frequency.  The total response must be obtained by adding the 



individual responses in the time domain. It is incorrect to try to add the responses in the phasor or 

frequency domain. 

Why? Because the exponential factor e
jωt

 is implicit in sinusoidal analysis, and that factor would 

change for every angular frequency ω. It would therefore not make sense to add responses at 

different frequencies in the phasor domain.  Thus, when a circuit has sources operating at different 

frequencies, one must add the responses due to the individual frequencies in the time domain. 

Example: 

Use superposition to find I0 in the circuit below: 

 

Let Io = Io’ + Io’’ 

where Io’ and Io’’  are due to the voltage and current sources, 

respectively. 

To find Io’, recall that we open circuit current sources and short circuit 

voltage sources.  Open circuiting the current source gives the circuit at 

right. If we let Z be the parallel combination of − j2 and 8 + j10, then 

 

And the current is  

 

To find Io’’, use circuit at right.  For mesh 1: 

(8 + j8)I 1 − j10I 3 + j2I 2 = 0 

For mesh 2, 

(4 − j4)I 2 + j2I 1 + j2I 3 = 0  

For mesh 3, 

I 3 = 5  

Substituting 

(4 − j4)I 2 + j2I 1 + j10 = 0 



Expressing I 1 in terms of I 2 gives 

I 1 = (2 + j2)I 2 − 5  

Substituting, we get 

(8 + j8)[(2 + j2)I 2 − 5] − j50 + j2I 2 = 0 

Solving for I2: 

 

The total current is then the sum of these two currents: 

 

SOURCE TRANSFORMATION 

Source transformation in the frequency domain involves transforming a voltage source in series 

with an impedance to a current source in parallel with an impedance, or vice versa.  As we go from 

one source type to another, we must keep the following relationship in mind: 

 

 

 

 

THEVENIN AND NORTON EQUIVALENT CIRCUITS 

Thevenin’s and Norton’s theorems are applied to ac circuits in the 

same way as they are to dc circuits. The only additional effort arises 

from the need to manipulate complex numbers. The frequency-

domain version of a Thevenin equivalent circuit is depicted in (a), 

where a linear circuit is replaced by a voltage source in series with 

an impedance. The Norton equivalent circuit is illustrated in (b), where a linear circuit is replaced 

by a current source in parallel with an impedance.  Keep in mind that the two equivalent circuits are 

related as 

VTh = ZNIN ,        ZTh = ZN 

just as in source transformation. V Th is the open-circuit voltage 

while I N is the short-circuit current. 



If the circuit has sources operating at different frequencies, the Thevenin or Norton equivalent 

circuit must be determined at each frequency.  This leads to entirely different equivalent circuits, 

one for each frequency, not one equivalent circuit with equivalent sources and equivalent 

impedances. 

Example: 

Find the Thevenin equivalent of the circuit as seen from 

terminals a-b. 

 

 

1. Redraw the circuit by combining series impedances: 

 

2. To find V Th , we apply KCL at node 1 to find I0.  Then apply KVL to the right hand loop. 

15 = I o + 0.5I o⇒ I o = 10 A 

Applying KVL to the loop, we obtain 

− I o (2 − j4) + 0.5I o (4 + j3) + V Th = 0 

or 

V Th = 10(2 − j4) − 5(4 + j3) = − j55 

Thus, the Thevenin voltage is 

V Th = 55, − 90◦V 

3. To find Zth, remove the independent source and connect an arbitrary fixed current source 

(In this case 3A since it makes the math easy) to terminals a and b and redraw the circuit: 

 

 

4. Now apply KCL at the node and KVL to the outer loop.  Find Zth as the ratio of the 

Voltage to the Current. 

 



At the node, KCL gives 

3 = I o + 0.5I o⇒ I o = 2 A 

Applying KVL to the outer loop gives 

V s = I o (4 + j3 + 2 − j4) = 2(6 − j) 

The Thevenin impedance is 

 

 

Resonance 

the expression for the series impedance goes to infinity at high frequency 

because of the presence of the inductor, which produces a large emf if the current 

varies rapidly. Similarly it is large at very low frequencies because of the 

capacitor, which has a long time in each half cycle in which to charge up. As we 

saw in the plot of Zseriesω above, there is a minimum value of the series 

impedance, when the voltages across capacitor and inductor are equal and 

opposite, ie vL(t) =  vC(t) so VL(t) = VC, so 

ωL = 1/ωC        so the frequency at which this occurs is 

 

where ωo and fo are the angular and cyclic frequencies of resonance, respectively. 

At resonance, series impedance is a minimum, so the voltage for a given current 

is a minimum (or the current for a given voltage is a maximum). 

 

 

This phenomenon gives the answer to our teaser question at the beginning. In an RLC 

series circuit in which the inductor has relatively low internal resistance r, it is possible to 

have a large voltage across the the inductor, an almost equally large voltage across 



capacitor but, as the two are nearly 180° degrees out of phase, their voltages almost cancel, 

giving a total series voltage that is quite small. This is one way to produce a large voltage 

oscillation with only a small voltage source. In the circuit diagram at right, the coil 

corresponds to both the inducance L and the resistance r, which is why they are drawn 

inside a box representing the physical component, the coil. Why are they in series? Because 

the current flows through the coil and thus passes through both the inductance of the coil 

and its resistance. 

You get a big voltage in the circuit for only a small voltage input from the power source. 

You are not, of course, getting something for nothing. The energy stored in the large 

oscillations is gradually supplied by the AC source when you turn on, and it is then 

exchanged between capacitor and inductor in each cycle.  

Bandwidth and Q factor 

At resonance, the voltages across the capacitor and the pure inductance cancel out, so the series 

impedance takes its minimum value: Zo = R. Thus, if we keep the voltage constant, the current is a 

maximum at resonance. The current goes to zero at low frequency, because XC becomes infinite 

(the capacitor is open circuit for DC). The current also goes to zero at high frequency because 

XL increases with ω (the inductor opposes rapid changes in the current). The graph shows I(ω) for 

circuit with a large resistor (lower curve) and for one with a small resistor (upper curve). A circuit 

with low R, for a given L and C, has a sharp resonance. Increasing the resistance makes the 

resonance less sharp. The former circuit is more selective: it produces high currents only for a 

narrow bandwidth, ie a small range of ω or f. The circuit with higher R responds to a wider range 

of frequencies and so has a larger bandwidth. The bandwidth Δω (indicated by the horiztontal bars 

on the curves) is defined as the difference between the two frequencies ω+ and ω- at which the 

circuit converts power at half the maximum rate. 

Now the electrical power converted to heat in this circuit is I
2
R, so the maximum power is 

converted at resonance, ω = ωo. The circuit converts power at half this rate when the 

current is Io/√2. The Q value is defined as the ratio 

Q  =  ωo/Δω. 

 



Complex impedance 

You have perhaps been looking at these phasor diagrams, noticing that they are all two-

dimensional, and thinking that we could simply use the complex plane. Good idea! But not 

original: indeed, that is the most common way to analyse such circuits. 

The only difference from the presentation here is to consider cosusoids, rather than 

sinusoids. In the animations above, we used sin waves so that the vertical projection of the 

phasors would correspond to the height on the v(t) graphs. In complex algebra, we use cos 

waves and take their projections on the (horizontal) real axis. The phasor diagrams have 

now become diagrams of complex numbers, but otherwise look exactly the same. They still 

rotate at ωt, but in the complex plane. The resistor has a real impedance R, the inductor's 

reactance is a positive imaginary impedance 

XL  =  jωL 

and the capacitor has a negative imaginary impedance 

XC  =  j.1/ωC  =  1/jωC. 

