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EC T35 CIRCUIT THEORY
COURSE OBJECTIVE

To understand the need for various theorems to solve complicated Electrical circuits

111 To explore the use of Resonant circuits and tuned circuits in the field of communication
To analyze the transient behavior of Electrical circuits
To identify the ways and means to solve magnetically coupled circuits

171 To understand the use of network topology in circuit solving

UNIT- I
DC Circuit Analysis: Sources-Transformation and manipulation, Network theorems -
Superposition theorem, Thevenin‘s theorem, Norton‘s theorem, Reciprocity theorem, Millman‘s
theorem, Compensation theorem, Maximum power transfer theorem and Tellegen‘s theorem —
Application to DC circuit analysis.

UNIT- 11
AC Circuit Analysis: Series circuits - RC, RL and RLC circuits and Parallel circuits -RLC circuits
- Sinusoidal steady state response - Mesh and Nodal analysis - Analysis of circuits using
Superposition, Thevenin‘s, Norton‘s and Maximum power transfer theorems.
Resonance - Series resonance - Parallel resonance - Variation of impedance with frequency -
Variation in current through and voltage across L and C with frequency — Bandwidth — Q factor -
Selectivity.

UNIT- 111
Transient Analysis: Natural response-Forced response - Transient response of RC, RL and RLC
circuits to excitation by DC and exponential sources - Complete response of RC, RL and RLC
Circuits to sinusoidal excitation-Transient analysis by Laplace Transformation Technique.

UNIT- IV
Magnetically Coupled Circuits: Self inductance - Mutual inductance - Dot rule - Coefficient of
coupling - Analysis of multi winding coupled circuits - Series, Parallel connection of coupled
inductors - Single tuned and double tuned coupled circuits.

UNIT -V
Network Topology: Network terminology - Graph of a network - Incidence and reduced incidence
matrices — Trees —Cutsets - Fundamental cutsets - Cutset matrix — Tiesets — Link currents and
Tieset schedules -Twig voltages and Cutset schedules, Duality and dual networks.

1. William H. Hayt, Jr. Jack E. Kemmerly and Steven M. Durbin, —Engineering Circuit Analysisl,
McGraw Hill Science Engineering, 8th Edition, 2013.

2. Joseph Edminister and Mahmood Nahvi, —Electric Circuitsl, Schaum‘s Outline Series, Fourth
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2. P. Ramesh Babu, —Circuits and Networksl, Scitech Publications, First Edition 2010, Chennai.
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UNIT- I DC Circuit Analysis

1. Circuit : Acircuit is a closed conducting path through which an electric current either flows or is
intended to flow.

2. Parameters. The various elements of an electric circuit are called its parameters like
resistance, inductance and capacitance. These parameters may be lumped or distributed.

3. Liner Circuit. A linear circuit is one whose parameters are constant i.e. they do not change
with voltage or current.

4. Non-linearCircuit. It is that circuit whose parameters change with voltage or current.

5. BilateralCircuit.A bilateral circuit is one whose properties or characteristics are the same
In either direction. The usual transmission line is bilateral ,because it can be made to perform its
function equally well in either direction.

6. UnilateralCircuit. It is that circuit whose properties or characteristics change with the
direction of its operation. A diode rectifier is a unilateral circuit, because it cannot perform
rectification in both directions.

7. ElectricNetwork. A combination of various electric elements, connected in any manner
whatsoever, is called an electric network.

8. PassiveNetwork is one which contains no source of e.m.f. in it.

9. ActiveNetwork is one which contains one or more than one source of e.m.f.

10. Node is a junction in a circuit where two or more circuit elements are connected together.
11. Branch is that part of a network which lies between two junctions.

12. Loop. It is a close path in a circuit in

which no element or node is encountered
conductor
more than once. —L_ ground
13. Mesh. It is a loop that contains N switch
No other loop within it. —|D— battery
—| I——capacitor
— N\ — fuse
—/\/\/\— resistor
—W— lamp
—N\ X : rheostat (variable resistor)
_©_ galvanometer
——@— ammeter

__®_ voltmeter



Sources-Transformation and manipulation

» A source transformation is the process of replacing a voltage source Vs in series with a
resistor R by a current source i in parallel with a resistor R, or vice versa.
V=R or is=V/R

R
MWW oa oa
@ ~i@
ob ob
» Italso applies to dependent sources:
R
AVAVAVAY, O a
Vs - § R
o b
1. Example, find out Vo
2Q 3Q
AN
+
4Q 3A 8Q =1y, 12V
40 20
+
12V sQ 3w, 3Q 4A
@
+ i+ +
2A 6Q sQ <y, 3Q 4A 8Q=3vy, 2Q 2A

(b) ©@



2. find out I (use source transformation)

1=0.25A

!
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6# 2 7

— AAWNA— ]

20

THE SUPERPOSITION THEOREM

In an electrical network made up from linear resistances and containing more than one
sourceof emf, the resultant current flowing in any branch is the algebraic sum of the currents that
would flow in that branch if the effects of each emf were considered separately all other emfs being
suppressed and replaced by their respective internal resistances( normally this is a short circuit ).

“The total power delivered to a resistive element must be determined using the total
current through or the total voltage across the element and cannot be determined by a
simple sum of the power levels established by each source.”
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V=V1+V2, i=il+i2

Advantages

e Used to find the solution to networks with two or more sources that are not in series or

parallel.

e The current through, or voltage across, an element in a network is equal to the algebraic

sum of the currents or voltages produced independently by each source.

e Since the effect of each source will be determined independently, the number of networks

to be analyzed will equal the number of sources.

e Linearity is the property of an element describing a linear relationship between cause and

effect.

e Alinear circuit is one whose output is linearly ( or directly proportional) to its input.

1. Solve the circuit shown below by super position principle.

40

47 1}

27 1

200 v

&

CD 2 A

—&

23 0



1. Find the total current it and Req in the circuit when 200v source alone
acting.

2. Calculate the it and Req in the circuit when 20A source alone acting.
3. Determine the total current through 23Q in the circuit.
4. Compute the current through 4 Q resistor in the circuit.

Solution: With the 200-V source acting alone, the 20-A current source is
replaced by an open circuit is shown in figure (a)

40
1 I
47 1}
2? (y] 0.C. 23 n
(=]
20V
(a)
27)(4 + 23
&q=4?+5—£;t—l=ﬁu59
54
200
= —331A
T~ 60.5
; 27 )
g = (ﬁ){l_‘l} =1.65A

When the 20-A source acts alone, the 200-V source is replaced by a
short circuit, Fig.(b). The equivalent resistance to the left of the source is

4
~AAA~
B
47 0
§ﬂﬂ 0 A inn
5.C.
(b)
R, =4+38D _ 9150
= 74 o

Hio = (=221 )20) = 9.58A
230 21‘1 = R



2. Consider the network shown in fig and solve by super position theorem.
R,=30

2A
1
V,=3 \ull__: R,=202 <>T

2

1.Calculate Vcg using superposition theorem.
2.Calculate lab using superposition theorem.
3.Determine the total current flow when voltage source alone acting

4.Find the current through Ra resistor.

Solution:
First consider the voltage source that acts only in the circuit and the current source is

replaced by its internal resistance and it is shown below.

a e

34
WA
12
A

—— A j
T[ - s 443
kA"

pit

)

Calculate the current flowing through the ‘a-b’ branch
7 23
R, =[(R,.+R,)| RL1+ R, — st2=59©

I = A =1.0434

oo‘[j‘u.\

Now current through a to b, is given by

1, =Lx2% _0013a
8 23

I, =1043-0913=0.134
Voltage across c-g terminal :

I/f'g :’T/Elg + I}:"LIJ
=2x1.043+4x0.13=2.61volts

Current source only (retain one source at a time):



Now consider the current source only acting and the voltage source is replaced by its internal

resistance which is zero in the present case. The circuit diagram is shown below
an

1€ 442

0 1\ 2A

Current in the following branches:

4/3
3Q resistor = M =1.2174: 4Qresistor =2—-1.217=0.7834
(14/3)+3

- "

10 ?'esr'sror:[ 2 ]xO.?83 —0.522.4 (b roa)

Voltage across 3Q2 resistor (¢ & g termunals) 7, =1.217=x3 =3.651volts
The total current flowing through 1€ resistor (due to the both sources) froma tob =
0.913 (due to voltage source only; current flowing from ‘a’ to 5 ”) — 0.522 ( due to
current source only; current flowing from ‘> 'to ‘a’) =0.3914.

Total voltage across the current source 7 =2.61volr (due to voltage source ; ‘¢’ 1s

higher potential than ‘g ’) + 3.651volr (due to current source only; ‘c’ 1s higher
potential than * g *) = 6.26volt .

Thevenin’s and Norton’s Theorems

¢ That if we are only interested in current, voltage and power delivered by a linear
portion of a circuit, we can replace that portion (potentially a large complex
network,) by an equivalent circuit containing only an independent source and a
single resistor. The response will be unchanged in the rest of the original circuit.

¢ Thevenin’s Theorem says that the independent source is a voltage source and we
should place it in series with the resistor. The theorem also tells us how to
calculate the value of the voltage source, V, and the value of the resistance, Ry,
called the Thevenin Resistance.

¢ Norton’s Theorem says that the independent source is a current source and we
should place it in parallel with the resistance. The theorem also tell us how to
calculate the value of the current source, I, and the value of the resistance, R;,
called the Thevenin Resistance.

¢ Of course, by source transformations, we can always switch from the “Thevenin”
equivalent circuit to the “Norton” equivalent circuit.



To find the Thevenin Equivalent Network

1. First you must identify the network to find the
equivalent of.
You can rearrange any circuit in the form of two A
networks connected by two resistance-less conductors,
labeled terminals A and B. (Note: If either network
contains a dependant source, its control variable must be
in the same network.) V.

If one of the networks is linear it can be replaced by this
Thevenin equivalent network:

[ws)

The only thing left to do is find the values of Ry and V..

2. Tofind Vi
Define a voltage, V.., as the open circuit voltage which would appear across the terminals A and
B (of the original network) if there was an open circuit between A and B. This voltage is V.

3. Tofind R
There are three different cases that will require different methods to find Ry

a. If there are only independent sources in the network, then “kill”” them.
Rt = Req

b. If there are dependant sources and independent sources in the network, find both v,
and .
Ri= Vo /i -

c. Ifthere are only dependent sources apply a 1A current source at the terminals A and B.
Calculate the resulting voltage, v, across this current source.
Ri= v/1A
(Alternatively you can apply a 1V voltage source and measure resulting current, i,
through it. Ry= 1V /)

To find the Norton Equivalent Network

1. First you must identify the network to find the
equivalent of.
You can rearrange any circuit in the form of two
networks connected by two resistance-less conductors,
labeled terminals A and B. (Note: If either network
contains a dependant source, its control variable must be ls R
in the same network.)

If one of the networks is linear it can be replaced by this

Norton equivalent network:
The only thing left to do is find the values of R, and ;.

2. Tofind I
Define a current, iy, as the short circuit current which would be the current that would flow
from terminal A to B (of the original network) if A and B were short circuited. This current is

l;.

3. Tofind R::
There are three different cases that will require different methods to find Ry



a. If there are only independent sources in the network then “kill” them.
R = Req

b. If there are dependant sources and independent sources in the network, find both v, and
isc.

Ry = Voc/ isc .

c. Ifthere are only dependent sources apply a 1A current source at the terminals A and B.
Calculate the resulting voltage, v, across this current source.
Ri=v/1A
(Alternatively you can apply a 1V voltage source and measure resulting current, i,
through it. Ry =1V /)

1. Solve the circuit shown below by thevenin’s theorem.
.H'::_—El L]

]H—‘IDH

1. Calculate current through 10Q resistor by thevenin’s theorem.
2. Find the Req after voltage source is removed.

3. Determine the voltage across 10€2 resistor.

4. Obtain the thevenin’s equivalent circuit.

Solution: The 10 Q resistance is removed from the circuit as shown in
Figure

R3=50

No current flowing in the 5 Q resistor and current 14 is
10 10

= = =1A
R+ R 248

I

Pd across Re =Rz =1 x8=8YV

Removing the source of e.m.f. gives the circuit of Figure
A3=5 0




Resist Ra+ R\R; 5+2.\8
esistance, r = K3 =
: Ry 4+ R2 2L 8

=54+16=066%52

The equivalent Thevenin’s circuit is shown in Figure

A
E=8Vv
r=6.6 0 AR
B
g 8
Current [ = = 0482 A

R+r 10+66 166

Hence the current flowing in the 10 Q resistor of Figure is 0.482 A.

2. Determine the voltage across 2() resistor by thevenin’s theorem.

R, R
VATAYA Y A
4 Q 1Q
B, — 28V 2 Q % R, TV —

Solution:

Step:1- Decide to designate R2 as the “load” resistor in this circuit.

Rl R3
TATAS W
4 ) 1€
B, — 287V Rz%(Load) B, — 7V
T 2Q T

Step:2-Remove the load resistor

R, R,
YAYAVA + VAVAYA
40 ) 10

— _ Load resistor — o -
B, 28 V removed B, Y




Step:3-Find the voltage across load resistor by applying the rules of series circuits,
Ohm’s Law, and Kirchhoff ’s Voltage Law:(consider as Vy,)

R, 4Q R; 1Q
WA WV
16.8 WV 1 42V
. + 4
B, — 28V 11.2V B, — 7V
42A —> C 42A —>
Step:4-Find the equivalent resistance across load resistor:(consider as Ry,)
R, R;
AAS VWA
4 Q I 1Q
Step:5-Finally draw the Thevenin Equivalent circuit
RThe'renin
0.8 Q
E rhevenin E 112V R, § (Load)
T 20
Voltage across 2 Q resistor V; = 12X2 _ gy

0.8+2




3. Find Ry, Iy, the current flowing through and Load Voltage across the
load resistor in fig (1) by using Norton’s Theorem.

RL
1.5Q

Step 1.
Short the 1.5Q load resistor

e . Short
— 12V 612 &

Step 2.

Calculate / measure the Short Circuit Current. This is the Norton Current (ly).

We have shorted the AB terminals to determine the Norton current, Iy. The 6Q and
3Q are then in parallel and this parallel combination of 6Q and 3Q are then in
series with 2Q.

So the Total Resistance of the circuit to the Source is:-

2Q +(6Q ] 3Q) ..... (|| = in parallel with).

Rr=20Q +[(3Q x6Q)/(3Q +6Q)] — I+=2Q + 2Q = 4Q.

RT =4Q

|'|' =V/ RT

I+ =12V /4Q

I+ = 3A..

Now we have to find Isc = In... Apply CDR... (Current Divider Rule)...
Isc =In=3AX [(GQ / (3Q + GQ)] = 2A.

Isc= In= 2A.



In=lsc
2A
- B
3Q X 6Q -
Rt=2Q +m ?;2_{2"' 20 =40
Risc4Q Technol

Ir=VI/Rr=12/4=3A
60
Iy =lsc =3AX 30 +60 2A Apply CDR

Step 3.
Open Current Sources, Short Voltage Sources and Open Load Resistor.

A

eB

Step 4.

Calculate /measure the Open Circuit Resistance. This is the Norton Resistance
(Rn)

We have Reduced the 12V DC source to zero is equivalent to replace it with a
short in step (3), as shown in figure (4) We can see that 3Q resistor is in series
with a parallel combination of 6Q resistor and 2Q resistor. i.e.:

3Q+(6Q 1] 2Q) ..... (]| = in parallel with)

Rn = 3Q + [(6Q x 2Q) / (6Q + 2Q)]
Rn=3Q +1.5Q
RN =4.5Q



2Q 3Q
60 e
B
=30 + (62| 22) —» =3Q + 1.5Q
Ry =4.5Q

Step 5.
Connect the Ry in Parallel with Current Source Iyand re-connect the load resistor.
This is shown in fig (6) i.e. Norton Equivalent circuit with load resistor.

®A

f) 2A
eB
Norton's Equivalent Circuit

Step 6.
Now apply the last step i.e. calculate the load current through and Load voltage

across load resistor by Ohm’s Law as shown in fig 7.
Load Current through Load Resistor...

IL=1InX [RN / (RN+ RL)]

=2A x (4.5Q /4.5Q +1.5kQ) — = 1.5A

I[L=1.5A

And

Load Voltage across Load Resistor...

V=1L X RL

VL =1.5A x1.5Q

V = 2.25V

4.5Q

4. Find the Norton’s Equivalent of the above circuit we firstly have to remove the
centre 40Q load resistor and short out the terminals A and B to give us the
following circuit.


http://electricaltechnology.org/2013/10/ohms-law-with-simple-explanation.html

1002 A 200

10w 20v

with A-B Shorted Out

I, = LA lamp, I, = Ll lamp
1082 200

therefore, I 1. ¢ cireuit = Il +IZ = Zamps

If we short-out the two voltage sources and open circuit terminals A and B, the two

resistors are now effectively connected together in parallel. The value of the internal
resistor Rs is found by calculating the total resistance at the terminals A and B giving us the

following circuit.
100 A 200

Resistance
Removed

Find the Equivalent Resistance (Rs)
1082 Resistor inParallel with the 2002 Resistor
R, xR, 2010
= = = 6.6702
" R, +R, 20+10

Having found both the short circuit current, Is and equivalent internal resistance, Rs this then gives
us the following Nortons equivalent circuit.



Nortons equivalent circuit.

e A

Rz=
B.670

@b

Ok, so far so good, but we now have to solve with the original 40Q load resistor connected across

terminals A and B as shown below.

Iz=
2 amps

Again, the two resistors are connected in parallel across the terminals A and B which gives us a

total resistance of:

R, xR,

6.67 x40

TT R +R, 667+40

= 5.720)

The voltage across the terminals A and B with the load resistor connected is given as:
V,p =IxR =2x572 = 1144y

Then the current flowing in the 40Q) load resistor can be found as:

[=Y = 1L _ 986 amps
R 40
RECIPROCITY THEOREM
R1 R2 R1 R2
AT AW
4v® 20,2 6o 12 12| 29.2 6o
| 3o 30 |

S

4V



I,==-Al,==A
2732 3

» Case 1 The current in any branch of a network, due to a single voltage source E anywhere
else in the network, will equal the current through the branch in which the source was
originally located if the source is placed in the branch in which the current | was originally
measured.

O | {2
[ |

if Vs=Vs' then I11=12

: 1T 12
actually exists: —=—
Vs' Vs

Case 2:

s N ' i
é' - if Is=1Is' then V1=V2
|

: V1 V2
actually exists: —=—
Is' Is

' N Is'
V1 i )




Case 3:

L | - if Vs=Is'" then 11'=V2

: 11 V2
actually exists: —=—
Is' Vs

<

{1 e

Verify reciprocity theorem for the voltage V and current | for the network shown in figure.
MW

2Q 2Q 1 '

V=10V 30 § 20

Solution
The various branch currents are shown as

Applying KVL to the two loops,
-21,-3(I, -+ 10=0
51,-31=10
-21-21+3 (1, =)= 0
31, -71=0



D = Z ’_3’ =-35+9=-26
oy =2 nso
I=%—2=:—§g=1.1538
%’:%ﬂ.wn

Now interchange the positions of V and |

I
— AW —T— MWW —
1) 2Q I, -1 29 ly

2Q

I

iov=V

Applying KVL to the two loops,
-3(,-D+21=0

~31,+51=0
+21, 421, -10+3 (1, =D =0 D - ‘—3 5 l.—.-za
7 =3
71,-31=10
-3 0
= I? 10' = e
D, -30
vV_ 10
I - 11538
= 8670

In both the cases the ratio of /I is same and hence reciprocity theorem is verified.

MILLMAN‘S THEOREM,
e Any number of parallel voltage sources can be reduced to one.
= This permits finding the current through or voltage across R, without having to
apply a method such as mesh analysis, nodal analysis, superposition and so on.
= Convert all voltage sources to current sources.
= Combine parallel current sources.



= Convert the resulting current source to a voltage source and the desired single-
source network is obtained.

Find the load current using Millman's theorem. All values are in chm.

B

1V — EV_ SV_

’ +

Solution
Here, E; =1V, E; =2V, E3=3V

21=10,70=20,73=30Q

1
SYi=1 U,'}"2=U.56.Y3=§U

By Millman’'s theorem, the equivalent circuit is shown.

2EY, Ix1+2x05+3x

CE=t—= 1 321312%\;
E{}{'— l+0.5+3 ¢
2= . =1i‘1§z
an ZY,
i=1
18
E 11 18 9
= A
Z+ 10 E—HU 116 58




Obtain the potential of node F with respect to node G in the circuit of the
figure. All values are in ohm.

1

ANA >
AAA L 4
3
— VW *
4
5

+ - + - + F
1V — 2V — 3V — 4V —5V—_ 6

Solution

By Millman's theorem, equivalent voltage is,

EY.
V_E " Ix1-2x1/2+3x1/3-4x1/4+5x1/5 60

S \
1+1/2+1/3+1/4+1/5 137

Y,
1

I

Equivalent impedance,
1 1 60

T1+1/2+1/3+1/4+1/5 137

Therefore, the current through the 6Q resistance is,
V 1
60/137 60 A

T Z+6 60/137+6 882

Hence, the voltage between the points Fand G is,
60 60

V, =6XI:6}{ —
ko 882 147



COMPENSATION THEOREM,

In any linear network consisting of linear and bilateral impedances and active sources, if the
impedance Z of the branch carrying current | increases by dl, then the increment of voltage or
current in each branch of the network is that voltage or current that would be produced by an
opposing voltage source of value V¢ (= 1.dZ) introduced in the altered branch after replacing
original sources by their internal impedances.

In many circuits, after the circuit is analysed, it is realised that only a small change need to
be made to a component to get a desired result. In such a case we would normally have to
recalculate. The compensation theorem allows us to compensate properly for such changes
without sacrificing accuracy. In any linear bilateral active network, if any branch carrying a
current I has its impedance Z changed by an amount AZ, the resulting changes that occur in
the other branches are the same as those which would have been caused by the injection of
a voltage source of (-) I . AZ in the modified branch

Linear 1+A] Linear [+Al
Active | V+AV _ | Active 1.4z
Bilateral Z+AZ — Bilateral 7
Network Network
Linear I Linear Al
= Active + Passive |AV TI.&Z
—_— . \‘I? -
Bilateral 7 Bilateral ZAAZ
Network MNetwork A

Consider the voltage drop across the modified branch. V +AV = (Z+AZ)( [+AD) =Z . [ + AZ
.1+ (Z+ AZ) . Al from the original network, V=7 .1 . AV =AZ .|+ (Z+ AZ) . Al Since the
value | is already known from the earlier analysis, and the change required in the
impedance, AZ , is also known, I .AZ is a known fixed value of voltage and may thus be
represented by a source of emf I. AZ .

Calculate the change in current in the network shown in figure using compensation theorem
when the reactance has changed to j35Q.




30Q
+*
1002455V :9
[ j 400

Solution:

Applying KVL, we get,

100£45° _ 100.£45°

I = 57580 ~ 55315

=2Z-8.13° A

[ = (1.9798 - j 0.2828) A

Now the reactance has changed to j 35. Hence the current in network will also change
to I. The change in the reactance is given by,

0Z = 40 -j35 =50

Now the reactance is
00 decreased. _ Modifying the
network by replacing voltage
o1 source by short circuit and
i introducing compensation source
» Ve =1-8Z in the branch altered
L Vg™ 1-62 as shown in the Fig. 3.59 (a)
The compensation source is
Fig. 3.59 (a) given by,
Ve = 1.8Z

(2£-8.13°)(j5) = (2£-8.13°)(5£90°)
Ve = 10481.87°V
Thus, change in current is given by,

B = oG m 10ZBLE7
= 30+35 460977 2494°

= 0.2169432.47°A

MAXIMUM POWER TRANSFER THEOREM
Replacing the original network by its Thevenin equivalent, then the power delivered to the load is



;

Vi O %/RL

—1
+ |
LN v

R

dp T2 (RTh _RL)

Power delivered to the load as a function of R, - = =

dR, | (RTh+RLY

2
so vields R, =R, and =
y L Th P IR,

The variable resistor in the circuit in Fig. shown below is adjusted for maximum power transfer
to Ro.

Solve the circuit given below to obtain maximum power

20 42

ov C@ R’

1.Find the value of R, for maximum power transfer in the circuit.
2. Calculate the Ry,
3.Calculate the Vy,

4. Find the maximum power.

Solution:



AN—e
10 +
"T]l
3vy
-

(b)

(a)
Applyving KCL at the top node gives

1—wv, 3v,—Vv, Vo

+ =
4 1 2
But v, = -v,. Hence
1—w W )
= —dv_ =— — v, =1/(19)
1

. 1—w, 1 19 El
4 4 38

Ry =1/i =38/(9)=4.2220

To find V. consider the circuit in Fig. (b).

4]

=0 + 2i, + iy + 3V,

But v, = 2i,. Hence.

O = 3i, + 6ip = Oiy —» i,= 1A
Vi =0 - 2i, = 7TV
Rr = R = 4.2220

- Vm 49 5001w

I0EN

AR,  4(4.222)

Solve the circuit given below to obtain maximum power

20 40
+ Vv, -
TN
4v, (1) 2a > R,
N >
40

1. Find R so that maximum power is transferred to the resistance R.

2. Calculate the Ry,



3.Calculate the Vy,
4. Find the maximum power.
Solution:

In order to find .

open circuit voltage 77, is found

oA

20 2L a0
NN
+ W, - { + 0V -
— +
4v, // \\I/ff\ 2A v,
< 2a .
40 -
AYAYAY;
+ Wy -
KVL around the outer loop:
AV 4V, 4V ~V, =0
Voe =3V, +V;
where
V,=2x4=8V
V.=-2x2=-A4V
Vo =—12, +8=—4V
20 40
NN
+‘-.-"x-~________'vz+ +

_|_
4V,
<_ 1A

40
AVAVAY
+V, -

KVL around the loop:
A4V . +V. -V, +V -1, =0
V=3V_+V,+W
where
V.=—1x2=-2V
V,=4x1=4V
V,=4x1=4V
SV =—6+4+4=2V

V

Ry == =20




When R, =2Q it absorbs maximum power.

(—4) 16

max : =_=2W
’ 4x2 8
10v
8k0 25k0
AN A (+ 1)
20 KO
N +
'/T\ S §4m 10k0§‘0 /g/&
N ) _
|/+\ 10V
\[/
1.Find the value of R, for maximum power transfer in the circuit.
2. Calculate the Ry,
3.Calculate the Vy,
4. Find the maximum power transfer to Ro.
Solution:
8k 2.5k
20KkC
; 4K 10kQ -
R, =((8k +4k)// 20k + 2.5k )//10k
R, =(7.5k+2.5k)//10k
10V
V1 8ke2 " 2.5KQ 1y +10 —
N
2ok§§
4kQ s10V 1oke
\/j\:' 10V
AN




KCL at :

[ 1 1 ) 1 .
_—t— 1'1——1‘: = o
4k 8k 8k

multiply both sides by 8k vields:

3v, —v, =24

2
KCL at +-:
1 1 1 1 1
——1'1+[—+ + }‘2—— —
8k .8k 20k 2.5k 20k 2.5k
mulriply both sides by 40k yields:
—51, + 23y, —16+v,_ =180
KCL at 3
1 Fo1 1 Y,
_ v, + + J(T”C_'_IO]:O
2.5k ° \ 2.5k 10k
multiply both sides by 10:
—4v, +5v, =50

1 :—]0+i1‘2 ............... (3)

oc

(v,.,+10)=0

A

Subst. Eqs. (1) and (3) into (2) gives:

™ i K
—5[ 8+%u J+231;—16[ —10+2, 12180

3

[—§+23—T4]1-2 —180+40—160 = 60
o -

v, =7.03125F
v, =—10+0.8(7.03125) = —4.375V

@

When Ry = Rgy = 5k Q it absorbs maximum
power.

2

v (-4375)

- = =0.95TmW
4R, 4(5k)

Tellegen‘s theorem

« If there are b branches in a lumped circuit, and the voltage uy, current iy of each branch
apply passive sign convention, then we have

b
> Ui, =0
k=1

» If two lumped circuits and  have the same topological graph with b branches, and the
voltage, current of each branch apply passive sign convention, then we have not only

b b
D=0 DG =0
k=1 k=1
b

b
butalso Y G, =0 > u, =0
k=1

k=1

Example:



N is anetwork including resistors only.When R, =2Q,V, =6V,
Wecanget |, =—2A V, =2V;When R, =4Q,V,'=10V ,We can
get I, =—3A, findoutV, then.

According tothe Tellegen Theorem

Il 12 ’ ’ b ! . 1| ! b !
®V—1<- N T Vil Vo1 + >V =05 V1 + V1, + > V(1L =0
R2 S V2 k=3 k=3
L | _

V1|1,+V2|£ :Vl’ll +V2,|2
and VI, =Rl I, =RI 1, =V/1, \! 2
b b Bx(—3)+2x-2=10x(-2)+V,/ x=
vt (-9)+2x"2 210x(-2) +Vx
k=3 k=3

V=4V



UNIT- 11
AC Circuit Analysis: Series circuits - RC, RL and RLC circuits and Parallel circuits -RLC circuits
- Sinusoidal steady state response - Mesh and Nodal analysis - Analysis of circuits using
Superposition, Thevenin‘s, Norton‘s and Maximum power transfer theorems.

Alternating Current Circuits
Review of rms values. rms values are root-mean-square values of quantities (such as voltage and

current) that vary periodically with time. In AC circuits voltage and current vary sinusoidally with
time:

v=Vsin(ot), i=Isin(ot-0)

where V and | are the voltage and current amplitudes, respectively. o is the angular frequency (o =
2nf, where f is the frequency) and ¢ is a phase constant that we will discuss later. The rms values of
voltage and current are defined to be

Ve = V7SI (01), 1,y = [17sin? (0l )

Where the overbar indicates the average value of the function over one cycle. Since the average
value of sin’0 over one cycle is ¥, we get

Note that these formulas are valid only if the voltage varies sinusoidally with time.

What we will study in this chapter is what happens to the current and power in an AC series circuit
if a resistor, a capacitor and an inductor are present in the circuit.

Resistors and Resistance

If just a resistor of resistance R is connected across an AC generator the generator is said to have a
purely resistive load. The phase constant ¢ is zero and we write



v=Vsin(wt), i=Isin(ot) and V,,=1.R.

Since the angle for v and i is the same, the instantaneous voltage and current are said to be in phase.
Note that

is a constant independent of the frequency f of the AC generator. We assume that the resistor
maintains its resistance regardless of how fast or slow the generator’s armature is turning. R, of
course, is measured in ohms.

For a purely resistive load the average power delivered to the circuit by the generator is given by

P=1 V _or P=12R

rms = rms rms

which are analogous to the familiar formulas for DC circuits. P, as usual, is measured in watts.

Capacitors and Capacitive Reactance

Now let us connect just a capacitor of capacitance C across an AC generator. In this case the

. . T .
generator is said to have a purely capacitive load. The phase constant ¢ is ) and we write

v=Vsin(ot), i=I sin(mt+£j and V. =1,X,
2

S

where Xc is called the capacitive reactance. Capacitive reactance, like resistance, is measured in
ohms.

Since the angle for the instantaneous current is greater than the angle for the instantaneous voltage
by n/2 radians or 90°, the current is said to lead the voltage by 90 %r lead the voltage by a quarter
cycle. (Remember that a full cycle is 360° - a “complete trip” around a circle.) We can also say that
the voltage lags the current by 90 °or lags the current by a quarter cycle.



. . Voo .
For a capacitive load the ratio —/™ s not a constant independent of the frequency of the generator.

rms

It can be shown that in fact

Vis __1 so that X, =L.
I, 2nfC 2nfC
. 1 1 1 \Y .
Units check: = = =— =0hms. See Figure 23.2 on page 714 of your text.
Hz.E L.c ¢c.1 A
s Vv s Vv

For a purely capacitive load the average power delivered to the circuit by the generator is zero. The
reason for this is that the instantaneous voltage and current in the circuit are exactly 90° out of
phase. Over one cycle the generator delivers as much power to the capacitor as it gets back from the
capacitor. (Remember that over a generator cycle the capacitor will charge then discharge.)

Example

Two stripped wires from the end of a lamp cord are soldered to the terminals of a 200 uF capacitor.
The lamp cord, which has a standard electric plug on the other end, is then plugged into a 120 V, 60
Hz AC outlet.

(Do not try this at home.)

a. Find the reactance of the capacitor.

1 1
Xe=—7: X.= X
© 2nfC’ "¢ 2nm(60)(2x107)

Xc =13.3 ohms

b. Find the rms current drawn from the wall outlet.

Vi . | _ 120V

ms ’ Irms =9.02 A
13.3Q




Inductors and Inductive Reactance

Now let us connect just an inductor of inductance L across an AC generator. In this case the

. . . T i
generator is said to have a purely inductive load. The phase constant ¢ is +§ and we write

XL

S

v=Vsin(ot), i=|sin(mt—g) and V. =1,

where X, is called the inductive reactance. Inductive reactance, like resistance, is measured in
ohmes.

Since the angle for the instantaneous current is smaller than the angle for the instantaneous voltage
by n/2 radians or 90°, the current is said to lag the voltage by 90 %r lag the voltage by a quarter
cycle. (Alternatively one can say that thevoltage leads the current by 90 %r the voltage leads the
current by a quarter cycle.)

. . . V.o . .
For an inductive load the ratio —/™ is not a constant independent of the frequency of the generator.

rms

It can be shown that in fact

\% =2nfL sothat X, =2nrfL.

rms

Units check: Hz-H = = ohms . See Figure 23.6 on page 716 of your text.

w |
w‘)>|<

> <

For a purely inductive load the average power delivered to the circuit by the generator is zero. The
reason for this is that the instantaneous voltage and current in the circuit are exactly 90° out of
phase. Over one cycle the generator delivers as much power to the inductor as it gets back from the
inductor. (Remember that over a generator cycle the induced emf in the inductor will reverse
direction.)

Example



Two stripped wires from the end of a lamp cord are soldered to the terminals of a 200 mH inductor.
The lamp cord, which has a standard electric plug on the other end, is then plugged into a 120 V, 60
Hz AC outlet.

(Do not try this at home.)

a. Find the reactance of the inductor.

X, =2nfL; X, =2r(60)(0.200); L =75.4-ohms

b. Find the rms current drawn from the wall outlet.

Vi . | 120V,
Mmoo 754Q°

.. =159 A




RCL Series Circuits

An RCL series circuit consists of a resistor, a capacitor, an inductor and an AC generator connected
in series. See the figure.

The mathematical analysis of this circuit requires the solution of a
differential equation. However, there is a way to solve the circuit
using a geometrical device that is analogous to a vector. This device
is called a phasor (or rotor). A phasor is a vector whose tail sits at
the origin of an xy-coordinate system. The phasor rotates
counterclockwise about the origin with angular frequency o (the
angular frequency of the AC generator). The phasor represents either voltage or current, and its y-
component is the instantaneous value of the quantity it represents.

Vsin(wt)

We will assume that at any instant the current through each circuit element
is given by

4
LA
A
|
=

i =Isin(ot—¢).

The current phasor has length | and makes an angle of ot - ¢ with respect to
the x-axis. At any instant its y-component equals the current in the circuit.

Now consider the voltage phasor of the resistor. The instantaneous voltage across the resistor is just

iR=IRsin(wt—¢) or vz =Vgsin(ot—9¢)

The length of the resistor’s voltage phasor is the voltage amplitude Vg. At

any instant the angle it makes with the x-axis is ot - ¢. The y-component of —¥
this phasor is then
Vi Sin((ot—(l)), I Ve
L . . ot —
which is the instantaneous voltage across the resistor. Note that the current i ¢

and voltage across the resistor are in phase. Hence the voltage phasor for
the resistor lies on top the current phasor.




Now consider the voltage phasor for the capacitor. Here it is critically important to remember the
phase relationship between the current and voltage for a capacitor. Does the current lead or lag the
voltage in a capacitor? By how many degrees? The current leads the voltage by 90°. Since the
phasors rotate counterclockwise, the voltage phasor for the capacitor must lie 90°clockwise from
the current phasor.