Consequently, using bold face for complex quantities, we may write: 

Zseries  =  (R2 + (jωL + 1/jωC)2)1/2 

and so on. The algebra is relatively simple. The magnitude of any complex quantity gives 

the magnitude of the quantity it represents, the phase angle its phase angle. Its real 

component is the component in phase with the reference phase, and the imaginary 

component is the component that is 90° ahead. 

BANDWIDTH 

 

 

 



 

 

 

As we see from the plot on Figure 2 the bandwidth increases with increasing R. Equivalently the 

sharpness of the resonance increases with decreasing R. For a fixed L and C, a decrease in R 

corresponds to a narrower resonance and thus a higher selectivity regarding the frequency range 

that can be passed by the circuit. As we increase R, the frequency range over which the dissipative 

characteristics dominate the behavior of the circuit increases. In order to quantify this behavior 

we define a parameter called the Quality Factor Q which is related to the sharpness of the peak 

and it is given by 

 

which represents the ratio of the energy stored to the energy dissipated in a circuit. The energy 

stored in the circuit is 

 

 

 



 

 

 The quality factor increases with decreasing R. 

 The bandwidth decreases with decreasing R. 

Problems 

 



 

 

 

 



 



 

 

 

 

 

 

 



Solve for the current through the 5 ohm resistor and the current through the 4V source 

using Node-Voltage Analysis. 

 

Now write KCL at each node (except the reference): 

KCL at V1: 

-5A + V1/5 + (V1-V2)/10 + [V1-(V2+4)]/10 = 0 

Note that there are four terms in the equation, one for each branch leaving the node. The 

terms list the current leaving right, down, left, and up. 

KCL at V2: 

(V2-V1)/10 + V2/2 - 2A + [V2-(V1-4)]/10 = 0 

Note that there are four terms in the equation, one for each branch leaving the node. The 

terms list the current leaving right, down, left, and up. 

Now gather terms (multiplying through by 10 to clear up the fractions): 

4V1 - 2V2 = 54 

-2V1 + 7V2 = 16 

Now solve the set of 2 equations with 2 unknowns. 

V1 = 17.08V 

V2 = 7.17V 

We can now determine the current through the 5 ohm by Ohm's law: 

I = V1/5 = 3.41A 

The current through the 4V source can be found as: 

I = [V1-(V2+4)]/10 = 0.59A 

Solve for the current through the 5 ohm resistor and the voltage over the 3A source 

using Node-Voltage Analysis. 



 

Now write KCL equations for each node except the reference, in terms of the node 

voltages: 

KCL at V1: 

-3A + (V1-V2)/5 + (V1-V3)/1 = 0 

KCL at V2: 

(V2-V1)/5 + V2/3 + (V2-V3)/2 =0 

KCL at V3: 

(V3-V2)/2 + (V3-V1)/1 - 8A = 0 

Now gather terms and clear up the fractions: 

6V1 - V2 - 5V3 = 15 

-6V1 + 31V2 - 15V3 =0 

-2V1 -V2 +3 V3 = 16 

Finally, solve the 3 equations in 3 unknowns. 

V1 = 48.625V 

V2 = 33 V 

V3 = 48.75V 

The current through the 5 ohm resistor can be found by Ohm's law: 

I = (V1 - V2)/5 = 3.125A 

The voltage over the 3A source is simply V1, or 48.625V. 

Solve for the current ix flowing right through the 4 ohm resistor using Mesh-

Current Analysis. 

 

Label each mesh (window pane) with a mesh current. Then write the KVL 

equations for each pane. Note that we were forced to label the voltage over the 

current source (Vx) in order to write the voltage term there: 



 

We now have an extra unknown (Vx), so we need another equation. It is found 

be relating the two mesh currents to the current source. 

 

Note that i1 is positive because it is in the same direction of the source. I2 is 

negative because it is in the opposite direction as the source. 

Now solve the three equations in three unknowns. I1 is found to be -320mA. 

Since ix is in the opposite direction of i1, then ix = 320mA. 

In the circuit shown below 

Ri = 100 ohm, R1 = 20 ohm, R2 = 12 ohm, L = 10 uH, C = 0.3 nF, vS(t)=50cos(t) 

V, iS(t)=1cos(t+30°) A, f=400 kHz.  

Notice that both sources have the same frequency: we will only work in this 
chapter with sources all having the same frequency. Otherwise, superposition must 
be handled differently. 

Find the currents i(t) and i1(t) using the superposition theorem. 

 

Let's use TINA and hand calculations in parallel to solve the problem. 

First substitute an open circuit for the current source and calculate the complex 
phasors I', I1' due to the contribution only from VS. 

The currents in this case are equal:  

I' = I1' = VS/(Ri + R1 + j**L) = 50/(120+j2**4*105*10-5) = 0.3992-

j0.0836 

I' = 0.408 ej 11.83
 A 

https://tinacloud.com/tinademo/tina.php?url=http://www.tina.com/English/tina/course/21super/super1.TSC


 

Next substitute a short-circuit for the voltage source and calculate the complex 
phasors I'', I1'' due to the contribution only from IS. 

 

In this case we can use the current division formula: 

 

I'' = -0.091 - j 0.246 A 

and 

 

I1
" = 0.7749 + j 0.2545 A 

The sum of the two steps: 

I = I' + I" = 0.3082 - j 0.3286 = 0.451 e- j 46.9 A 

I1 = I1
" + I1' = 1.174 + j 0.1709 = 1.1865 ej 8.28 A  

These results correspond well with the values calculated by TINA: 



 

The time functions of the currents:  

i(t) = 0.451 cos (t - 46.9) A 

i1(t) = 1.1865 cos (t + 8.3) A 

Find the current in R using the superposition theorem. Assume the  internal source 

impedances are zero. 

 

 

 

 



 

 

 

 



 

For the circuit in Figure, determine Zth, as seen by RL. 

 

Solution: 

Replace the voltage source with its internal resistance. 

 

 



 

Using Norton’s theorem, determine the current through RL.

 

Solution: 

Short the terminal AB as shown below. 

 

 

In the following circuit, calculate the power delivered to the load for each of the following 

frequencies 10 kHz, 30 kHz, 50 kHz, 80 kHz, and 100 kHz. 



 

Solution: 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 
UNIT- IIITransient Analysis 

 

Preliminary definitions: 

Total Response = natural response + forced response 

Natural response: solution of equation of motion of the system when the excitation is zero.  The 

expression for natural response contains constants. 

Forced response: any solution of equation of motion of the system for non zero excitation. 

If the natural response tends to zero when time tends to infinity and the limit of the forced response 

as time goes to infinity exists and is bounded (not infinite), then the limit is called steady state  

response. 

Transient response: Processof going from initial state to steady state. 

 

 

Transient response is due to both the application of the force and the non zero initial conditions  

Steady 

state 

                                                          Transient Response 



Transient response of RC, RL and RLC circuits to excitation by DC and exponential sources  

 

The RL Series Circuit 

The voltage as a function of time across an inductor in an RL series circuit is 

observed on an oscilloscope and compared to the theoretically calculated plot when the 

parameters of the circuit are known. When a square wave generator is connected to an 

inductor and resistor in series, the circuit looks as shown in Figure 1. The inductor in the 

circuit has an inductance L and resistance RL, the generator has an output 

resistanceRG,and the additional resistance from a resistance box is R.The square wave 

generator acts like a battery switching into the circuit with a voltage 6 then shorting out 

periodically. 