Now consider the voltage phasor for the inductor. It is critically importantto Vo
remember the phase relationship between the current and voltage for an | Ve
inductor. Does the current lead or lag the voltage in an inductor? By how /
many degrees? The current lags the voltage by 90°. Since the phasors rotate
counterclockwise, the voltage phasor for the inductor must lie X(”t —9
90°counterclockwise from the current phasor.

Ve
Note that the voltage phasors for the inductor and the capacitor lie along the
same line. (We have arbitrarily assumed that V, is larger than V..)Using the
rules of vector addition we may combine them to obtain the next diagram.
By Kirchhoff’s loop rule the voltage drops across the capacitor, resistor / Vr
and inductor must, at any instant, equal the voltage rise across the V, -V, A
generator. This will be satisfied if the vector sum of the V|, — V¢ and the
Vg phasors matches the voltage phasor of the generator. See the last X@t -0

diagram below.

From the last diagram we obtain some very important relationships. In
particular, note that

VI (VL =V 4V2 or V= (V] -Vo ) +V
since V, = IX, V; = IX. and V; = IR we can write

V= J(1X, ~ XY + (IR or V = 1(X, ~ X ) +R?

or V =1Z where|Z = (X, X.) +R?

Z is called the impedance of the circuit and is measured in ohms. Note
that we have dropped the “rms” subscripts for the voltage and the
current in the V = IX formulas above because the formulas are also valid
if we replace each rms value with its corresponding amplitude (the
square root of 2 cancels from both sides of each equation).




We can now find a formula for the phase ¢ of the current. From the right triangle with sides V, Vg
and V, - V¢ in the diagram above we have

tanc|>=VL_VC X =Xe o that tanq>=2L_xC
V. IR R

Power in AC Circuits 11

15.1 Power Dissipation in an AC circuit

In general, an ac circuit will contain a combination of resistive and reactive components and
the reactive elements may be either inductive or capacitive as shown in Fig.1 below. This
means that at different points in the circuit the current and voltage relationships will vary
depending on the elements involved. From the point of view of a voltage source driving such a
circuit, the overall network will have an impedance, which has a magnitude and phase and a
current will flow into the circuit which also possesses a corresponding magnitude and phase
as shown below.

i(t
~ i(D)
\J | I |
Ry
Z
v(t) Ly

Q




hl

I(t)

¢ (t) = v(t) _ V| £0
Z 744

: |
")

) V‘ Z0
Fig. 1 The Phase Relationship Associated with an AC Circuitlg\)ng_-Rea TanceA p’ﬁtﬁ die
voltage, which is taken as the reference zero angle, and the current withTZ%C instantaneous

power is shown in Fig. 2 below. The current is seen to lag behind the voltage by an angle¢ :

Note that, unlike the case for resistive and purely reactive circuits, the instantaneous power
profile is not symmetrical. It can be seen in this example that the power profile is positive for
longer than it is negative and also that it reaches a higher positive peak than negative peak.
This means that more power is delivered to the network in each cycle of the sinusoidal source
than is returned to the source. Therefore there is a net transfer of power from the source to
the circuit and this power is dissipated in the resistive components of the network.

/1

Pi(t)

\/




Fig. 2 Waveforms Showing Power Relations in an AC Circuit having Reactance

Instantaneous Power:

The instantaneous power can be found as before as the product of the voltage and current as
continuous functions of time:

v(t)=V_ Sinwt and i(t)=1_Sin(wt-¢)

P, =V, I,,Sin wt.Sin (ot - §)

Then

Average Power:

17 (LN
Prve = [ Pt = = [, v©)i(t)t

Using the trigonometric expansion

Using the trigonometric expansion

gives:



But

So that:

The factors Cos| |and Sin ¢ are constants for a given circuit where there is a given phase
shift between the supply voltage and the current drawn by the circuit so that:

VoI AN
Pave = T Cos ¢j dt - T Cos¢j Cos2ot.dt
—Msmq)fsmzwt.dt
2T 0

Pave = V;_Il_m Cos (|)|t| - m_ll_m COS¢—|SIn20)t|
Vm Im
o S|n¢—|C032mt|;
Pave = V;T'm Cos¢(T-0)—%005¢(Sin47z-8in0)

Yo ln g ¢(Cos4r - Cos0)
doT

The last two terms in this expression have a value of zero as before so that finally:

V.| |
PAVE = m2 m C (1) T TCOSd)

PAVE = VRMSIRMSCOS(I)

The term Cos ¢ is referred to as the Power Factor of the circuit. This is a property of the ac
network and is determined by the phase angle of the network impedance.



Power Factor = Cos¢

The Power Factor varies between a value of 0 and 1.

$»=0"=Cosd=1 P,e=Vauslaus PUrelyresistivecircuit

$»=90°=Cosp=0 P,,=0 purely reactivecircuit

The average power calculated above is the actual power consumed from the power delivered
to the network. This is dissipated by the resistive elements of the circuit. However, the source
must be rated to generate and deliver the total power demanded by the circuit even though
not all of this is consumed. The power dissipated is also referred to as Active Power and
represents energy consumed.

15.2 Complex Power

It has been seen from the previous waveform showing the instantaneous power that the positive
excursion is greater than the negative excursion, so that there is a net transfer of power from the
source to the load per cycle of the source voltage. The phase of the impedance of the network
results in a phase angle between voltage and current which gives the Power Factor in the Average
or Active Power drawn by the network. However, as with purely reactive circuits, there is also
some power which is drawn from the source, stored temporarily in the reactive elements and then
returned to the source in a later part of each cycle. This is referred to as the Reactive Power. In
practice the source driving the network must be rated to handle and deliver both the active and
reactive power, even though only the active power will be dissipated by the circuit. The vector sum
of the Active and Reactive Power is referred to as the Apparent Power and gives the concept of
Complex Power as illustrated in phasor form in Fig. 3 below.

Apparent Power = Active Power + j Reactive Power

Apparent Power = Average Power + j Reactive Power

Fig. 3 A Phasor Apparent Power

Representation of ]
P Reactive Power

Complex Power

7 L} [ I N




V. I

m-m

Apparent Power = Vious lrvs = s

Active or Average Power = Vo I oys COSO
Reactive Power =] Vaus  rms SN

and

2 42 2 42 2 2 12 @in?
Viws lavs = Vs lams €08 70 + Vs rusSIN “

In order to avoid having to have a source which must be capable of providing much more power
than is actually going to be consumed by a network, the aim is to minimise the amount of reactive
power demanded of the source. Therefore the aim is to make the apparent power and the active
power equal. This means making the power factor as close to unity as is possible.

Consider the network impedance shown in Fig. 4 below:

Z=R+ X
: X
Sing=—
Z
2]
) Cos<|>:E
jX 12

¢ \ Power Factor= Cos¢=%
R

Fig. 4 Power Factor in Complex Power

where R is the overall equivalent resistance of the ac network as seen by the source. This may not
actually be a resistive element but can represent work done by some piece of equipment or machine
which is provided with electrical power and consumes energy.

Consider the circuit shown in Fig. 5 below.



_;_ ®

Fig. 5 An Example Circuit for AC Power Analysis

f=50Hz g ®=27F =314 rad/s

then

joL = jx314x750x107° = j236Q

1 . 1 . 10° .
_J_:—J 5 :—J :_J678Q
oC 314x4.7x10 1475.8

Then:

50 Q 750 mH
Z C .
2
v(t) ( ~ )220Sinot —
C 150 Q
4.7 uF
O\
A4



— j678x150

Z=50+ j236 + :
150 —j678

101700

Z:50+ 1236 —j—_
150 —j678

Rationalising:

101700(150 +j678)
(150 —j678 150 +j678)

Z=50+ j236 — j

— j15.3x10° + 69x10°
150% + 678°

7=50+ j236 +

— j15.3x10° + 69x10°

7Z.=50+ j236 +
482184

Z=50+ j236 — 32 +143

7=193+j236—j32 Q

A

resistance inductive reactance  capacitive reactance

So that overall Z=193+ J 204 Q

The net impedance is more reactive than resistive and the reactance appears inductive.



7| =4/193% + 2042 = 281 ©

Z$,=Tan™ 294 Tan1.056=46.6°
193

The current flowing into the circuit from the source can be found as:

Vv _|V[£0° 220 20°
Z |Z4¢, 281/46.6°

=0.78£-46.6° A

The Power factor of the network is given as:

Power Factor = Cosd = Cos46.6° = 0.687

The complex power can be evaluated as:

Apparent Power = Vgslpus = szlm

_ 220x0.78 _ 85 8\

Active Power = Vel oys = %Cosd) =85.8x0.687 =58.9W

Reactive Power = j Vsl qusSiNg = j%sm = j85.8x0.727 = j62.4W

Average Power

On average, only the resistance in the RCL series circuit consumes power. The average rate of
power consumption is given by

2
P = IrmsR Z
X - Xc
[
The triangle at the right is useful to remember since one can quickly obtain the R

formulas that were derived above from it:



X, - X
Zz\/(XL_Xc)2+R2 and tanq):%

also note that ;z cos¢ sothat R=Zcospand P=12.Zcos¢ or P=1_,(1.Z)cosd from

which we obtain

P=1I| V. _coso

ms ° rms

cos¢ is called the power factor of the RCL circuit.

Using the formula tan¢ = % we make the following observations and definitions:

If X, > X, ¢ >0 and the circuit is said to have an inductive load.
If X, < X¢, ¢ <0 and the circuit is said to have a capacitive load.
If X_ =X, ¢$=0 and the circuit is said to have a resistive load.

Example

A series RCL circuit has a 75.0 Q resistor, a 20.0 uF capacitor and a 55.0 mH inductor connected
across an 800 volt rms AC generator operating at 128 Hz.

a. Isthe load on the circuit inductive, capacitive or resistive? What is the phase angle ¢?

X, =2nfl; X, =2n(128)(5.5x107)=44.2 O

Loy o 1
2nfC’ °  2n(128)(2.0x10)

Since X, > X, the load is The phase angle is

442 -61.2
75.0

=612 Q

Xc

¢ = arctan (% L d= arctan(

¢=-0.223rad or |¢p=-12.8°

b. What is the rms current in the circuit?

To answer this question we must determine the circuit’s impedance Z then use lyys = Vime/Z:

Z= (X~ XY +R% Z=y(44.2-612) +(75.0)

Z - 769 Q Irms = Vrms ’ ms 800 V 1
Z 769 Q

| =104 A

c.  Write the formula for the current in the circuit as a function of time.



i =Isin(wt—¢) where | is the current amplitude.
| =1,,72: 1 =10.4(1.414); 1=147A
w=2nf: ©=2r(128); ®=804 rad/s

i :14.73in(804t +O.223) + Note the use of radians.

(tin seconds and i in amperes.)

Find the rms voltage across each circuit element.

\/me =:Irmst; \/Rnns:: 610-4 /\)(T?S.O g!); \/me ::7{30 V
VCrms = IrmsXC; Vers = (104 A)(612 Q), VCrms = 636 V
Vers = IrmsXL; Vers = (104 A)(442 Q), Vers =460 V

Question: Shouldn’t these voltages add to 800 V?
Answer: No. One must take into account the phase of the voltage across each element. See part

Find the instantaneous voltage across each circuit element at t = 0 seconds.

. . The volt th jtor |
Vg =iR; Vg = (14.7)(75.0)sm(0.223); Ve, = 244V e voltage across the capacitor lags
the current by 90°.

Ve =i, X¢; Ve =(14.7)(61.2)sin(0.223-1.57)] v, =877 V
v =i,,,X.; v, =(14.7)(44.2)sin(0.223+1.57){ v, =633 V

+7/2

The voltage across the inductor leads

the current by 90°.

Question: Why do these voltages add to zero?

Answer: Their sum is in agreement with Kirchhoff’s loop rule; the voltage across the generator

is v=Vsin(wt) or v=800y/2sin(804t)=0att=0s.
Find the average power delivered to the circuit by the generator.

= 1nVims €08(9); P =(10.4 A)(800 V)cos(-0.223)

rms = rms

P
P

=8.11 kW

The Limiting Behavior of Capacitors and Inductors

Unlike a resistor, which has a constant resistance R independent of the ac frequency, capacitors
and inductors have reactances that do depend on it.

The inductive reactance is given by
X, =2nfL

If fis large, so is X, and the inductor acts almost like an open circuit. If f is small, so is X, and
the inductor acts almost like a short circuit.



—()——
@ Vys = Vi () Ve

Frequency = f

This circuit can be regarded as a high-pass filter. At very-high frequencies the inductor has a
high reactance and acts almost like an open circuit. Thus, the current is low, the voltage drop in
the resistor is low, and Vgt = Vin. At very-low frequencies the inductor has a low reactance

and acts like a short circuit. The output voltage is virtually zero. Hence, the circuit passes
high-frequency AC voltages but stops low-frequency AC voltages.

The capacitive reactance is given by

1
X. =
¢ onfC

If fis large, Xc is small, and the capacitor acts almost like a short circuit. If f is small, Xc is
large, and the capacitor acts almost like an open circuit.

| Frequency = f |

This circuit can be regarded as a low-pass filter. At very low frequencies the capacitor has a
high reactance and is almost like an open circuit. Thus, the current is low, the voltage drop in
the resistor is low, and Vq,t = Vin. At very high frequencies the capacitor has a low reactance

and acts like a short circuit. The output voltage is virtually zero. Hence this circuit passes low-
frequency AC voltages but stops high-frequency AC voltages.

Example

Suppose that an RC circuit (as shown in the last diagram above) is used in a crossover network
in a 2-way stereo speaker. (A 2-way stereo speaker has a small speaker — a “tweeter” — for high
frequencies and a large speaker — a “woofer” — for low frequencies. A crossover network in the
speaker system directs low frequencies to the woofer and high frequencies to the tweeter). In
the last diagram above Vj, is the voltage supplied by the speaker output jacks of a stereo
receiver; Vo is the voltage to be delivered to the woofer. If R is 30 ohms, find the capacitance
C so that the amplitude of frequency 8,000 Hz is reduced to half its value at output.



= X |:\i; vV —M- Vout_ Xc

z' " XZeRTT VY, (XZ+R? Bl

1k

1:%; 1 /x§+R2 =X, <« Square both sides. -
2 «/XC+R 2
1

VO

u

—a— AN 8
(XE+R?)=XZ; 1R2=§xj—:>x§=1R2 =
4 4 4 3 v
1 2 1 B
X2=2(30)=3000Q% X.=173Q; Xo=—-— p—y
3 2nfC
1. 1 :
C= ; f =8,000 Hz. ..C = . | C=1.15pF
27X . 2m(8000)(17.3)

Remark. The frequency whose amplitude is reduced to half by the crossover network is called
the crossover frequency. In the above example 8,000 Hz is the crossover frequency.

Example

Estimate the impedance of the circuit shown at the left for a generator frequency of
a. 1,000,000 Hz
b. 0.001 Hz

a. For a high frequency the inductors act like open circuits and the capacitor acts like a short
circuit, effectively producing the circuit shown in the diagram on the next page.

Ll L1l

1k oL L 10aH

Lz TaF Bz
— Y FTTT .

10uH
2k

T
R

The impedance is now just the net resistance of the circuit.
Since the resistors are in series,

R=R +R,; R=1k+2k;| R=3kQ, |Z=3kQ

b. For a low frequency the inductors act as short circuits and the capacitor acts as an open
circuit, effectively producing the circuit shown in the diagram below.



The impedance is now just the net resistance of the circuit. Since the resistors are in parallel,

1.1 1 1

1,
R )

7 =067 kQ

1y ==+ Z=—;
R R’ R 1k 2k R 2k

R =0.67 kQ

As the frequency of the AC generator is changed from very low values to very high values the

impedance of the circuit will increase from the lower limit of 0.67 kQ to the upper limit of 3

kQ.

Note: The formula for impedance we found earlier,

7= \/(XL - XC)2 +R? , does not apply to the given circuit

in this example because the circuit elements are not
connected in series! The formulas for the reactances,
however, always apply.

Electrical Resonance
For an RCL series circuit the current amplitude is given by

\ \

I:—:
Z J(X -Xc) +R?

Bl
—AhA
1k
RE
A —
£k
A
A

where V is the voltage amplitude. If V , R, C, and L are fixed and the frequency of the AC generator

is variable, we can change the reactances of the inductor and capacitor by changing the frequency

of the generator. As the frequency of the generator changes, so does the impedance Z of the circuit
and the current amplitude I. If we look at the above formula we see that Z can be minimized (made

as small as possible) by making the reactances X, and X equal to one another. The current

amplitude | will then be maximized (made as large as possible). If these conditions are met,
electrical resonance is said to occur in the circuit. The RCL series circuit is said to be at resonance.

For resonance,

X, =X¢
2nfL = 1
2nfC
(2nf ) =1
LC
1
2nf =—
JLC
fo |1
21/ LC

This value of f is called the resonant frequency of the RCL series circuit. At resonance the phase

angle ¢ is zero and the circuit has a resistive load. The power factor cos¢ is 1 and maximum power

is delivered to the circuit by the generator. At resonance the impedance Z equals the resistance R.

Example

An RCL series circuit is powered by an AC generator with rms voltage 200 V.

R=20.0€Q, C=5.00 uF, L=200 mH.




a. Find the resonant frequency of the circuit.

1 1 1
f=r i f= L f=
2nyLC 27:\/(0.200 H)(5.00x10° F) 21,[1.00x10° ¥ . ¢
f= 10\90 = :1000; f =159 Hz
TE\/C/SZ v TS
b. Find the rms current at resonance.
Irms = \ﬁ’ Irms = 200 V ’ Irms :100 A
Z 20.0Q

c. Find the average power delivered to the circuit at resonance.

P=1,V,.; P=(10.0A)(200V);| P=2.00KkW

rms ~ rms?

SINUSOIDAL STEADY STATE ANALYSIS
Analyzing ac circuits usually requires three steps.
Steps to analyze AC Circuits:
1. Transform the circuit to the phasor or frequency domain.
2. Solve the problem using circuit techniques (nodal analysis, mesh analysis, superposition, etc.).

3. Transform the resulting phasor to the time domain.

NODAL ANALYSIS

The basis of nodal analysis is Kirchhoff’s current law. Since KCL is valid for phasors, as
demonstrated previously, we can analyze ac circuits by nodal analysis. The following examples
illustrate this.

Example:

Find i , in the circuit shown using nodal analysis.

1041 I H

St LIk
g
20 cos 4 W = L1 F 2i, 0sH
L

R——

—




1. Convert the circuit to the frequency domain and draw the equivalent circuit in the freq
domain:

2cosd = 20,707, e = 4 rad/'s
1 H = Jil = j4
s H E Jol. = j:
|
m1F = —_— 25
juc ~

Thus, the frequency-domain equivalent circuit is as shown

ey, 40 v,
A J;— - IR - .
1, L
AN == —2.51} a1, +> 2 0
1L
2. Now apply KCL at node 1
20 -V, _ ¥ Vi — ¥
0 =25 4

(1+ 1.5V, +j2.5V: =20

At node 2

But I, =V 1/—j2.5. Substituting this gives

2"&", | VJ — 'i"lg '1-'?_.
—j2.5 Jjd j2
Simplifying we get:

11V, +15V,=0

We now have two equations in V; and V,. We can solve this system of equations be substitution or
using a matrix.



L+ 1.5 257w ] _ 20
1 15 [[va] 7o

_[1+i1s j2s| :
200 2.5 14 1.5 20|
&.|_‘“ 15 | = 300, Ar=| 3 0| =-220
A 300
Vi=—= =18.97/1843" V
TN T 15— s /1843
v, = 22 20 13.91/198.3° v
TTOA T 15—j5s T =
The current | x is given by
v, 18.97 /18.43
I, = = =7.59,/108.4" A

P25 25/ 90
Transforming this to the time domain,

ix=7.59 cos(4t + 108.4°) A

MESH ANALYSIS

Kirchhoff’s voltage law (KVL) forms the basis of mesh analysis. The validity of KVL for ac
circuits was shown previously and is illustrated in the following examples.

Example:

Determine current |, in the circuit below using mesh analysis.

402
Vit
T I
540 A '/j-") == 20 T

FRLLEY Ir.-'_'\'l -~ )
1, 907 Y
m—o{ (n) @ 2w

LR
so= L == 2 i1

1. Apply KVL to mesh 1

Applying KVL to mesh 1, we obtain

8ly +j10*(l1-15) 52 *(1, - 1)) = 0



B +j10=j2)l, = (~j2)I2—j1015=0

2. Apply KVL to mesh 2

For mesh 2,

@22l — (i)l — (~ 2l +20 ,90° =0

3. Given that for mesh 3, I3 = 5, use this system of equations to solve for I, and I.

(8 +j8)ly +j21, =50
2l + (4 =4l =—j20—j10
In matrix form as

g+ 78 g2 1[n] [ jso
2 4—jal|n| T |—j30

_ o
SIS 2 | (04 )1 — )+ 4 = 68

ﬂ‘=‘ J2 04— j4
C|s+gsogso| L e
a:_‘ 2 iz =340 240 = 416.17/ — 35.22
A, 41617/ —35.22
L=< /;H— =6.12/-3522° A
1

Since Iy = - I, then we know I.

SUPERPOSITION THEOREM

Since ac circuits are linear, the superposition theorem applies to ac circuits the same way it applies
to dc circuits. The theorem becomes important if the circuit has sources operating at different
frequencies. In this case, since the impedances depend on frequency, we must have a different
frequency-domain circuit for each frequency. The total response must be obtained by adding the



individual responses in the time domain. It is incorrect to try to add the responses in the phasor or

frequency domain.

Why? Because the exponential factor &' is implicit in sinusoidal analysis, and that factor would

change for every angular frequency . It would therefore not make sense to add responses at

different frequencies in the phasor domain. Thus, when a circuit has sources operating at different

frequencies, one must add the responses due to the individual frequencies in the time domain.

Example:

Use superposition to find I, in the circuit below:

40
A
) f,
S0 A 'R =20
LR Irf_\,l
! L) (@ 2000 v
m— (1) @ 2
L e N
211 *1& | I,il'l 42 L1

Letlo=1+ 1,

where I,” and I,”” are due to the voltage and current sources,
respectively.

To find I,’, recall that we open circuit current sources and short circuit
voltage sources. Open circuiting the current source gives the circuit at
right. If we let Z be the parallel combination of — j2 and 8 + j10, then

— &4 10
= w =025 — j2.25
—2ji+ 84510
And the current is
P 20 B J20
T 4247 425 j425

To find I,”’, use circuit at right. For mesh 1:
(8+j8)I,—jl0I3+j2l,=0

For mesh 2,

4-jdl,+j21 1 +j213=0

For mesh 3,

I3=5

Substituting

4-jH1,+j21,+j10=0

403

o

j 0y

f2 L
FALLEY -
T —] (_
RO % = —j2 ik
40
— 'f"-"'f"-"
£
| |1}|
A = 21l
fARIEY —
; £y
LILR I; )
#
g I ™ 10
Bil | |) = <2




Expressing I ; in terms of I , gives
|1:(2+j2)|2_5
Substituting, we get

(B8+i8)[(2+]j2)l,—-5]-j50+j2,=0

Solving for I,:
90 — 40
I, — —4’ — 2,647 — j1.176

The total current is then the sum of these two currents:

L =0 +1"=—5+ j3.520 = 6.12,/144.78" A

SOURCE TRANSFORMATION

Source transformation in the frequency domain involves transforming a voltage source in series
with an impedance to a current source in parallel with an impedance, or vice versa. As we go from
one source type to another, we must keep the following relationship in mind:

I'\
’ i Ir G
h
v, =41,

THEVENIN AND NORTON EQUIVALENT CIRCUITS

Thevenin’s and Norton’s theorems are applied to ac circuits in the L1
same way as they are to dc circuits. The only additional effort arises —o "
from the need to manipulate complex numbers. The frequency- Linear R

domain version of a Thevenin equivalent circuit is depicted in (a), et '

where a linear circuit is replaced by a voltage source in series with L b

an impedance. The Norton equivalent circuit is illustrated in (b), where a linear circuit is replaced
by a current source in parallel with an impedance. Keep in mind that the two equivalent circuits are
related as

Vn = 2yl , Zm =2y

just as in source transformation. V 1y, is the open-circuit voltage
while I  is the short-circuit current.

Lincar
cireuit




If the circuit has sources operating at different frequencies, the Thevenin or Norton equivalent
circuit must be determined at each frequency. This leads to entirely different equivalent circuits,
one for each frequency, not one equivalent circuit with equivalent sources and equivalent
impedances.

Example: 40 a0
) ) ) o ANAN— T
Find the Thevenin equivalent of the circuit as seen from l..l
terminals a-b. AP A 220
<
—|E j40

- -— ) r— ?r,
L
Ty
IS.-".(D 1-jag U ) <1. 051, Vo
ah

2. To find V 1, we apply KCL at node 1 to find lo. Then apply KVL to the right hand loop.
15=1,+051,>1,=10A
Applying KVL to the loop, we obtain
“1o(2-j4)+051,(4+j3)+V ;=0
or
V=102 —j4) — 5(4 +j3) =—j55
Thus, the Thevenin voltage is
V 1 =55,—90-V

3. To find Zy, remove the independent source and connect an arbitrary fixed current source
(In this case 3A since it makes the math easy) to terminals a and b and redraw the circuit:

Iy
4+ 51l V. " I

|
2

140 031,

)

D L= 3700 A

=l |

4. Now apply KCL at the node and KVL to the outer loop. Find Zth as the ratio of the
Voltage to the Current.



At the node, KCL gives

3=z1,+051=21,=2A

Applying KVL to the outer loop gives

Vi=l,(4+j3+2-j4)=2(6—))
The Thevenin impedance is

V, 26—
Ty = 2 =202 4 06667 2

1, 3

Resonance

the expression for the series impedance goes to infinity at high frequency
because of the presence of the inductor, which produces a large emf if the current
varies rapidly. Similarly it is large at very low frequencies because of the
capacitor, which has a long time in each half cycle in which to charge up. As we
saw in the plot of Zgies above, there is a minimum value of the series
impedance, when the voltages across capacitor and inductor are equal and
opposite, ie v (t) = — ve(t) so V(1) = V¢, so

oL = 1/oC so the frequency at which this occurs is

IWN] = —_—
° VLo
oo 1
° on JLC

where ®, and f, are the angular and cyclic frequencies of resonance, respectively.
At resonance, series impedance is a minimum, so the voltage for a given current
is a minimum (or the current for a given voltage is a maximum).

v,
l-r
.

S -
N current

~— L J
I senes derection

c  Yc
T I

'|I'|'
across coil

This phenomenon gives the answer to our teaser question at the beginning. In an RLC
series circuit in which the inductor has relatively low internal resistance r, it is possible to
have a large voltage across the the inductor, an almost equally large voltage across



capacitor but, as the two are nearly 180° degrees out of phase, their voltages almost cancel,
giving a total series voltage that is quite small. This is one way to produce a large voltage
oscillation with only a small voltage source. In the circuit diagram at right, the coil
corresponds to both the inducance L and the resistance r, which is why they are drawn
inside a box representing the physical component, the coil. Why are they in series? Because
the current flows through the coil and thus passes through both the inductance of the coil
and its resistance.

You get a big voltage in the circuit for only a small voltage input from the power source.
You are not, of course, getting something for nothing. The energy stored in the large
oscillations is gradually supplied by the AC source when you turn on, and it is then
exchanged between capacitor and inductor in each cycle.

Bandwidth and Q factor

At resonance, the voltages across the capacitor and the pure inductance cancel out, so the series
impedance takes its minimum value: Z, = R. Thus, if we keep the voltage constant, the current is a
maximum at resonance. The current goes to zero at low frequency, because X becomes infinite
(the capacitor is open circuit for DC). The current also goes to zero at high frequency because
X, increases with w (the inductor opposes rapid changes in the current). The graph shows I(w) for
circuit with a large resistor (lower curve) and for one with a small resistor (upper curve). A circuit
with low R, for a given L and C, has a sharp resonance. Increasing the resistance makes the
resonance less sharp. The former circuit is more selective: it produces high currents only for a
narrow bandwidth, ie a small range of w or f. The circuit with higher R responds to a wider range
of frequencies and so has a larger bandwidth. The bandwidth Aw (indicated by the horiztontal bars
on the curves) is defined as the difference between the two frequencies w, and w. at which the
circuit converts power at half the maximum rate.

Now the electrical power converted to heat in this circuit is I°R, so the maximum power is
converted at resonance, ® = ,. The circuit converts power at half this rate when the
current is 1,/72. The Q value is defined as the ratio

Q = w/Aw.

3 A0
A
H‘-‘-"‘H‘""--_._"--_‘__b:a.
Wy 2, w



Complex impedance

You have perhaps been looking at these phasor diagrams, noticing that they are all two-
dimensional, and thinking that we could simply use the complex plane. Good idea! But not
original: indeed, that is the most common way to analyse such circuits.

The only difference from the presentation here is to consider cosusoids, rather than
sinusoids. In the animations above, we used sin waves so that the vertical projection of the
phasors would correspond to the height on the v(t) graphs. In complex algebra, we use cos
waves and take their projections on the (horizontal) real axis. The phasor diagrams have
now become diagrams of complex numbers, but otherwise look exactly the same. They still
rotate at ot, but in the complex plane. The resistor has a real impedance R, the inductor's
reactance is a positive imaginary impedance

X|_ = j(DL
and the capacitor has a negative imaginary impedance

Xc = —j.1/wC = 1/jwC.
Consequently, using bold face for complex quantities, we may write:

Lseries = (R2 + (jwL + 1/ij)2)1/2
and so on. The algebra is relatively simple. The magnitude of any complex quantity gives
the magnitude of the quantity it represents, the phase angle its phase angle. Its real
component is the component in phase with the reference phase, and the imaginary
component is the component that is 90° ahead.

BANDWIDTH

At a certain frequency the power dissipated by the resistor is half of the maximum power

. . 1 -
which as mentioned occurs at e, = F The half power oceurs at the frequencies for

: . . I
which the amplitude of the voltage across the resistor becomes equal to E of the

maximum.

1 l‘:'i.l(
B, = Z R

Figure 3 shows in graphical form the various frequencies of interest.

1.0+

0.8+
/2

0,6+

I 0,4 -

bandsndth
D|2_ ‘ L

0.0-
I e wZ

Figure 3



Therefore, the 'z power occurs at the frequencies for which

% _ ruR:C : (18)
2 J(l - 'LC) +(wRC)
The bandwidth is the difference between the half power frequencies

Bandwidth= B = &, — o, (1.11)

By multiplying Equation (1.9) with Equation (1.10) we can show that m, is the geometric
mean of , and @, .

@y = o0,

As we see from the plot on Figure 2 the bandwidth increases with increasing R. Equivalently the
sharpness of the resonance increases with decreasing R. For a fixed L and C, a decrease in R
corresponds to a narrower resonance and thus a higher selectivity regarding the frequency range
that can be passed by the circuit. As we increase R, the frequency range over which the dissipative
characteristics dominate the behavior of the circuit increases. In order to quantify this behavior
we define a parameter called the Quality Factor Q which is related to the sharpness of the peak
and it is given by

maximum energy stored 5 E,
= tr—

total energy lost per cycle at resonance E,

=2

which represents the ratio of the energy stored to the energy dissipated in a circuit. The energy
stored in the circuit is

E,=L1r+Love
T2 2

i

For Ve = Asin(et) the current flowing in the circuit 15 [ = C? = a_Acos(mt) . The
t

total energy stored in the reactive elements 1s

E, = %Lmz{fzﬁf: cos” (@) + %CA: sin”(@r)



1 . _
At the resonance frequency where o =a, = ? the energy stored in the circuit
LC )
becomes

E —Lca
S72

The energy dissipated per period 1s equal to the average resistive power dissipated times
the oscillation period.

2 CrA 2 | RC ,
E,=R{IF)Z =g 2 T |
€, 2 [N 2 m,L

And so the ratio O becomes

@ L 1

_ B _
Q R ao,RC

e The quality factor increases with decreasing R.
e The bandwidth decreases with decreasing R.

Problems

A series RLC circuit with L=160 mH, C = 100 4F , and R=400C 1s connected to a
sinusoidal voltage V'(¢) =(40.0V)sin @t , with @ =200 rad/s.

(a) What 1s the impedance of the circuit?

(b) Let the current at any instant in the circuit be / (1) = I, sin (@t —¢) . Find Iy,

(c) What 1s the phase¢ ?



Solution:

(a) The impedance of a series RLC circuit is given by

Z=\R+(X,-X.)
where

and

are the inductive reactance and the capacitive reactance, respectively. Since the general
expression of the voltage source 1s V() =1, sin(er), where 1y 18 the maximum output

voltage and @ 1s the angular frequency, we have }, =40 V and @ =200 rad/s . Thus, the
impedance Z becomes

Z= JHD'D Q) {{znn rad/s)(0.160 H)- 1 — ]
(200 rad/s)(100x 10~ F)

=4390

(b) With}, =40.0V , the amplitude of the current 1s given by

.

1= 300V _6911a
Z 439

.
»)

(c¢) The phase between the current and the voltage is determined by

I il ———
¢ =tan M]:[aﬁ'] el

\
( |
200 rad/s)(0.160 H) -
[ 4 ) (200 rad/s)(100x107 F)
40.0 Q

=tan ==242°




Suppose an AC generator with I (#)=(150V)sin(100¢) is connected to a series RLC
circuit withR=40.0Q, L=80.0 mH, and C =50.0 uF

o R ]
. W{ }
® L
Kty =V, sinwt 1
| |
r 1 p

(a) Calculate V. V,, and V., , the maximum of the voltage drops across each circuit

element.

(b) Calculate the maximum potential difference across the inductor and the capacitor
between points b and d shown in Figure

Solutions:

(a) The inductive reactance, capacitive reactance and the impedance of the circuit are
given by

(a) The inductive reactance, capacitive reactance and the impedance of the circuit are
given by

! 1
© @C (100 radis)(50.0x10™ F)

X, =L=(100 rad/s)(80.0x10™ H)=8.00 Q

Z=\[R+(X, - X} =/(40.0 Q) +(8.00 2-200 )’ =196 ©
respectively. Therefore, the corresponding maximum current amplitude 1s

1 Vo 10V aesa
"7 196 Q

The maximum voltage across the resistance would be just the product of maximum
current and the resistance:

Vg =I,R=(0.765 A)(40.0 Q)=30.6V
Similarly, the maximum voltage across the inductor 1s

Vyo=1,X, =(0.765 A)(8.00 Q)=6.12V



and the maximum voltage across the capacitor 1s

Vo = I,X. =(0.765 A)(200 Q) =153 V

Note that the maximum input voltage V' 1s related tol,,, V', and V., by

Vo= Vo + Vo =Veo
(b) From b to d, the maximum voltage would be the difference between IV, and V. :

Vg 121V + Vg |21V = Ving |=16.12 V=153 V| =147V

A sinusoidal voltage V'(f)=(200V)siner is applied to a series RLC circuit with
L=10.0mH, C=100nF and R=20.0 . Find the following quantities:

(a) the resonant frequency,
(b) the amplitude of the current at resonance,

(¢) the quality factor O of the circuit, and

(d) the amplitude of the voltage across the inductor at the resonant frequency.

Solution:

(a) The resonant frequency for the circuit 1s given by

a, |1 1 1 1 -
T =5033Hz
4 27 2z \NILC zer(mﬂxu:ri H)(Iﬂ[ﬁxl!}"" F)

(b) At resonance, the current is

(c¢) The quality factor (J of the cireuit 1s given by

ol _ 27(503357')(10.0x10™ H)

=158
R (200 Q) >

0

(d) At resonance, the amplitude of the voltage across the inductor 1s

Vip=1,X, = Lo,L=(10.0 A)27(5033 57')(10.0x10™ H)=3.16x10°V




Solve for the current through the 5 ohm resistor and the current through the 4V source
using Node-Voltage Analysis.