 

 



 

 

 

 

 

 



 

 

First-Order RC Circuits 
• Used for filtering signal by blocking certain frequencies and passing others. e.g. low-

pass filter  
• Any circuit with a single energy storage element, an arbitrary number of sources and 

an arbitrary number of resistors is a circuit of order 1. 
• Any voltage or current in such a circuit is the solution to a 1st order differential 

equation. 
 

 
 

 

 

 

 

 

 

 

 

 

RC DECAY 
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Problems: 

Calculate the RC time constant, τ of the following circuit. 



 
The time constant, τ is found using the formula T = R x C in seconds. 

 

Therefore the time constant τ is given as: 

      T = R x C = 47k x 1000uF = 47 Secs 

  

  

a) What value will be the voltage across the capacitor at 0.7 time constants? 

        At 0.7 time constants ( 0.7T ) Vc = 0.5Vs. Therefore, Vc = 0.5 x 5V = 2.5V 

  

b) What value will be the voltage across the capacitor at 1 time constant? 

        At 1 time constant ( 1T ) Vc = 0.63Vs. Therefore, Vc = 0.63 x 5V = 3.15V 

  

c) How long will it take to “fully charge” the capacitor? 

        The capacitor will be fully charged at 5 time constants. 

  

        1 time constant ( 1T ) = 47 seconds, (from above). Therefore, 5T = 5 x 47 = 235 secs 

  

d) The voltage across the Capacitor after 100 seconds? 

        The voltage formula is given as Vc = V(1 – e
-t/RC

) 

  

        which equals: Vc = 5(1-e
-100/47

)    RC = 47 seconds from above, Therefore, Vc = 4.4 

volts 

  

We have seen that the charge on a capacitor is given by the expression: Q = CV and that 

when a voltage is firstly applied to the plates of the capacitor it charges up at a rate 

determined by its time constant, τ. In the next tutorial we will examine the current-voltage 

relationship of a discharging capacitor and look at the curves associated with it when the 

capacitors plates are shorted together. 

 

 



Calculate the RC time constant, τ of the following RC discharging circuit. 

 
The time constant, τ is found using the formula T = R x C in seconds. 

 

Therefore the time constant τ is given as: 

      T = R x C = 100k x 22uF = 2.2 Seconds 

  

  

a) What value will be the voltage across the capacitor at 0.7 time constants? 

        At 0.7 time constants ( 0.7T ) Vc = 0.5Vc. Therefore, Vc = 0.5 x 10V = 5V 

  

b) What value will be the voltage across the capacitor after 1 time constant? 

        At 1 time constant ( 1T ) Vc = 0.37Vc. Therefore, Vc = 0.37 x 10V = 3.7V 

  

c) How long will it take for the capacitor to “fully discharge” itself, (equals 5 time 

constants) 

        1 time constant ( 1T ) = 2.2 seconds. Therefore, 5T = 5 x 2.2 = 11 Seconds 

 



Example A Dc  voltage of 100 volts is applied to a series RL circuit with R=25ohm. 

What is the current in the circuit aat twice the time constant? 

E= 100 V  

R= 25Ω 

i(t) = 
𝐸

𝑅
(1 − 𝑒−

𝑅

𝐿
𝑡) 

time constant  𝜏= L/R 

i(t) = 
𝐸

𝑅
(1 − 𝑒−

𝑡

𝜏)            Given t= 2τ 

therefore   i(t) = 
100

25
(1 − 𝑒−

2𝜏

𝜏 )           = 4(1 − 𝑒−2)         = 3.45 A 

 

Example find the expression for transient after switched is closed at t= 0 assuming 

zero initial conditions 

 

Applying KVL for the Loop  

2𝑖(𝑡) + 5
𝑑𝑖(𝑡)

𝑑𝑡
= 20  

Taking Laplace on both sides 

2𝐼(𝑠) + 5(𝑠𝐼(𝑠) − 𝑖(0)) =
20

𝑠
 

Since i(0) = 0 

We have    

2𝐼(𝑠) + 5𝑠𝐼(𝑠) =
20

𝑠
 

(2 + 5𝑠)𝐼(𝑠) =
20

𝑠
 



𝐼(𝑠) =
20

𝑠(2 + 5𝑠)
 

𝐼(𝑠) =
4

𝑠(𝑠 + 0.4)
 

Taking partial fraction  

𝐼(𝑠) =
4

𝑠(𝑠 + 0.4)
  =  

𝐴

𝑠
+

𝐵

𝑠 + 0.4
=    

10

𝑠
−

10

𝑠 + 0.4
 

𝐼(𝑠) =
10

𝑠
−

10

𝑠 + 0.4
 

Taking inverse we get  L
-1

 [I(s) ] = i(t) =  10 – 10 e
-0.4t 

 

 

Example find the expression for transient voltage across R and L after switch is closed 

at t= 0 assuming initial current through inductor as 3A before it is closed 

 

Applying KVL for the Loop  

20𝑖(𝑡) + 5
𝑑𝑖(𝑡)

𝑑𝑡
= 100 

Taking Laplace on both sides 

20𝐼(𝑠) + 5(𝑠𝐼(𝑠) − 𝑖(0)) =
100

𝑠
 

Since i(0) = 3A 

We have    

20𝐼(𝑠) + 5𝑠𝐼(𝑠) − 15 =
100

𝑠
 



(20 + 5𝑠)𝐼(𝑠) =
100

𝑠
+ 15 

𝐼(𝑠) =
100 + 15𝑠

5𝑠(4 + 𝑠)
 

𝐼(𝑠) =
20 + 3𝑠

𝑠(𝑠 + 4)
 

Taking partial fraction  

𝐼(𝑠) =
20 + 3𝑠

𝑠(𝑠 + 4)
  =  

𝐴

𝑠
+

𝐵

𝑠 + 4
=    

5

𝑠
−

2

𝑠 + 4
 

𝐼(𝑠) =
5

𝑠
−

2

𝑠 + 4
 

Taking inverse we get  L
-1

 [I(s) ] = i(t) =  5 – 2 e
-4t

  Amps 

Voltage across Resistor ER=  20 x (5 – 2 e
-4t

  )  = 100 – 40 e
-4t

  Volts 

Voltage across Inductor   eL = L  di/dt 

   𝑒𝐿 = 5 
𝑑

𝑑𝑡
(5 − 2 𝑒−4𝑡) 

𝒆𝑳 = 𝟒𝟎 𝒆−𝟒𝒕 𝑽𝒐𝒍𝒕𝒔 

 

Example :  In the Circuit shown below switch S is in Position 1 for a long time and 

brought to position 2 at time t = 0 . determine the circuit current. 