—w—I|

4

Now write KCL at each node (except the reference):
KCL at V1:
-5A +V1/5 + (V1-V2)/10 + [V1-(V2+4)]/10 =0

Note that there are four terms in the equation, one for each branch leaving the node. The
terms list the current leaving right, down, left, and up.

KCL at V2:
(V2-V1)/10 + V2/2 - 2A + [V2-(V1-4)]/10=0

Note that there are four terms in the equation, one for each branch leaving the node. The
terms list the current leaving right, down, left, and up.

Now gather terms (multiplying through by 10 to clear up the fractions):
4V1 -2V2 =54

-2V1+7V2=16

Now solve the set of 2 equations with 2 unknowns.

V1=17.08V

V2=17.17V

We can now determine the current through the 5 ohm by Ohm's law:

| =V1/5=341A

The current through the 4V source can be found as:

| = [V1-(V2+4)])/10 = 0.59A

Solve for the current through the 5 ohm resistor and the voltage over the 3A source
using Node-Voltage Analysis.
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Now write KCL equations for each node except the reference, in terms of the node
voltages:

KCL at V1:

-3A + (V1-V2)/5 + (V1-V3)/[1=0

KCL at V2:

(V2-V1)/5 +V2/3 + (V2-V3)/2 =0

KCL at V3:

(V3-V2)/2 + (V3-V1)/[1-8A =0

Now gather terms and clear up the fractions:

6V1-V2-5v3=15

-6V1 +31V2 - 15V3 =0

-2V1-V2+3V3=16

Finally, solve the 3 equations in 3 unknowns.

V1 =48.625V

V2=33V

V3 =48.75V

The current through the 5 ohm resistor can be found by Ohm's law:
I =(V1-V2)/5=3.125A

The voltage over the 3A source is simply V1, or 48.625V.

Solve for the current ix flowing right through the 4 ohm resistor using Mesh-
Current Analysis.

[

Label each mesh (window pane) with a mesh current. Then write the KVL
equations for each pane. Note that we were forced to label the voltage over the
current source (VX) in order to write the voltage term there:



FQp + V- 3. 4]

Si v 411, +T=10

We now have an extra unknown (Vx), so we need another equation. It is found
be relating the two mesh currents to the current source.

i —i R

Note that i1 is positive because it is in the same direction of the source. 12 is
negative because it is in the opposite direction as the source.

Now solve the three equations in three unknowns. I1 is found to be -320mA.
Since ix is in the opposite direction of i1, then ix = 320mA.

In the circuit shown below

R; =100 ohm, R; =20 ohm, R, =12 ohm, L = 10 uH, C = 0.3 nF, vs(t)=50cos(wt)
V, is(t)=1cos(mt+30°) A, f=400 kHz.

Notice that both sources have the same frequency: we will only work in this
chapter with sources all having the same frequency. Otherwise, superposition must
be handled differently.

Find the currents i(t) and i1(t) using the superposition theorem.

Ri100

F1 20
+
W L 10u
(OF

11
1T

|
~

Let's use TINA and hand calculations in parallel to solve the problem.

First substitute an open circuit for the current source and calculate the complex
phasors I', I1' due to the contribution only from VS.

The currents in this case are equal:

I'=1," = V§/(Ri + Ry + j*»*L) = 50/(120+j2*m*4*10°*10™°) = 0.3992-
j0.0836

I'=0.408 e 118 p


https://tinacloud.com/tinademo/tina.php?url=http://www.tina.com/English/tina/course/21super/super1.TSC

F1 20

W
L 10u

Ri100 1 407 d2ma -11.83°

| 407 82ma  -11.837

Next substitute a short-circuit for the voltage source and calculate the complex
phasors I, 11" due to the contribution only from IS.

R1 20
L 10u
1Ca) s
Ri 100 M 215 64ma 12.147°

|
Kl

| 264 98maA -110.34°

In this case we can use the current division formula:

R1+j*®*|_ __ejSIZI" ZD+j*2wHw4w:]Dﬁw1D—6

&1 . = : - - =-0.261793 g8 g
R,+R +]"a*L 100420472 g 47 10% 10

I"=-0.091-j0.246 A
and

: R, o 100

= L = e = 081566174
"R AR, +jTeTL 10042047 2% n* 47 10° * 107

I, = 0.7749 +j 0.2545 A

The sum of the two steps:
=1'+1"=0.3082 - j 0.3286 = 0.451 e 145" A
=1 +1=1.174 +] 0.1709 = 1.1865 &/ 32%" A

These results correspond well with the values calculated by TINA:
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WS L 10y
OF
Ri 100 M 1.1848 5827
-
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Kl

| 450.91m&, -46.9°

The time functions of the currents:
i(t) =0.451 cos (m-t - 46.9°) A

i1(t) = 1.1865 cos (ot + 8.3°) A

Find the current in R using the superposition theorem. Assume the internal source
Impedances are zero.
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Solution
Step 1. Replace V,; with its internal impedance (zero), and find the current in R due
to V;, as indicated in Figure
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] | I
» 0.01 uF l ‘ 0.02 uF
Vi R Via
1020°V 10Kk zeroed
N f=10kHz
Xo=—1 ‘ - 1.59 kQ
T 2mfC, 2m(10 kHz)0.01 pF)
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Xey = ' =796 0

2nfC,

2r(10 kHz) (.02 uF)



Looking from V,,, the impedance is

RX., (10£0° KQ)(796.£-90° ©)
. = 1.502-90° kQ2
L=Kat Xy e e D ~ 790 O

= 1.592-90° kQ + 622£-51.5° Q
= —j1.59 k2 + 387 Q — j487 Q = 387 Q - j2.08 kQ

Converting to polar form yields
Z =2.12£-79.5° kQ
The total current from source | is

<
Iy == oD = 4724795 mA

T 2.12£-79.5° kQ

Use the current-divider formula. The current through R due to V,, is

|,,.=(X”"90 )l,.:( Lo ee, Ll )4.72479.5° mA

R - jXc2 1.0 kQ - j796 Q
= (0.6232-51.5° Q)(4.72.£79.5° mA) = 2.94./28.0° mA

Step 2. Find the current in R due to source V; by replacing V., with its internal
impedance (zero), as shown in Figure 20-3,

L G
& Il
Il !
001 uiF l 002 uF Iy
52
Vi R BADPY
zeroed LDk} f=10kHz

Looking from V,;, the impedance is
P RXe1  _ 796£-90° Q + (1.0£0° kQ)(1.59£-90° kQ)
s T 1.0 kQ - j1.59 kQ
=796£-90° Q + 847£-322° Q
=—j796 Q+ 717 Q—j451 Q=717 Q - j1247 Q

Converting to polar form yields
Z = 1438/-60.1° Q



Use the current-divider formula. The current through R due to V,; is
X1 £-90°
Iy = “"‘.——)lyz
R —jX¢ p
_(  1.59£-90° kQ
(‘ 1.0 kQ - j1.59 kQ

}5.56460.1-= mA = 4.70227.9° mA

Step 3. Convert the two individual resistor currents to rectangular form and add to
get the total current through R.

Ipy = 2.94228.0° mA = 2.60 mA + j1.38 mA
Ipa = 4.70£27.9° mA = 4.15 mA +j2.20 mA
Ip = Iy + Iy = 6.75 mA + j3.58 mA = 7.64.227.9° mA

For the circuit in Figure, determine Zth, as seen by RL.

R

1.0k} |
Xei

Solution:

Replace the voltage source with its internal resistance.

Looking from terminals A and B, C, appears in parallel with the series combi-
nation of R, and C,. This entire combination is in series with R,. The calculation for
Z, is as follows:



(X2 Z-90°)R, — jXc1)

Zoy = RyL0° + R
. R, - jXe1 — X2
e (152-90° kQ)(1.0 KQ — 1.5 k)
=N 10kQ —j3 kQ

(1.5£-90° kQ)(1.8£-56.3° kQ)
3.16£-71.6° kQ

=560£0° Q + 854/-74.7° Q = 560 Q + 225 Q — j824 Q

=785 Q- 824 Q = 11382—-46.4°

=560£0° Q +

Using Norton’s theorem, determine the current through R,.

X g
T ‘I‘ A
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B

Solution:

Short the terminal AB as shown below.

I, is the current through the short and is calculated as follows. First, the total
impedance viewed from the source is

RX,, o —90°
Z=Xe, + XX _ 50, 900 3 4 56L0° QN100£-90° Q)
R+Xe 56 Q — j100 Q
= 50£-90° Q + 48.92-29.3° O
=—S0Q+426Q-j239Q=426Q-739Q

Converting to polar form yields

Z =8532-60.0° Q

Next, the total current from the source is

Vv 60£0°V
I, = ‘7 = 7034£60.0° mA

T 85.3/-60.0° Q

In the following circuit, calculate the power delivered to the load for each of the following
frequencies 10 kHz, 30 kHz, 50 kHz, 80 kHz, and 100 kHz.
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Solution:
For f= 10 kHz,
| |
= .59 kQ)

x - -
7 2rfC T 2m(10 kHz)(0.01 uF)
X, = 2nfL = 2n(10 kHz)(1 mH) = 62.8 Q

The magnitude of the total impedance is
Zwe= VR, + R + (X, - XoF = V(20 Q) + (1.53 kQ)* = 1.53 kQ

The current is

The load power is
P, = IR, = (6.54 mA)*(10 Q) = 428 uW
For f= 30 kHz,

I
= =531 Q
Xe 27(30 kHz)(0.01 uF) 2L

X, = 2n(30 kHz)(1 mH) = 189 Q
Z. =V20QP+(342Q7° =343 Q

rof =

P, =I"R, = (29.2 mA)*(10 Q) = 8.53 mW



For f = 50 kHz.

1
~ 2m(50 kH2)(0.01 uF)
X; = 2n(50 kHz)(1 mH) = 314 Q

Note that X and X; are very close to being equal which makes the impedances
approximately complex conjugates. The exact frequency at which X; = X is 50.3 kHz.

Z,=V@20QP+4Q)F=2040Q

318 Q

Xc

/B T
7., g A

P, = I’R; = (490 mA)*(10 ) = 240 W

For f = 80 kHz,

1
e 2r(80 kHz)(0.01 uF)
X, = 2r(80 kHz)(1 mH) = 503 Q

Zoo= V(20 Q) + (304 Q)* =305 Q

=199 Q

P, = I’R, = (32.8 mA)(10 Q) = 10.8 mW

For f= 100 kHz,

|
e 2m(100 kHz)(0.01 uF)
X; =2n(100 kHz)(1 mH) = 628 Q

=159 Q

Z = V(20 Q) + (469 Q) = 469 Q

j= Ve _ 10V
Zo, 460 0
P, =R =(21.3 mAY10 ) = 4.54 mW

=21.3 mA



UNIT- I Transient Analysis

Preliminary definitions:

Total Response = natural response + forced response

Natural response: solution of equation of motion of the system when the excitation is zero. The
expression for natural response contains constants.

Forced response: any solution of equation of motion of the system for non zero excitation.

If the natural response tends to zero when time tends to infinity and the limit of the forced response
as time goes to infinity exists and is bounded (not infinite), then the limit is called steady state
response.

Transient response: Processof going from initial state to steady state.

Transient Response

0.077" state

0.041 :

(1) |
0.0 1—77 , [

© l

—0.027]

“0.05——

Transient response is due to both the application of the force and the non zero initial conditions



Transient response of RC, RL and RLC circuits to excitation by DC and exponential sources
The RL Series Circuit

The voltage as a function of time across an inductor in an RL series circuit is
observed on an oscilloscope and compared to the theoretically calculated plot when the
parameters of the circuit are known. When a square wave generator is connected to an
inductor and resistor in series, the circuit looks as shown in Figure 1. The inductor in the
circuit has an inductance L and resistance RL, the generator has an output
resistanceRG and the additional resistance from a resistance box is R.The square wave
generator acts like a battery switching into the circuit with a voltage 6 then shorting out
periodically.

RL Series Circuit with Step Input We consider an RL series circuit as shown in the figure.
Switch

N —

v(t) — i Lg

R-L series circuit

If the switch is closed at time ¢ = 0, the voltage across the RL combination would be v(r) which
is a step of magnitude V' [or Vu(r)] and not a constant as is the supply voltage V.
wWi)=0,forr<0
=V, fortz0
Thus the differential equation governing the behaviour of the circuit would be
Ri(r) + C%(;Q = Vu(r)

Taking Laplace transform, we get

RI(s) + LLsI(s) - i(0-)]= 1‘.
"
W i) _v(1_ | i(0-)
1 )= ( +R)+H_R-R[» L
SIS L L L L

Taking inverse Laplace transform,

[ R

y -|'”'|') {3)_v I']
i(l)=ﬁ l-e ‘Y J4i(0=)e ‘%’ =E l—e \Y/ with (0-) = 0.

, R
. . , , : V -4t
The transient part of the current response, i, =[i(f) =i ]=- e L



(1-e V)= 0.63% =0.63i,

==

From the current equation at =7= %* i=

When the switch is first closed, the voltage across the inductor will immediately jump to battery
voltage (acting as though it were an open-circuit) and decay down to zero over time (eventually
acting as though it were a short-circuit). Voltage across the inductor is determined by calculating
how much veltage is being dropped across R, given the current through the inductor, and subtracting
that voltage value from the battery. When the switch is first closed, the current is zero, then it
increases over time until it is equal to the battery voltage divided by the series resistance. This
behavior is precisely opposite that of the series resistor-capacitor circuit, where current started at a
maximum and capacitor voltage at zero.

.V
The steady state part of the current response, i = 7

The variation of the current is shown in Figure 6.12.

The quantity r=% is known as the Time-constant of the circuit and it is defined as follows.

Definitions of Time-constant (1)
1. It is the time taken for the current to reach 63% of its final value. Thus, it is a measure of the
rapidity with which the steady state is reached.
Also, at ¢ = 57, i = 0.993i; the transient is therefore, said to be practically disappeared in five
time constants.

(]

: - -2 ; : ' _—
. The tangent to the equation '='§(| -e L ) at ¢ = 0, intersects the straight line, 1=% at

i r=%. Thus, time-constant is the time in which steady state would be reached if the

current mcreases at the imitial rate.

Physically, time-constant represents the speed of the response of a circuit. A low value of time-
constant represents a fast response and a high value of time-constant represents a sluggish response,

Calculations of the Voltage Across Elements
_R,
Voltage across the resistor, Vj, = Ri(1)= P’(] -e L )

. & it
Voltage across the inductor, V; = f% =L %[%[1 —e t )] =ve &'
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Current

0.63

0.5A |
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Time

Variation of current with time RL series circuit with step input

First-Order RC Circuits ) ) ) )
» Used for filtering signal by blocking certain frequencies and passing others. e.g. low-

pass filter ) )
* Anycircuit witha smc};le energy storage element, an arbitrary number of sources and

an arbitrary number of resistors is a circuit of order 1. ) )
» Any voltage or current in such a circuit is the solution to a 1st order differential

equation.

Ideal Linear Capacitor

. d d
i i(1) = ﬁ = 07: v (1) =vo(t )

C v
—l——ﬂo - Energy stored w = j pdt = Icvdv = %cv2

A capacitor is an energy storage device — memory device.

RC DECAY



v, +i,R =0

i :Cdv‘
dt
v +RC e g
dt
_r
v. = Ae *¢

|| —

11 —

c R Initial condition v (0+) =v-(0-) = E£
| 2 Vc — Ee —1/RC — Ee -/t
—— - " N

1 i =——e "
E ¢ R
R=2k
C=0.1uF
Os 1.0ms 2 .0ms 3.0
bt _t
Ve(t)=Ee RC =Ee ° ___E
dve
dv E
—C N dt t=0

dt |, T



Summary

RL Source
Circuits (0 state)

Sonrce-
free

(0 mput)

Source

Circuits Source-

(0 inpur)

Inihial Value
Li=0)

RC (0 state) v

free v,

Steady Value
(f—» )

time
constant
T

LR

RC

RC

RLC Series Circuit with Step Input With zero initial conditions, the Kirchhoff's voltage

law equation becomes,

. dity 14
Ri(1) + L= +C£;m¢n_;u{f1

Ll + -2 sy =V
or Ri(s) + sLI(s)+ Cs Hs)=

¥

or l(s)= R 1
Lt

Wu(h)

I& L ﬁ
AN ——T 1

ith

RLC series circuit




The roots of the denominator polynomial of equation are,

R 1
-5'2+ I.“'+E—ﬂ

R* | R
a2 LC and, “1"_‘\J

or
=; —-i 1 =£ E: 1 1
Let O Jic and ;’wh_u e ¢ ZJI Damping Ratio
Then, 5= —Eap+agE-1 and s, = —Smy -y E -1
_ L A B
50, 4s) {s-sl}[3-3:]-3—3|+s-.93
V I
- (x— L _ L _ v
4= (s 3]][5—.:1][5—32} (5,— 53) 2L 5;1_]
r I 4
L - L 4

and, therefore B = (5 -35,)

(5 =5)(s=5)

i=45

Putting these values of A and B, we get,

i) = v [ 11 ]
I%LJ§2_] §=5 85-5,
Taking inverse Laplace transform,

V _ = M
Pl P S— "W[e‘“"“ IH_e oy & nl]

. V
ity = ——===[e"- =
20L& -1 : : 2Ly & -1

Depcnding upon the values of R, L and C, three cases may appear:

(a) 2 I J_ (Overdamped condition)
R
(b) 3L \[_ (Underdamped condition)

¥ &

©) 3 J_

(Critically Damped condition)



ur.f}luer-l—

A. Overdamped Condition The condition is, i:» >

1
2L Jic
. . iy L 1
Since, Quality Factor, Q = and - -
[ ) Q R “ JLC] _

Under this condition, the current becomes,
f(:}:% ~Ead [ B E I _ “"Wf_”] = e "™ sinh (@ & — 1)
2aL & -1 %L,Fﬁ 1
The graphical plot for the current is shown in Figure

0.6 ¥ T T T T T Y T Y
05 <«——— Underdamped condition ]
04 4
Q
° .
3 0.3
=1
£ o2
0.1
0
-0.1 A i 1 i L " 1
0 1 2 3 B 5 6 8 9 10

Current response in RLC series circuit for three different damping conditions

. N . R : 1
B. Critically Damped Condition The condition is, ﬂ-—JL_ o, {=1lorQ 2

From equation (6.1),
V

L V |
l V)= S | —
) 24 205 + @ L[(s+a),,)2]
Taking inverse Laplace transform,
)= %le-m"

The graphical plot for the current is shown in Figure



o A . | |
Underdamped Condition The condition is, ﬂ< \/L_C o, {<lorQ> 5

So, the current becomes,

1) = V et =10 _ o~ J'.F-‘—-lu
i(t) = Cet [‘.‘% @, ]
2wa,/$-l
.um"’l_.'-: ¢ = .‘M)\|—:-: '
o V (:‘-fm" ¢ ] —e[ )
ayLy1-& 2J
--—V—-e’f“"“sin(a)o 1-&x

~aply1-2

So, the circuit is oscillatory. When R = 0, £ = 0, the oscillations are undamped or sustained. The
frequency of the undamped oscillation (@) is known as undamped natural frequency.

A L C

RLC Series Circuit with Sinusoidal Input Sinusoidal
voltage w(7) = V,_sin(wr + 6) is applied to a series RLC cir- H
cuit at time ¢ = 0. We want to find the complete solution for iV il
the current i(1) using Laplace transform method. e L A
di(t)y ¢, sz
By KVL, Ri()+L=—=+= ,I'")d' =V sin(ox +0) RLC series circuit with sinusoidal input
Taking Laplace transform with zcro initial conditions,
(wnm-womo)
I(s) R+sL+— |=V, —
( s rw’
V s(cem0+wcus0) V. s(wn9+ wcosO)

or, I(s)=

) L(\+jw)(\-jm)(s—s)(f s)

where, s, 5, are the roots of the quadratic equation:

Thus, s,=—%+ —‘L and, s==3TVar Ic



o s(ssinf+wcost) K, T KK
(3+ij3-ij3-.9,)(:-32) s§=5, $=5, sSt+jw s-jw

So, by residue method, multiplying by (s - 5,) and putting s = s,

s.(s'sino-o-wcosa)

s, (s sinf+ wcosé)

K = d K =
b s+ je)(s, - je)(s,-s,) st e)s, - jo)s-s)
Similarly, multiplying by (s + jw) and putting s = - jw,
~ jw(~ jwsin@+wcosb) w(cosé~ jsind)
K) - M 2 s s - . .
(-jw-jw)(-/w-s.)(-jw-.r:) 2(s' +jw)(.\': +jw)
Jjw(-wsinB+wcosh) w(cosf+ jsing)
and, K, s poespapn - = - -
(jo+ jw)(;w-sI )(jw-s:) 2(-‘. - jo)(s, - jo)
Hence the current response becomes,

i(:)=%-[K,e"’ +K, e ]+%[K,c"" +Ke™ =1, +1,

Thus, the transient part of the total current is

/ 5 s, (s, sin0+wcosa) o sz(szsin8+wcos0) o
o’ N
C tw )\L_-E (S:-f(ﬂ') ?—E

The steady-state part of the total current is obtained as follows.

- - wee™ /lu ) c;(.nc)

v, we e
l= 21.[(3 +jw)(s +jw) (c —jw)(s —jw)] 2L l(s +jw)(c +jw) (v —jw)(s -jw)

|
- wl——
or, I = = sind wt +0-tan™'
= 1 2 y R
R+| wl-—
(o-2e)

This gives the steady-state current of the series RLC circuit to a sinusoidal voltage.

Problems:
Calculate the RC time constant, T of the following circuit.



Vs=5hvy | &+ :
——'_ .I'I.I'I.C ::l I: =
:1DDDUF

The time constant, T is found using the formula T = R x C in seconds.

Therefore the time constant T is given as:
T =R x C =47k x 1000uF = 47 Secs

a) What value will be the voltage across the capacitor at 0.7 time constants?

At 0.7 time constants ( 0.7T ) Vc = 0.5Vs. Therefore, Vc = 0.5 x 5V = 2.5V

b) What value will be the voltage across the capacitor at 1 time constant?

At 1 time constant ( 1T ) Vc = 0.63Vs. Therefore, Vc = 0.63 x 5V = 3.15V

c) How long will it take to “fully charge” the capacitor?
The capacitor will be fully charged at 5 time constants.

1 time constant ( 1T ) = 47 seconds, (from above). Therefore, 5T =5 x 47 = 235 secs

d) The voltage across the Capacitor after 100 seconds?

The voltage formula is given as Vc = V(1 — e R%)

which equals: Vc = 5(1-e2%%%7)  RC = 47 seconds from above, Therefore, V¢ = 4.4
volts

We have seen that the charge on a capacitor is given by the expression: Q = CV and that
when a voltage is firstly applied to the plates of the capacitor it charges up at a rate
determined by its time constant, 1. In the next tutorial we will examine the current-voltage
relationship of a discharging capacitor and look at the curves associated with it when the
capacitors plates are shorted together.



Calculate the RC time constant, T of the following RC discharging circuit.

t=10 R =100k

—ANN—

Ve=10v 1== =
22uF

L

The time constant, T is found using the formula T = R x C in seconds.

Therefore the time constant T is given as:
T =R x C =100k x 22uF = 2.2 Seconds

a) What value will be the voltage across the capacitor at 0.7 time constants?

At 0.7 time constants ( 0.7T ) Vc = 0.5Vc. Therefore, Vc = 0.5 x 10V =5V

b) What value will be the voltage across the capacitor after 1 time constant?

At 1 time constant ( 1T ) Vc = 0.37Vc. Therefore, Vc =0.37 x 10V = 3.7V

c) How long will it take for the capacitor to “fully discharge” itself, (equals 5 time
constants)

1 time constant ( 1T ) = 2.2 seconds. Therefore, 5T =5 x 2.2 = 11 Seconds



Example A Dc voltage of 100 volts is applied to a series RL circuit with R=250hm.
What is the current in the circuit aat twice the time constant?

E=100V

R=25Q
R
i) =-(1—e)
R
time constant 7= L/R
] E _t .
i(t) = - (1—-ex) Given t=21

therefore i(t) = % (1- e‘TT) =4(1—e?) =345A

Example find the expression for transient after switched is closed at t= 0 assuming
zero initial conditions

Applying KVL for the Loop
: di(t)
Zl(t) +5 7 =20
Taking Laplace on both sides

20
21(s) + 5(sI(s) —i(0)) = —

Sincei(0) =0
We have

20
21(s) + 5sl(s) = 5

20
(2+59)I(s) = 5



20

18)= 55759
I(s) = s(s+0.4)
Taking partial fraction
)=t A, B _ b W
s “s(s+04) s s+04 s s+04
10 10
I(s) =——
(s) s s+04

Taking inverse we get L™ [I(s) ] =i(t) = 10— 10 ®*

Example find the expression for transient voltage across R and L after switch is closed
at t= 0 assuming initial current through inductor as 3A before it is closed

A

t=0
100 vV —— 5

i(t)

ifo)=3A

Applying KVL for the Loop

di(t
20i(t) + 5% = 100
Taking Laplace on both sides

. 100
201(s) + 5(sI(s) —i(0)) = —
Since i(0) = 3A
We have

100
20I(s) + 5sI(s) — 15 = 5



100
(20 + 55)I(s) = T + 15

100 + 15s
I(8) =—F——
55(4 +s)
20 + 3s
Is) = s(s+4)
Taking partial fraction
20 + 3s A B 5 2
I(S) = = —+ - - —
s(s+4) s s+4 s s+4
5 2
I(s) =——
(s) s s+4

Taking inverse we get L™ [I(s) ] =i(t)= 5-2¢e™*" Amps
Voltage across Resistor Eg= 20 x (5 -2 e™ ) =100-40e™ Volts

Voltage across Inductor e_ =L di/dt
d -4t
e, =5 = (5—-2e™)

e, =40 e M Volts

Example : In the Circuit shown below switch S is in Position 1 for a long time and
brought to position 2 at time t = 0 . determine the circuit current.

After closing the switch to position 2 and applying the KVL equation

di(t)

5i(t) + 2 R

10
Taking Laplace on both sides



51(s) + 2(sI(s) —i(0)) = 15—0

I(0) is the initial current in L. Since inductor does not allow sudden change in current it’s
the steady state current flowing before switch comes to position 2.
i.e.i(0)=50/5 =10 A

therefore we get
10
51(s) + 2sI(s) — 2x10 = 5

10
(2s +5)I(s) = 5 + 20

20s + 10

I(s) = ———

s(2s +5)

Taking partial fraction

I()_205+1O _A+ B 2+ 8
s “s(2s+5) s 2s+5 s s+25

I()—2+ 8

s T s+25

Taking inverse we get L™ [I(s) ] =i(t) = 2+8 e*** Amps

Example the 20 uF capacitor in the circuit has an intial charge of Q=0.001 C as
shown . the switch is closed at t=0. Find the transient.

I
T

e T il
Y — D 20 }.L[‘ T QC)
- £

The differential equation of the circuit is given by

100'+1f'dt 9 _ 5o

R c-

100'+1f'dt—50+ 0.001
Yttt 20 x 10-6



1
100 i +Efidt=100

11(s) _ 100

E N N

Taking Laplace on both sides 10017 (s) +

100 + . I _ 190
(100 + () = —

Taking inverse transform

|(t) — e(-l/lOOC)t

C=20uf therefore i(t) = e

EXAMPLE

Switch moves from position 1 to 2 at t=0. Find the energy dissipated across the two
resistors

— 100 uF

Applying KVL in the loop after the switch is closed
1
500i + Efidtzloo
Taking Laplace

5001 16s) =100
(s) + Ts = /s



500 + ! I(s) —100
( Cs) 5= S
100
I(s) =—
500s + =
Cc
0.2
I =
&) =57720
Taking inverse we get i(t) = 0.2e"
The energy dissipated in the resistors
Ezfi%w
0

E = [(0.2e72°)2500 dt = [° 20e~*** dt=051

EXAMPLE

For the circuit shown below, find the charge on the capacitor and the current in the circuit
0.03 s after the switch is closed.

g 4k

— L 50pu —

7=RC=10x10°x5x10" =0.05s

_t
l-e ]

¢
=5x106x20x[1—eo-05]

qlt) = cv

_0.03
g{0.35) = 0.1x 107 x [1 _e 0.05]
= 0.1x107 x (1-0.55)

= 45x10° C
=45 uC



i=—er-
R
0,03
_ 20 %
10 x 10°
=1.1x10% A
=1.1 mA

EXAMPLE find the current in the circuit when the switch is closed at t= 0.

Applying KVL

di 1
+—fidt=100

20 +—
PTITe

I(s) _ 100
S S

Taking Laplace Transform 2I(s) + sI(s) +

1. 100
I(s)(2+s+-)=—
S S

100

I(s) = —————
(5) s24+2s+1

100

1) =552

Taking inverse on both sides , we get

i(t) = 100te® Amps



Example

Find the current i(t) assuming no initial charges

S 1000
V1Y W—
¢
i
200 sin 500 ¢ () == 25yF
Applying KVL

1
100i +—| i dt = 200sin 500t
25u

Taking Laplace transform

1001( )+400001(5) _ 200 =22
S s s2 + 5002
1()[100 + 40000 _ 100000
2 S 1= s2 + 5002
100000
I(s) = 20000

(s? + 5002)(100 + T)

o) 1000 s
)7 (5% + 5002)(s + 400)

Taking partial fraction

1000 s A B C

= + +
(s? + 5002)(s + 400) (s +400) s+ ;500 s—j500




_ 5(4+J5) _ 5(4-J5)
T om C= 41

A=-0.96 B

Therefore i(t) = -0.976 e+ 1.546 sin(500t+38.7)

UNIT- 1V MAGNETICALLY COUPLED CIRCUITS

Self-Inductance
A current-carrying coil produces a magnetic field that links its own turns. If the current in the coil

changes the amount of magnetic flux linking the coil changes and, by Faraday’s law, an emf is
produced in the coil. This emf is called a self-induced emf.

Let the coil have N turns. Assume that the same amount of magnetic flux @ links each turn of the
coil. The net flux linking the coil is then N®. This net flux is proportional to the magnetic field,
which, in turn, is proportional to the current I in the coil. Thus we can write N®«l. This
proportionality can be turned into an equation by introducing a constant. Call this constant L, the
self-inductance (or simply inductance) of the coil:

Nd =LI or Lle—(D

As with mutual inductance, the unit of self-inductance is the henry.

The self-induced emf can now be calculated using Faraday’s law:



The above formula is the emf due to self-induction.
Example

Find the formula for the self-inductance of a solenoid of N turns, length I, and cross-sectional area
A.

Assume that the solenoid carries a current I. Then the magnetic flux in the solenoid is

wop Ma (NN N

| AR
2
L:MONI—A or |L=py,nAl wheren:$.

A

(Note how L is independent of the current I.)

Mutual Inductance
Suppose we hook up an AC generator to a solenoid so that the wire in the Voltmeter

solenoid carries AC. Call this solenoid the primary coil. Next place a second
solenoid connected to an AC voltmeter near the primary coil so that it is
coaxial with the primary coil. Call this second solenoid the secondary coil. See
the figure at the right.

Changing
magnetic field
lines produced
by primary coil

The alternating current in the primary coil produces an alternating magnetic
field whose lines of flux link the secondary coil (like thread passing through
the eye of a needle). Hence the secondary coil encloses a changing magnetic
field. By Faraday’s law of induction this changing magnetic flux induces an
emf in the secondary coil. This effect in which changing current in one circuit induces an emf in
another circuit is called mutual induction.

Primary
coil coil s

Mutual Inductance

b12

Fig. 8.1.

Consider the circuit shown in fig. 8.1, the changing current produces a variable flux in the
first coil. For the purpose of analysis, is divided into two components



Here ¢, is the total flux established by i}, ;| = a part of ¢,. It links
with coil 1 only but not with coil 2.

¢y, = it is a part of ¢;. It links with both coils 2 and 1.

As, the flux linking with coil 2 changes, an e.m.f. is induced in the
coil ¢, and is given by

g "Ry ()

Also, e, is proportional to time rate of change of i,. It is because ¢, is
produced by i,, therefore,
di,
| Z
From equations (7) and (8), we can write that,
Ny dd),

di)

ey = M (8)

:#:(9)

If the permeability is constant, the above equation becomes

M = % ... (10)

Suppose that the second coil is connected to a voltage source. Let i2 be the current flow
and 42 be the total flux.

b = dtdy
N, d¢y
ey = T s 1)
- di
also ¢, = M — .. (12)
diz d¢2l
Hence M 7~ = Ny =
¢z
Hence M = N, -r; ... (13)

In equations (10 & 13) M is called mutual inductance.

Definition for Mutual Inductance

The mutual inductance between 2 coils is defined as the weber turns in one coil per ampere
current in other coil. It is measured in henrys.
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The mutual inductance is also defined as the ability of one coil to produce e.m.f. in other
coil by induction when the current in the first changes.

Coefficient of coupling (K) or coefficient of magnetic coupling (KM).
Consider the fig. 8.1, the fraction of the total flux produced by coil 1 linking coil 2 is
2

b

It is called coefficient of coupling. Thus

¢l2

K = —¢1 ...(14)

Also K = %’- .. (15)
2

Multiplying equations (10) & (13), we get

Nz N 21

D
M | 2
B N, K¢; N; K¢,
T h i
Ny ¢; Ny o,
= KZ( i =
1 2
NI2 = KZLI‘IZ ..(16)
ce M = K L] L2
R = ..(D
LiL,

From equation (16), we write that,

M2 M) (M
2 o — = = —
@ - 2% - (4) (%)

From the above expression, we can say that
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M . M
s Kand
L L,

are in geometric progression.

COUPLING COEFFICIENT

Coupling
Important- voltage is multiplied or divided directly by the transformer ratio, but impedance is

multiplied or divided by the ratio squared. Remember that transformers are frequency and level
sensitive, and that measurement conditions should match operating conditions for accurate results.

For mutual inductance, measure the inductance of the primary and secondary in series, and then
interchange the connections of one winding for a second reading. Apply the equation below:

M = l(Lseries+ -L
4

series— )

For coupling, measure the primary and secondary separately then apply the equation below:

M

k is the coefficient of coupling, zero to one.
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DOT RULE
A current entering the dotted terminal of one coil produces an open circuit voltage with a positive
voltage reference at the dotted terminal of the second coil.
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Example : If i, =5sin45tA and i, =0 Apply dot convention , M creates a negative potential at
the dot position of the primary mesh

I _ I
1 M {_\EH 2
+ . +
vl Ll% E 2 VZ
_.— . _

di,

v, =—M " =—2-5-45-c0s45t =—-450c0s45t V

If i,=-8"A and i,=0

Apply dot convention , M creates a negative potential at the dot position of the secondary mesh

v, =M ‘;_'t —(=2)-(-8)-(~1 168"

For the circuit shown in following figures, determine v,andv,.