 

After closing the switch to position 2 and applying the KVL equation  

5𝑖(𝑡) + 2
𝑑𝑖(𝑡)

𝑑𝑡
= 10  

Taking Laplace on both sides 



5𝐼(𝑠) + 2(𝑠𝐼(𝑠) − 𝑖(0)) =
10

𝑠
 

I(0) is the initial current in L. Since inductor does not allow sudden change in current it’s 

the steady state current flowing before switch comes to position 2.  

i.e. i(0) = 50 /5  = 10 A 

 

therefore we get  

5𝐼(𝑠) + 2𝑠𝐼(𝑠) − 2𝑥10 =
10

𝑠
 

(2𝑠 + 5)𝐼(𝑠) =
10

𝑠
+ 20 

𝐼(𝑠) =
20𝑠 + 10

𝑠(2𝑠 + 5)
 

Taking partial fraction  

𝐼(𝑠) =
20𝑠 + 10

𝑠(2𝑠 + 5)
  =  

𝐴

𝑠
+

𝐵

2𝑠 + 5
=    

2

𝑠
+ 

8

𝑠 + 2.5
 

𝐼(𝑠) =
2

𝑠
+  

8

𝑠 + 2.5
 

Taking inverse we get  L
-1

 [I(s) ] = i(t) =  2+8 e
-2.5t

  Amps 

 

 

Example  the 20 uF capacitor in the circuit has an intial charge of Q=0.001 C as 

shown . the switch is closed at t=0. Find the transient. 

 

 

The differential equation of the circuit is given by  

100 𝑖 +  
1

𝐶
∫ 𝑖 𝑑𝑡 −  

𝑄

𝐶
= 50  

100 𝑖 +  
1

𝐶
∫ 𝑖 𝑑𝑡 = 50 +

0.001

20 × 10−6
 



100 𝑖 +  
1

𝐶
∫ 𝑖 𝑑𝑡 = 100 

Taking Laplace on both sides       100 𝐼 (𝑠)  +  
1

𝐶

𝐼(𝑠)

𝑠
=

100

𝑠
 

(100  +  
1

𝐶𝑠
)𝐼(𝑠) =

100

𝑠
 

 𝐼 (𝑠)  =
1

𝑠 +
1

100𝐶

 

Taking inverse transform 

           i(t) = e
(-1/100C) t 

C=20uf       therefore   i(t) = e
-500t

 

EXAMPLE 

Switch moves from position 1 to 2 at t=0. Find the energy dissipated across the two 

resistors 

 

Applying KVL in the loop after the switch is closed  

500 𝑖 +  
1

𝐶
∫ 𝑖 𝑑𝑡 = 100  

Taking Laplace 

500 𝐼(𝑠)  +  
𝐼(𝑠)

𝐶𝑠
= 100 /𝑠 



(500 +  
1

 𝐶𝑠
) 𝐼(𝑠)   =

100

𝑠
 

𝐼(𝑠)   =
100

500𝑠 +
1

𝐶

 

𝐼(𝑠)   =
0.2

𝑠 + 20
 

Taking inverse we get i(t) = 0.2e
-20t

 

The energy dissipated in the resistors 

𝐸 = ∫ 𝑖2𝑅𝑑𝑡
∞

0

 

𝐸 = ∫ (0.2𝑒−20𝑡)2500 𝑑𝑡
∞

0
= ∫ 20𝑒−40𝑡 𝑑𝑡

∞

0
 = 0.5 J 

 

EXAMPLE 

For the circuit shown below, find the charge on the capacitor and the current in the circuit 

0.03 s after the switch is closed. 

 

 
 



 

 

 

EXAMPLE  find the current in the circuit when the switch is closed at t= 0. 

 

Applying KVL  
 

2 𝑖 +
𝑑𝑖

𝑑𝑡
+

1

𝐶
∫ 𝑖 𝑑𝑡 = 100  

Taking Laplace Transform  2𝐼(𝑠) + 𝑠𝐼(𝑠) +
𝐼(𝑠)

𝑠
=

100

𝑠
 

𝐼(𝑠)(2 + 𝑠 +
1

𝑠
) =

100

𝑠
 

𝐼(𝑠) =
100

𝑠2 + 2𝑠 + 1
 

𝐼(𝑠) =
100

(𝑠 + 1)2
 

Taking inverse on both sides , we get 

    i(t)  =     100 t e
-t
    Amps 



Example  

Find the current i(t)     assuming no initial charges 

 

Applying KVL  

100 𝑖 +
1

25𝑢
∫ 𝑖 𝑑𝑡 = 200 sin 500𝑡 

Taking Laplace transform  

100𝐼(𝑠) + 40000
𝐼(𝑠)

𝑠
 =   200  

500

𝑠2 +  5002
 

𝐼(𝑠)[100 +
40000

𝑠
] =   

100000

𝑠2 +  5002
 

𝐼(𝑠) =     
100000

(𝑠2 +  5002)(100 +
40000

𝑠
)
 

𝐼(𝑠) =     
1000 𝑠

(𝑠2 + 5002)(𝑠 + 400) 
 

Taking partial fraction 

1000 𝑠

(𝑠2 +  5002)(𝑠 + 400) 
=    

𝐴

(𝑠 + 400)
+

𝐵

𝑠 + 𝑗500
+

𝐶

𝑠 − 𝑗500
 



A= -0.96                         B = 
5(4+𝑗5)

41
                      C = 

5(4−𝑗5)

41
 

 

Therefore i(t) = -0.976 e
-400t

+ 1.546  sin(500t+38.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
UNIT- IV   MAGNETICALLY COUPLED CIRCUITS 

 

Self-Inductance 

A current-carrying coil produces a magnetic field that links its own turns. If the current in the coil 

changes the amount of magnetic flux linking the coil changes and, by Faraday’s law, an emf is 

produced in the coil. This emf is called a self-induced emf. 

Let the coil have N turns. Assume that the same amount of magnetic flux  links each turn of the 

coil. The net flux linking the coil is then N. This net flux is proportional to the magnetic field, 

which, in turn, is proportional to the current I in the coil. Thus we can write NI. This 

proportionality can be turned into an equation by introducing a constant. Call this constant L, the 

self-inductance (or simply inductance) of the coil: 

  or  
N

N LI L
I


    

As with mutual inductance, the unit of self-inductance is the henry. 

 

The self-induced emf can now be calculated using Faraday’s law: 

 



   N LI I
N L

t t t t

I
L

t

   
       

   


 



E

E

 

 

The above formula is the emf due to self-induction. 

Example 

 

Find the formula for the self-inductance of a solenoid of N turns, length l, and cross-sectional area 

A. 

 

Assume that the solenoid carries a current I. Then the magnetic flux in the solenoid is 

 

0 0

2
2

0 0

.  

  or   where .

(Note how   is independent of the current .)

NI N N NI
A L A

l I I l

N N
L A L n Al n

l l

L I


     

      

Mutual Inductance 

Suppose we hook up an AC generator to a solenoid so that the wire in the 

solenoid carries AC. Call this solenoid the primary coil. Next place a second 

solenoid connected to an AC voltmeter near the primary coil so that it is 

coaxial with the primary coil. Call this second solenoid the secondary coil. See 

the figure at the right. 

The alternating current in the primary coil produces an alternating magnetic 

field whose lines of flux link the secondary coil (like thread passing through 

the eye of a needle). Hence the secondary coil encloses a changing magnetic 

field. By Faraday’s law of induction this changing magnetic flux induces an 

emf in the secondary coil. This effect in which changing current in one circuit induces an emf in 

another circuit is called mutual induction. 

Mutual Inductance 

 

Consider the circuit shown in fig. 8.1, the changing current produces a variable flux in the 

first coil. For the purpose of analysis, is divided into two components 

 



 

 

 

If the permeability is constant, the above equation becomes 

 

Suppose that the second coil is connected to a voltage source. Let i2 be the current flow 

and 42 be the total flux. 

 

 

In equations (10 & 13) M is called mutual inductance. 

Definition for Mutual Inductance 

The mutual inductance between 2 coils is defined as the weber turns in one coil per ampere 

current in other coil. It is measured in henrys. 
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The mutual inductance is also defined as the ability of one coil to produce e.m.f. in other 

coil by induction when the current in the first changes. 

Coefficient of coupling (K) or coefficient of magnetic coupling (KM). 

Consider the fig. 8.1, the fraction of the total flux produced by coil 1 linking coil 2 is 

 

 It is called coefficient of coupling. Thus 

 

Multiplying equations (10) & (13), we get 

 

From equation (16), we write that, 

 

From the above expression, we can say that 
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are in geometric progression. 

 

COUPLING COEFFICIENT 

 

Coupling 

Important- voltage is multiplied or divided directly by the transformer ratio, but impedance is 

multiplied or divided by the ratio squared. Remember that transformers are frequency and level 

sensitive, and that measurement conditions should match operating conditions for accurate results. 

For mutual inductance, measure the inductance of the primary and secondary in series, and then 

interchange the connections of one winding for a second reading. Apply the equation below: 

   seriesseries LLM
4

1
 

For coupling, measure the primary and secondary separately then apply the equation below: 

spLL

M
k   

k is the coefficient of coupling, zero to one. 
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DOT RULE  

A current entering the dotted terminal of one coil produces an open circuit voltage with a positive 

voltage reference at the dotted terminal of the second coil. 
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Example   : 0  andA  45sin5  If 12  iti  Apply dot convention , M creates a negative potential at 

the dot position of the primary mesh 

 

 

 
 

Apply dot convention , M creates a negative potential at the dot position of the secondary mesh 

 

 

 

 

 
 

  

 

 

 

 

 

 

 

Coupled Circuitsand v ~ i relationship 

 

V 45cos45045cos45522
1 tt

dt

di
Mv 

0  andA  8  If 21   iei t

      tt ee
dt

di
Mv   161821

2

dt

di
M

dt

di
Lv

dt

di
M

dt

di
Lv

12
22

21
11





dt

di
M

dt

di
Lv

dt

di
M

dt

di
Lv

12
22

21
11





dt

di
M

dt

di
Lv

dt

di
M

dt

di
Lv

12
22

21
11







 
 

Example 1.  

V20 1000t

s eV 
 

 
 

 
 

 

Example 2.  

 



 

Mesh 1 : 

    0275 232111  IIjIIjIV  
 

Mesh 2 : 

 

        026
1

27 123223212  IIjIIjI
j

IIjIIj  



 

Mesh 3 :
    0326 32123  IIIjIIj  

 

 

 

Transformer 

 

 
 

In the equivalent network, mutual inductance no longer exists. And the dot convention has 

been removed, and    are also treated as self-inductance. 

 

 

 

 

 

 

 

 

Example 3.  

 

Let  



 

 

 
 

 

 

 



Analysis of multi winding coupled circuits  

For more windings the flux in each coil are 

 

 

 

 

 

 

 

 
 

Are mutual inductances. 

 

 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

  
Analysis of Coupled Circuits 

Consider the coupled circuits. 
Each circuit contains a voltage source. As both currents i1 and i2 enter the coils through the dotted ends, M is 

taken as positive. By applying KVL, the two loop equations may be written as below : 

 

 

 

In the sinusoidal steady state the above equations become, 

1 11 1 12 2 13 3 ..L I L I L I    

2 21 1 22 2 23 3 ..L I L I L I    

3 31 1 32 2 33 3 ..L I L I L I    

12 21 13 31 23 32, ,L L L L L L  
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

333231

232221

131211
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1
1

d
v

dt




+

-
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2
2

d
v
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


3
3

d
v

dt






 

 

   
In the matrix form, the last two equations may be written as, 

 
The equations (21) & (22) may be written as 

 
The coupled circuit of fig. 8.2 may be now re-drawn as in fig. 8.3. It is called conductively 

coupled equivalent circuit of the mutually coupled circuit. It is so called because of the 

common conducting element M. 
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Series, Parallel connection of coupled inductors  

Series connection 

 
 

Parallel Connection  

 

 
 

Combination of Conductively Connected Mutually Coupled Coils 

Consider two coils of self inductances L1 and L2. Let M be the mutual inductance between 

them. These two coils can be connected in the following two ways : 

1. Series connection,  

2. Parallel connection 

Again, series connection can be (a) series aiding or cumulative and (b) series opposition or 

differential. Similarly, the parallel connection can be (a) parallel aiding or cumulative and 

(b) parallel opposition or differential. 



 

1. (a) Series connection (aiding) 

Refer fig. 8.7 (a), the current is entering both the coils at the dotted terminal. So, it is called 

series aiding combination. For this circuit, we can write that 

 

Let La be the equivalent inductance of the combination shown in fig. 8.7 (a), 

 

From equations (26) & (27), we can obtain that, 

 

(b) Series Opposition : (bucking) 

Refer fig. 8.7 (b), the current is entering first coil at dotted terminal and leaving the other 

coil at dotted terminal. So the mesh equation for this circuit is 
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Let Lb be the equivalent inductance of the combination shown in fig. 8.7 (b), 

 

From equations (29) & (30), we find that 

 

[Note : Equivalent inductance in the series aiding combination is more than that in series 

opposing combination by an amount = 4M.] 

2. (a) Parallel Combination (aiding) :  

 

Here, both the currents it and i2 enter the coils at the dotted terminals. Then, the equations 

are 

 

Assume that the excitations are sinusoidal for convenience. Then, the above equations can 

be written as 
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Solving above equations for II and 12, we get 

 

Therefore, the total current 

 

Therefore, the input impedance 

 

 

Let La be the equivalent of the combination of inductances then 

 

From equations (36) & (37), we write that 

 

(b) Parallel Opposition 

Let Lb be the equivalent inductance in this case, by derivation, we can get that 

 

Note :On observing equations (38) and (39), we can conclude that the equivalent 

inductance in the parallel aiding is more than that in parallel opposition. It is because the 

denominator of equation (38) is less than that of equation (39) 
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 SINGLE TUNED AND DOUBLE TUNED COUPLED CIRCUITS 

 
Single Tuned Coupled Circuits 

Consider the circuit shown in the fig. 8.15. A parallel resonant circuit on the secondary is 

inductively coupled to coil 1. This coil 1 is excited by a source Eg. Let Rg be the source resistance. 

Let R1, R2 be the resistances of coils 1 and 2 respectively and let L , L2 be the self-inductances of 

the coils 1 and 2 respectively. 

 

Assume that Rg >> R1 >> jcoLi i.e., Ignore R1 and jo3L1 in 

comparison with Rg. 

Then, the mesh equations are 

 

Solving equations (i) & (ii), we get  
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When the secondary side is tuned i.e., when the values of the frequency co, is such that 

 

From equation (iii) the current I2 at resonance is obtained by putting 

 

and replacing 

 

Therefore I2 at resonance. 

 

From equations (vi) and (viz) it is observed that at resonance frequency E0, 12 and A depend on M. 

The maximum value of E0 or A dE0 depends upon M. To get the condition for maximum Eo, 
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From this, on simplification, we get 

 

the output voltage is maximum. 