1 1 1 1 1 1

< I M 2 > < 1 M 2 - < 1 M 27
v ER v 3 ek, % Llﬂ L v
1 L, <L, 2 1 L= £ 2 1 e g L, 2
> - = B - | =
di di ) ) ) )
LM Oy G
i i ' dt dt ' dt dt
bt B Vel Y i i : :
L2 dt dt 2:|—2% M% 2=~ 2%_ %
dt dt dt dt

Coupled Circuitsand v ~ i relationship



I
+0—> (}é _?_
2] | <k Vs {Vl —
-0 q (—)
Va
For sinusoidal circuit,
Example 1.
Vs — 20e—1000tv
1%\% 3mH
i £ 3'2'
VO a3
=$10Q
sNZL =2mH
! . JSmH
+ -
Primary mesh : . .
-V, +3Q-i +Llﬂ—Mﬁ:0
dt dt

(-, +3Q-1, + jol i, - joMi, =0)

Secondary mesh :

i 0. =0

dr i
( joMi, + joL,i, +10Q-1, = 0)

Example 2.
B¢
Vlcﬂi) 11 { 12 13 §BQ
7 H

\ //\ / f%fu:le:M ‘Pl(t)=Llil(t)+M12i2(l)
|

Wy (1) = M iy (1) + Ly (1)

d‘//1
dt

1£+M
dt

I, di,
dt

diy
dt

di,
dt

=L

+ L
dt :

Vl = ja)Lll-1 +ja)Mf2
V,=joMI + joL,I,



Mesh 1 :
~V, +5-1,+ j70(i, - 1, )+ j2o(i, - 1,)=0
Mesh 2 :

j7all, -1, )+ j2oli, - |'3)+ji. [+ j6al, — 1)+ j2o(i, - 1,)=0
w

Mesh 3 : j6w(|‘3 - |.2)+ jZa)(I'l - |'2)+ 3-1,=0

Transformer
Lo )
+ o o +
[———1
Vi L3 i v,
o * - 0
4 R . L,
O ) (o}
+ N +
[——a—0
Y L, L, V,
_ . _
O L 4 L4 0

In the equivalent network, mutual inductance no longer exists. And the dot convention has
been removed, and are also treated as self-inductance.

40 mH
A p— [\ P E—— C
I e . Iy
30mH 60 mH
B D

Example 3.

L, =30mH, L,=60mH and M =40mH

Lt V1 =10c0s100r V



Apply the original transformer:
1
i,=————|10cos(100z hr =3.33sin 1007 A
1 30x10° J (100r)a
di;

v,=M o =40x10"° x3.33x100cos100¢

=13.33cos 1007 V
Apply the 7" equivalent network:

1
i,= 10cos(1007 Kt =3.33sin1007 A
! (—10+40)><10SI (100r)d

V,= 40x107° x3.33x100cos 1007

=13.33¢c0s1007 V




Analysis of multi winding coupled circuits
For more windings the flux in each coil are

Ly1,L,,,L43 are selfinductances and

L12 == L21, L13 — L31, L23 — L32 Are mutual inductances.
h l _I—11 L, L13_

$=|92 =1 L=|L, L, L,
& - Ly Ly Ly

Tt

Analysis of Coupled Circuits

Consider the coupled circuits.

Each circuit contains a voltage source. As both currents il and i2 enter the coils through the dotted ends, M is
taken as positive. By applying KVL, the two loop equations may be written as below :

In the sinusoidal steady state the above equations become,



di, - di i

... (20)

g

Fig. 8.2.

R +joL) I +joMl; = E (21

In the matrix form, the last two equations may be written as,

joM  Ry+jol, | [ I E,

The equations (21) & (22) may be written as

Ry +jo (L;-M+M)I; ]+joMl, = E, . (24)

and joMI, +[Ry +jo (Ly-M+M)] I, = E; .- (25)

The coupled circuit of fig. 8.2 may be now re-drawn as in fig. 8.3. It is called conductively
coupled equivalent circuit of the mutually coupled circuit. It is so called because of the
common conducting element M.

Ry (L —M) (L2—-M) Ry

Fig. 8.3.
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Series, Parallel connection of coupled inductors
Series connection

I L L I L L
e — | —
o '\—M/‘ o o© W MJ 0

(a)mutually coupled coils in  (b)mutually coupled coils in
series-aiding connection series—opposing connection

Total inductance

L=L+L,+2M L=L+L,-2M

Parallel Connection

+ 1 M|, + ] M

\% Lé} %Lz Vv ng glﬂ

(a)mutually coupled coils in (b)mutually coupled coils in
parallel-aiding connection parallel-opposing connection

Equivalent inductance
= 1’1[’2—_1142 ] = Lle -M*
COL+L,-2M L+ L,+2M

Combination of Conductively Connected Mutually Coupled Coils

Consider two coils of self inductances L1 and L2. Let M be the mutual inductance between
them. These two coils can be connected in the following two ways :

1. Series connection,
2. Parallel connection
Again, series connection can be (a) series aiding or cumulative and (b) series opposition or

differential. Similarly, the parallel connection can be (a) parallel aiding or cumulative and
(b) parallel opposition or differential.



L Lo L
R
be—— v (t) —— v
o
Fig. (a)
7 %
LT (1
L L,

V(t) —=

Fig. 8.7 (b)

I

1. (a) Series connection (aiding)

Refer fig. 8.7 (a), the current is entering both the coils at the dotted terminal. So, it is called
series aiding combination. For this circuit, we can write that

di di di di _

| P
or L+l +2M 5 = v .. (26)

Let La be the equivalent inductance of the combination shown in fig. 8.7 (a),

di
Then Lang = v - (27)

From equations (26) & (27), we can obtain that,
L, = Li+Ly+2M ...(28)

(b) Series Opposition : (bucking)

Refer fig. 8.7 (b), the current is entering first coil at dotted terminal and leaving the other
coil at dotted terminal. So the mesh equation for this circuit is
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di di di d _
Lig-Mg tlag ~Mg = v0

or (L; +L,—-2M) gi', V(1) ... (29)

Let Lb be the equivalent inductance of the combination shown in fig. 8.7 (b),

di
Then Ly = v(¥ e (G0
From equations (29) & (30), we find that
L, = Li+Ly,-2M s /(31)

[Note : Equivalent inductance in the series aiding combination is more than that in series
opposing combination by an amount = 4M.]

2. (a) Parallel Combination (aiding) :

M M
s 1 —p 1 t ‘ 2

+ o L© + o— 1 /

[ ] [ L ]
V(1) ill ng iz]ng Ve i‘l Ly ‘2131,2

; L]

-0 - fo S

Fig. 8.8. (a) Fig. 8.8 (b)

Here, both the currents it and i2 enter the coils at the dotted terminals. Then, the equations
are

di di,

le; +M71’? = v(). ... (32)
di diy
= * LzE = v(1) s12 (33)

Assume that the excitations are sinusoidal for convenience. Then, the above equations can
be written as

joL 1, +joMl, = V .. 34)
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Solving above equations for Il and 12, we get
jo(L,-M)V
I 2 (2 .and
©-(M“-L, L,)
Jjo(L,-M)V
2 = 2 _L, Ly

Therefore, the total current

Izll ¥ 12
jo(Ly+L-2M) V
®?(M2-L, Ly

Therefore, the input impedance

2 (M2-L; L, jo (LL, — M?)
T jo@tLy-2M) (L +L,-2M)

... (36)
Let La be the equivalent of the combination of inductances then

Vv
T = jo(Ly) swl3T)
From equations (36) & (37), we write that

L; L, - M?
P m ... (38)

(b) Parallel Opposition

Let Lb be the equivalent inductance in this case, by derivation, we can get that

L, L,-M?

L, = m ... (39)

Note :On observing equations (38) and (39), we can conclude that the equivalent
inductance in the parallel aiding is more than that in parallel opposition. It is because the

denominator of equation (38) is less than that of equation (39)
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SINGLE TUNED AND DOUBLE TUNED COUPLED CIRCUITS

Single Tuned Coupled Circuits

Consider the circuit shown in the fig. 8.15. A parallel resonant circuit on the secondary is
inductively coupled to coil 1. This coil 1 is excited by a source Eg. Let Rg be the source resistance.

Let R1, R2 be the resistances of coils 1 and 2 respectively and let L , L2 be the self-inductances of
the coils 1 and 2 respectively.

M
N e VLI
_‘V_VV_\fp L] L -—» 11
i 12
Ry . R| Ry l
C ;1_ Ep
+ Ll LZ

Assume that Rg >> R1 >> jcoLi i.e., Ignore R1 and jo3L1 in
comparison with Rg.

Then, the mesh equations are

[
(&3]

I, R,—joMl, =
; I -
—](DMIl + (Rz—mLz +J (DC) 12 0

Solving equations (i) & (ii), we get

ngmM'

: o W,
Rg(R2+_](DL2—wC)0) M

L
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- 1
The output voltage Ep = 1 X (m'J') “d2 (]&E)
JE;oM

ol e
N[ ey B

~. The voltage transfer function = Voltage amplification.
M

e G )]

When the secondary side is tuned i.e., when the values of the frequency co, is such that

il

Eo

1
O)Lz = 36,
Eq M
A=g =
E;, C[R,Ry+02M]
1

From equation (iii) the current 12 at resonance is obtained by putting

1
(DLZ = ©C
and replacing
o by o,.

Therefore 12 at resonance.

JE, 0, M
RgR; + 0,2 M2

From equations (vi) and (viz) it is observed that at resonance frequency EO, 12 and A depend on M.
The maximum value of EO or A dEO depends upon M. To get the condition for maximum Eo,

dEy _
dM
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d E.M
= aM |CR,R,+o02M | = O
[ g 2 o, M]
From this, on simplification, we get

R

@,

\R. R,

©

When M

’
r

the output voltage is maximum.
Therefore, maximum output voltage

EZR;RZE

o, & Eg

E = =
M CRgR+ReRy) — 20,CqR, R,

Maximum amplification

Eom _ 1
E, 20,C[R, R,

= Ay = - (%)

Maximum value of current

e

© 24/RR,

These maximum values are obtained by substituting

M=@

@,

in expressions EO, A, and 12 at resonance.

We know that
M=KA[L, L,

By changing the coupling factor K, we can vary M. The variation of amplification factor or output
voltage with the coefficient of the coupling is shown in the fig. 8.16.
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K=K1
K=K2
K=Kj
K| >Ky > K3

Amplification
factor

N L Tl S

0w —>0

Fig. 8.16.

Double Tuned Coupled Circuits

Double tuned circuits are generally parallel fed in the primary but it is simpler to consider the series
fed circuit.

For the circuit shown in the fig., we consider, a special case where the primary and secondary
resonate at the same frequency,

: 3 o ezl
Lé., (Dr e Ll Cl chz

M
N
o 3
G - .
Rg Rl% Ry
. =——C5 |E
(5 e, GoTe
+ Ll L,
Eg |
Fig. 8.17.

The mesh equations are :
[Rg+Rl +10)L1 _jmcl 1 — JoM L g

— i -
—joM 1 +1, [Rz +jol, —ijZ] =0
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From equations (ii) and we get

.ggl'mM

L= 1 : 3 W2
[(Rg+R1)+j (coLl 'co—c,)][kz +J (mLz- mCz)]+ a'M

At resonance,

1 1

Hence, at resonance current

E,jo,M
(Rg+RPRy+ ®,2 M2

Hence, output voltage

Eo"‘Iza:mL’

E,(j o,—-M)
R, +R)Ry + 0,2 M2

E M
Eo = CIR,*R)R, +0,2 M2
AE,

I

M
C IRy +Rp) Ry + 0,2 M?]

A, g

The maximum value of A or the maximum value of Eo can be obtained by taking the first
derivative of A or EO with respect to M and equating it to O.

. dEy _
ie, M 0
dA
or o < 0
A _ R +RYRy+02M-2M2 0 = 0

o2M?2 = Ry(R;+Ry)

R, (R; +R))
M, = Y21 =

c mr
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Mc is the critical value of mutual inductance. The maximum values of EO and 12 are obtained by
substituting the value of Mc in equations of Eo and 12.

From definition,
M=KA\[LL,,

the coefficient of coupling K at M = Mc is called the critical coefficient of coupling. It is given by

Kc=Mc\lLlL’2

The critical coupling causes i2 to have the maximum possible value. At resonance, the maximum
value of A is obtained by changing M, or by changing the coupling coefficient for given values of
L1and L2.


http://eeeonline.org/wp-content/uploads/2015/05/Coupled-Circuits77.jpg
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PROBLEMS

1. Find I1 and 12 of the circuit for K=1.
joM

10 Q 3\ 100
AN
- -
jl0 Q j10

10£0°V @ Q @ 10£0°V

Given K=1
M
k= =1
L,L,

therefore M = VL,L, that is

oL, =wL,=10and L, =L, =L.

M=,LL, =L and joM = joL = jl0.

Now, using mesh analysis,

Loop 1: -10+10I, +j10I, - j10I1, =0
(10+j10)I, —j10I, =10
A+)L—-jL, =1~

Loop2: -jlOI, +jl01,+101,+10=0
- 101, +(10+j10)I, = -10
L+ A+ P, =-1

{1;1- 1:3}[”{11}

AR 0

I, |~ A

In matrix form,

or

where A =1+ -1 =10+ji2+)—j> =1+j2.

Therefore,

14j—j 1 1.£0°

- - 04472/ -63.43° A
L=T00 “1+p2 " 526343
i—d+j) -1 1.180°

A e ~ 0.4472116.57° A

1+2  1+j2  J5.63.43°

2. Find the equivalent inductance of the three inductors using dot rule.



2H

4 H 5H
0000
6 H 8H 10 H
For coil 1, L, M,+M,;=6—-4+2=4
For coil 2, L, M, M, =8-4-5=-1
For coil 3, Ly +M; —M,, =10+2-5=7

L, =4—-1+7=10H

or L, =L +L,+L;—-2M,,-2M,;, +2M,,
L,y =6+8+10—2)4)—2OS)+@2)2)
L,=6+8+10—-8—-10+4=10H

3. For the given circuit fing K and the voltage across the 1 ohm resistor.

100 O J100

MWV

L] (] +

10£0° V C’_D 100 Q j10Q v, § 10

Ans:

k=1 Vig = 0.1£0°V




4. For the given citcuit find Vo if Viy(t) = 10cos(377t) and the value of K=0.8

<
j20 @
5Q
jooIM
AN J I, Vour

Form the value of K=0.8 we can get

oM

~ J@L)oL,)
oM =k./(oL, ) oL,) = (0.8),/(5)(20) =

The in put can be written as

Acos(377t+¢).
V., =10£0°.

The circuit can be redrawn as

j20Q
5Q
‘ YW Vout

Loop #1 : -10+ 51, +j5(, —1,)— 81, =0
Loop #2 : i8I, + 351, —I,)—3i8(, —1,)+j20I, +V,, = 0]

+

Due to open circuit 12 =0

Therefore (5+j5) 1; =10 and V=] 13 I; clearly

- 10 10.£0° 9"54'45"
5+35 T 5J2.245

V., = jl131, = (13£90°)(v2 £ - 45°) = 134/2.2/45°

In the time domain it can be written as



Vout = 13V2 cos(377 t +45) Volts

UNIT -V
Network Topology: Network terminology - Graph of a network - Incidence and reduced incidence
matrices — Trees —Cutsets - Fundamental cutsets - Cutset matrix — Tiesets — Link currents and
Tieset schedules -Twig voltages and Cutset schedules, Duality and dual networks.

Graph(orlineargraph): Anetworkgraphisanetworkinwhichallnodesandloopsarere-
tainedbutitsbranchesarerepresentedbylines. Thevoltagesourcesarereplacedbyshortcircuits
andcurrentsourcesarereplacedbyopencircuits.(Sourceswithoutinternalimpedancesorad-
mittancescanalsobetreatedinthesamewaybecausetheycanbeshiftedtootherbranchesby
E-shiftand/orl-shiftoperations.)
Branch:Alinesegmentreplacingoneormorenetworkelementsthatareconnectedinseriesor
parallel.
Node:Interconnectionoftwoormorebranches.Itisaterminalofabranch.Usuallyintercon-
nectionsofthreeormorebranchesarenodes.

Path:Asetofbranchesthatmaybetraversedinanorderwithoutpassingthroughthesamenode
morethanonce.

Loop:Anyclosedcontourselectedinagraph.
Mesh:Aloopwhichdoesnotcontainanyotherloopwithinit.

Planargraph: Agraphwhichmaybedrawnonaplanesurfaceinsuchawaythatnobranch
passesoveranyotherbranch.

Non-planargraph:Anygraphwhichisnotplanar.

Orientedgraph:Whenadirectiontoeachbranchofagraphisassigned,theresultinggraphis
calledanorientedgraphoradirectedgraph.

Connectedgraph: Agraphisconnectedifandonlyifthereisapathbetweeneverypairofnodes.

Subgraph:Anysubsetofbranchesofthegraph.

Tree:Aconnectedsub-graphcontainingallnodesofagraphbutnoclosedpath.i.e.itisaset
ofbranchesofgraphwhichcontainsnoloopbutconnectseverynodetoeveryothernodenot
necessarilydirectly. Anumberofdifferenttreescanbedrawnforagivengraph.

Link:Abranchofthegraphwhichdoesnotbelongtotheparticulartreeunderconsideration.
Thelinksformasub-graphnotnecessarilyconnectedandiscalledtheco-tree.

Treecompliment: Totalityoflinksi.e.Co-tree.

Independentloop: Theadditionofeachlinktoatree,oneatatime,resultsoneclosedpathcalled
anindependentloop.Suchaloopcontainsonlyonelinkandothertreebranches.Obviously,the
numberofsuchindependentloopsequalsthenumberoflinks.

Tieset: Asetofbranchescontainedinaloopsuchthateachloopcontainsonelinkandthe



remainderaretreebranches.

Treebranchvoltages: Thebranchvoltagesmaybeseparatedintotreebranchvoltagesandlink
voltages. Thetreebranchesconnectallthenodes. Thereforeifthetreebranchvoltagesareforced
tobezero,thenallthenodepotentialsbecomecoincidentandhenceallbranchvoltagesareforced
tobezero.Astheactofsettingonlythetreebranchvoltagestozeroforcesallvoltagesinthe
networktobezero,itmustbepossibletoexpressallthelinkvoltagesuniquelyintermsoftree
branchvoltages. Thustreebranchformanindependentsetofequations.

Cutset: Asetofelementsofthegraphthatdissociatesitintotwomainportionsofanetworksuch
thatreplacinganyoneelementwilldestroythisproperty.ltisasetofbra
dividesaconnectedgraphintotwoconnectedsub-graphs.Eachcutse:
andtheremainingbeinglinks.