Therefore, maximum output voltage 

 

Maximum amplification 

 

Maximum value of current 

 

These maximum values are obtained by substituting 

 

in expressions E0, A, and 12 at resonance. 

We know that 

 

By changing the coupling factor K, we can vary M. The variation of amplification factor or output 

voltage with the coefficient of the coupling is shown in the fig. 8.16. 
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Double Tuned Coupled Circuits 

Double tuned circuits are generally parallel fed in the primary but it is simpler to consider the series 

fed circuit. 

For the circuit shown in the fig., we consider, a special case where the primary and secondary 

resonate at the same frequency, 

 

 

The mesh equations are : 
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From equations (ii) and we get 

 

 At resonance, 

 

Hence, at resonance current 

 

Hence, output voltage 

 

 

The maximum value of A or the maximum value of Eo can be obtained by taking the first 

derivative of A or E0 with respect to M and equating it to 0. 
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Mc is the critical value of mutual inductance. The maximum values of E0 and I2 are obtained by 

substituting the value of Mc in equations of Eo and I2. 

From definition, 

 

the coefficient of coupling K at M = Mc is called the critical coefficient of coupling. It is given by 

 

The critical coupling causes i2 to have the maximum possible value. At resonance, the maximum 

value of A is obtained by changing M, or by changing the coupling coefficient for given values of 

L1 and L2. 
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PROBLEMS 

 

1. Find I1 and I2 of the circuit for K=1. 

 
Given K= 1  

  therefore M = √L1L2  that is   

 
 

 

 

 
 

2. Find the equivalent inductance of the three inductors using dot rule. 



 

 

 

3. For the given circuit fing K and the voltage across the 1 ohm resistor. 

 

Ans:  

 

 



4. For the given citcuit find Vout if Vin(t) = 10cos(377t)  and the value of K=0.8 

 

 

Form the value of K=0.8 we can get  

 

The in put can be written as  

 

The circuit can be redrawn as 

 

 

Due to open circuit I2  = 0 

Therefore (5+j5) I1 = 10  and   Vout = j 13 I1 clearly  

 

In the time domain it can be written as  



 

Vout = 13√2 cos(377 t + 45)  Volts 

 

 

 

 

UNIT -V 
Network Topology: Network terminology - Graph of a network - Incidence and reduced incidence 

matrices – Trees –Cutsets - Fundamental cutsets - Cutset matrix – Tiesets – Link currents and 

Tieset schedules -Twig voltages and Cutset schedules, Duality and dual networks. 

 

Graph(orlineargraph):Anetworkgraphisanetworkinwhichallnodesandloopsarere- 

tainedbutitsbranchesarerepresentedbylines.Thevoltagesourcesarereplacedbyshortcircuits 

andcurrentsourcesarereplacedbyopencircuits.(Sourceswithoutinternalimpedancesorad- 

mittancescanalsobetreatedinthesamewaybecausetheycanbeshiftedtootherbranchesby 

E-shiftand/orI-shiftoperations.) 

Branch:Alinesegmentreplacingoneormorenetworkelementsthatareconnectedinseriesor 

parallel. 

Node:Interconnectionoftwoormorebranches.Itisaterminalofabranch.Usuallyintercon- 

nectionsofthreeormorebranchesarenodes. 
 

Path:Asetofbranchesthatmaybetraversedinanorderwithoutpassingthroughthesamenode 

morethanonce. 
 

Loop:Anyclosedcontourselectedinagraph. 
 

Mesh:Aloopwhichdoesnotcontainanyotherloopwithinit. 
 

Planargraph:Agraphwhichmaybedrawnonaplanesurfaceinsuchawaythatnobranch 

passesoveranyotherbranch. 
 

Non-planargraph:Anygraphwhichisnotplanar. 
 

Orientedgraph:Whenadirectiontoeachbranchofagraphisassigned,theresultinggraphis 

calledanorientedgraphoradirectedgraph. 
 

Connectedgraph:Agraphisconnectedifandonlyifthereisapathbetweeneverypairofnodes. 
 

Subgraph:Anysubsetofbranchesofthegraph. 
 

Tree:Aconnectedsub-graphcontainingallnodesofagraphbutnoclosedpath.i.e.itisaset 

ofbranchesofgraphwhichcontainsnoloopbutconnectseverynodetoeveryothernodenot 

necessarilydirectly.Anumberofdifferenttreescanbedrawnforagivengraph. 
 

Link:Abranchofthegraphwhichdoesnotbelongtotheparticulartreeunderconsideration. 

Thelinksformasub-graphnotnecessarilyconnectedandiscalledtheco-tree. 
 

Treecompliment:Totalityoflinksi.e.Co-tree. 
 

Independentloop:Theadditionofeachlinktoatree,oneatatime,resultsoneclosedpathcalled 

anindependentloop.Suchaloopcontainsonlyonelinkandothertreebranches.Obviously,the 

numberofsuchindependentloopsequalsthenumberoflinks. 
 

Tieset:Asetofbranchescontainedinaloopsuchthateachloopcontainsonelinkandthe 



 
 

 

  
 

 
 

 
 

 

 

remainderaretreebranches. 
 

Treebranchvoltages:Thebranchvoltagesmaybeseparatedintotreebranchvoltagesandlink 

voltages.Thetreebranchesconnectallthenodes.Thereforeifthetreebranchvoltagesareforced 

tobezero,thenallthenodepotentialsbecomecoincidentandhenceallbranchvoltagesareforced 

tobezero.Astheactofsettingonlythetreebranchvoltagestozeroforcesallvoltagesinthe 

networktobezero,itmustbepossibletoexpressallthelinkvoltagesuniquelyintermsoftree 

branchvoltages.Thustreebranchformanindependentsetofequations. 
 

Cutset:Asetofelementsofthegraphthatdissociatesitintotwomainportionsofanetworksuch 

thatreplacinganyoneelementwilldestroythisproperty.Itisasetofbranchesthatifremoved 

dividesaconnectedgraphintotwoconnectedsub-graphs.Eachcutsetcontainsonetreebranch 

andtheremainingbeinglinks. 

Fig.2.1showsatypicalnetworkwithitsgraph,orientedgraph,atree,co-treeandanon-planar graph. 

 

 

 

 

 

 
 

 
  

Figu
re2.

1 
 
 
Relationbetweennodes,links,andbranches 

Let B=Totalnumberofbranchesinthegraphornetwork 

N=totalnodes 

L=linkbranches 

ThenN−1branchesarerequiredtoconstructatreebecausethefirstbranchchosenconnects 

twonodesandeachadditionalbranchincludesonemorenode. 

Thereforenumberofindependentnodepairvoltages=N−1=numberoftreebranches. 
ThenL=B−(N−1)=B−N+ 1  

Numberofindependentloops=B−N+ 1  
 

 



Proposition: Consider a directed graph containing n nodes and e links. When any tree is chosen, the 

number of branches is: b = n-1; 

– the number of cords is: l = e-n+1; 

– the number of fundamental circuits is: m = e-n+1; 

– the number of fundamental cuts is: c = n-1; 

– the chosen orientation  

– of a circuit: that of the associated cord; 

– Of a cut: that of the associated branch. 

Figures 1 illustrate the concepts on the graph. Figures 1a, b, c, and d respectively show the network 

representation by a directed graph, a tree with cords and branches, fundamental circuits, and 

fundamental cuts. 

 

 

Figure 1a Representation of a network by a directed graph. 

 

 

 

 

 

 

 

Figure 1b Tree with branches (1-4), and cords (5-7). 

 

 

 

 

 

 

Figure 1c Fundamental circuits (E, F, G). 
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Figure 1d Fundamental cuts (A, B, C, D). 

Starting from a description of the network by a unifilar diagram and extraction of the graph which 

is the topological representation, it is possible to seek by specialized algorithms possible trees and 

associated cords, branches and circuits. As will be seen in the sections that follow, this description 

will allow the derivation of the network equations. 

Matrix representation of networks 

The formulation of the equations of network is based on the definition of a coherent and exact 

mathematical model which describes the characteristics of the individual components (machines, 

lines, transformers, loads) and the interconnection between these components. The matrix equation 

is a suitable model adapted to the mathematical treatment and processing under a systemic aspect. 

The matrix elements can be either impedances (when node voltages are written in terms of injected 

currents), or admittances (when injected currents are written in terms of node voltages). 

Network Matrices 

The network can be described by three types of matrices: 

 Elementary matrices (or primitive): these matrices describe the individual components 

by taking into account, if necessary, their electromagnetic (capacitive and inductive) 

couplings for lines having common or partial right-of-ways. They are of diagonal 

structure except for the components whose coupling is represented by non-diagonal 

elements; 

 Incidence matrices: these matrices describe the interconnections between the various 

components of the network. The terms of these matrices are binary digits 1, 0, - 1, 

which represent the bond between branches and nodes of the network with their 

orientation; 

 Transfer matrices: these matrices describe in a mathematical way the electric behavior 

of the mesh network. They are essentially impedance or admittance matrices which 

correspond to the nodes of the network (nodal matrices). 

The relation between the above three matrices can be described by the operational equation of 

Figure 2.2.  The figure shows that the transfer matrix is obtained from a complex operation using 

the elementary matrix and the incidence matrix. This operation will studied in the following 

sections. 

 

 

Translation: 

Matrice primitive: Elementary Matrix 

Matrice 

Primitive

Matrice 

d’Incidence

Matrice de

Transfert

Matrice 

Primitive

Matrice 

d’Incidence

Matrice de

Transfert



Matriced’incidence: Incidence Matrix 

Matrice de Transfer: Transfer Matrix 

Incidence Matrix 

As indicated above, the incidence matrices characterize the relation between the network elements 

(generally called branches) and the nodes connecting these elements. 

 

Incidence Matrix branches-nodes: «A» 

Definition: It is a matrix A with general term {aij} and dimension (e x n) such as: 

– aij=1 if branch i is incident with node j and is directed towards this node; 

– aij= -1 if branch i is  incident with node j and is directed away from this node; 

– aij=0 if branch i is non-incident with node j.  

Properties – For every line i: 

0

1

0






n

j

ija  

Indeed on the same line corresponding to the branch referred by i, there are only two nonzero 

elements: The first corresponds to the starting node with value 1, and the second corresponds to the 

arrival node with the value - 1. The above property indicates that the number of rows of the matrix 

is lower than n. 

 Incidence matrix branches-access: «A’» 

This corresponds to the incidence matrix branch-node in which the choice of a node of reference 

(for voltage) led to the removal of a column of the matrix «A» (in general the first). This matrix is 

of row n - 1. 

Incidence matrix branches-fundamental cuts: «B» 

Definition:  It is a matrixBof general term {bij} and dimension (e x b) such as: 

– bij= + 1if the i
th
 branch belongs to the j

th
 fundamental cut with same orientation; 

– bij= - 1if the i
th
 branch belongs to the j

th
 fundamental cut with opposite orientation; 

– bij= 0if the i
th
 branch does not belong to the j

th
 fundamental cut. 

Properties:Let the following sub-matrices of «A» and «B» be denoted by: 

 Ab: branches/access, 

 Ac: cords/access. 

 Bb: fundamental branches/cuts, 

 Bc: cords/fundamental cuts. 

Since there is an identity between the branches and the fundamental cuts, then the sub-matrix Bbis 

equal to the unity matrixI. Moreover one can notice that the product: 

Bc*Ab = incidence matrix cords/access 

Which is precisely the sub-matrix Ac, i.e., 



Bc*Ab = Ac 

The above yields 

Bc=Ac* Ab
-1 

Thus, one can build the matrix B from sub- matrices Ab and Acof matrix A by the formula:  

11][  bc AAB  

 Incidence matrix links-fundamentalcircuits: «C» 

Definition: It is a matrix C of general term {cij} and of dimension (e x m) such as: 

– cij= + 1if the i
th
 link belongs to the  j

th
 fundamental circuit with same orientation; 

– cij= - 1if the i
th
 link belongs to the j

th
 fundamental circuit with opposite orientation; 

– cij= 0if the  i
th
 does not belong to the j

th
 fundamental circuit. 

Properties:  Let the following sub-matrices of «C» be denoted as follows: 

– Cb: branches/fundamental circuits; 

– Cc: cords/fundamental circuits. 

Since there is identity between the cords and fundamental circuit, the sub-matrix Cc is equal to the 

unity matrix I. 

Example of incidence matrices: If the graphs of Figures 2.1a - 2.1c are condensed into one graph as 

displayed in Figure 2.3 which shows the branches, cords, fundamental circuits and fundamental , 

one can easily build matrices A, B, and C corresponding to this graph: 

 

 

 

 

 

 

 

 

Graph for the matrices A, B, C, of network. 
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REDUCED INCIDENCE MATRIX 

Let  G be a connected  digraph with “  n” nodes and “ b ”  branches. Let  Aa be the 

Incidence  Matrix of  G . The (n -1)  x  b matrix  A obtained by deleting any one  row of A 

a is called a  Reduced-Incidence Matrix of  G. 

EXAMPLE:  

ReferthecircuitshowninFig.Drawthegraph,onetreeanditsco-tree. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

SOLUTION 

Wefindthattherearefournodes(N=4)andsevenbranches(B=7). 

Thetreeismadeupofbranches2,5and6.Theco-treeforthetree 

isshown.Theco-treehasL=B−N+1 = 7−4+1 = 4links. 
 



 
 

 
Graph Tree 
 

 
 
 
 
 
 
 
 
 
 

 
Co-tree 

 
EXAMPLE  

ReferthenetworkshowninFig. Obtainthecorrespondingincidencematrix. 
 

 
 

  
 
 

SOLUTION 

ThenetworkshowninFig(a)hasfivenodesandeightbranches.Thecorrespondinggraph 

appearsasshowninFig.(b). 

Theincidencematrixisformedbyfollowingtherule:Theentryoftheincidencematrix, 

=1,ifthecurrentofbranchleavesthenode 

= 1,ifthecurrentofbranchentersnode 

=0,ifthebranchisnotconnectedwithnode. 
 

Incidencematrix: 
 

Nodes Branchnumbers 

  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 1 +1 0 0 1 0 1 0 0 
2 1 +1 0 0 0 0 1 0 
3 0 1 +1 0 1 0 0 0 
4 0 0 1 +1 0 0 0 1 

5 0 0 0 0 +1 +1 +1 +1 
 

EXAMPLE  



ForthenetworkshowninFig.(a),determinethenumberofallpossibletrees.Foratree 

consistingof(1,2,3)(i)drawtiesetmatrix(ii)drawcut-setmatrix. 