Fig.2.1showsatypicalnetworkwithitsgraph,orientedgraph,attée;co-treeandane ar graph
- h
1 <\7 I\/\M 2 o) Giraph

Network

Co-tree

Oriented graph

Relationbetweennodes,links,andbranches

Let B=Totalnumberofbranchesinthegraphornetwork
N=totalnodes
L=linkbranches 2

ThenN— 1branchesarerequ|redtoconstructatreebecausethef|rstbranch
twonodesandeachadditionalbranchincludesonemorenode. 4 c
Thereforenumberofindependentnodepairvoltages=N—1=numberoftreebranches.
ThenL=B—(N—1)=B—N+1
Numberofindependentloops=B—N+ 1




Proposition: Consider a directed graph containing n nodes and e links. When any tree is chosen, the
number of branches is: b = n-1;
— the number of cords is: | = e-n+1;
— the number of fundamental circuits is: m = e-n+1;
— the number of fundamental cuts is: ¢ = n-1;
— the chosen orientation
— of a circuit; that of the associated cord:;
— Of a cut: that of the associated branch.

Figures 1 illustrate the concepts on the graph. Figures 1a, b, ¢, and d respectively show the network
representation by a directed graph, a tree with cords and branches, fundamental circuits, and
fundamental cuts.

Figure 1c Fundamental circuits (E, F, G).



Figure 1d Fundamental cuts (A, B, C, D).

Starting from a description of the network by a unifilar diagram and extraction of the graph which
is the topological representation, it is possible to seek by specialized algorithms possible trees and
associated cords, branches and circuits. As will be seen in the sections that follow, this description
will allow the derivation of the network equations.

Matrix representation of networks

The formulation of the equations of network is based on the definition of a coherent and exact
mathematical model which describes the characteristics of the individual components (machines,
lines, transformers, loads) and the interconnection between these components. The matrix equation
is a suitable model adapted to the mathematical treatment and processing under a systemic aspect.
The matrix elements can be either impedances (when node voltages are written in terms of injected
currents), or admittances (when injected currents are written in terms of node voltages).

Network Matrices
The network can be described by three types of matrices:

— Elementary matrices (or primitive): these matrices describe the individual components
by taking into account, if necessary, their electromagnetic (capacitive and inductive)
couplings for lines having common or partial right-of-ways. They are of diagonal
structure except for the components whose coupling is represented by non-diagonal
elements;

— Incidence matrices: these matrices describe the interconnections between the various
components of the network. The terms of these matrices are binary digits 1, 0, - 1,
which represent the bond between branches and nodes of the network with their
orientation;

— Transfer matrices: these matrices describe in a mathematical way the electric behavior
of the mesh network. They are essentially impedance or admittance matrices which
correspond to the nodes of the network (nodal matrices).

The relation between the above three matrices can be described by the operational equation of

Figure 2.2. The figure shows that the transfer matrix is obtained from a complex operation using
the elementary matrix and the incidence matrix. This operation will studied in the following
sections.

Matrice @ Matrice Matrice de
Primitive d’Incidence Transfert

Translation:

Matrice primitive: Elementary Matrix



Matriced’incidence: Incidence Matrix
Matrice de Transfer: Transfer Matrix
Incidence Matrix

As indicated above, the incidence matrices characterize the relation between the network elements
(generally called branches) and the nodes connecting these elements.

Incidence Matrix branches-nodes: «A»
Definition: It is a matrix A with general term {a;} and dimension (e X n) such as:

— a;=1if branch i is incident with node j and is directed towards this node;
a;= -1lif branch i is incident with node j and is directed away from this node;
— &;=0if branch i is non-incident with node j.
Properties — For every line i:

-

n

Zaij =0

j=0

Indeed on the same line corresponding to the branch referred by i, there are only two nonzero
elements: The first corresponds to the starting node with value 1, and the second corresponds to the
arrival node with the value - 1. The above property indicates that the number of rows of the matrix
is lower than n.

Incidence matrix branches-access: «A4’»

This corresponds to the incidence matrix branch-node in which the choice of a node of reference
(for voltage) led to the removal of a column of the matrix «A» (in general the first). This matrix is
of rown - 1.

Incidence matrix branches-fundamental cuts: «B»

Definition: It is a matrixBof general term {b;} and dimension (e x b) such as:

b= + 1if the i" branch belongs to the jth fundamental cut with same orientation;
—  by=- lif the i™ branch belongs to the j fundamental cut with opposite orientation;
— by= 0if the i"" branch does not belong to the j*" fundamental cut.
Properties: L et the following sub-matrices of «A» and «B» be denoted by:

— Ay branches/access,
— A.: cords/access.
— By: fundamental branches/cuts,
— Be: cords/fundamental cuts.
Since there is an identity between the branches and the fundamental cuts, then the sub-matrix Byis

equal to the unity matrixl. Moreover one can notice that the product:
B.*A;, = incidence matrix cords/access

Which is precisely the sub-matrix A, i.e.,



BC*Ab = AC
The above yields
B:=A> Ay’

Thus, one can build the matrix B from sub- matrices A, and A.of matrix A by the formula:

B=[AAT

Incidence matrix links-fundamentalcircuits: «C»
Definition: It is a matrix C of general term {c;} and of dimension (e x m) such as:

— ¢cj=+ lif the i" link belongs to the jth fundamental circuit with same orientation;
—  ¢;= - 1if the i link belongs to the j™ fundamental circuit with opposite orientation;
- ¢;= Oif the i™ does not belong to the j" fundamental circuit.

Properties: Let the following sub-matrices of «C» be denoted as follows:

— Cy: branches/fundamental circuits;
— C.: cords/fundamental circuits.
Since there is identity between the cords and fundamental circuit, the sub-matrix C. is equal to the

unity matrix I.

Example of incidence matrices: If the graphs of Figures 2.1a - 2.1c are condensed into one graph as
displayed in Figure 2.3 which shows the branches, cords, fundamental circuits and fundamental ,
one can easily build matrices A, B, and C corresponding to this graph:

Graph for the matrices A, B, C, of network.

Link/Node | 0 1 ]| 2 3 4
1 BT IS 0 0
2 1] 0 | 1] o 0
3 1] 0 ] 0 0 1 Ay
4= ] 0 0] 0 | 11| -1
5 0 0 | -1 | 1 | 0
6 0 | -1 | +1] o0 0 A
7 0 0 | -1 0 |




Link/ Fund. Cut A B C D
1 T 00 | 0
2 0 | +1] 0] 0
3 0 0 [+ 0 By
B —
1 0] 0] 0|
5 0 | -1 ]+ 1
6 T 10 0 B,
7 0 1 [+ 0
LinkFund. Ckt. | E | F | G
1 0 | =1 ] 0
2 T 1] 11
3 1] 0 | -1
= 4 q ] 0 | -1
3 1] 0 ] 0
6 0 | =1 0
7 0 | 0 | 1

REDUCED INCIDENCE MATRIX

Let G be a connected digraph with “ n” nodes and “ b ” branches. Let Aa be the
Incidence Matrix of G . The (n-1) x b matrix A obtained by deleting any one row of A
ais called a Reduced-Incidence Matrix of G.

EXAMPLE:

ReferthecircuitshowninFig.Drawthegraph,onetreeanditsco-tree.

a AAAA

SOLUTION

Wefindthattherearefournodes(N=4)andsevenbranches(B=7).
Thetreeismadeupofbranches2,5and6.Theco-treeforthetree
isshown.Theco-treehasL=B—N+1 = 7—4+1 = 4links.



N
N
ULO——mO >
o}

Graph Tree

Co-tree

ReferthenetworkshowninFig. Obtainthecorrespondingincidencematrix.

SOLUTION
ThenetworkshowninFig(a)hasfivenodesandeightbranches. Thecorrespondinggraph
appearsasshowninFig.(b).

Theincidencematrixisformedbyfollowingtherule: Theentryoftheincidencematrix,

=1,ifthecurrentofbranchleavesthenode
= 1, ifthecurrentofbranchentersnode

=(,ifthebranchisnotconnectedwithnode.

Incidencematrix:

Nodes Branchnumbers ,
T +1 0 0 1 0 1 0 0
2 1 +1 0 0 0 0 1 0
3 0 1 +1 0 1 0 0 0
4 0 0 1 +1 0 0 0 1
5 0 0 0 0 +1 +1 +1 +1




ForthenetworkshowninFig.(a),determinethenumberofallpossibletrees.Foratree
consistingof(1,2,3)(i)drawtiesetmatrix(ii)drawcut-setmatrix.

Figure(a)

SOLUTION

Iftheintentionistodrawatreeonlyforthepurposeoftie-setandcut-setmatrices,theideal

currentsourceisopencircuitedandidealvoltagesourceisshortcircuited. Theorientedgraphis
drawnforwhichdisthereference.ReferFig.2.12(b),

[ 1 2 3 4 5 ¢

a1 0 0 -1 1 -1
A= b1 1 0 1 =1 0
c  0—1 17 0 0 0
1 -1 0
1o 0!'-1 1 1 g ! i
Det AAT= ] | OEO -1 0 = 8 0
0-1 1'0 0 0 L -1 o
-1 0 0
1 0 0 1 -1 0 —1 1 —1 -1 0 0
=1 -1 1 0 0 1 1|+ 0 -1 0 1 —1 0
0 —1 1 0 0 1 0 0 0 —1 0 0

Therefore,possiblenumberoftrees=12.



a,0

loop 2 loop 3
Figure(b)

(i) Tie-setmatrixfortwigs(1,2,3)is

branches

Loop Currents 1 2 3 4 5 6
ip=Jy 1111 00
i2 =J; 1 000 -1 0
ig =Jg { 1110 01 }

(if)Cut-setmatrixis

d, b,

b =
Wi(fhég ting(e1=e3=0)

Withezacting

Withejacting

) branches
Node-pairvoltage 123 4 5 6
e1=vi 100 11 1
€2=V2 010 10 1
e3=V3 0 0 1 10 1

b, a,c




ForthenetworkshowninFig.(a),writeatie-setscheduleandthenfindallthebranchcurrents
andvoltages.

NetworkTopology|133

Figure(a)

SOLUTION
Fig.(b)showsthegraphforthenetwrokshowninFig.(a).Also,apossibletreeand
co-treeareshowninFig.(c).Co-treeisindottedlines.

A

'{

Figure(b) Figure(c)

First, the tie-set schedule is formed and then the tie-set matrix is obtained.
Tie-set schedule:

Loop Branch numbers
currents 1 2 3 4 5

6
+1 0 0 4+ 1 0
1
1

Yy 0 +1 0 0 +1
0 0 +1 1 0 +

Tie-set matrix is
1 0 0 1 1 0 —‘

M=|010 0 1 1
001 1 0 IJ



1.

0
0
0

EH

0

0 0 0 0 0]
0 100 0 00
0 0 0 10 00
0 0 0 0
0 0 0 0 05
Z; =MZyMT"

The loop impedance matrix is

The branch impedance matrix is
Zy

o =T o
—_— 0 DD -
L : ! J
r ' 1
DDD"D =
] | P |
SCeoen S oo
=
=0 O = O
TSI o- o
[ == T T e R e =}
' — o O
= H
==l s -

o oo o o e
b : ' o oawn
—_——— =
= d|_A —_ = i =
4|_. — T I s I s

| I —
- 4|_.
1

10
20

z=23A

MEg
—10
= 1.16666 A,
The branch currents are computed using the equations:

y

YARYS
-5

20

4.1666 A,

The loop equations are obtained using the equation,
T

Solving by matrix method, we get

Hence,



11=x=4.1666A, 1,=y=1.6666A, 13=2=2.5A,

1,=x—z=1.6666A, Is=—x+y=—2.5A, le=—y+z=0.8334A
Thebranchvoltagesarecomputedusingtheequation:
Ve=Zglg—Eg
'l s 0 0,0 0 o1 (0] [-s0]
2 010 0/0 0 of |22 0
V3 0O 0 5,0 0 0 L _-]0
= lp| 7|0 0 0 100 0f |4 0
Vs 0O 0 0,0 5 0 15 0
LV64 0 0 0f0 05 L]6J LO_‘
Hence,
V1=511—50 =29.167V, V2=101,=16.666V, V3=513=12.50V,
V4=1014,=16.666V, V5=515=—12.50V, Ve=516=4.167V
PLE

Fortheorientedgraphshown,expressloopcurrentsintermsofbranch
currentsforanindependentsetofcolumnsasthosepertinenttothelinks
ofatree:

(i)YComposedof5,6,7,8

(if)Composedof1,2,3,6
Verifywhetherthetwosetsofrelationsfor’sintemsof’sareequivalent.Constructatie-set
schedulewiththecurrentsinthelinks4,5,7,8asloopcurrentsandfindthecorrespondingsetof closedpaths.

SOLUTION
Forthefirstset

Loop Branchnumbers

No 1 2 3 4 5 6 7 8
1 +1 0 0 0 +1 1 0 0
2 0 +1 0 0 0 +1 1 0
3 0 0 4+ O 0 0 +1 1
4 0O 0 o0 + 1 0 0 +1

B=5678andLink=1234.

i1=J1, i2=J2, i3=J3, & i4=J4.



Thenforthesecondset,ofthemeshcurrentsindicatedforthefirstset,wehave

Ja=iy 4=Js

Js=i1 . 1=J1tds

G J

7= +in 374 +Jg

Jg=i =J

T 27 4y, +Jg
Loop Branchnumbers
Ny 1 2 3 4 5 6 7 8
1 +1 0 0 0 +1 -1 0 0
2 0 —1 0 0 0 —1 +1 0
3 0o -1 -1 0 0 -1 0 +1
4 +1 +1 +1 +1 0 0 0 0

InthegraphshowninFigure(a),theidealvoltagesource
e= 1V.Fortheremainingbrancheseachhasaresistanceofl

QwithOasthereference.Obtainthenodevoltagee; ,e-and

esusingnetworktopology.

SOLUTION

€2

Figure2.16(a)

Witheshift,graphisasshowninFigure2.16(b).Branchesarenumberedwithorientation.

With T' = (2, 5, 7) the cut set matrix is

Q

—1

1 1 0 0
0 -1 -1 0

0 0
01

0 0 11 -1 0



1

0
0
0

[1 00 0000

0100000
0010000
0001000
O00O01TO0O0
0000010

YpQT =

-1

—1

0 o

QY Q" =

—1

According to the equation QY 5 QTEy = —QY pEp, we have

= 00 -1 -1

QY pEg

Therefore,

L I

€1
£2
€3



DUAL Networks

Circuits are said to be dual when the characterizing equations of one network can be
obtained from the other by simply interchanging v and i and interchanging G and R.

Duality pairs

Resistance <> Conductance
Current <> Voltage
Series <>Parralel

Capacitor <> inductor

The duals of planar networks could be obtained by a graphicaltechnique known as the dot method.
The dot method has the following procedure:

1. Put a dot in each independent loop of the network. These dots correspond to independent nodes
in the dual network.1 Planar networks are those that can be laid on a plane without branches
crossing one another.

2. Put a dot outside the network. This dot corresponds to the reference node in the dual
network.

3. Connect all internal dots in the neighbouring loops by dahsed lines cutting the common
branches. These branches that are cut by dashed lines will form the branches connecting the
corresponding independent nodes in the dual network. As an example, if a common branch
contains & and in series, then the parallel combination of 'and should be put between the
corresponding independent nodes in the dual network.

4. Join all internal dots to the external dot by dashed lines cutting all external branches. Dualsof
these branches cut by dashed lines will form the branches connecting the independent nodes and the
reference node.

5. Convention for sources in the dual network:

(i) aclockwise current source in a loop corresponds to a voltage source with a positive polarity at
the dual independent node.

(ii) avoltage rise in the direction of a clockwise loop current corresponds to a current flowing
toward the dual independent node.



Example
DrawthedualofthecircuitshowninFig.Writethemeshequationsforthegivennetworkandnodeequationsfo
ritsdual. \erifywhethertheyaredalequations.

Ry
o AN\
R, 1 §
== L

+
- L R,
— WYY ANV

\_/

s

t=0

SOLUTION

Forthegivennetwork,themeshequationsare
Thedualnetwork,aspertheproceduredescribedinthetheoryispreparedasshowninFig.

andisdrawnasshownas . Thenodeequationsforthisnetworkare




Ftiq _.Ilr.'l.llr}{l-'.'l -"le—|—ir / (,.'] .1'3_] il =y

(o
i9 = —i(Q
Roig + LoDisg + Ra(ig — ia) + el / (ig —ia)di =0

Dual equation
. . Ly _
(J]_]l 1 +( 1]{}{|”1 E'Q]+T / I:'”]. ."R]r_lr.l' = iy

1 r
Gavg + CaDvs +Ga(va — v2) +— / (0g — va)dt =0

ForthebridgenetworkshowninFigdrawitsdual. Writetheintegro-differentialformof

themeshequationsforthegivennetworkandnodeequationsforitsdual. Thevaluesforresistors
oneinohms,capacitorsareinfaradsandinductorsareinHenrys.

Figure
SOLUTION

ThedualforthegivennetworkisshowninFig.2.24(c)usingtheprocedureshowninFig.2.24(b).
Theintegro-differentialformforthenetworkis




i(t)

Thenodeequationsforthedualnetworkare

1

10i1 + D (iy ;g)+1f(f1 i3) di = 10 sin 501
1

D (i i1}+2ﬂfg+?f[r'2 ig)di =0
5

1 1
3534-3\/{53 fl}rﬂ +?f[53 "-2;]”“‘ =0
5}

DUAL
100y + D (v; — 1) + i] (01 — vg)di = 10sin 501
1
D(t‘g t‘1}+2ﬂt‘g+;f{t‘g t‘g}rﬂ =1
3]
1 1
Jvg+= [ (vg—wvy)dl+= [ (vg —va)dt =0
4 3]
i cx~vpLE B

Je —IOIV ().]E’“)[A




SOLUTION
ThedualforthegivennetworkisshowninFig.2.25(c)usingtheproceduregiveninFig.2.25(b).

0.1e 1A 8

0.1e=10v

10mF

1T
Figure 2.25(c)

Mesh equations for the given network are 1, = i1 — i4

Biy + 1(1/.(-5.1 — i) dt =210

iy — iy = —0.2i,
iqg = —0.1e 1
—Biy + (ig —i3) 20+ 10 x 107*Diy =0

The node equations for the dual network are vy = v1 — vy
Hugy + 10 f (v1 —w2)dt = 2e 108

vy — vy = —0.20,

U3 = 0. 1e 1

—Buy + (vg —v3) 20410 x 1073 Duy =0