 

 
 

Figure(a) 
 

 
SOLUTION 

Iftheintentionistodrawatreeonlyforthepurposeoftie-setandcut-setmatrices,theideal 

currentsourceisopencircuitedandidealvoltagesourceisshortcircuited.Theorientedgraphis 

drawnforwhichdisthereference.ReferFig.2.12(b), 

 
1 2 3 4 5 6 

a
⎡
1 0 0 −1 1 −1

⎤
 

A= b⎣−1 1 0 1 −1 0  

 c 0−1 1 0 0 0  
 

 

 
 

 

 
 
 
 
 
 
 
 

 
Therefore,possiblenumberoftrees=12. 

 

 



 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

 
 
 
 

Figure(b) 

 
(i)Tie-setmatrixfortwigs(1,2,3)is 

 

 

 

 

 

 

 
 
 
 
 

(ii)Cut-setmatrixis 
 
 
 
 
 
 
 
 

Withe1acting(e2=e3=0) Withe2acting(e1=e3=0) Withe3acting(e1=e2=0) 
 

Figure2.12(c) 
 

Node-pairvoltage 
branches 

123 4 5 6 

e1=v1  1 0 0 1 1 1 

e2=v2  

 
0 1 0 1 0 1 

e3=v3  0 0 1 1 0 1 

 

 
 
 
 

 
 
 
EXAMPLE  
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ForthenetworkshowninFig.(a),writeatie-setscheduleandthenfindallthebranchcurrents 

andvoltages. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure(a) 

 
SOLUTION 

Fig.(b)showsthegraphforthenetwrokshowninFig.(a).Also,apossibletreeand 

co-treeareshowninFig.(c).Co-treeisindottedlines. 
 

 

 
 

Figure(b) Figure(c) 
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Hence,



 

 
 

 
 

I1=x=4.1666A, I2=y=1.6666A, I3=z=2.5A, 
I4=x−z=1.6666A, I5=−x+y=−2.5A, I6=−y+z=0.8334A 

Thebranchvoltagesarecomputedusingtheequation:   

VB=ZBIB−EB 

 
 
 
 
 
 
 
 
 

 
Hence, 

V1=5I1−50 =29.167V, V2=10I2=16.666V, V3=5I3=12.50V, 
V4=10I4=16.666V, V5=5I5=−12.50V, V6=5I6=4.167V 

 

 

EXAMPLE  

Fortheorientedgraphshown,expressloopcurrentsintermsofbranch 

currentsforanindependentsetofcolumnsasthosepertinenttothelinks 

ofatree: 

(i)Composedof5,6,7,8 

(ii)Composedof1,2,3,6 
 

 
Verifywhetherthetwosetsofrelationsfor’sintemsof’sareequivalent.Constructatie-set 

schedulewiththecurrentsinthelinks4,5,7,8asloopcurrentsandfindthecorrespondingsetof closedpaths. 

 
SOLUTION 

Forthefirstset 
 

 
Loop Branchnumbers 
No: 1 2 3 4 5 6 7 8 

1 +1 0 0 0 +1 1 0 0 
2 0 +1 0 0 0 +1 1 0 
3 0 0 +1 0 0 0 +1 1 

4 0 0 0 + 1 0 0 +1 
 
 

 

 
 

B=5678andLink=1234. 

i1=J1, i2=J2, i3=J3, & i4=J4. 



 

 
 

 
 

No:↓ 1 2 3 4 5 6 7 8 
1 +1 0 0 0 +1 −1 0 0 
2 0 −1 0 0 0 −1 +1 0 
3 0 −1 −1 0 0 −1 0 +1 
4 +1 +1 +1 +1 0 0 0 0 

 

Thenforthesecondset,ofthemeshcurrentsindicatedforthefirstset,wehave 

J4=i4   

 
4=J4 

J5=i1 
+i4 

 

 
1=J1+J5 

 J7=i3 
+i2 

 

 
3=J4 

+J8 
 

 J8=i4 
+i3 

 2=J4 
+J7 +J8 

 

 
 
 

Loop Branchnumbers 
 
 
 
 
 
 
 
 

 
 
 

EXAMPLE  
 

InthegraphshowninFigure(a),theidealvoltagesource 

e= 1V.Fortheremainingbrancheseachhasaresistanceof1 

ΩwithOasthereference.Obtainthenodevoltagee1,e2and 

e3usingnetworktopology. 
 

 
 
 

SOLUTION 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 

Figure2.16(a) 

Witheshift,graphisasshowninFigure2.16(b).Branchesarenumberedwithorientation. 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

DUAL Networks 

 

Circuits are said to be   dual   when  the  characterizing equations of  one  network  can  be  

obtained   from the  other by simply interchanging v and i and interchanging G and R.   

Duality pairs  

Resistance <> Conductance 

Current      <> Voltage 

Series         <>Parralel 

Capacitor   <> inductor 

 

The duals of planar networks could be obtained by a graphicaltechnique known as the dot method. 

The dot method has the following procedure: 

1.  Put a dot in each independent loop of the network.  These dots correspond to independent nodes 

in the dual network.1 Planar networks are those that can be laid on a plane without branches 

crossing one another. 

 2.  Put  a  dot  outside  the  network.   This  dot  corresponds  to  the  reference  node  in  the  dual 

network. 

3.  Connect all internal dots in the neighbouring loops by dahsed lines cutting the common 

branches.  These branches that are cut by dashed lines will form the branches connecting the 

corresponding independent nodes in the dual network.  As an example, if a common branch 

contains & and   in series, then the parallel combination of ' and   should be put between the 

corresponding independent nodes in the dual network. 

4.  Join all internal dots to the external dot by dashed lines cutting all external branches. Dualsof 

these branches cut by dashed lines will form the branches connecting the independent nodes and the 

reference node. 

5.  Convention for sources in the dual network: 

(i)  a clockwise current source in a loop corresponds to a voltage source with a positive polarity at 

the dual independent node. 

(ii)  a voltage rise in the direction of a clockwise loop current corresponds to a current flowing 

toward the dual independent node. 

 



 

 
 

 
 

Example 

DrawthedualofthecircuitshowninFig.Writethemeshequationsforthegivennetworkandnodeequationsfo

ritsdual.Verifywhethertheyaredualequations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
SOLUTION 

Forthegivennetwork,themeshequationsare 
Thedualnetwork,aspertheproceduredescribedinthetheoryispreparedasshowninFig. 

andisdrawnasshownas . Thenodeequationsforthisnetworkare 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure2.23(c) 



 

 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EXAMPLE 

ForthebridgenetworkshowninFigdrawitsdual.Writetheintegro-differentialformof 

themeshequationsforthegivennetworkandnodeequationsforitsdual.Thevaluesforresistors 

oneinohms,capacitorsareinfaradsandinductorsareinHenrys. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 
SOLUTION 

ThedualforthegivennetworkisshowninFig.2.24(c)usingtheprocedureshowninFig.2.24(b). 

Theintegro-differentialformforthenetworkis 

 
 
 

 

Dual equation 

 



 

 
 

 
 

Thenodeequationsforthedualnetworkare 
 
 
 
 
 
 
 
 
 
 
 
 
DUAL  
 
 
 
 
 
 
 
 
 
 
 
 

EXAMPLE 3 

 

 



 

 
 

 
SOLUTION 

ThedualforthegivennetworkisshowninFig.2.25(c)usingtheproceduregiveninFig.2.25(b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 


